1 /*
2 * Copyright (C) 2006 Zack Rusin <zack@kde.org>
3 * 2006 Rob Buis <buis@kde.org>
4 * 2009, 2010 Dirk Schulze <krit@webkit.org>
5 *
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
25 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include "config.h"
31 #include "Path.h"
32
33 #include "AffineTransform.h"
34 #include "FloatRect.h"
35 #include "GraphicsContext.h"
36 #include "ImageBuffer.h"
37 #include "PlatformString.h"
38 #include "StrokeStyleApplier.h"
39 #include <QPainterPath>
40 #include <QTransform>
41 #include <QString>
42 #include <wtf/MathExtras.h>
43 #include <wtf/OwnPtr.h>
44
45 namespace WebCore {
46
Path()47 Path::Path()
48 {
49 }
50
~Path()51 Path::~Path()
52 {
53 }
54
Path(const Path & other)55 Path::Path(const Path& other)
56 : m_path(other.m_path)
57 {
58 }
59
operator =(const Path & other)60 Path& Path::operator=(const Path& other)
61 {
62 m_path = other.m_path;
63 return *this;
64 }
65
areCollinear(const QPointF & a,const QPointF & b,const QPointF & c)66 static inline bool areCollinear(const QPointF& a, const QPointF& b, const QPointF& c)
67 {
68 // Solved from comparing the slopes of a to b and b to c: (ay-by)/(ax-bx) == (cy-by)/(cx-bx)
69 return qFuzzyCompare((c.y() - b.y()) * (a.x() - b.x()), (a.y() - b.y()) * (c.x() - b.x()));
70 }
71
withinRange(qreal p,qreal a,qreal b)72 static inline bool withinRange(qreal p, qreal a, qreal b)
73 {
74 return (p >= a && p <= b) || (p >= b && p <= a);
75 }
76
77 // Check whether a point is on the border
isPointOnPathBorder(const QPolygonF & border,const QPointF & p)78 static bool isPointOnPathBorder(const QPolygonF& border, const QPointF& p)
79 {
80 // null border doesn't contain points
81 if (border.isEmpty())
82 return false;
83
84 QPointF p1 = border.at(0);
85 QPointF p2;
86
87 for (int i = 1; i < border.size(); ++i) {
88 p2 = border.at(i);
89 if (areCollinear(p, p1, p2)
90 // Once we know that the points are collinear we
91 // only need to check one of the coordinates
92 && (qAbs(p2.x() - p1.x()) > qAbs(p2.y() - p1.y()) ?
93 withinRange(p.x(), p1.x(), p2.x()) :
94 withinRange(p.y(), p1.y(), p2.y()))) {
95 return true;
96 }
97 p1 = p2;
98 }
99 return false;
100 }
101
contains(const FloatPoint & point,WindRule rule) const102 bool Path::contains(const FloatPoint& point, WindRule rule) const
103 {
104 Qt::FillRule savedRule = m_path.fillRule();
105 const_cast<QPainterPath*>(&m_path)->setFillRule(rule == RULE_EVENODD ? Qt::OddEvenFill : Qt::WindingFill);
106
107 bool contains = m_path.contains(point);
108
109 if (!contains) {
110 // check whether the point is on the border
111 contains = isPointOnPathBorder(m_path.toFillPolygon(), point);
112 }
113
114 const_cast<QPainterPath*>(&m_path)->setFillRule(savedRule);
115 return contains;
116 }
117
scratchContext()118 static GraphicsContext* scratchContext()
119 {
120 static QImage image(1, 1, QImage::Format_ARGB32_Premultiplied);
121 static QPainter painter(&image);
122 static GraphicsContext* context = new GraphicsContext(&painter);
123 return context;
124 }
125
