• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include <algorithm>
28 using namespace llvm;
29 
30 // Always verify loopinfo if expensive checking is enabled.
31 #ifdef XDEBUG
32 static bool VerifyLoopInfo = true;
33 #else
34 static bool VerifyLoopInfo = false;
35 #endif
36 static cl::opt<bool,true>
37 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
38                 cl::desc("Verify loop info (time consuming)"));
39 
40 char LoopInfo::ID = 0;
41 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)42 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
43 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
44 
45 //===----------------------------------------------------------------------===//
46 // Loop implementation
47 //
48 
49 /// isLoopInvariant - Return true if the specified value is loop invariant
50 ///
51 bool Loop::isLoopInvariant(Value *V) const {
52   if (Instruction *I = dyn_cast<Instruction>(V))
53     return !contains(I);
54   return true;  // All non-instructions are loop invariant
55 }
56 
57 /// hasLoopInvariantOperands - Return true if all the operands of the
58 /// specified instruction are loop invariant.
hasLoopInvariantOperands(Instruction * I) const59 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
60   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
61     if (!isLoopInvariant(I->getOperand(i)))
62       return false;
63 
64   return true;
65 }
66 
67 /// makeLoopInvariant - If the given value is an instruciton inside of the
68 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
69 /// Return true if the value after any hoisting is loop invariant. This
70 /// function can be used as a slightly more aggressive replacement for
71 /// isLoopInvariant.
72 ///
73 /// If InsertPt is specified, it is the point to hoist instructions to.
74 /// If null, the terminator of the loop preheader is used.
75 ///
makeLoopInvariant(Value * V,bool & Changed,Instruction * InsertPt) const76 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
77                              Instruction *InsertPt) const {
78   if (Instruction *I = dyn_cast<Instruction>(V))
79     return makeLoopInvariant(I, Changed, InsertPt);
80   return true;  // All non-instructions are loop-invariant.
81 }
82 
83 /// makeLoopInvariant - If the given instruction is inside of the
84 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
85 /// Return true if the instruction after any hoisting is loop invariant. This
86 /// function can be used as a slightly more aggressive replacement for
87 /// isLoopInvariant.
88 ///
89 /// If InsertPt is specified, it is the point to hoist instructions to.
90 /// If null, the terminator of the loop preheader is used.
91 ///
makeLoopInvariant(Instruction * I,bool & Changed,Instruction * InsertPt) const92 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
93                              Instruction *InsertPt) const {
94   // Test if the value is already loop-invariant.
95   if (isLoopInvariant(I))
96     return true;
97   if (!I->isSafeToSpeculativelyExecute())
98     return false;
99   if (I->mayReadFromMemory())
100     return false;
101   // Determine the insertion point, unless one was given.
102   if (!InsertPt) {
103     BasicBlock *Preheader = getLoopPreheader();
104     // Without a preheader, hoisting is not feasible.
105     if (!Preheader)
106       return false;
107     InsertPt = Preheader->getTerminator();
108   }
109   // Don't hoist instructions with loop-variant operands.
110   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
111     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
112       return false;
113 
114   // Hoist.
115   I->moveBefore(InsertPt);
116   Changed = true;
117   return true;
118 }
119 
120 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
121 /// induction variable: an integer recurrence that starts at 0 and increments
122 /// by one each time through the loop.  If so, return the phi node that
123 /// corresponds to it.
124 ///
125 /// The IndVarSimplify pass transforms loops to have a canonical induction
126 /// variable.
127 ///
getCanonicalInductionVariable() const128 PHINode *Loop::getCanonicalInductionVariable() const {
129   BasicBlock *H = getHeader();
130 
131   BasicBlock *Incoming = 0, *Backedge = 0;
132   pred_iterator PI = pred_begin(H);
133   assert(PI != pred_end(H) &&
134          "Loop must have at least one backedge!");
135   Backedge = *PI++;
136   if (PI == pred_end(H)) return 0;  // dead loop
137   Incoming = *PI++;
138   if (PI != pred_end(H)) return 0;  // multiple backedges?
139 
140   if (contains(Incoming)) {
141     if (contains(Backedge))
142       return 0;
143     std::swap(Incoming, Backedge);
144   } else if (!contains(Backedge))
145     return 0;
146 
147   // Loop over all of the PHI nodes, looking for a canonical indvar.
