• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "mcexpr"
11 #include "llvm/MC/MCExpr.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringSwitch.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCSymbol.h"
18 #include "llvm/MC/MCValue.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Target/TargetAsmBackend.h"
22 using namespace llvm;
23 
24 namespace {
25 namespace stats {
26 STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
27 }
28 }
29 
print(raw_ostream & OS) const30 void MCExpr::print(raw_ostream &OS) const {
31   switch (getKind()) {
32   case MCExpr::Target:
33     return cast<MCTargetExpr>(this)->PrintImpl(OS);
34   case MCExpr::Constant:
35     OS << cast<MCConstantExpr>(*this).getValue();
36     return;
37 
38   case MCExpr::SymbolRef: {
39     const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
40     const MCSymbol &Sym = SRE.getSymbol();
41     // Parenthesize names that start with $ so that they don't look like
42     // absolute names.
43     bool UseParens = Sym.getName()[0] == '$';
44 
45     if (SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_HA16 ||
46         SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_LO16) {
47       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
48       UseParens = true;
49     }
50 
51     if (UseParens)
52       OS << '(' << Sym << ')';
53     else
54       OS << Sym;
55 
56     if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_PLT ||
57         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TLSGD ||
58         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOT ||
59         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTOFF ||
60         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TPOFF ||
61         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTTPOFF)
62       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
63     else if (SRE.getKind() != MCSymbolRefExpr::VK_None &&
64              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_HA16 &&
65              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_LO16)
66       OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
67 
68     return;
69   }
70 
71   case MCExpr::Unary: {
72     const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
73     switch (UE.getOpcode()) {
74     default: assert(0 && "Invalid opcode!");
75     case MCUnaryExpr::LNot:  OS << '!'; break;
76     case MCUnaryExpr::Minus: OS << '-'; break;
77     case MCUnaryExpr::Not:   OS << '~'; break;
78     case MCUnaryExpr::Plus:  OS << '+'; break;
79     }
80     OS << *UE.getSubExpr();
81     return;
82   }
83 
84   case MCExpr::Binary: {
85     const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
86 
87     // Only print parens around the LHS if it is non-trivial.
88     if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
89       OS << *BE.getLHS();
90     } else {
91       OS << '(' << *BE.getLHS() << ')';
92     }
93 
94     switch (BE.getOpcode()) {
95     default: assert(0 && "Invalid opcode!");
96     case MCBinaryExpr::Add:
97       // Print "X-42" instead of "X+-42".
98       if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
99         if (RHSC->getValue() < 0) {
100           OS << RHSC->getValue();
101           return;
102         }
103       }
104 
105       OS <<  '+';
106       break;
107     case MCBinaryExpr::And:  OS <<  '&'; break;
108     case MCBinaryExpr::Div:  OS <<  '/'; break;
109     case MCBinaryExpr::EQ:   OS << "=="; break;
110     case MCBinaryExpr::GT:   OS <<  '>'; break;
111     case MCBinaryExpr::GTE:  OS << ">="; break;
112     case MCBinaryExpr::LAnd: OS << "&&"; break;
113     case MCBinaryExpr::LOr:  OS << "||"; break;
114     case MCBinaryExpr::LT:   OS <<  '<'; break;
115     case MCBinaryExpr::LTE:  OS << "<="; break;
116     case MCBinaryExpr::Mod:  OS <<  '%'; break;
117     case MCBinaryExpr::Mul:  OS <<  '*'; break;
118     case MCBinaryExpr::NE:   OS << "!="; break;
119     case MCBinaryExpr::Or:   OS <<  '|'; break;
120     case MCBinaryExpr::Shl:  OS << "<<"; break;
121     case MCBinaryExpr::Shr:  OS << ">>"; break;
122     case MCBinaryExpr::Sub:  OS <<  '-'; break;
123     case MCBinaryExpr::Xor:  OS <<  '^'; break;
124     }
125 
126     // Only print parens around the LHS if it is non-trivial.