strokeContains(StrokeStyleApplier * applier,const FloatPoint & point) const126 bool Path::strokeContains(StrokeStyleApplier* applier, const FloatPoint& point) const
127 {
128 ASSERT(applier);
129
130 QPainterPathStroker stroke;
131 GraphicsContext* context = scratchContext();
132 applier->strokeStyle(context);
133
134 QPen pen = context->platformContext()->pen();
135 stroke.setWidth(pen.widthF());
136 stroke.setCapStyle(pen.capStyle());
137 stroke.setJoinStyle(pen.joinStyle());
138 stroke.setMiterLimit(pen.miterLimit());
139 stroke.setDashPattern(pen.dashPattern());
140 stroke.setDashOffset(pen.dashOffset());
141
142 return stroke.createStroke(m_path).contains(point);
143 }
144
translate(const FloatSize & size)145 void Path::translate(const FloatSize& size)
146 {
147 QTransform matrix;
148 matrix.translate(size.width(), size.height());
149 m_path = m_path * matrix;
150 }
151
boundingRect() const152 FloatRect Path::boundingRect() const
153 {
154 return m_path.boundingRect();
155 }
156
strokeBoundingRect(StrokeStyleApplier * applier) const157 FloatRect Path::strokeBoundingRect(StrokeStyleApplier* applier) const
158 {
159 GraphicsContext* context = scratchContext();
160 QPainterPathStroker stroke;
161 if (applier) {
162 applier->strokeStyle(context);
163
164 QPen pen = context->platformContext()->pen();
165 stroke.setWidth(pen.widthF());
166 stroke.setCapStyle(pen.capStyle());
167 stroke.setJoinStyle(pen.joinStyle());
168 stroke.setMiterLimit(pen.miterLimit());
169 stroke.setDashPattern(pen.dashPattern());
170 stroke.setDashOffset(pen.dashOffset());
171 }
172 return stroke.createStroke(m_path).boundingRect();
173 }
174
moveTo(const FloatPoint & point)175 void Path::moveTo(const FloatPoint& point)
176 {
177 m_path.moveTo(point);
178 }
179
addLineTo(const FloatPoint & p)180 void Path::addLineTo(const FloatPoint& p)
181 {
182 m_path.lineTo(p);
183 }
184
addQuadCurveTo(const FloatPoint & cp,const FloatPoint & p)185 void Path::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& p)
186 {
187 m_path.quadTo(cp, p);
188 }
189
addBezierCurveTo(const FloatPoint & cp1,const FloatPoint & cp2,const FloatPoint & p)190 void Path::addBezierCurveTo(const FloatPoint& cp1, const FloatPoint& cp2, const FloatPoint& p)
191 {
192 m_path.cubicTo(cp1, cp2, p);
193 }
194
addArcTo(const FloatPoint & p1,const FloatPoint & p2,float radius)195 void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius)
196 {
197 FloatPoint p0(m_path.currentPosition());
198
199 FloatPoint p1p0((p0.x() - p1.x()), (p0.y() - p1.y()));
200 FloatPoint p1p2((p2.x() - p1.x()), (p2.y() - p1.y()));
201 float p1p0_length = sqrtf(p1p0.x() * p1p0.x() + p1p0.y() * p1p0.y());
202 float p1p2_length = sqrtf(p1p2.x() * p1p2.x() + p1p2.y() * p1p2.y());
203
204 double cos_phi = (p1p0.x() * p1p2.x() + p1p0.y() * p1p2.y()) / (p1p0_length * p1p2_length);
205
206 // The points p0, p1, and p2 are on the same straight line (HTML5, 4.8.11.1.8)
207 // We could have used areCollinear() here, but since we're reusing
208 // the variables computed above later on we keep this logic.