148   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
149     PHINode *PN = cast<PHINode>(I);
150     if (ConstantInt *CI =
151         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
152       if (CI->isNullValue())
153         if (Instruction *Inc =
154             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
155           if (Inc->getOpcode() == Instruction::Add &&
156                 Inc->getOperand(0) == PN)
157             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
158               if (CI->equalsInt(1))
159                 return PN;
160   }
161   return 0;
162 }
163 
164 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
165 /// times the loop will be executed.  Note that this means that the backedge
166 /// of the loop executes N-1 times.  If the trip-count cannot be determined,
167 /// this returns null.
168 ///
169 /// The IndVarSimplify pass transforms loops to have a form that this
170 /// function easily understands.
171 ///
getTripCount() const172 Value *Loop::getTripCount() const {
173   // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
174   // canonical induction variable and V is the trip count of the loop.
175   PHINode *IV = getCanonicalInductionVariable();
176   if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;
177 
178   bool P0InLoop = contains(IV->getIncomingBlock(0));
179   Value *Inc = IV->getIncomingValue(!P0InLoop);
180   BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);
181 
182   if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
183     if (BI->isConditional()) {
184       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
185         if (ICI->getOperand(0) == Inc) {
186           if (BI->getSuccessor(0) == getHeader()) {
187             if (ICI->getPredicate() == ICmpInst::ICMP_NE)
188               return ICI->getOperand(1);
189           } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
190             return ICI->getOperand(1);
191           }
192         }
193       }
194     }
195 
196   return 0;
197 }
198 
199 /// getSmallConstantTripCount - Returns the trip count of this loop as a
200 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
201 /// or not constant. Will also return 0 if the trip count is very large
202 /// (>= 2^32)
getSmallConstantTripCount() const203 unsigned Loop::getSmallConstantTripCount() const {
204   Value* TripCount = this->getTripCount();
205   if (TripCount) {
206     if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
207       // Guard against huge trip counts.
208       if (TripCountC->getValue().getActiveBits() <= 32) {
209         return (unsigned)TripCountC->getZExtValue();
210       }
211     }
212   }
213   return 0;
214 }
215 
216 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
217 /// trip count of this loop as a normal unsigned value, if possible. This
218 /// means that the actual trip count is always a multiple of the returned
219 /// value (don't forget the trip count could very well be zero as well!).
220 ///
221 /// Returns 1 if the trip count is unknown or not guaranteed to be the
222 /// multiple of a constant (which is also the case if the trip count is simply
223 /// constant, use getSmallConstantTripCount for that case), Will also return 1
224 /// if the trip count is very large (>= 2^32).
getSmallConstantTripMultiple() const225 unsigned Loop::getSmallConstantTripMultiple() const {
226   Value* TripCount = this->getTripCount();
227   // This will hold the ConstantInt result, if any
228   ConstantInt *Result = NULL;
229   if (TripCount) {
230     // See if the trip count is constant itself
231     Result = dyn_cast<ConstantInt>(TripCount);
232     // if not, see if it is a multiplication
233     if (!Result)
234       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
235         switch (BO->getOpcode()) {
236         case BinaryOperator::Mul:
237           Result = dyn_cast<ConstantInt>(BO->getOperand(1));
238           break;
239         case BinaryOperator::Shl:
240           if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
241             if (CI->getValue().getActiveBits() <= 5)
242               return 1u << CI->getZExtValue();
243           break;
244         default:
245           break;
246         }
247       }
248   }
249   // Guard against huge trip counts.
250   if (Result && Result->getValue().getActiveBits() <= 32) {
251     return (unsigned)Result->getZExtValue();
252   } else {
253     return 1;
254   }
255 }
256 
257 /// isLCSSAForm - Return true if the Loop is in LCSSA form
isLCSSAForm(DominatorTree & DT) const258 bool Loop::isLCSSAForm(DominatorTree &DT) const {
259   // Sort the blocks vector so that we can use binary search to do quick
260   // lookups.
261   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
262 
263   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
264     BasicBlock *BB = *BI;
265     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
266       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
267            ++UI) {
268         User *U = *UI;
269         BasicBlock *UserBB = cast<Instruction>(U)->getParent();
270         if (PHINode *P = dyn_cast<PHINode>(U))
271           UserBB = P->getIncomingBlock(UI);
272 
273         // Check the current block, as a fast-path, before checking whether
274         // the use is anywhere in the loop.  Most values are used in the same
275         // block they are defined in.  Also, blocks not reachable from the
276         // entry are special; uses in them don't need to go through PHIs.