127     if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
128       OS << *BE.getRHS();
129     } else {
130       OS << '(' << *BE.getRHS() << ')';
131     }
132     return;
133   }
134   }
135 
136   assert(0 && "Invalid expression kind!");
137 }
138 
dump() const139 void MCExpr::dump() const {
140   print(dbgs());
141   dbgs() << '\n';
142 }
143 
144 /* *** */
145 
Create(Opcode Opc,const MCExpr * LHS,const MCExpr * RHS,MCContext & Ctx)146 const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS,
147                                          const MCExpr *RHS, MCContext &Ctx) {
148   return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
149 }
150 
Create(Opcode Opc,const MCExpr * Expr,MCContext & Ctx)151 const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr,
152                                        MCContext &Ctx) {
153   return new (Ctx) MCUnaryExpr(Opc, Expr);
154 }
155 
Create(int64_t Value,MCContext & Ctx)156 const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
157   return new (Ctx) MCConstantExpr(Value);
158 }
159 
160 /* *** */
161 
Create(const MCSymbol * Sym,VariantKind Kind,MCContext & Ctx)162 const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
163                                                VariantKind Kind,
164                                                MCContext &Ctx) {
165   return new (Ctx) MCSymbolRefExpr(Sym, Kind);
166 }
167 
Create(StringRef Name,VariantKind Kind,MCContext & Ctx)168 const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, VariantKind Kind,
169                                                MCContext &Ctx) {
170   return Create(Ctx.GetOrCreateSymbol(Name), Kind, Ctx);
171 }
172 
getVariantKindName(VariantKind Kind)173 StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
174   switch (Kind) {
175   default:
176   case VK_Invalid: return "<<invalid>>";
177   case VK_None: return "<<none>>";
178 
179   case VK_GOT: return "GOT";
180   case VK_GOTOFF: return "GOTOFF";
181   case VK_GOTPCREL: return "GOTPCREL";
182   case VK_GOTTPOFF: return "GOTTPOFF";
183   case VK_INDNTPOFF: return "INDNTPOFF";
184   case VK_NTPOFF: return "NTPOFF";
185   case VK_GOTNTPOFF: return "GOTNTPOFF";
186   case VK_PLT: return "PLT";
187   case VK_TLSGD: return "TLSGD";
188   case VK_TLSLD: return "TLSLD";
189   case VK_TLSLDM: return "TLSLDM";
190   case VK_TPOFF: return "TPOFF";
191   case VK_DTPOFF: return "DTPOFF";
192   case VK_TLVP: return "TLVP";
193   case VK_ARM_PLT: return "(PLT)";
194   case VK_ARM_GOT: return "(GOT)";
195   case VK_ARM_GOTOFF: return "(GOTOFF)";
196   case VK_ARM_TPOFF: return "(tpoff)";
197   case VK_ARM_GOTTPOFF: return "(gottpoff)";
198   case VK_ARM_TLSGD: return "(tlsgd)";
199   case VK_PPC_TOC: return "toc";
200   case VK_PPC_DARWIN_HA16: return "ha16";
201   case VK_PPC_DARWIN_LO16: return "lo16";
202   case VK_PPC_GAS_HA16: return "ha";
203   case VK_PPC_GAS_LO16: return "l";
204   }
205 }
206 
207 MCSymbolRefExpr::VariantKind
getVariantKindForName(StringRef Name)208 MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
209   return StringSwitch<VariantKind>(Name)
210     .Case("GOT", VK_GOT)
211     .Case("got", VK_GOT)
212     .Case("GOTOFF", VK_GOTOFF)
213     .Case("gotoff", VK_GOTOFF)
214     .Case("GOTPCREL", VK_GOTPCREL)
215     .Case("gotpcrel", VK_GOTPCREL)
216     .Case("GOTTPOFF", VK_GOTTPOFF)
217     .Case("gottpoff", VK_GOTTPOFF)
218     .Case("INDNTPOFF", VK_INDNTPOFF)
219     .Case("indntpoff", VK_INDNTPOFF)
220     .Case("NTPOFF", VK_NTPOFF)
221     .Case("ntpoff", VK_NTPOFF)
222     .Case("GOTNTPOFF", VK_GOTNTPOFF)
223     .Case("gotntpoff", VK_GOTNTPOFF)
224     .Case("PLT", VK_PLT)
225     .Case("plt", VK_PLT)
226     .Case("TLSGD", VK_TLSGD)
227     .Case("tlsgd", VK_TLSGD)
228     .Case("TLSLD", VK_TLSLD)
229     .Case("tlsld", VK_TLSLD)
230     .Case("TLSLDM", VK_TLSLDM)
231     .Case("tlsldm", VK_TLSLDM)
232     .Case("TPOFF", VK_TPOFF)
233     .Case("tpoff", VK_TPOFF)
234     .Case("DTPOFF", VK_DTPOFF)
235     .Case("dtpoff", VK_DTPOFF)
236     .Case("TLVP", VK_TLVP)
237     .Case("tlvp", VK_TLVP)
238     .Default(VK_Invalid);
239 }
240 
241 /* *** */
242 
Anchor()243 void MCTargetExpr::Anchor() {}
244 
