1 //===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PTHLexer interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Basic/TokenKinds.h"
15 #include "clang/Basic/FileManager.h"
16 #include "clang/Basic/FileSystemStatCache.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/OnDiskHashTable.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/PTHLexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/PTHManager.h"
23 #include "clang/Lex/Token.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "llvm/ADT/OwningPtr.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/Support/system_error.h"
30 using namespace clang;
31 using namespace clang::io;
32
33 #define DISK_TOKEN_SIZE (1+1+2+4+4)
34
35 //===----------------------------------------------------------------------===//
36 // PTHLexer methods.
37 //===----------------------------------------------------------------------===//
38
PTHLexer(Preprocessor & PP,FileID FID,const unsigned char * D,const unsigned char * ppcond,PTHManager & PM)39 PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D,
40 const unsigned char *ppcond, PTHManager &PM)
41 : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0),
42 PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM) {
43
44 FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID);
45 }
46
Lex(Token & Tok)47 void PTHLexer::Lex(Token& Tok) {
48 LexNextToken:
49
50 //===--------------------------------------==//
51 // Read the raw token data.
52 //===--------------------------------------==//
53
54 // Shadow CurPtr into an automatic variable.
55 const unsigned char *CurPtrShadow = CurPtr;
56
57 // Read in the data for the token.
58 unsigned Word0 = ReadLE32(CurPtrShadow);
59 uint32_t IdentifierID = ReadLE32(CurPtrShadow);
60 uint32_t FileOffset = ReadLE32(CurPtrShadow);
61
62 tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF);
63 Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF);
64 uint32_t Len = Word0 >> 16;
65
66 CurPtr = CurPtrShadow;
67
68 //===--------------------------------------==//
69 // Construct the token itself.
70 //===--------------------------------------==//
71
72 Tok.startToken();
73 Tok.setKind(TKind);
74 Tok.setFlag(TFlags);
75 assert(!LexingRawMode);
76 Tok.setLocation(FileStartLoc.getFileLocWithOffset(FileOffset));
77 Tok.setLength(Len);
78
79 // Handle identifiers.
80 if (Tok.isLiteral()) {
81 Tok.setLiteralData((const char*) (PTHMgr.SpellingBase + IdentifierID));
82 }
83 else if (IdentifierID) {
84 MIOpt.ReadToken();
85 IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1);
86
87 Tok.setIdentifierInfo(II);
88
89 // Change the kind of this identifier to the appropriate token kind, e.g.
90 // turning "for" into a keyword.
91 Tok.setKind(II->getTokenID());
92
93 if (II->isHandleIdentifierCase())
94 PP->HandleIdentifier(Tok);
95 return;
96 }
97
98 //===--------------------------------------==//
99 // Process the token.
100 //===--------------------------------------==//
101 if (TKind == tok::eof) {
102 // Save the end-of-file token.
103 EofToken = Tok;
104
105 // Save 'PP' to 'PPCache' as LexEndOfFile can delete 'this'.
106 Preprocessor *PPCache = PP;
107
108 assert(!ParsingPreprocessorDirective);
109 assert(!LexingRawMode);
110
111 if (LexEndOfFile(Tok))
112 return;
113
114 return PPCache->Lex(Tok);
115 }
116
117 if (TKind == tok::hash && Tok.isAtStartOfLine()) {
118 LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE;
119 assert(!LexingRawMode);
120 PP->HandleDirective(Tok);
121
122 if (PP->isCurrentLexer(this))
123 goto LexNextToken;
124
125 return PP->Lex(Tok);
126 }
127
128 if (TKind == tok::eod) {
129 assert(ParsingPreprocessorDirective);
130 ParsingPreprocessorDirective = false;
131 return;
132 }
133
134 MIOpt.ReadToken();
135 }
136
LexEndOfFile(Token & Result)137 bool PTHLexer::LexEndOfFile(Token &Result) {
138 // If we hit the end of the file while parsing a preprocessor directive,
139 // end the preprocessor directive first. The next token returned will
140 // then be the end of file.
