• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PTHLexer interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Basic/TokenKinds.h"
15 #include "clang/Basic/FileManager.h"
16 #include "clang/Basic/FileSystemStatCache.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/OnDiskHashTable.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/PTHLexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/PTHManager.h"
23 #include "clang/Lex/Token.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "llvm/ADT/OwningPtr.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/Support/system_error.h"
30 using namespace clang;
31 using namespace clang::io;
32 
33 #define DISK_TOKEN_SIZE (1+1+2+4+4)
34 
35 //===----------------------------------------------------------------------===//
36 // PTHLexer methods.
37 //===----------------------------------------------------------------------===//
38 
PTHLexer(Preprocessor & PP,FileID FID,const unsigned char * D,const unsigned char * ppcond,PTHManager & PM)39 PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D,
40                    const unsigned char *ppcond, PTHManager &PM)
41   : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0),
42     PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM) {
43 
44   FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID);
45 }
46 
Lex(Token & Tok)47 void PTHLexer::Lex(Token& Tok) {
48 LexNextToken:
49 
50   //===--------------------------------------==//
51   // Read the raw token data.
52   //===--------------------------------------==//
53 
54   // Shadow CurPtr into an automatic variable.
55   const unsigned char *CurPtrShadow = CurPtr;
56 
57   // Read in the data for the token.
58   unsigned Word0 = ReadLE32(CurPtrShadow);
59   uint32_t IdentifierID = ReadLE32(CurPtrShadow);
60   uint32_t FileOffset = ReadLE32(CurPtrShadow);
61 
62   tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF);
63   Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF);
64   uint32_t Len = Word0 >> 16;
65 
66   CurPtr = CurPtrShadow;
67 
68   //===--------------------------------------==//
69   // Construct the token itself.
70   //===--------------------------------------==//
71 
72   Tok.startToken();
73   Tok.setKind(TKind);
74   Tok.setFlag(TFlags);
75   assert(!LexingRawMode);
76   Tok.setLocation(FileStartLoc.getFileLocWithOffset(FileOffset));
77   Tok.setLength(Len);
78 
79   // Handle identifiers.
80   if (Tok.isLiteral()) {
81     Tok.setLiteralData((const char*) (PTHMgr.SpellingBase + IdentifierID));
82   }
83   else if (IdentifierID) {
84     MIOpt.ReadToken();
85     IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1);
86 
87     Tok.setIdentifierInfo(II);
88 
89     // Change the kind of this identifier to the appropriate token kind, e.g.
90     // turning "for" into a keyword.
91     Tok.setKind(II->getTokenID());
92 
93     if (II->isHandleIdentifierCase())
94       PP->HandleIdentifier(Tok);
95     return;
96   }
97 
98   //===--------------------------------------==//
99   // Process the token.
100   //===--------------------------------------==//
101   if (TKind == tok::eof) {
102     // Save the end-of-file token.
103     EofToken = Tok;
104 
105     // Save 'PP' to 'PPCache' as LexEndOfFile can delete 'this'.
106     Preprocessor *PPCache = PP;
107 
108     assert(!ParsingPreprocessorDirective);
109     assert(!LexingRawMode);
110 
111     if (LexEndOfFile(Tok))
112       return;
113 
114     return PPCache->Lex(Tok);
115   }
116 
117   if (TKind == tok::hash && Tok.isAtStartOfLine()) {
118     LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE;
119     assert(!LexingRawMode);
120     PP->HandleDirective(Tok);
121 
122     if (PP->isCurrentLexer(this))
123       goto LexNextToken;
124 
125     return PP->Lex(Tok);
126   }
127 
128   if (TKind == tok::eod) {
129     assert(ParsingPreprocessorDirective);
130     ParsingPreprocessorDirective = false;
131     return;
132   }
133 
134   MIOpt.ReadToken();
135 }
136 
LexEndOfFile(Token & Result)137 bool PTHLexer::LexEndOfFile(Token &Result) {
138   // If we hit the end of the file while parsing a preprocessor directive,
139   // end the preprocessor directive first.  The next token returned will
140   // then be the end of file.