277         if (UserBB != BB &&
278             !LoopBBs.count(UserBB) &&
279             DT.isReachableFromEntry(UserBB))
280           return false;
281       }
282   }
283 
284   return true;
285 }
286 
287 /// isLoopSimplifyForm - Return true if the Loop is in the form that
288 /// the LoopSimplify form transforms loops to, which is sometimes called
289 /// normal form.
isLoopSimplifyForm() const290 bool Loop::isLoopSimplifyForm() const {
291   // Normal-form loops have a preheader, a single backedge, and all of their
292   // exits have all their predecessors inside the loop.
293   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
294 }
295 
296 /// hasDedicatedExits - Return true if no exit block for the loop
297 /// has a predecessor that is outside the loop.
hasDedicatedExits() const298 bool Loop::hasDedicatedExits() const {
299   // Sort the blocks vector so that we can use binary search to do quick
300   // lookups.
301   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
302   // Each predecessor of each exit block of a normal loop is contained
303   // within the loop.
304   SmallVector<BasicBlock *, 4> ExitBlocks;
305   getExitBlocks(ExitBlocks);
306   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
307     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
308          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
309       if (!LoopBBs.count(*PI))
310         return false;
311   // All the requirements are met.
312   return true;
313 }
314 
315 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
316 /// These are the blocks _outside of the current loop_ which are branched to.
317 /// This assumes that loop exits are in canonical form.
318 ///
319 void
getUniqueExitBlocks(SmallVectorImpl<BasicBlock * > & ExitBlocks) const320 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
321   assert(hasDedicatedExits() &&
322          "getUniqueExitBlocks assumes the loop has canonical form exits!");
323 
324   // Sort the blocks vector so that we can use binary search to do quick
325   // lookups.
326   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
327   std::sort(LoopBBs.begin(), LoopBBs.end());
328 
329   SmallVector<BasicBlock *, 32> switchExitBlocks;
330 
331   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
332 
333     BasicBlock *current = *BI;
334     switchExitBlocks.clear();
335 
336     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
337       // If block is inside the loop then it is not a exit block.
338       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
339         continue;
340 
341       pred_iterator PI = pred_begin(*I);
342       BasicBlock *firstPred = *PI;
343 
344       // If current basic block is this exit block's first predecessor
345       // then only insert exit block in to the output ExitBlocks vector.
346       // This ensures that same exit block is not inserted twice into
347       // ExitBlocks vector.
348       if (current != firstPred)
349         continue;
350 
351       // If a terminator has more then two successors, for example SwitchInst,
352       // then it is possible that there are multiple edges from current block
353       // to one exit block.
354       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
355         ExitBlocks.push_back(*I);
356         continue;
357       }
358 
359       // In case of multiple edges from current block to exit block, collect
360       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
361       // duplicate edges.
362       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
363           == switchExitBlocks.end()) {
364         switchExitBlocks.push_back(*I);
365         ExitBlocks.push_back(*I);
366       }
367     }
368   }
369 }
370 
371 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
372 /// block, return that block. Otherwise return null.
getUniqueExitBlock() const373 BasicBlock *Loop::getUniqueExitBlock() const {
374   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
375   getUniqueExitBlocks(UniqueExitBlocks);
376   if (UniqueExitBlocks.size() == 1)
377     return UniqueExitBlocks[0];
378   return 0;
379 }
380 
dump() const381 void Loop::dump() const {
382   print(dbgs());
383 }
384 
385 //===----------------------------------------------------------------------===//
386 // LoopInfo implementation
387 //
runOnFunction(Function &)388 bool LoopInfo::runOnFunction(Function &) {
389   releaseMemory();
390   LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
391   return false;
392 }
393 
verifyAnalysis() const394 void LoopInfo::verifyAnalysis() const {
395   // LoopInfo is a FunctionPass, but verifying every loop in the function
396   // each time verifyAnalysis is called is very expensive. The
397   // -verify-loop-info option can enable this. In order to perform some
398   // checking by default, LoopPass has been taught to call verifyLoop
399   // manually during loop pass sequences.
400 
401   if (!VerifyLoopInfo) return;
402 
403   for (iterator I = begin(), E = end(); I != E; ++I) {
404     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
405     (*I)->verifyLoopNest();
406   }
407 
408   // TODO: check BBMap consistency.
409 }
410 
getAnalysisUsage(AnalysisUsage & AU) const411 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
412   AU.setPreservesAll();
413   AU.addRequired<DominatorTree>();
414 }
415 
print(raw_ostream & OS,const Module *) const416 void LoopInfo::print(raw_ostream &OS, const Module*) const {
417   LI.print(OS);
418 }
419 
420