209 if (qFuzzyCompare(qAbs(cos_phi), 1.0)) {
210 m_path.lineTo(p1);
211 return;
212 }
213
214 float tangent = radius / tan(acos(cos_phi) / 2);
215 float factor_p1p0 = tangent / p1p0_length;
216 FloatPoint t_p1p0((p1.x() + factor_p1p0 * p1p0.x()), (p1.y() + factor_p1p0 * p1p0.y()));
217
218 FloatPoint orth_p1p0(p1p0.y(), -p1p0.x());
219 float orth_p1p0_length = sqrt(orth_p1p0.x() * orth_p1p0.x() + orth_p1p0.y() * orth_p1p0.y());
220 float factor_ra = radius / orth_p1p0_length;
221
222 // angle between orth_p1p0 and p1p2 to get the right vector orthographic to p1p0
223 double cos_alpha = (orth_p1p0.x() * p1p2.x() + orth_p1p0.y() * p1p2.y()) / (orth_p1p0_length * p1p2_length);
224 if (cos_alpha < 0.f)
225 orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
226
227 FloatPoint p((t_p1p0.x() + factor_ra * orth_p1p0.x()), (t_p1p0.y() + factor_ra * orth_p1p0.y()));
228
229 // calculate angles for addArc
230 orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
231 float sa = acos(orth_p1p0.x() / orth_p1p0_length);
232 if (orth_p1p0.y() < 0.f)
233 sa = 2 * piDouble - sa;
234
235 // anticlockwise logic
236 bool anticlockwise = false;
237
238 float factor_p1p2 = tangent / p1p2_length;
239 FloatPoint t_p1p2((p1.x() + factor_p1p2 * p1p2.x()), (p1.y() + factor_p1p2 * p1p2.y()));
240 FloatPoint orth_p1p2((t_p1p2.x() - p.x()), (t_p1p2.y() - p.y()));
241 float orth_p1p2_length = sqrtf(orth_p1p2.x() * orth_p1p2.x() + orth_p1p2.y() * orth_p1p2.y());
242 float ea = acos(orth_p1p2.x() / orth_p1p2_length);
243 if (orth_p1p2.y() < 0)
244 ea = 2 * piDouble - ea;
245 if ((sa > ea) && ((sa - ea) < piDouble))
246 anticlockwise = true;
247 if ((sa < ea) && ((ea - sa) > piDouble))
248 anticlockwise = true;
249
250 m_path.lineTo(t_p1p0);
251
252 addArc(p, radius, sa, ea, anticlockwise);
253 }
254
closeSubpath()255 void Path::closeSubpath()
256 {
257 m_path.closeSubpath();
258 }
259
addArc(const FloatPoint & p,float r,float sar,float ear,bool anticlockwise)260 void Path::addArc(const FloatPoint& p, float r, float sar, float ear, bool anticlockwise)
261 {
262 qreal xc = p.x();
263 qreal yc = p.y();
264 qreal radius = r;
265
266
267 //### HACK
268 // In Qt we don't switch the coordinate system for degrees
269 // and still use the 0,0 as bottom left for degrees so we need
270 // to switch
271 sar = -sar;
272 ear = -ear;
273 anticlockwise = !anticlockwise;
274 //end hack
275
276 float sa = rad2deg(sar);
277 float ea = rad2deg(ear);
278
279 double span = 0;
280
281 double xs = xc - radius;
282 double ys = yc - radius;
283 double width = radius*2;
284 double height = radius*2;
285
286 if ((!anticlockwise && (ea - sa >= 360)) || (anticlockwise && (sa - ea >= 360))) {
287 // If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than 2*PI, or, if the
288 // anticlockwise argument is true and startAngle-endAngle is equal to or greater than 2*PI, then the arc is the whole
289 // circumference of this circle.
290 span = 360;
291
292 if (anticlockwise)
293 span = -span;
294 } else {
295 if (!anticlockwise && (ea < sa))
296 span += 360;
297 else if (anticlockwise && (sa < ea))
298 span -= 360;
299
300 // this is also due to switched coordinate system
301 // we would end up with a 0 span instead of 360
302 if (!(qFuzzyCompare(span + (ea - sa) + 1, 1.0)
303 && qFuzzyCompare(qAbs(span), 360.0))) {
304 // mod 360
305 span += (ea - sa) - (static_cast<int>((ea - sa) / 360)) * 360;
306 }
307 }
308
309 // If the path is empty, move to where the arc will start to avoid painting a line from (0,0)
310 // NOTE: QPainterPath::isEmpty() won't work here since it ignores a lone MoveToElement
311 if (!m_path.elementCount())
312 m_path.arcMoveTo(xs, ys, width, height, sa);
313 else if (!radius) {
314 m_path.lineTo(xc, yc);
315 return;
316 }
317
318 m_path.arcTo(xs, ys, width, height, sa, span);
319
320 }
321
addRect(const FloatRect & r)322 void Path::addRect(const FloatRect& r)
323 {
324 m_path.addRect(r.x(), r.y(), r.width(), r.height());
325 }
326
addEllipse(const FloatRect & r)327 void Path::addEllipse(const FloatRect& r)
328 {
329 m_path.addEllipse(r.x(), r.y(), r.width(), r.height());
330 }
331
clear()332 void Path::clear()
333 {
334 if (!m_path.elementCount())
335 return;
336 m_path = QPainterPath();
337 }
338
isEmpty() const339 bool Path::isEmpty() const
340 {
341 // Don't use QPainterPath::isEmpty(), as that also returns true if there's only
342 // one initial MoveTo element in the path.
