• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Target/TargetData.h"
21 #include "llvm/ADT/STLExtras.h"
22 
23 using namespace llvm;
24 
25 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
26 /// reusing an existing cast if a suitable one exists, moving an existing
27 /// cast if a suitable one exists but isn't in the right place, or
28 /// creating a new one.
ReuseOrCreateCast(Value * V,Type * Ty,Instruction::CastOps Op,BasicBlock::iterator IP)29 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
30                                        Instruction::CastOps Op,
31                                        BasicBlock::iterator IP) {
32   // Check to see if there is already a cast!
33   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
34        UI != E; ++UI) {
35     User *U = *UI;
36     if (U->getType() == Ty)
37       if (CastInst *CI = dyn_cast<CastInst>(U))
38         if (CI->getOpcode() == Op) {
39           // If the cast isn't where we want it, fix it.
40           if (BasicBlock::iterator(CI) != IP) {
41             // Create a new cast, and leave the old cast in place in case
42             // it is being used as an insert point. Clear its operand
43             // so that it doesn't hold anything live.
44             Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
45             NewCI->takeName(CI);
46             CI->replaceAllUsesWith(NewCI);
47             CI->setOperand(0, UndefValue::get(V->getType()));
48             rememberInstruction(NewCI);
49             return NewCI;
50           }
51           rememberInstruction(CI);
52           return CI;
53         }
54   }
55 
56   // Create a new cast.
57   Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
58   rememberInstruction(I);
59   return I;
60 }
61 
62 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
63 /// which must be possible with a noop cast, doing what we can to share
64 /// the casts.
InsertNoopCastOfTo(Value * V,Type * Ty)65 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
66   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
67   assert((Op == Instruction::BitCast ||
68           Op == Instruction::PtrToInt ||
69           Op == Instruction::IntToPtr) &&
70          "InsertNoopCastOfTo cannot perform non-noop casts!");
71   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
72          "InsertNoopCastOfTo cannot change sizes!");
73 
74   // Short-circuit unnecessary bitcasts.
75   if (Op == Instruction::BitCast && V->getType() == Ty)
76     return V;
77 
78   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
79   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
80       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
81     if (CastInst *CI = dyn_cast<CastInst>(V))
82       if ((CI->getOpcode() == Instruction::PtrToInt ||
83            CI->getOpcode() == Instruction::IntToPtr) &&
84           SE.getTypeSizeInBits(CI->getType()) ==
85           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
86         return CI->getOperand(0);
87     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
88       if ((CE->getOpcode() == Instruction::PtrToInt ||
89            CE->getOpcode() == Instruction::IntToPtr) &&
90           SE.getTypeSizeInBits(CE->getType()) ==
91           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
92         return CE->getOperand(0);
93   }
94 
95   // Fold a cast of a constant.
96   if (Constant *C = dyn_cast<Constant>(V))
97     return ConstantExpr::getCast(Op, C, Ty);
98 
99   // Cast the argument at the beginning of the entry block, after
100   // any bitcasts of other arguments.
101   if (Argument *A = dyn_cast<Argument>(V)) {
102     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
103     while ((isa<BitCastInst>(IP) &&
104             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
105             cast<BitCastInst>(IP)->getOperand(0) != A) ||
106            isa<DbgInfoIntrinsic>(IP))
107       ++IP;
108     return ReuseOrCreateCast(A, Ty, Op, IP);
109   }
110 
111   // Cast the instruction immediately after the instruction.
112   Instruction *I = cast<Instruction>(V);
113   BasicBlock::iterator IP = I; ++IP;
114   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
115     IP = II->getNormalDest()->begin();
116   while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP)) ++IP;
117   return ReuseOrCreateCast(I, Ty, Op, IP);
118 }
119 
120 /// InsertBinop - Insert the specified binary operator, doing a small amount
121 /// of work to avoid inserting an obviously redundant operation.
InsertBinop(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS)122 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
123                                  Value *LHS, Value *RHS) {
124   // Fold a binop with constant operands.
125   if (Constant *CLHS = dyn_cast<Constant>(LHS))
126     if (Constant *CRHS = dyn_cast<Constant>(RHS))
127       return ConstantExpr::get(Opcode, CLHS, CRHS);
128 
129   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
130   unsigned ScanLimit = 6;
131   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
132   // Scanning starts from the last instruction before the insertion point.
133   BasicBlock::iterator IP = Builder.GetInsertPoint();
134   if (IP != BlockBegin) {
135     --IP;
136     for (; ScanLimit; --IP, --ScanLimit) {
137       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
138       // generated code.
139       if (isa<DbgInfoIntrinsic>(IP))
140         ScanLimit++;
141       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
142           IP->getOperand(1) == RHS)
143         return IP;
144       if (IP == BlockBegin) break;
145     }
146   }
147 
148   // Save the original insertion point so we can restore it when we're done.