141   if (ParsingPreprocessorDirective) {
142     ParsingPreprocessorDirective = false; // Done parsing the "line".
143     return true;  // Have a token.
144   }
145 
146   assert(!LexingRawMode);
147 
148   // If we are in a #if directive, emit an error.
149   while (!ConditionalStack.empty()) {
150     if (!PP->isCodeCompletionFile(FileStartLoc))
151       PP->Diag(ConditionalStack.back().IfLoc,
152                diag::err_pp_unterminated_conditional);
153     ConditionalStack.pop_back();
154   }
155 
156   // Finally, let the preprocessor handle this.
157   return PP->HandleEndOfFile(Result);
158 }
159 
160 // FIXME: We can just grab the last token instead of storing a copy
161 // into EofToken.
getEOF(Token & Tok)162 void PTHLexer::getEOF(Token& Tok) {
163   assert(EofToken.is(tok::eof));
164   Tok = EofToken;
165 }
166 
DiscardToEndOfLine()167 void PTHLexer::DiscardToEndOfLine() {
168   assert(ParsingPreprocessorDirective && ParsingFilename == false &&
169          "Must be in a preprocessing directive!");
170 
171   // We assume that if the preprocessor wishes to discard to the end of
172   // the line that it also means to end the current preprocessor directive.
173   ParsingPreprocessorDirective = false;
174 
175   // Skip tokens by only peeking at their token kind and the flags.
176   // We don't need to actually reconstruct full tokens from the token buffer.
177   // This saves some copies and it also reduces IdentifierInfo* lookup.
178   const unsigned char* p = CurPtr;
179   while (1) {
180     // Read the token kind.  Are we at the end of the file?
181     tok::TokenKind x = (tok::TokenKind) (uint8_t) *p;
182     if (x == tok::eof) break;
183 
184     // Read the token flags.  Are we at the start of the next line?
185     Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1];
186     if (y & Token::StartOfLine) break;
187 
188     // Skip to the next token.
189     p += DISK_TOKEN_SIZE;
190   }
191 
192   CurPtr = p;
193 }
194 
195 /// SkipBlock - Used by Preprocessor to skip the current conditional block.
SkipBlock()196 bool PTHLexer::SkipBlock() {
197   assert(CurPPCondPtr && "No cached PP conditional information.");
198   assert(LastHashTokPtr && "No known '#' token.");
199 
200   const unsigned char* HashEntryI = 0;
201   uint32_t Offset;
202   uint32_t TableIdx;
203 
204   do {
205     // Read the token offset from the side-table.
206     Offset = ReadLE32(CurPPCondPtr);
207 
208     // Read the target table index from the side-table.
209     TableIdx = ReadLE32(CurPPCondPtr);
210 
211     // Compute the actual memory address of the '#' token data for this entry.
212     HashEntryI = TokBuf + Offset;
213 
214     // Optmization: "Sibling jumping".  #if...#else...#endif blocks can
215     //  contain nested blocks.  In the side-table we can jump over these
216     //  nested blocks instead of doing a linear search if the next "sibling"
217     //  entry is not at a location greater than LastHashTokPtr.
218     if (HashEntryI < LastHashTokPtr && TableIdx) {
219       // In the side-table we are still at an entry for a '#' token that
220       // is earlier than the last one we saw.  Check if the location we would
221       // stride gets us closer.
222       const unsigned char* NextPPCondPtr =
223         PPCond + TableIdx*(sizeof(uint32_t)*2);
224       assert(NextPPCondPtr >= CurPPCondPtr);
225       // Read where we should jump to.
226       uint32_t TmpOffset = ReadLE32(NextPPCondPtr);
227       const unsigned char* HashEntryJ = TokBuf + TmpOffset;
228 
229       if (HashEntryJ <= LastHashTokPtr) {
230         // Jump directly to the next entry in the side table.