343 return !m_path.elementCount();
344 }
345
hasCurrentPoint() const346 bool Path::hasCurrentPoint() const
347 {
348 return !isEmpty();
349 }
350
currentPoint() const351 FloatPoint Path::currentPoint() const
352 {
353 return m_path.currentPosition();
354 }
355
apply(void * info,PathApplierFunction function) const356 void Path::apply(void* info, PathApplierFunction function) const
357 {
358 PathElement pelement;
359 FloatPoint points[3];
360 pelement.points = points;
361 for (int i = 0; i < m_path.elementCount(); ++i) {
362 const QPainterPath::Element& cur = m_path.elementAt(i);
363
364 switch (cur.type) {
365 case QPainterPath::MoveToElement:
366 pelement.type = PathElementMoveToPoint;
367 pelement.points[0] = QPointF(cur);
368 function(info, &pelement);
369 break;
370 case QPainterPath::LineToElement:
371 pelement.type = PathElementAddLineToPoint;
372 pelement.points[0] = QPointF(cur);
373 function(info, &pelement);
374 break;
375 case QPainterPath::CurveToElement:
376 {
377 const QPainterPath::Element& c1 = m_path.elementAt(i + 1);
378 const QPainterPath::Element& c2 = m_path.elementAt(i + 2);
379
380 Q_ASSERT(c1.type == QPainterPath::CurveToDataElement);
381 Q_ASSERT(c2.type == QPainterPath::CurveToDataElement);
382
383 pelement.type = PathElementAddCurveToPoint;
384 pelement.points[0] = QPointF(cur);
385 pelement.points[1] = QPointF(c1);
386 pelement.points[2] = QPointF(c2);
387 function(info, &pelement);
388
389 i += 2;
390 break;
391 }
392 case QPainterPath::CurveToDataElement:
393 Q_ASSERT(false);
394 }
395 }
396 }
397
transform(const AffineTransform & transform)398 void Path::transform(const AffineTransform& transform)
399 {
400 QTransform qTransform(transform);
401 m_path = qTransform.map(m_path);
402 }
403
length() const404 float Path::length() const
405 {
406 return m_path.length();
407 }
408
pointAtLength(float length,bool & ok) const409 FloatPoint Path::pointAtLength(float length, bool& ok) const
410 {
411 ok = (length >= 0 && length <= m_path.length());
412
413 qreal percent = m_path.percentAtLength(length);
414 QPointF point = m_path.pointAtPercent(percent);
415
416 return point;
417 }
418
normalAngleAtLength(float length,bool & ok) const419 float Path::normalAngleAtLength(float length, bool& ok) const
420 {
421 ok = (length >= 0 && length <= m_path.length());
422
423 qreal percent = m_path.percentAtLength(length);
424 qreal angle = m_path.angleAtPercent(percent);
425
426 // Normalize angle value.
427 // QPainterPath returns angle values with the origo being at the top left corner.
428 // In case of moveTo(0, 0) and addLineTo(0, 10) the angle is 270,
429 // while the caller expects it to be 90.
430 // Normalize the value by mirroring it to the x-axis.
431 // For more info look at pathLengthApplierFunction().
432 if (angle > 0)
433 angle = 360 - angle;
434 return angle;
435 }
436
437 }
438
439 // vim: ts=4 sw=4 et
440