141 if (ParsingPreprocessorDirective) {
142 ParsingPreprocessorDirective = false; // Done parsing the "line".
143 return true; // Have a token.
144 }
145
146 assert(!LexingRawMode);
147
148 // If we are in a #if directive, emit an error.
149 while (!ConditionalStack.empty()) {
150 if (!PP->isCodeCompletionFile(FileStartLoc))
151 PP->Diag(ConditionalStack.back().IfLoc,
152 diag::err_pp_unterminated_conditional);
153 ConditionalStack.pop_back();
154 }
155
156 // Finally, let the preprocessor handle this.
157 return PP->HandleEndOfFile(Result);
158 }
159
160 // FIXME: We can just grab the last token instead of storing a copy
161 // into EofToken.
getEOF(Token & Tok)162 void PTHLexer::getEOF(Token& Tok) {
163 assert(EofToken.is(tok::eof));
164 Tok = EofToken;
165 }
166
DiscardToEndOfLine()167 void PTHLexer::DiscardToEndOfLine() {
168 assert(ParsingPreprocessorDirective && ParsingFilename == false &&
169 "Must be in a preprocessing directive!");
170
171 // We assume that if the preprocessor wishes to discard to the end of
172 // the line that it also means to end the current preprocessor directive.
173 ParsingPreprocessorDirective = false;
174
175 // Skip tokens by only peeking at their token kind and the flags.
176 // We don't need to actually reconstruct full tokens from the token buffer.
177 // This saves some copies and it also reduces IdentifierInfo* lookup.
178 const unsigned char* p = CurPtr;
179 while (1) {
180 // Read the token kind. Are we at the end of the file?
181 tok::TokenKind x = (tok::TokenKind) (uint8_t) *p;
182 if (x == tok::eof) break;
183
184 // Read the token flags. Are we at the start of the next line?
185 Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1];
186 if (y & Token::StartOfLine) break;
187
188 // Skip to the next token.
189 p += DISK_TOKEN_SIZE;
190 }
191
192 CurPtr = p;
193 }
194
195 /// SkipBlock - Used by Preprocessor to skip the current conditional block.
SkipBlock()196 bool PTHLexer::SkipBlock() {
197 assert(CurPPCondPtr && "No cached PP conditional information.");
198 assert(LastHashTokPtr && "No known '#' token.");
199
200 const unsigned char* HashEntryI = 0;
201 uint32_t Offset;
202 uint32_t TableIdx;
203
204 do {
205 // Read the token offset from the side-table.
206 Offset = ReadLE32(CurPPCondPtr);
207
208 // Read the target table index from the side-table.
209 TableIdx = ReadLE32(CurPPCondPtr);
210
211 // Compute the actual memory address of the '#' token data for this entry.
212 HashEntryI = TokBuf + Offset;
213
214 // Optmization: "Sibling jumping". #if...#else...#endif blocks can
215 // contain nested blocks. In the side-table we can jump over these
216 // nested blocks instead of doing a linear search if the next "sibling"
217 // entry is not at a location greater than LastHashTokPtr.
218 if (HashEntryI < LastHashTokPtr && TableIdx) {
219 // In the side-table we are still at an entry for a '#' token that
220 // is earlier than the last one we saw. Check if the location we would
221 // stride gets us closer.
222 const unsigned char* NextPPCondPtr =
223 PPCond + TableIdx*(sizeof(uint32_t)*2);
224 assert(NextPPCondPtr >= CurPPCondPtr);
225 // Read where we should jump to.
226 uint32_t TmpOffset = ReadLE32(NextPPCondPtr);
227 const unsigned char* HashEntryJ = TokBuf + TmpOffset;
228
229 if (HashEntryJ <= LastHashTokPtr) {
230 // Jump directly to the next entry in the side table.