245 /* *** */
246 
EvaluateAsAbsolute(int64_t & Res) const247 bool MCExpr::EvaluateAsAbsolute(int64_t &Res) const {
248   return EvaluateAsAbsolute(Res, 0, 0, 0);
249 }
250 
EvaluateAsAbsolute(int64_t & Res,const MCAsmLayout & Layout) const251 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
252                                 const MCAsmLayout &Layout) const {
253   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, 0);
254 }
255 
EvaluateAsAbsolute(int64_t & Res,const MCAsmLayout & Layout,const SectionAddrMap & Addrs) const256 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
257                                 const MCAsmLayout &Layout,
258                                 const SectionAddrMap &Addrs) const {
259   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs);
260 }
261 
EvaluateAsAbsolute(int64_t & Res,const MCAssembler & Asm) const262 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
263   return EvaluateAsAbsolute(Res, &Asm, 0, 0);
264 }
265 
EvaluateAsAbsolute(int64_t & Res,const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs) const266 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
267                                 const MCAsmLayout *Layout,
268                                 const SectionAddrMap *Addrs) const {
269   MCValue Value;
270 
271   // Fast path constants.
272   if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
273     Res = CE->getValue();
274     return true;
275   }
276 
277   // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
278   // absolutize differences across sections and that is what the MachO writer
279   // uses Addrs for.
280   bool IsRelocatable =
281     EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, /*InSet*/ Addrs);
282 
283   // Record the current value.
284   Res = Value.getConstant();
285 
286   return IsRelocatable && Value.isAbsolute();
287 }
288 
289 /// \brief Helper method for \see EvaluateSymbolAdd().
AttemptToFoldSymbolOffsetDifference(const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet,const MCSymbolRefExpr * & A,const MCSymbolRefExpr * & B,int64_t & Addend)290 static void AttemptToFoldSymbolOffsetDifference(const MCAssembler *Asm,
291                                                 const MCAsmLayout *Layout,
292                                                 const SectionAddrMap *Addrs,
293                                                 bool InSet,
294                                                 const MCSymbolRefExpr *&A,
295                                                 const MCSymbolRefExpr *&B,
296                                                 int64_t &Addend) {
297   if (!A || !B)
298     return;
299 
300   const MCSymbol &SA = A->getSymbol();
301   const MCSymbol &SB = B->getSymbol();
302 
303   if (SA.isUndefined() || SB.isUndefined())
304     return;
305 
306   if (!Asm->getWriter().IsSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
307     return;
308 
309   MCSymbolData &AD = Asm->getSymbolData(SA);
310   MCSymbolData &BD = Asm->getSymbolData(SB);
311 
312   if (AD.getFragment() == BD.getFragment()) {
313     Addend += (AD.getOffset() - BD.getOffset());
314 
315     // Pointers to Thumb symbols need to have their low-bit set to allow
316     // for interworking.
317     if (Asm->isThumbFunc(&SA))
318       Addend |= 1;
319 
320     // Clear the symbol expr pointers to indicate we have folded these
321     // operands.
322     A = B = 0;
323     return;
324   }
325 
326   if (!Layout)
327     return;
328 
329   const MCSectionData &SecA = *AD.getFragment()->getParent();
330   const MCSectionData &SecB = *BD.getFragment()->getParent();
331 
332   if ((&SecA != &SecB) && !Addrs)
333     return;
334 
335   // Eagerly evaluate.
336   Addend += (Layout->getSymbolOffset(&Asm->getSymbolData(A->getSymbol())) -
337              Layout->getSymbolOffset(&Asm->getSymbolData(B->getSymbol())));
338   if (Addrs && (&SecA != &SecB))
339     Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
340 
341   // Clear the symbol expr pointers to indicate we have folded these
342   // operands.
343   A = B = 0;
344 }
345 
346 /// \brief Evaluate the result of an add between (conceptually) two MCValues.