149   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
150   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
151 
152   // Move the insertion point out of as many loops as we can.
153   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
154     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
155     BasicBlock *Preheader = L->getLoopPreheader();
156     if (!Preheader) break;
157 
158     // Ok, move up a level.
159     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
160   }
161 
162   // If we haven't found this binop, insert it.
163   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS, "tmp"));
164   BO->setDebugLoc(SaveInsertPt->getDebugLoc());
165   rememberInstruction(BO);
166 
167   // Restore the original insert point.
168   if (SaveInsertBB)
169     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
170 
171   return BO;
172 }
173 
174 /// FactorOutConstant - Test if S is divisible by Factor, using signed
175 /// division. If so, update S with Factor divided out and return true.
176 /// S need not be evenly divisible if a reasonable remainder can be
177 /// computed.
178 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
179 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
180 /// check to see if the divide was folded.
FactorOutConstant(const SCEV * & S,const SCEV * & Remainder,const SCEV * Factor,ScalarEvolution & SE,const TargetData * TD)181 static bool FactorOutConstant(const SCEV *&S,
182                               const SCEV *&Remainder,
183                               const SCEV *Factor,
184                               ScalarEvolution &SE,
185                               const TargetData *TD) {
186   // Everything is divisible by one.
187   if (Factor->isOne())
188     return true;
189 
190   // x/x == 1.
191   if (S == Factor) {
192     S = SE.getConstant(S->getType(), 1);
193     return true;
194   }
195 
196   // For a Constant, check for a multiple of the given factor.
197   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
198     // 0/x == 0.
199     if (C->isZero())
200       return true;
201     // Check for divisibility.
202     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
203       ConstantInt *CI =
204         ConstantInt::get(SE.getContext(),
205                          C->getValue()->getValue().sdiv(
206                                                    FC->getValue()->getValue()));
207       // If the quotient is zero and the remainder is non-zero, reject
208       // the value at this scale. It will be considered for subsequent
209       // smaller scales.
210       if (!CI->isZero()) {
211         const SCEV *Div = SE.getConstant(CI);
212         S = Div;
213         Remainder =
214           SE.getAddExpr(Remainder,
215                         SE.getConstant(C->getValue()->getValue().srem(
216                                                   FC->getValue()->getValue())));
217         return true;
218       }
219     }
220   }
221 
222   // In a Mul, check if there is a constant operand which is a multiple
223   // of the given factor.
224   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
225     if (TD) {
226       // With TargetData, the size is known. Check if there is a constant
227       // operand which is a multiple of the given factor. If so, we can
228       // factor it.
229       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
230       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
231         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
232           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
233           NewMulOps[0] =
234             SE.getConstant(C->getValue()->getValue().sdiv(
235                                                    FC->getValue()->getValue()));
236           S = SE.getMulExpr(NewMulOps);
237           return true;
238         }
239     } else {
240       // Without TargetData, check if Factor can be factored out of any of the
241       // Mul's operands. If so, we can just remove it.
242       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
243         const SCEV *SOp = M->getOperand(i);
244         const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
245         if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
246             Remainder->isZero()) {
247           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
248           NewMulOps[i] = SOp;
249           S = SE.getMulExpr(NewMulOps);
250           return true;
251         }
252       }
253     }
254   }
255 
256   // In an AddRec, check if both start and step are divisible.
257   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
258     const SCEV *Step = A->getStepRecurrence(SE);
259     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
260     if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
261       return false;
262     if (!StepRem->isZero())
263       return false;
264     const SCEV *Start = A->getStart();
265     if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
266       return false;
267     // FIXME: can use A->getNoWrapFlags(FlagNW)
268     S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
269     return true;
270   }
271 
272   return false;
273 }
274 
275 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
276 /// is the number of SCEVAddRecExprs present, which are kept at the end of
277 /// the list.
278 ///
SimplifyAddOperands(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)279 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
280                                 Type *Ty,
281                                 ScalarEvolution &SE) {
282   unsigned NumAddRecs = 0;
283   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
284     ++NumAddRecs;
285   // Group Ops into non-addrecs and addrecs.
286   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
287   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
288   // Let ScalarEvolution sort and simplify the non-addrecs list.
289   const SCEV *Sum = NoAddRecs.empty() ?
290                     SE.getConstant(Ty, 0) :
291                     SE.getAddExpr(NoAddRecs);
292   // If it returned an add, use the operands. Otherwise it simplified
293   // the sum into a single value, so just use that.
294   Ops.clear();
295   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
296     Ops.append(Add->op_begin(), Add->op_end());
297   else if (!Sum->isZero())
298     Ops.push_back(Sum);
299   // Then append the addrecs.