231 HashEntryI = HashEntryJ;
232 Offset = TmpOffset;
233 TableIdx = ReadLE32(NextPPCondPtr);
234 CurPPCondPtr = NextPPCondPtr;
235 }
236 }
237 }
238 while (HashEntryI < LastHashTokPtr);
239 assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
240 assert(TableIdx && "No jumping from #endifs.");
241
242 // Update our side-table iterator.
243 const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
244 assert(NextPPCondPtr >= CurPPCondPtr);
245 CurPPCondPtr = NextPPCondPtr;
246
247 // Read where we should jump to.
248 HashEntryI = TokBuf + ReadLE32(NextPPCondPtr);
249 uint32_t NextIdx = ReadLE32(NextPPCondPtr);
250
251 // By construction NextIdx will be zero if this is a #endif. This is useful
252 // to know to obviate lexing another token.
253 bool isEndif = NextIdx == 0;
254
255 // This case can occur when we see something like this:
256 //
257 // #if ...
258 // /* a comment or nothing */
259 // #elif
260 //
261 // If we are skipping the first #if block it will be the case that CurPtr
262 // already points 'elif'. Just return.
263
264 if (CurPtr > HashEntryI) {
265 assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE);
266 // Did we reach a #endif? If so, go ahead and consume that token as well.
267 if (isEndif)
268 CurPtr += DISK_TOKEN_SIZE*2;
269 else
270 LastHashTokPtr = HashEntryI;
271
272 return isEndif;
273 }
274
275 // Otherwise, we need to advance. Update CurPtr to point to the '#' token.
276 CurPtr = HashEntryI;
277
278 // Update the location of the last observed '#'. This is useful if we
279 // are skipping multiple blocks.
280 LastHashTokPtr = CurPtr;
281
282 // Skip the '#' token.
283 assert(((tok::TokenKind)*CurPtr) == tok::hash);
284 CurPtr += DISK_TOKEN_SIZE;
285
286 // Did we reach a #endif? If so, go ahead and consume that token as well.
287 if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; }
288
289 return isEndif;
290 }
291
getSourceLocation()292 SourceLocation PTHLexer::getSourceLocation() {
293 // getSourceLocation is not on the hot path. It is used to get the location
294 // of the next token when transitioning back to this lexer when done
295 // handling a #included file. Just read the necessary data from the token
296 // data buffer to construct the SourceLocation object.
297 // NOTE: This is a virtual function; hence it is defined out-of-line.
298 const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4);
299 uint32_t Offset = ReadLE32(OffsetPtr);
300 return FileStartLoc.getFileLocWithOffset(Offset);
301 }
302
303 //===----------------------------------------------------------------------===//
304 // PTH file lookup: map from strings to file data.
305 //===----------------------------------------------------------------------===//
306
307 /// PTHFileLookup - This internal data structure is used by the PTHManager
308 /// to map from FileEntry objects managed by FileManager to offsets within
309 /// the PTH file.
310 namespace {
311 class PTHFileData {
312 const uint32_t TokenOff;
313 const uint32_t PPCondOff;
314 public:
PTHFileData(uint32_t tokenOff,uint32_t ppCondOff)315 PTHFileData(uint32_t tokenOff, uint32_t ppCondOff)
316 : TokenOff(tokenOff), PPCondOff(ppCondOff) {}
317
getTokenOffset() const318 uint32_t getTokenOffset() const { return TokenOff; }
getPPCondOffset() const319 uint32_t getPPCondOffset() const { return PPCondOff; }
320 };
321
322
323 class PTHFileLookupCommonTrait {
324 public:
325 typedef std::pair<unsigned char, const char*> internal_key_type;
326
ComputeHash(internal_key_type x)327 static unsigned ComputeHash(internal_key_type x) {
328 return llvm::HashString(x.second);
329 }
330
331 static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char * & d)332 ReadKeyDataLength(const unsigned char*& d) {
333 unsigned keyLen = (unsigned) ReadUnalignedLE16(d);
334 unsigned dataLen = (unsigned) *(d++);
335 return std::make_pair(keyLen, dataLen);
336 }
337
ReadKey(const unsigned char * d,unsigned)338 static internal_key_type ReadKey(const unsigned char* d, unsigned) {
339 unsigned char k = *(d++); // Read the entry kind.