231         HashEntryI = HashEntryJ;
232         Offset = TmpOffset;
233         TableIdx = ReadLE32(NextPPCondPtr);
234         CurPPCondPtr = NextPPCondPtr;
235       }
236     }
237   }
238   while (HashEntryI < LastHashTokPtr);
239   assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
240   assert(TableIdx && "No jumping from #endifs.");
241 
242   // Update our side-table iterator.
243   const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
244   assert(NextPPCondPtr >= CurPPCondPtr);
245   CurPPCondPtr = NextPPCondPtr;
246 
247   // Read where we should jump to.
248   HashEntryI = TokBuf + ReadLE32(NextPPCondPtr);
249   uint32_t NextIdx = ReadLE32(NextPPCondPtr);
250 
251   // By construction NextIdx will be zero if this is a #endif.  This is useful
252   // to know to obviate lexing another token.
253   bool isEndif = NextIdx == 0;
254 
255   // This case can occur when we see something like this:
256   //
257   //  #if ...
258   //   /* a comment or nothing */
259   //  #elif
260   //
261   // If we are skipping the first #if block it will be the case that CurPtr
262   // already points 'elif'.  Just return.
263 
264   if (CurPtr > HashEntryI) {
265     assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE);
266     // Did we reach a #endif?  If so, go ahead and consume that token as well.
267     if (isEndif)
268       CurPtr += DISK_TOKEN_SIZE*2;
269     else
270       LastHashTokPtr = HashEntryI;
271 
272     return isEndif;
273   }
274 
275   // Otherwise, we need to advance.  Update CurPtr to point to the '#' token.
276   CurPtr = HashEntryI;
277 
278   // Update the location of the last observed '#'.  This is useful if we
279   // are skipping multiple blocks.
280   LastHashTokPtr = CurPtr;
281 
282   // Skip the '#' token.
283   assert(((tok::TokenKind)*CurPtr) == tok::hash);
284   CurPtr += DISK_TOKEN_SIZE;
285 
286   // Did we reach a #endif?  If so, go ahead and consume that token as well.
287   if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; }
288 
289   return isEndif;
290 }
291 
getSourceLocation()292 SourceLocation PTHLexer::getSourceLocation() {
293   // getSourceLocation is not on the hot path.  It is used to get the location
294   // of the next token when transitioning back to this lexer when done
295   // handling a #included file.  Just read the necessary data from the token
296   // data buffer to construct the SourceLocation object.
297   // NOTE: This is a virtual function; hence it is defined out-of-line.
298   const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4);
299   uint32_t Offset = ReadLE32(OffsetPtr);
300   return FileStartLoc.getFileLocWithOffset(Offset);
301 }
302 
303 //===----------------------------------------------------------------------===//
304 // PTH file lookup: map from strings to file data.
305 //===----------------------------------------------------------------------===//
306 
307 /// PTHFileLookup - This internal data structure is used by the PTHManager
308 ///  to map from FileEntry objects managed by FileManager to offsets within
309 ///  the PTH file.
310 namespace {
311 class PTHFileData {
312   const uint32_t TokenOff;
313   const uint32_t PPCondOff;
314 public:
PTHFileData(uint32_t tokenOff,uint32_t ppCondOff)315   PTHFileData(uint32_t tokenOff, uint32_t ppCondOff)
316     : TokenOff(tokenOff), PPCondOff(ppCondOff) {}
317 
getTokenOffset() const318   uint32_t getTokenOffset() const { return TokenOff; }
getPPCondOffset() const319   uint32_t getPPCondOffset() const { return PPCondOff; }
320 };
321 
322 
323 class PTHFileLookupCommonTrait {
324 public:
325   typedef std::pair<unsigned char, const char*> internal_key_type;
326 
ComputeHash(internal_key_type x)327   static unsigned ComputeHash(internal_key_type x) {
328     return llvm::HashString(x.second);
329   }
330 
331   static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char * & d)332   ReadKeyDataLength(const unsigned char*& d) {
333     unsigned keyLen = (unsigned) ReadUnalignedLE16(d);
334     unsigned dataLen = (unsigned) *(d++);
335     return std::make_pair(keyLen, dataLen);
336   }
337 
ReadKey(const unsigned char * d,unsigned)338   static internal_key_type ReadKey(const unsigned char* d, unsigned) {
339     unsigned char k = *(d++); // Read the entry kind.