300   Ops.append(AddRecs.begin(), AddRecs.end());
301 }
302 
303 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
304 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
305 /// This helps expose more opportunities for folding parts of the expressions
306 /// into GEP indices.
307 ///
SplitAddRecs(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)308 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
309                          Type *Ty,
310                          ScalarEvolution &SE) {
311   // Find the addrecs.
312   SmallVector<const SCEV *, 8> AddRecs;
313   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
314     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
315       const SCEV *Start = A->getStart();
316       if (Start->isZero()) break;
317       const SCEV *Zero = SE.getConstant(Ty, 0);
318       AddRecs.push_back(SE.getAddRecExpr(Zero,
319                                          A->getStepRecurrence(SE),
320                                          A->getLoop(),
321                                          // FIXME: A->getNoWrapFlags(FlagNW)
322                                          SCEV::FlagAnyWrap));
323       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
324         Ops[i] = Zero;
325         Ops.append(Add->op_begin(), Add->op_end());
326         e += Add->getNumOperands();
327       } else {
328         Ops[i] = Start;
329       }
330     }
331   if (!AddRecs.empty()) {
332     // Add the addrecs onto the end of the list.
333     Ops.append(AddRecs.begin(), AddRecs.end());
334     // Resort the operand list, moving any constants to the front.
335     SimplifyAddOperands(Ops, Ty, SE);
336   }
337 }
338 
339 /// expandAddToGEP - Expand an addition expression with a pointer type into
340 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
341 /// BasicAliasAnalysis and other passes analyze the result. See the rules
342 /// for getelementptr vs. inttoptr in
343 /// http://llvm.org/docs/LangRef.html#pointeraliasing
344 /// for details.
345 ///
346 /// Design note: The correctness of using getelementptr here depends on
347 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
348 /// they may introduce pointer arithmetic which may not be safely converted
349 /// into getelementptr.
350 ///
351 /// Design note: It might seem desirable for this function to be more
352 /// loop-aware. If some of the indices are loop-invariant while others
353 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
354 /// loop-invariant portions of the overall computation outside the loop.
355 /// However, there are a few reasons this is not done here. Hoisting simple
356 /// arithmetic is a low-level optimization that often isn't very
357 /// important until late in the optimization process. In fact, passes
358 /// like InstructionCombining will combine GEPs, even if it means
359 /// pushing loop-invariant computation down into loops, so even if the
360 /// GEPs were split here, the work would quickly be undone. The
361 /// LoopStrengthReduction pass, which is usually run quite late (and
362 /// after the last InstructionCombining pass), takes care of hoisting
363 /// loop-invariant portions of expressions, after considering what
364 /// can be folded using target addressing modes.
365 ///
expandAddToGEP(const SCEV * const * op_begin,const SCEV * const * op_end,PointerType * PTy,Type * Ty,Value * V)366 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
367                                     const SCEV *const *op_end,
368                                     PointerType *PTy,
369                                     Type *Ty,
370                                     Value *V) {
371   Type *ElTy = PTy->getElementType();
372   SmallVector<Value *, 4> GepIndices;
373   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
374   bool AnyNonZeroIndices = false;
375 
376   // Split AddRecs up into parts as either of the parts may be usable
377   // without the other.
378   SplitAddRecs(Ops, Ty, SE);
379 
380   // Descend down the pointer's type and attempt to convert the other
381   // operands into GEP indices, at each level. The first index in a GEP
382   // indexes into the array implied by the pointer operand; the rest of
383   // the indices index into the element or field type selected by the
384   // preceding index.
385   for (;;) {
386     // If the scale size is not 0, attempt to factor out a scale for
387     // array indexing.
388     SmallVector<const SCEV *, 8> ScaledOps;
389     if (ElTy->isSized()) {
390       const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
391       if (!ElSize->isZero()) {
392         SmallVector<const SCEV *, 8> NewOps;
393         for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
394           const SCEV *Op = Ops[i];
395           const SCEV *Remainder = SE.getConstant(Ty, 0);
396           if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
397             // Op now has ElSize factored out.
398             ScaledOps.push_back(Op);
399             if (!Remainder->isZero())
400               NewOps.push_back(Remainder);
401             AnyNonZeroIndices = true;
402           } else {
403             // The operand was not divisible, so add it to the list of operands
404             // we'll scan next iteration.
405             NewOps.push_back(Ops[i]);
406           }
407         }
408         // If we made any changes, update Ops.
409         if (!ScaledOps.empty()) {
410           Ops = NewOps;
411           SimplifyAddOperands(Ops, Ty, SE);
412         }
413       }
414     }
415 
416     // Record the scaled array index for this level of the type. If
417     // we didn't find any operands that could be factored, tentatively
418     // assume that element zero was selected (since the zero offset
419     // would obviously be folded away).