340 return std::make_pair(k, (const char*) d);
341 }
342 };
343
344 class PTHFileLookupTrait : public PTHFileLookupCommonTrait {
345 public:
346 typedef const FileEntry* external_key_type;
347 typedef PTHFileData data_type;
348
GetInternalKey(const FileEntry * FE)349 static internal_key_type GetInternalKey(const FileEntry* FE) {
350 return std::make_pair((unsigned char) 0x1, FE->getName());
351 }
352
EqualKey(internal_key_type a,internal_key_type b)353 static bool EqualKey(internal_key_type a, internal_key_type b) {
354 return a.first == b.first && strcmp(a.second, b.second) == 0;
355 }
356
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)357 static PTHFileData ReadData(const internal_key_type& k,
358 const unsigned char* d, unsigned) {
359 assert(k.first == 0x1 && "Only file lookups can match!");
360 uint32_t x = ::ReadUnalignedLE32(d);
361 uint32_t y = ::ReadUnalignedLE32(d);
362 return PTHFileData(x, y);
363 }
364 };
365
366 class PTHStringLookupTrait {
367 public:
368 typedef uint32_t
369 data_type;
370
371 typedef const std::pair<const char*, unsigned>
372 external_key_type;
373
374 typedef external_key_type internal_key_type;
375
EqualKey(const internal_key_type & a,const internal_key_type & b)376 static bool EqualKey(const internal_key_type& a,
377 const internal_key_type& b) {
378 return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
379 : false;
380 }
381
ComputeHash(const internal_key_type & a)382 static unsigned ComputeHash(const internal_key_type& a) {
383 return llvm::HashString(llvm::StringRef(a.first, a.second));
384 }
385
386 // This hopefully will just get inlined and removed by the optimizer.
387 static const internal_key_type&
GetInternalKey(const external_key_type & x)388 GetInternalKey(const external_key_type& x) { return x; }
389
390 static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char * & d)391 ReadKeyDataLength(const unsigned char*& d) {
392 return std::make_pair((unsigned) ReadUnalignedLE16(d), sizeof(uint32_t));
393 }
394
395 static std::pair<const char*, unsigned>
ReadKey(const unsigned char * d,unsigned n)396 ReadKey(const unsigned char* d, unsigned n) {
397 assert(n >= 2 && d[n-1] == '\0');
398 return std::make_pair((const char*) d, n-1);
399 }
400
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)401 static uint32_t ReadData(const internal_key_type& k, const unsigned char* d,
402 unsigned) {
403 return ::ReadUnalignedLE32(d);
404 }
405 };
406
407 } // end anonymous namespace
408
409 typedef OnDiskChainedHashTable<PTHFileLookupTrait> PTHFileLookup;
410 typedef OnDiskChainedHashTable<PTHStringLookupTrait> PTHStringIdLookup;
411
412 //===----------------------------------------------------------------------===//
413 // PTHManager methods.
414 //===----------------------------------------------------------------------===//
415
PTHManager(const llvm::MemoryBuffer * buf,void * fileLookup,const unsigned char * idDataTable,IdentifierInfo ** perIDCache,void * stringIdLookup,unsigned numIds,const unsigned char * spellingBase,const char * originalSourceFile)416 PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup,
417 const unsigned char* idDataTable,
418 IdentifierInfo** perIDCache,
419 void* stringIdLookup, unsigned numIds,
420 const unsigned char* spellingBase,
421 const char* originalSourceFile)
422 : Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup),
423 IdDataTable(idDataTable), StringIdLookup(stringIdLookup),
424 NumIds(numIds), PP(0), SpellingBase(spellingBase),
425 OriginalSourceFile(originalSourceFile) {}
426
~PTHManager()427 PTHManager::~PTHManager() {
428 delete Buf;
429 delete (PTHFileLookup*) FileLookup;
430 delete (PTHStringIdLookup*) StringIdLookup;
431 free(PerIDCache);
432 }
433
InvalidPTH(Diagnostic & Diags,const char * Msg)434 static void InvalidPTH(Diagnostic &Diags, const char *Msg) {
435 Diags.Report(Diags.getCustomDiagID(Diagnostic::Error, Msg));
436 }
437
Create(const std::string & file,Diagnostic & Diags)438 PTHManager *PTHManager::Create(const std::string &file, Diagnostic &Diags) {
439 // Memory map the PTH file.