340     return std::make_pair(k, (const char*) d);
341   }
342 };
343 
344 class PTHFileLookupTrait : public PTHFileLookupCommonTrait {
345 public:
346   typedef const FileEntry* external_key_type;
347   typedef PTHFileData      data_type;
348 
GetInternalKey(const FileEntry * FE)349   static internal_key_type GetInternalKey(const FileEntry* FE) {
350     return std::make_pair((unsigned char) 0x1, FE->getName());
351   }
352 
EqualKey(internal_key_type a,internal_key_type b)353   static bool EqualKey(internal_key_type a, internal_key_type b) {
354     return a.first == b.first && strcmp(a.second, b.second) == 0;
355   }
356 
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)357   static PTHFileData ReadData(const internal_key_type& k,
358                               const unsigned char* d, unsigned) {
359     assert(k.first == 0x1 && "Only file lookups can match!");
360     uint32_t x = ::ReadUnalignedLE32(d);
361     uint32_t y = ::ReadUnalignedLE32(d);
362     return PTHFileData(x, y);
363   }
364 };
365 
366 class PTHStringLookupTrait {
367 public:
368   typedef uint32_t
369           data_type;
370 
371   typedef const std::pair<const char*, unsigned>
372           external_key_type;
373 
374   typedef external_key_type internal_key_type;
375 
EqualKey(const internal_key_type & a,const internal_key_type & b)376   static bool EqualKey(const internal_key_type& a,
377                        const internal_key_type& b) {
378     return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
379                                   : false;
380   }
381 
ComputeHash(const internal_key_type & a)382   static unsigned ComputeHash(const internal_key_type& a) {
383     return llvm::HashString(llvm::StringRef(a.first, a.second));
384   }
385 
386   // This hopefully will just get inlined and removed by the optimizer.
387   static const internal_key_type&
GetInternalKey(const external_key_type & x)388   GetInternalKey(const external_key_type& x) { return x; }
389 
390   static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char * & d)391   ReadKeyDataLength(const unsigned char*& d) {
392     return std::make_pair((unsigned) ReadUnalignedLE16(d), sizeof(uint32_t));
393   }
394 
395   static std::pair<const char*, unsigned>
ReadKey(const unsigned char * d,unsigned n)396   ReadKey(const unsigned char* d, unsigned n) {
397       assert(n >= 2 && d[n-1] == '\0');
398       return std::make_pair((const char*) d, n-1);
399     }
400 
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)401   static uint32_t ReadData(const internal_key_type& k, const unsigned char* d,
402                            unsigned) {
403     return ::ReadUnalignedLE32(d);
404   }
405 };
406 
407 } // end anonymous namespace
408 
409 typedef OnDiskChainedHashTable<PTHFileLookupTrait>   PTHFileLookup;
410 typedef OnDiskChainedHashTable<PTHStringLookupTrait> PTHStringIdLookup;
411 
412 //===----------------------------------------------------------------------===//
413 // PTHManager methods.
414 //===----------------------------------------------------------------------===//
415 
PTHManager(const llvm::MemoryBuffer * buf,void * fileLookup,const unsigned char * idDataTable,IdentifierInfo ** perIDCache,void * stringIdLookup,unsigned numIds,const unsigned char * spellingBase,const char * originalSourceFile)416 PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup,
417                        const unsigned char* idDataTable,
418                        IdentifierInfo** perIDCache,
419                        void* stringIdLookup, unsigned numIds,
420                        const unsigned char* spellingBase,
421                        const char* originalSourceFile)
422 : Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup),
423   IdDataTable(idDataTable), StringIdLookup(stringIdLookup),
424   NumIds(numIds), PP(0), SpellingBase(spellingBase),
425   OriginalSourceFile(originalSourceFile) {}
426 
~PTHManager()427 PTHManager::~PTHManager() {
428   delete Buf;
429   delete (PTHFileLookup*) FileLookup;
430   delete (PTHStringIdLookup*) StringIdLookup;
431   free(PerIDCache);
432 }
433 
InvalidPTH(Diagnostic & Diags,const char * Msg)434 static void InvalidPTH(Diagnostic &Diags, const char *Msg) {
435   Diags.Report(Diags.getCustomDiagID(Diagnostic::Error, Msg));
436 }
437 
Create(const std::string & file,Diagnostic & Diags)438 PTHManager *PTHManager::Create(const std::string &file, Diagnostic &Diags) {
439   // Memory map the PTH file.