420     Value *Scaled = ScaledOps.empty() ?
421                     Constant::getNullValue(Ty) :
422                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
423     GepIndices.push_back(Scaled);
424 
425     // Collect struct field index operands.
426     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
427       bool FoundFieldNo = false;
428       // An empty struct has no fields.
429       if (STy->getNumElements() == 0) break;
430       if (SE.TD) {
431         // With TargetData, field offsets are known. See if a constant offset
432         // falls within any of the struct fields.
433         if (Ops.empty()) break;
434         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
435           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
436             const StructLayout &SL = *SE.TD->getStructLayout(STy);
437             uint64_t FullOffset = C->getValue()->getZExtValue();
438             if (FullOffset < SL.getSizeInBytes()) {
439               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
440               GepIndices.push_back(
441                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
442               ElTy = STy->getTypeAtIndex(ElIdx);
443               Ops[0] =
444                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
445               AnyNonZeroIndices = true;
446               FoundFieldNo = true;
447             }
448           }
449       } else {
450         // Without TargetData, just check for an offsetof expression of the
451         // appropriate struct type.
452         for (unsigned i = 0, e = Ops.size(); i != e; ++i)
453           if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
454             Type *CTy;
455             Constant *FieldNo;
456             if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
457               GepIndices.push_back(FieldNo);
458               ElTy =
459                 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
460               Ops[i] = SE.getConstant(Ty, 0);
461               AnyNonZeroIndices = true;
462               FoundFieldNo = true;
463               break;
464             }
465           }
466       }
467       // If no struct field offsets were found, tentatively assume that
468       // field zero was selected (since the zero offset would obviously
469       // be folded away).
470       if (!FoundFieldNo) {
471         ElTy = STy->getTypeAtIndex(0u);
472         GepIndices.push_back(
473           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
474       }
475     }
476 
477     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
478       ElTy = ATy->getElementType();
479     else
480       break;
481   }
482 
483   // If none of the operands were convertible to proper GEP indices, cast
484   // the base to i8* and do an ugly getelementptr with that. It's still
485   // better than ptrtoint+arithmetic+inttoptr at least.
486   if (!AnyNonZeroIndices) {
487     // Cast the base to i8*.
488     V = InsertNoopCastOfTo(V,
489        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
490 
491     // Expand the operands for a plain byte offset.
492     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
493 
494     // Fold a GEP with constant operands.
495     if (Constant *CLHS = dyn_cast<Constant>(V))
496       if (Constant *CRHS = dyn_cast<Constant>(Idx))
497         return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
498 
499     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
500     unsigned ScanLimit = 6;
501     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
502     // Scanning starts from the last instruction before the insertion point.
503     BasicBlock::iterator IP = Builder.GetInsertPoint();
504     if (IP != BlockBegin) {
505       --IP;
506       for (; ScanLimit; --IP, --ScanLimit) {
507         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
508         // generated code.
509         if (isa<DbgInfoIntrinsic>(IP))
510           ScanLimit++;
511         if (IP->getOpcode() == Instruction::GetElementPtr &&
512             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
513           return IP;
514         if (IP == BlockBegin) break;
515       }
516     }
517 
518     // Save the original insertion point so we can restore it when we're done.
519     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
520     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
521 
522     // Move the insertion point out of as many loops as we can.
523     while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
524       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
525       BasicBlock *Preheader = L->getLoopPreheader();
526       if (!Preheader) break;
527 
528       // Ok, move up a level.
529       Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
530     }
531 
532     // Emit a GEP.
533     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
534     rememberInstruction(GEP);
535 
536     // Restore the original insert point.
537     if (SaveInsertBB)
538       restoreInsertPoint(SaveInsertBB, SaveInsertPt);
539 
540     return GEP;
541   }
542 
543   // Save the original insertion point so we can restore it when we're done.
544   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
545   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
546 
547   // Move the insertion point out of as many loops as we can.
548   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
549     if (!L->isLoopInvariant(V)) break;
550 
551     bool AnyIndexNotLoopInvariant = false;
552     for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
553          E = GepIndices.end(); I != E; ++I)
554       if (!L->isLoopInvariant(*I)) {
555         AnyIndexNotLoopInvariant = true;
556         break;
557       }
558     if (AnyIndexNotLoopInvariant)
559       break;
560 
561     BasicBlock *Preheader = L->getLoopPreheader();
562     if (!Preheader) break;
563 
564     // Ok, move up a level.
565     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
566   }
567 
568   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
569   // because ScalarEvolution may have changed the address arithmetic to
570   // compute a value which is beyond the end of the allocated object.