347 ///
348 /// This routine conceptually attempts to construct an MCValue:
349 ///   Result = (Result_A - Result_B + Result_Cst)
350 /// from two MCValue's LHS and RHS where
351 ///   Result = LHS + RHS
352 /// and
353 ///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
354 ///
355 /// This routine attempts to aggresively fold the operands such that the result
356 /// is representable in an MCValue, but may not always succeed.
357 ///
358 /// \returns True on success, false if the result is not representable in an
359 /// MCValue.
360 
361 /// NOTE: It is really important to have both the Asm and Layout arguments.
362 /// They might look redundant, but this function can be used before layout
363 /// is done (see the object streamer for example) and having the Asm argument
364 /// lets us avoid relaxations early.
EvaluateSymbolicAdd(const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet,const MCValue & LHS,const MCSymbolRefExpr * RHS_A,const MCSymbolRefExpr * RHS_B,int64_t RHS_Cst,MCValue & Res)365 static bool EvaluateSymbolicAdd(const MCAssembler *Asm,
366                                 const MCAsmLayout *Layout,
367                                 const SectionAddrMap *Addrs,
368                                 bool InSet,
369                                 const MCValue &LHS,const MCSymbolRefExpr *RHS_A,
370                                 const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst,
371                                 MCValue &Res) {
372   // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
373   // about dealing with modifiers. This will ultimately bite us, one day.
374   const MCSymbolRefExpr *LHS_A = LHS.getSymA();
375   const MCSymbolRefExpr *LHS_B = LHS.getSymB();
376   int64_t LHS_Cst = LHS.getConstant();
377 
378   // Fold the result constant immediately.
379   int64_t Result_Cst = LHS_Cst + RHS_Cst;
380 
381   assert((!Layout || Asm) &&
382          "Must have an assembler object if layout is given!");
383 
384   // If we have a layout, we can fold resolved differences.
385   if (Asm) {
386     // First, fold out any differences which are fully resolved. By
387     // reassociating terms in
388     //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
389     // we have the four possible differences:
390     //   (LHS_A - LHS_B),
391     //   (LHS_A - RHS_B),
392     //   (RHS_A - LHS_B),
393     //   (RHS_A - RHS_B).
394     // Since we are attempting to be as aggressive as possible about folding, we
395     // attempt to evaluate each possible alternative.
396     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
397                                         Result_Cst);
398     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
399                                         Result_Cst);
400     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
401                                         Result_Cst);
402     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
403                                         Result_Cst);
404   }
405 
406   // We can't represent the addition or subtraction of two symbols.
407   if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
408     return false;
409 
410   // At this point, we have at most one additive symbol and one subtractive
411   // symbol -- find them.
412   const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
413   const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
414 
415   // If we have a negated symbol, then we must have also have a non-negated
416   // symbol in order to encode the expression.
417   if (B && !A)
418     return false;
419 
420   Res = MCValue::get(A, B, Result_Cst);
421   return true;
422 }
423 
EvaluateAsRelocatable(MCValue & Res,const MCAsmLayout & Layout) const424 bool MCExpr::EvaluateAsRelocatable(MCValue &Res,
425                                    const MCAsmLayout &Layout) const {
426   return EvaluateAsRelocatableImpl(Res, &Layout.getAssembler(), &Layout,
427                                    0, false);
428 }
429 
EvaluateAsRelocatableImpl(MCValue & Res,const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet) const430 bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
431                                        const MCAssembler *Asm,
432                                        const MCAsmLayout *Layout,
433                                        const SectionAddrMap *Addrs,
434                                        bool InSet) const {
435   ++stats::MCExprEvaluate;
436 
437   switch (getKind()) {
438   case Target:
439     return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout);
440 
441   case Constant:
442     Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
443     return true;
444 
445   case SymbolRef: {
446     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
447     const MCSymbol &Sym = SRE->getSymbol();
448 
449     // Evaluate recursively if this is a variable.
450     if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) {
451       bool Ret = Sym.getVariableValue()->EvaluateAsRelocatableImpl(Res, Asm,
452                                                                    Layout,
453                                                                    Addrs,
454                                                                    true);
455       // If we failed to simplify this to a constant, let the target
456       // handle it.