440 llvm::OwningPtr<llvm::MemoryBuffer> File;
441
442 if (llvm::MemoryBuffer::getFile(file, File)) {
443 // FIXME: Add ec.message() to this diag.
444 Diags.Report(diag::err_invalid_pth_file) << file;
445 return 0;
446 }
447
448 // Get the buffer ranges and check if there are at least three 32-bit
449 // words at the end of the file.
450 const unsigned char *BufBeg = (unsigned char*)File->getBufferStart();
451 const unsigned char *BufEnd = (unsigned char*)File->getBufferEnd();
452
453 // Check the prologue of the file.
454 if ((BufEnd - BufBeg) < (signed)(sizeof("cfe-pth") + 3 + 4) ||
455 memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth") - 1) != 0) {
456 Diags.Report(diag::err_invalid_pth_file) << file;
457 return 0;
458 }
459
460 // Read the PTH version.
461 const unsigned char *p = BufBeg + (sizeof("cfe-pth") - 1);
462 unsigned Version = ReadLE32(p);
463
464 if (Version < PTHManager::Version) {
465 InvalidPTH(Diags,
466 Version < PTHManager::Version
467 ? "PTH file uses an older PTH format that is no longer supported"
468 : "PTH file uses a newer PTH format that cannot be read");
469 return 0;
470 }
471
472 // Compute the address of the index table at the end of the PTH file.
473 const unsigned char *PrologueOffset = p;
474
475 if (PrologueOffset >= BufEnd) {
476 Diags.Report(diag::err_invalid_pth_file) << file;
477 return 0;
478 }
479
480 // Construct the file lookup table. This will be used for mapping from
481 // FileEntry*'s to cached tokens.
482 const unsigned char* FileTableOffset = PrologueOffset + sizeof(uint32_t)*2;
483 const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset);
484
485 if (!(FileTable > BufBeg && FileTable < BufEnd)) {
486 Diags.Report(diag::err_invalid_pth_file) << file;
487 return 0; // FIXME: Proper error diagnostic?
488 }
489
490 llvm::OwningPtr<PTHFileLookup> FL(PTHFileLookup::Create(FileTable, BufBeg));
491
492 // Warn if the PTH file is empty. We still want to create a PTHManager
493 // as the PTH could be used with -include-pth.
494 if (FL->isEmpty())
495 InvalidPTH(Diags, "PTH file contains no cached source data");
496
497 // Get the location of the table mapping from persistent ids to the
498 // data needed to reconstruct identifiers.
499 const unsigned char* IDTableOffset = PrologueOffset + sizeof(uint32_t)*0;
500 const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset);
501
502 if (!(IData >= BufBeg && IData < BufEnd)) {
503 Diags.Report(diag::err_invalid_pth_file) << file;
504 return 0;
505 }
506
507 // Get the location of the hashtable mapping between strings and
508 // persistent IDs.
509 const unsigned char* StringIdTableOffset = PrologueOffset + sizeof(uint32_t)*1;
510 const unsigned char* StringIdTable = BufBeg + ReadLE32(StringIdTableOffset);
511 if (!(StringIdTable >= BufBeg && StringIdTable < BufEnd)) {
512 Diags.Report(diag::err_invalid_pth_file) << file;
513 return 0;
514 }
515
516 llvm::OwningPtr<PTHStringIdLookup> SL(PTHStringIdLookup::Create(StringIdTable,
517 BufBeg));
518
519 // Get the location of the spelling cache.