571   Value *Casted = V;
572   if (V->getType() != PTy)
573     Casted = InsertNoopCastOfTo(Casted, PTy);
574   Value *GEP = Builder.CreateGEP(Casted,
575                                  GepIndices.begin(),
576                                  GepIndices.end(),
577                                  "scevgep");
578   Ops.push_back(SE.getUnknown(GEP));
579   rememberInstruction(GEP);
580 
581   // Restore the original insert point.
582   if (SaveInsertBB)
583     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
584 
585   return expand(SE.getAddExpr(Ops));
586 }
587 
588 /// isNonConstantNegative - Return true if the specified scev is negated, but
589 /// not a constant.
isNonConstantNegative(const SCEV * F)590 static bool isNonConstantNegative(const SCEV *F) {
591   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
592   if (!Mul) return false;
593 
594   // If there is a constant factor, it will be first.
595   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
596   if (!SC) return false;
597 
598   // Return true if the value is negative, this matches things like (-42 * V).
599   return SC->getValue()->getValue().isNegative();
600 }
601 
602 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
603 /// SCEV expansion. If they are nested, this is the most nested. If they are
604 /// neighboring, pick the later.
PickMostRelevantLoop(const Loop * A,const Loop * B,DominatorTree & DT)605 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
606                                         DominatorTree &DT) {
607   if (!A) return B;
608   if (!B) return A;
609   if (A->contains(B)) return B;
610   if (B->contains(A)) return A;
611   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
612   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
613   return A; // Arbitrarily break the tie.
614 }
615 
616 /// getRelevantLoop - Get the most relevant loop associated with the given
617 /// expression, according to PickMostRelevantLoop.
getRelevantLoop(const SCEV * S)618 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
619   // Test whether we've already computed the most relevant loop for this SCEV.
620   std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
621     RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
622   if (!Pair.second)
623     return Pair.first->second;
624 
625   if (isa<SCEVConstant>(S))
626     // A constant has no relevant loops.
627     return 0;
628   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
629     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
630       return Pair.first->second = SE.LI->getLoopFor(I->getParent());
631     // A non-instruction has no relevant loops.
632     return 0;
633   }
634   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
635     const Loop *L = 0;
636     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
637       L = AR->getLoop();
638     for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
639          I != E; ++I)
640       L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
641     return RelevantLoops[N] = L;
642   }
643   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
644     const Loop *Result = getRelevantLoop(C->getOperand());
645     return RelevantLoops[C] = Result;
646   }
647   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
648     const Loop *Result =
649       PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
650                            getRelevantLoop(D->getRHS()),
651                            *SE.DT);
652     return RelevantLoops[D] = Result;
653   }
654   llvm_unreachable("Unexpected SCEV type!");
655   return 0;
656 }
657 
658 namespace {
659 
660 /// LoopCompare - Compare loops by PickMostRelevantLoop.
661 class LoopCompare {
662   DominatorTree &DT;
663 public:
LoopCompare(DominatorTree & dt)664   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
665 
operator ()(std::pair<const Loop *,const SCEV * > LHS,std::pair<const Loop *,const SCEV * > RHS) const666   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
667                   std::pair<const Loop *, const SCEV *> RHS) const {
668     // Keep pointer operands sorted at the end.
669     if (LHS.second->getType()->isPointerTy() !=
670         RHS.second->getType()->isPointerTy())
671       return LHS.second->getType()->isPointerTy();
672 
673     // Compare loops with PickMostRelevantLoop.
674     if (LHS.first != RHS.first)
675       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
676 
677     // If one operand is a non-constant negative and the other is not,
678     // put the non-constant negative on the right so that a sub can
679     // be used instead of a negate and add.
680     if (isNonConstantNegative(LHS.second)) {
681       if (!isNonConstantNegative(RHS.second))
682         return false;
683     } else if (isNonConstantNegative(RHS.second))
684       return true;
685 
686     // Otherwise they are equivalent according to this comparison.
687     return false;
688   }
689 };
690 
691 }
692 
visitAddExpr(const SCEVAddExpr * S)693 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
694   Type *Ty = SE.getEffectiveSCEVType(S->getType());
695 
696   // Collect all the add operands in a loop, along with their associated loops.
697   // Iterate in reverse so that constants are emitted last, all else equal, and
698   // so that pointer operands are inserted first, which the code below relies on
699   // to form more involved GEPs.
700   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
701   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
702        E(S->op_begin()); I != E; ++I)
703     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
704 
705   // Sort by loop. Use a stable sort so that constants follow non-constants and
706   // pointer operands precede non-pointer operands.
707   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
708 
709   // Emit instructions to add all the operands. Hoist as much as possible
710   // out of loops, and form meaningful getelementptrs where possible.
711   Value *Sum = 0;
712   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
713        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
714     const Loop *CurLoop = I->first;
715     const SCEV *Op = I->second;
716     if (!Sum) {
717       // This is the first operand. Just expand it.