457       if (Ret && !Res.getSymA() && !Res.getSymB())
458         return true;
459     }
460 
461     Res = MCValue::get(SRE, 0, 0);
462     return true;
463   }
464 
465   case Unary: {
466     const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
467     MCValue Value;
468 
469     if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout,
470                                                       Addrs, InSet))
471       return false;
472 
473     switch (AUE->getOpcode()) {
474     case MCUnaryExpr::LNot:
475       if (!Value.isAbsolute())
476         return false;
477       Res = MCValue::get(!Value.getConstant());
478       break;
479     case MCUnaryExpr::Minus:
480       /// -(a - b + const) ==> (b - a - const)
481       if (Value.getSymA() && !Value.getSymB())
482         return false;
483       Res = MCValue::get(Value.getSymB(), Value.getSymA(),
484                          -Value.getConstant());
485       break;
486     case MCUnaryExpr::Not:
487       if (!Value.isAbsolute())
488         return false;
489       Res = MCValue::get(~Value.getConstant());
490       break;
491     case MCUnaryExpr::Plus:
492       Res = Value;
493       break;
494     }
495 
496     return true;
497   }
498 
499   case Binary: {
500     const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
501     MCValue LHSValue, RHSValue;
502 
503     if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout,
504                                                   Addrs, InSet) ||
505         !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout,
506                                                   Addrs, InSet))
507       return false;
508 
509     // We only support a few operations on non-constant expressions, handle
510     // those first.
511     if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
512       switch (ABE->getOpcode()) {
513       default:
514         return false;
515       case MCBinaryExpr::Sub:
516         // Negate RHS and add.
517         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
518                                    RHSValue.getSymB(), RHSValue.getSymA(),
519                                    -RHSValue.getConstant(),
520                                    Res);
521 
522       case MCBinaryExpr::Add:
523         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
524                                    RHSValue.getSymA(), RHSValue.getSymB(),
525                                    RHSValue.getConstant(),
526                                    Res);
527       }
528     }
529 
530     // FIXME: We need target hooks for the evaluation. It may be limited in
531     // width, and gas defines the result of comparisons and right shifts
532     // differently from Apple as.
533     int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
534     int64_t Result = 0;
535     switch (ABE->getOpcode()) {
536     case MCBinaryExpr::Add:  Result = LHS + RHS; break;
537     case MCBinaryExpr::And:  Result = LHS & RHS; break;
538     case MCBinaryExpr::Div:  Result = LHS / RHS; break;
539     case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
540     case MCBinaryExpr::GT:   Result = LHS > RHS; break;
541     case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
542     case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
543     case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
544     case MCBinaryExpr::LT:   Result = LHS < RHS; break;
545     case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
546     case MCBinaryExpr::Mod:  Result = LHS % RHS; break;
547     case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
548     case MCBinaryExpr::NE:   Result = LHS != RHS; break;
549     case MCBinaryExpr::Or:   Result = LHS | RHS; break;
550     case MCBinaryExpr::Shl:  Result = LHS << RHS; break;
551     case MCBinaryExpr::Shr:  Result = LHS >> RHS; break;
552     case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
553     case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
554     }
555 
556     Res = MCValue::get(Result);
557     return true;
558   }
559   }
560 
561   assert(0 && "Invalid assembly expression kind!");
562   return false;
563 }
564 
FindAssociatedSection() const565 const MCSection *MCExpr::FindAssociatedSection() const {
566   switch (getKind()) {
567   case Target:
568     // We never look through target specific expressions.
569     return cast<MCTargetExpr>(this)->FindAssociatedSection();
570 
571   case Constant:
572     return MCSymbol::AbsolutePseudoSection;
573 
574   case SymbolRef: {
575     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
576     const MCSymbol &Sym = SRE->getSymbol();
577 
578     if (Sym.isDefined())
579       return &Sym.getSection();
580 
581     return 0;
582   }
583 
584   case Unary:
585     return cast<MCUnaryExpr>(this)->getSubExpr()->FindAssociatedSection();
586 
587   case Binary: {
588     const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
589     const MCSection *LHS_S = BE->getLHS()->FindAssociatedSection();
590     const MCSection *RHS_S = BE->getRHS()->FindAssociatedSection();
591 
592     // If either section is absolute, return the other.
593     if (LHS_S == MCSymbol::AbsolutePseudoSection)
594       return RHS_S;
595     if (RHS_S == MCSymbol::AbsolutePseudoSection)
596       return LHS_S;
597 
598     // Otherwise, return the first non-null section.
599     return LHS_S ? LHS_S : RHS_S;
600   }
601   }
602 
603   assert(0 && "Invalid assembly expression kind!");
604   return 0;
605 }
606