440   llvm::OwningPtr<llvm::MemoryBuffer> File;
441 
442   if (llvm::MemoryBuffer::getFile(file, File)) {
443     // FIXME: Add ec.message() to this diag.
444     Diags.Report(diag::err_invalid_pth_file) << file;
445     return 0;
446   }
447 
448   // Get the buffer ranges and check if there are at least three 32-bit
449   // words at the end of the file.
450   const unsigned char *BufBeg = (unsigned char*)File->getBufferStart();
451   const unsigned char *BufEnd = (unsigned char*)File->getBufferEnd();
452 
453   // Check the prologue of the file.
454   if ((BufEnd - BufBeg) < (signed)(sizeof("cfe-pth") + 3 + 4) ||
455       memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth") - 1) != 0) {
456     Diags.Report(diag::err_invalid_pth_file) << file;
457     return 0;
458   }
459 
460   // Read the PTH version.
461   const unsigned char *p = BufBeg + (sizeof("cfe-pth") - 1);
462   unsigned Version = ReadLE32(p);
463 
464   if (Version < PTHManager::Version) {
465     InvalidPTH(Diags,
466         Version < PTHManager::Version
467         ? "PTH file uses an older PTH format that is no longer supported"
468         : "PTH file uses a newer PTH format that cannot be read");
469     return 0;
470   }
471 
472   // Compute the address of the index table at the end of the PTH file.
473   const unsigned char *PrologueOffset = p;
474 
475   if (PrologueOffset >= BufEnd) {
476     Diags.Report(diag::err_invalid_pth_file) << file;
477     return 0;
478   }
479 
480   // Construct the file lookup table.  This will be used for mapping from
481   // FileEntry*'s to cached tokens.
482   const unsigned char* FileTableOffset = PrologueOffset + sizeof(uint32_t)*2;
483   const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset);
484 
485   if (!(FileTable > BufBeg && FileTable < BufEnd)) {
486     Diags.Report(diag::err_invalid_pth_file) << file;
487     return 0; // FIXME: Proper error diagnostic?
488   }
489 
490   llvm::OwningPtr<PTHFileLookup> FL(PTHFileLookup::Create(FileTable, BufBeg));
491 
492   // Warn if the PTH file is empty.  We still want to create a PTHManager
493   // as the PTH could be used with -include-pth.
494   if (FL->isEmpty())
495     InvalidPTH(Diags, "PTH file contains no cached source data");
496 
497   // Get the location of the table mapping from persistent ids to the
498   // data needed to reconstruct identifiers.
499   const unsigned char* IDTableOffset = PrologueOffset + sizeof(uint32_t)*0;
500   const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset);
501 
502   if (!(IData >= BufBeg && IData < BufEnd)) {
503     Diags.Report(diag::err_invalid_pth_file) << file;
504     return 0;
505   }
506 
507   // Get the location of the hashtable mapping between strings and
508   // persistent IDs.
509   const unsigned char* StringIdTableOffset = PrologueOffset + sizeof(uint32_t)*1;
510   const unsigned char* StringIdTable = BufBeg + ReadLE32(StringIdTableOffset);
511   if (!(StringIdTable >= BufBeg && StringIdTable < BufEnd)) {
512     Diags.Report(diag::err_invalid_pth_file) << file;
513     return 0;
514   }
515 
516   llvm::OwningPtr<PTHStringIdLookup> SL(PTHStringIdLookup::Create(StringIdTable,
517                                                                   BufBeg));
518 
519   // Get the location of the spelling cache.