718       Sum = expand(Op);
719       ++I;
720     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
721       // The running sum expression is a pointer. Try to form a getelementptr
722       // at this level with that as the base.
723       SmallVector<const SCEV *, 4> NewOps;
724       for (; I != E && I->first == CurLoop; ++I) {
725         // If the operand is SCEVUnknown and not instructions, peek through
726         // it, to enable more of it to be folded into the GEP.
727         const SCEV *X = I->second;
728         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
729           if (!isa<Instruction>(U->getValue()))
730             X = SE.getSCEV(U->getValue());
731         NewOps.push_back(X);
732       }
733       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
734     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
735       // The running sum is an integer, and there's a pointer at this level.
736       // Try to form a getelementptr. If the running sum is instructions,
737       // use a SCEVUnknown to avoid re-analyzing them.
738       SmallVector<const SCEV *, 4> NewOps;
739       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
740                                                SE.getSCEV(Sum));
741       for (++I; I != E && I->first == CurLoop; ++I)
742         NewOps.push_back(I->second);
743       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
744     } else if (isNonConstantNegative(Op)) {
745       // Instead of doing a negate and add, just do a subtract.
746       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
747       Sum = InsertNoopCastOfTo(Sum, Ty);
748       Sum = InsertBinop(Instruction::Sub, Sum, W);
749       ++I;
750     } else {
751       // A simple add.
752       Value *W = expandCodeFor(Op, Ty);
753       Sum = InsertNoopCastOfTo(Sum, Ty);
754       // Canonicalize a constant to the RHS.
755       if (isa<Constant>(Sum)) std::swap(Sum, W);
756       Sum = InsertBinop(Instruction::Add, Sum, W);
757       ++I;
758     }
759   }
760 
761   return Sum;
762 }
763 
visitMulExpr(const SCEVMulExpr * S)764 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
765   Type *Ty = SE.getEffectiveSCEVType(S->getType());
766 
767   // Collect all the mul operands in a loop, along with their associated loops.
768   // Iterate in reverse so that constants are emitted last, all else equal.
769   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
770   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
771        E(S->op_begin()); I != E; ++I)
772     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
773 
774   // Sort by loop. Use a stable sort so that constants follow non-constants.
775   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
776 
777   // Emit instructions to mul all the operands. Hoist as much as possible
778   // out of loops.
779   Value *Prod = 0;
780   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
781        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
782     const SCEV *Op = I->second;
783     if (!Prod) {
784       // This is the first operand. Just expand it.
785       Prod = expand(Op);
786       ++I;
787     } else if (Op->isAllOnesValue()) {
788       // Instead of doing a multiply by negative one, just do a negate.
789       Prod = InsertNoopCastOfTo(Prod, Ty);
790       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
791       ++I;
792     } else {
793       // A simple mul.
794       Value *W = expandCodeFor(Op, Ty);
795       Prod = InsertNoopCastOfTo(Prod, Ty);
796       // Canonicalize a constant to the RHS.
797       if (isa<Constant>(Prod)) std::swap(Prod, W);
798       Prod = InsertBinop(Instruction::Mul, Prod, W);
799       ++I;
800     }
801   }
802 
803   return Prod;
804 }
805 
visitUDivExpr(const SCEVUDivExpr * S)806 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
807   Type *Ty = SE.getEffectiveSCEVType(S->getType());
808 
809   Value *LHS = expandCodeFor(S->getLHS(), Ty);
810   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
811     const APInt &RHS = SC->getValue()->getValue();
812     if (RHS.isPowerOf2())
813       return InsertBinop(Instruction::LShr, LHS,
814                          ConstantInt::get(Ty, RHS.logBase2()));
815   }
816 
817   Value *RHS = expandCodeFor(S->getRHS(), Ty);
818   return InsertBinop(Instruction::UDiv, LHS, RHS);
819 }
820 
821 /// Move parts of Base into Rest to leave Base with the minimal
822 /// expression that provides a pointer operand suitable for a
823 /// GEP expansion.
ExposePointerBase(const SCEV * & Base,const SCEV * & Rest,ScalarEvolution & SE)824 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
825                               ScalarEvolution &SE) {
826   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
827     Base = A->getStart();
828     Rest = SE.getAddExpr(Rest,
829                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
830                                           A->getStepRecurrence(SE),
831                                           A->getLoop(),
832                                           // FIXME: A->getNoWrapFlags(FlagNW)
833                                           SCEV::FlagAnyWrap));
834   }
835   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
836     Base = A->getOperand(A->getNumOperands()-1);
837     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
838     NewAddOps.back() = Rest;
839     Rest = SE.getAddExpr(NewAddOps);
840     ExposePointerBase(Base, Rest, SE);
841   }
842 }
843 
844 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
845 /// the base addrec, which is the addrec without any non-loop-dominating
846 /// values, and return the PHI.