520 const unsigned char* spellingBaseOffset = PrologueOffset + sizeof(uint32_t)*3;
521 const unsigned char* spellingBase = BufBeg + ReadLE32(spellingBaseOffset);
522 if (!(spellingBase >= BufBeg && spellingBase < BufEnd)) {
523 Diags.Report(diag::err_invalid_pth_file) << file;
524 return 0;
525 }
526
527 // Get the number of IdentifierInfos and pre-allocate the identifier cache.
528 uint32_t NumIds = ReadLE32(IData);
529
530 // Pre-allocate the persistent ID -> IdentifierInfo* cache. We use calloc()
531 // so that we in the best case only zero out memory once when the OS returns
532 // us new pages.
533 IdentifierInfo** PerIDCache = 0;
534
535 if (NumIds) {
536 PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache));
537 if (!PerIDCache) {
538 InvalidPTH(Diags, "Could not allocate memory for processing PTH file");
539 return 0;
540 }
541 }
542
543 // Compute the address of the original source file.
544 const unsigned char* originalSourceBase = PrologueOffset + sizeof(uint32_t)*4;
545 unsigned len = ReadUnalignedLE16(originalSourceBase);
546 if (!len) originalSourceBase = 0;
547
548 // Create the new PTHManager.
549 return new PTHManager(File.take(), FL.take(), IData, PerIDCache,
550 SL.take(), NumIds, spellingBase,
551 (const char*) originalSourceBase);
552 }
553
LazilyCreateIdentifierInfo(unsigned PersistentID)554 IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) {
555 // Look in the PTH file for the string data for the IdentifierInfo object.
556 const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID;
557 const unsigned char* IDData =
558 (const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry);
559 assert(IDData < (const unsigned char*)Buf->getBufferEnd());
560
561 // Allocate the object.
562 std::pair<IdentifierInfo,const unsigned char*> *Mem =
563 Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >();
564
565 Mem->second = IDData;
566 assert(IDData[0] != '\0');
567 IdentifierInfo *II = new ((void*) Mem) IdentifierInfo();
568
569 // Store the new IdentifierInfo in the cache.
570 PerIDCache[PersistentID] = II;
571 assert(II->getNameStart() && II->getNameStart()[0] != '\0');
572 return II;
573 }
574
get(llvm::StringRef Name)575 IdentifierInfo* PTHManager::get(llvm::StringRef Name) {
576 PTHStringIdLookup& SL = *((PTHStringIdLookup*)StringIdLookup);
577 // Double check our assumption that the last character isn't '\0'.
578 assert(Name.empty() || Name.data()[Name.size()-1] != '\0');
579 PTHStringIdLookup::iterator I = SL.find(std::make_pair(Name.data(),
580 Name.size()));
581 if (I == SL.end()) // No identifier found?
582 return 0;
583
584 // Match found. Return the identifier!
585 assert(*I > 0);
586 return GetIdentifierInfo(*I-1);
587 }
588
CreateLexer(FileID FID)589 PTHLexer *PTHManager::CreateLexer(FileID FID) {
590 const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID);
591 if (!FE)
592 return 0;
593
594 // Lookup the FileEntry object in our file lookup data structure. It will
595 // return a variant that indicates whether or not there is an offset within
596 // the PTH file that contains cached tokens.
597 PTHFileLookup& PFL = *((PTHFileLookup*)FileLookup);
598 PTHFileLookup::iterator I = PFL.find(FE);
599
600 if (I == PFL.end()) // No tokens available?
601 return 0;
602
603 const PTHFileData& FileData = *I;
604
605 const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart();
606 // Compute the offset of the token data within the buffer.
607 const unsigned char* data = BufStart + FileData.getTokenOffset();
608
609 // Get the location of pp-conditional table.