520   const unsigned char* spellingBaseOffset = PrologueOffset + sizeof(uint32_t)*3;
521   const unsigned char* spellingBase = BufBeg + ReadLE32(spellingBaseOffset);
522   if (!(spellingBase >= BufBeg && spellingBase < BufEnd)) {
523     Diags.Report(diag::err_invalid_pth_file) << file;
524     return 0;
525   }
526 
527   // Get the number of IdentifierInfos and pre-allocate the identifier cache.
528   uint32_t NumIds = ReadLE32(IData);
529 
530   // Pre-allocate the persistent ID -> IdentifierInfo* cache.  We use calloc()
531   // so that we in the best case only zero out memory once when the OS returns
532   // us new pages.
533   IdentifierInfo** PerIDCache = 0;
534 
535   if (NumIds) {
536     PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache));
537     if (!PerIDCache) {
538       InvalidPTH(Diags, "Could not allocate memory for processing PTH file");
539       return 0;
540     }
541   }
542 
543   // Compute the address of the original source file.
544   const unsigned char* originalSourceBase = PrologueOffset + sizeof(uint32_t)*4;
545   unsigned len = ReadUnalignedLE16(originalSourceBase);
546   if (!len) originalSourceBase = 0;
547 
548   // Create the new PTHManager.
549   return new PTHManager(File.take(), FL.take(), IData, PerIDCache,
550                         SL.take(), NumIds, spellingBase,
551                         (const char*) originalSourceBase);
552 }
553 
LazilyCreateIdentifierInfo(unsigned PersistentID)554 IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) {
555   // Look in the PTH file for the string data for the IdentifierInfo object.
556   const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID;
557   const unsigned char* IDData =
558     (const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry);
559   assert(IDData < (const unsigned char*)Buf->getBufferEnd());
560 
561   // Allocate the object.
562   std::pair<IdentifierInfo,const unsigned char*> *Mem =
563     Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >();
564 
565   Mem->second = IDData;
566   assert(IDData[0] != '\0');
567   IdentifierInfo *II = new ((void*) Mem) IdentifierInfo();
568 
569   // Store the new IdentifierInfo in the cache.
570   PerIDCache[PersistentID] = II;
571   assert(II->getNameStart() && II->getNameStart()[0] != '\0');
572   return II;
573 }
574 
get(llvm::StringRef Name)575 IdentifierInfo* PTHManager::get(llvm::StringRef Name) {
576   PTHStringIdLookup& SL = *((PTHStringIdLookup*)StringIdLookup);
577   // Double check our assumption that the last character isn't '\0'.
578   assert(Name.empty() || Name.data()[Name.size()-1] != '\0');
579   PTHStringIdLookup::iterator I = SL.find(std::make_pair(Name.data(),
580                                                          Name.size()));
581   if (I == SL.end()) // No identifier found?
582     return 0;
583 
584   // Match found.  Return the identifier!
585   assert(*I > 0);
586   return GetIdentifierInfo(*I-1);
587 }
588 
CreateLexer(FileID FID)589 PTHLexer *PTHManager::CreateLexer(FileID FID) {
590   const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID);
591   if (!FE)
592     return 0;
593 
594   // Lookup the FileEntry object in our file lookup data structure.  It will
595   // return a variant that indicates whether or not there is an offset within
596   // the PTH file that contains cached tokens.
597   PTHFileLookup& PFL = *((PTHFileLookup*)FileLookup);
598   PTHFileLookup::iterator I = PFL.find(FE);
599 
600   if (I == PFL.end()) // No tokens available?
601     return 0;
602 
603   const PTHFileData& FileData = *I;
604 
605   const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart();
606   // Compute the offset of the token data within the buffer.
607   const unsigned char* data = BufStart + FileData.getTokenOffset();
608 
609   // Get the location of pp-conditional table.