847 PHINode *
getAddRecExprPHILiterally(const SCEVAddRecExpr * Normalized,const Loop * L,Type * ExpandTy,Type * IntTy)848 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
849                                         const Loop *L,
850                                         Type *ExpandTy,
851                                         Type *IntTy) {
852   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
853 
854   // Reuse a previously-inserted PHI, if present.
855   for (BasicBlock::iterator I = L->getHeader()->begin();
856        PHINode *PN = dyn_cast<PHINode>(I); ++I)
857     if (SE.isSCEVable(PN->getType()) &&
858         (SE.getEffectiveSCEVType(PN->getType()) ==
859          SE.getEffectiveSCEVType(Normalized->getType())) &&
860         SE.getSCEV(PN) == Normalized)
861       if (BasicBlock *LatchBlock = L->getLoopLatch()) {
862         Instruction *IncV =
863           cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
864 
865         // Determine if this is a well-behaved chain of instructions leading
866         // back to the PHI. It probably will be, if we're scanning an inner
867         // loop already visited by LSR for example, but it wouldn't have
868         // to be.
869         do {
870           if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
871               (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) {
872             IncV = 0;
873             break;
874           }
875           // If any of the operands don't dominate the insert position, bail.
876           // Addrec operands are always loop-invariant, so this can only happen
877           // if there are instructions which haven't been hoisted.
878           if (L == IVIncInsertLoop) {
879             for (User::op_iterator OI = IncV->op_begin()+1,
880                    OE = IncV->op_end(); OI != OE; ++OI)
881               if (Instruction *OInst = dyn_cast<Instruction>(OI))
882                 if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
883                   IncV = 0;
884                   break;
885                 }
886           }
887           if (!IncV)
888             break;
889           // Advance to the next instruction.
890           IncV = dyn_cast<Instruction>(IncV->getOperand(0));
891           if (!IncV)
892             break;
893           if (IncV->mayHaveSideEffects()) {
894             IncV = 0;
895             break;
896           }
897         } while (IncV != PN);
898 
899         if (IncV) {
900           // Ok, the add recurrence looks usable.
901           // Remember this PHI, even in post-inc mode.
902           InsertedValues.insert(PN);
903           // Remember the increment.
904           IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
905           rememberInstruction(IncV);
906           if (L == IVIncInsertLoop)
907             do {
908               if (SE.DT->dominates(IncV, IVIncInsertPos))
909                 break;
910               // Make sure the increment is where we want it. But don't move it
911               // down past a potential existing post-inc user.
912               IncV->moveBefore(IVIncInsertPos);
913               IVIncInsertPos = IncV;
914               IncV = cast<Instruction>(IncV->getOperand(0));
915             } while (IncV != PN);
916           return PN;
917         }
918       }
919 
920   // Save the original insertion point so we can restore it when we're done.
921   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
922   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
923 
924   // Expand code for the start value.
925   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
926                                 L->getHeader()->begin());
927 
928   // StartV must be hoisted into L's preheader to dominate the new phi.
929   assert(!isa<Instruction>(StartV) ||
930          SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
931                                   L->getHeader()));
932 
933   // Expand code for the step value. Insert instructions right before the
934   // terminator corresponding to the back-edge. Do this before creating the PHI
935   // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
936   // negative, insert a sub instead of an add for the increment (unless it's a
937   // constant, because subtracts of constants are canonicalized to adds).
938   const SCEV *Step = Normalized->getStepRecurrence(SE);
939   bool isPointer = ExpandTy->isPointerTy();
940   bool isNegative = !isPointer && isNonConstantNegative(Step);
941   if (isNegative)
942     Step = SE.getNegativeSCEV(Step);
943   Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
944 
945   // Create the PHI.
946   BasicBlock *Header = L->getHeader();
947   Builder.SetInsertPoint(Header, Header->begin());
948   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
949   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
950                                   Twine(IVName) + ".iv");
951   rememberInstruction(PN);
952 
953   // Create the step instructions and populate the PHI.
954   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
955     BasicBlock *Pred = *HPI;
956 
957     // Add a start value.
958     if (!L->contains(Pred)) {
959       PN->addIncoming(StartV, Pred);
960       continue;
961     }
962 
963     // Create a step value and add it to the PHI. If IVIncInsertLoop is
964     // non-null and equal to the addrec's loop, insert the instructions
965     // at IVIncInsertPos.
966     Instruction *InsertPos = L == IVIncInsertLoop ?
967       IVIncInsertPos : Pred->getTerminator();
968     Builder.SetInsertPoint(InsertPos);
969     Value *IncV;
970     // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
971     if (isPointer) {
972       PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
973       // If the step isn't constant, don't use an implicitly scaled GEP, because
974       // that would require a multiply inside the loop.