610 const unsigned char* ppcond = BufStart + FileData.getPPCondOffset();
611 uint32_t Len = ReadLE32(ppcond);
612 if (Len == 0) ppcond = 0;
613
614 assert(PP && "No preprocessor set yet!");
615 return new PTHLexer(*PP, FID, data, ppcond, *this);
616 }
617
618 //===----------------------------------------------------------------------===//
619 // 'stat' caching.
620 //===----------------------------------------------------------------------===//
621
622 namespace {
623 class PTHStatData {
624 public:
625 const bool hasStat;
626 const ino_t ino;
627 const dev_t dev;
628 const mode_t mode;
629 const time_t mtime;
630 const off_t size;
631
PTHStatData(ino_t i,dev_t d,mode_t mo,time_t m,off_t s)632 PTHStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s)
633 : hasStat(true), ino(i), dev(d), mode(mo), mtime(m), size(s) {}
634
PTHStatData()635 PTHStatData()
636 : hasStat(false), ino(0), dev(0), mode(0), mtime(0), size(0) {}
637 };
638
639 class PTHStatLookupTrait : public PTHFileLookupCommonTrait {
640 public:
641 typedef const char* external_key_type; // const char*
642 typedef PTHStatData data_type;
643
GetInternalKey(const char * path)644 static internal_key_type GetInternalKey(const char *path) {
645 // The key 'kind' doesn't matter here because it is ignored in EqualKey.
646 return std::make_pair((unsigned char) 0x0, path);
647 }
648
EqualKey(internal_key_type a,internal_key_type b)649 static bool EqualKey(internal_key_type a, internal_key_type b) {
650 // When doing 'stat' lookups we don't care about the kind of 'a' and 'b',
651 // just the paths.
652 return strcmp(a.second, b.second) == 0;
653 }
654
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)655 static data_type ReadData(const internal_key_type& k, const unsigned char* d,
656 unsigned) {
657
658 if (k.first /* File or Directory */) {
659 if (k.first == 0x1 /* File */) d += 4 * 2; // Skip the first 2 words.
660 ino_t ino = (ino_t) ReadUnalignedLE32(d);
661 dev_t dev = (dev_t) ReadUnalignedLE32(d);
662 mode_t mode = (mode_t) ReadUnalignedLE16(d);
663 time_t mtime = (time_t) ReadUnalignedLE64(d);
664 return data_type(ino, dev, mode, mtime, (off_t) ReadUnalignedLE64(d));
665 }
666
667 // Negative stat. Don't read anything.
668 return data_type();
669 }
670 };
671
672 class PTHStatCache : public FileSystemStatCache {
673 typedef OnDiskChainedHashTable<PTHStatLookupTrait> CacheTy;
674 CacheTy Cache;
675
676 public:
PTHStatCache(PTHFileLookup & FL)677 PTHStatCache(PTHFileLookup &FL) :
678 Cache(FL.getNumBuckets(), FL.getNumEntries(), FL.getBuckets(),
679 FL.getBase()) {}
680
~PTHStatCache()681 ~PTHStatCache() {}
682
getStat(const char * Path,struct stat & StatBuf,int * FileDescriptor)683 LookupResult getStat(const char *Path, struct stat &StatBuf,
684 int *FileDescriptor) {
685 // Do the lookup for the file's data in the PTH file.
686 CacheTy::iterator I = Cache.find(Path);
687
688 // If we don't get a hit in the PTH file just forward to 'stat'.
689 if (I == Cache.end())
690 return statChained(Path, StatBuf, FileDescriptor);
691
692 const PTHStatData &Data = *I;
693
694 if (!Data.hasStat)
695 return CacheMissing;
696
697 StatBuf.st_ino = Data.ino;
698 StatBuf.st_dev = Data.dev;
699 StatBuf.st_mtime = Data.mtime;
700 StatBuf.st_mode = Data.mode;
701 StatBuf.st_size = Data.size;
702 return CacheExists;
703 }
704 };
705 } // end anonymous namespace
706
createStatCache()707 FileSystemStatCache *PTHManager::createStatCache() {
708 return new PTHStatCache(*((PTHFileLookup*) FileLookup));
709 }
710