610   const unsigned char* ppcond = BufStart + FileData.getPPCondOffset();
611   uint32_t Len = ReadLE32(ppcond);
612   if (Len == 0) ppcond = 0;
613 
614   assert(PP && "No preprocessor set yet!");
615   return new PTHLexer(*PP, FID, data, ppcond, *this);
616 }
617 
618 //===----------------------------------------------------------------------===//
619 // 'stat' caching.
620 //===----------------------------------------------------------------------===//
621 
622 namespace {
623 class PTHStatData {
624 public:
625   const bool hasStat;
626   const ino_t ino;
627   const dev_t dev;
628   const mode_t mode;
629   const time_t mtime;
630   const off_t size;
631 
PTHStatData(ino_t i,dev_t d,mode_t mo,time_t m,off_t s)632   PTHStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s)
633   : hasStat(true), ino(i), dev(d), mode(mo), mtime(m), size(s) {}
634 
PTHStatData()635   PTHStatData()
636     : hasStat(false), ino(0), dev(0), mode(0), mtime(0), size(0) {}
637 };
638 
639 class PTHStatLookupTrait : public PTHFileLookupCommonTrait {
640 public:
641   typedef const char* external_key_type;  // const char*
642   typedef PTHStatData data_type;
643 
GetInternalKey(const char * path)644   static internal_key_type GetInternalKey(const char *path) {
645     // The key 'kind' doesn't matter here because it is ignored in EqualKey.
646     return std::make_pair((unsigned char) 0x0, path);
647   }
648 
EqualKey(internal_key_type a,internal_key_type b)649   static bool EqualKey(internal_key_type a, internal_key_type b) {
650     // When doing 'stat' lookups we don't care about the kind of 'a' and 'b',
651     // just the paths.
652     return strcmp(a.second, b.second) == 0;
653   }
654 
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)655   static data_type ReadData(const internal_key_type& k, const unsigned char* d,
656                             unsigned) {
657 
658     if (k.first /* File or Directory */) {
659       if (k.first == 0x1 /* File */) d += 4 * 2; // Skip the first 2 words.
660       ino_t ino = (ino_t) ReadUnalignedLE32(d);
661       dev_t dev = (dev_t) ReadUnalignedLE32(d);
662       mode_t mode = (mode_t) ReadUnalignedLE16(d);
663       time_t mtime = (time_t) ReadUnalignedLE64(d);
664       return data_type(ino, dev, mode, mtime, (off_t) ReadUnalignedLE64(d));
665     }
666 
667     // Negative stat.  Don't read anything.
668     return data_type();
669   }
670 };
671 
672 class PTHStatCache : public FileSystemStatCache {
673   typedef OnDiskChainedHashTable<PTHStatLookupTrait> CacheTy;
674   CacheTy Cache;
675 
676 public:
PTHStatCache(PTHFileLookup & FL)677   PTHStatCache(PTHFileLookup &FL) :
678     Cache(FL.getNumBuckets(), FL.getNumEntries(), FL.getBuckets(),
679           FL.getBase()) {}
680 
~PTHStatCache()681   ~PTHStatCache() {}
682 
getStat(const char * Path,struct stat & StatBuf,int * FileDescriptor)683   LookupResult getStat(const char *Path, struct stat &StatBuf,
684                        int *FileDescriptor) {
685     // Do the lookup for the file's data in the PTH file.
686     CacheTy::iterator I = Cache.find(Path);
687 
688     // If we don't get a hit in the PTH file just forward to 'stat'.
689     if (I == Cache.end())
690       return statChained(Path, StatBuf, FileDescriptor);
691 
692     const PTHStatData &Data = *I;
693 
694     if (!Data.hasStat)
695       return CacheMissing;
696 
697     StatBuf.st_ino = Data.ino;
698     StatBuf.st_dev = Data.dev;
699     StatBuf.st_mtime = Data.mtime;
700     StatBuf.st_mode = Data.mode;
701     StatBuf.st_size = Data.size;
702     return CacheExists;
703   }
704 };
705 } // end anonymous namespace
706 
createStatCache()707 FileSystemStatCache *PTHManager::createStatCache() {
708   return new PTHStatCache(*((PTHFileLookup*) FileLookup));
709 }
710