975       if (!isa<ConstantInt>(StepV))
976         GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
977                                     GEPPtrTy->getAddressSpace());
978       const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
979       IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
980       if (IncV->getType() != PN->getType()) {
981         IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
982         rememberInstruction(IncV);
983       }
984     } else {
985       IncV = isNegative ?
986         Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
987         Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
988       rememberInstruction(IncV);
989     }
990     PN->addIncoming(IncV, Pred);
991   }
992 
993   // Restore the original insert point.
994   if (SaveInsertBB)
995     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
996 
997   // Remember this PHI, even in post-inc mode.
998   InsertedValues.insert(PN);
999 
1000   return PN;
1001 }
1002 
expandAddRecExprLiterally(const SCEVAddRecExpr * S)1003 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1004   Type *STy = S->getType();
1005   Type *IntTy = SE.getEffectiveSCEVType(STy);
1006   const Loop *L = S->getLoop();
1007 
1008   // Determine a normalized form of this expression, which is the expression
1009   // before any post-inc adjustment is made.
1010   const SCEVAddRecExpr *Normalized = S;
1011   if (PostIncLoops.count(L)) {
1012     PostIncLoopSet Loops;
1013     Loops.insert(L);
1014     Normalized =
1015       cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1016                                                   Loops, SE, *SE.DT));
1017   }
1018 
1019   // Strip off any non-loop-dominating component from the addrec start.
1020   const SCEV *Start = Normalized->getStart();
1021   const SCEV *PostLoopOffset = 0;
1022   if (!SE.properlyDominates(Start, L->getHeader())) {
1023     PostLoopOffset = Start;
1024     Start = SE.getConstant(Normalized->getType(), 0);
1025     Normalized = cast<SCEVAddRecExpr>(
1026       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1027                        Normalized->getLoop(),
1028                        // FIXME: Normalized->getNoWrapFlags(FlagNW)
1029                        SCEV::FlagAnyWrap));
1030   }
1031 
1032   // Strip off any non-loop-dominating component from the addrec step.
1033   const SCEV *Step = Normalized->getStepRecurrence(SE);
1034   const SCEV *PostLoopScale = 0;
1035   if (!SE.dominates(Step, L->getHeader())) {
1036     PostLoopScale = Step;
1037     Step = SE.getConstant(Normalized->getType(), 1);
1038     Normalized =
1039       cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1040                                             Normalized->getLoop(),
1041                                             // FIXME: Normalized
1042                                             // ->getNoWrapFlags(FlagNW)
1043                                             SCEV::FlagAnyWrap));
1044   }
1045 
1046   // Expand the core addrec. If we need post-loop scaling, force it to
1047   // expand to an integer type to avoid the need for additional casting.
1048   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1049   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1050 
1051   // Accommodate post-inc mode, if necessary.
1052   Value *Result;
1053   if (!PostIncLoops.count(L))
1054     Result = PN;
1055   else {
1056     // In PostInc mode, use the post-incremented value.
1057     BasicBlock *LatchBlock = L->getLoopLatch();
1058     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1059     Result = PN->getIncomingValueForBlock(LatchBlock);
1060   }
1061 
1062   // Re-apply any non-loop-dominating scale.
1063   if (PostLoopScale) {
1064     Result = InsertNoopCastOfTo(Result, IntTy);
1065     Result = Builder.CreateMul(Result,
1066                                expandCodeFor(PostLoopScale, IntTy));
1067     rememberInstruction(Result);
1068   }
1069 
1070   // Re-apply any non-loop-dominating offset.
1071   if (PostLoopOffset) {
1072     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1073       const SCEV *const OffsetArray[1] = { PostLoopOffset };
1074       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1075     } else {
1076       Result = InsertNoopCastOfTo(Result, IntTy);
1077       Result = Builder.CreateAdd(Result,
1078                                  expandCodeFor(PostLoopOffset, IntTy));
1079       rememberInstruction(Result);
1080     }
1081   }
1082 
1083   return Result;
1084 }
1085 
visitAddRecExpr(const SCEVAddRecExpr * S)1086 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1087   if (!CanonicalMode) return expandAddRecExprLiterally(S);
1088 
1089   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1090   const Loop *L = S->getLoop();
1091 
1092   // First check for an existing canonical IV in a suitable type.
1093   PHINode *CanonicalIV = 0;
1094   if (PHINode *PN = L->getCanonicalInductionVariable())
1095     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1096       CanonicalIV = PN;
1097 
1098   // Rewrite an AddRec in terms of the canonical induction variable, if
1099   // its type is more narrow.
1100   if (CanonicalIV &&
1101       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1102       SE.getTypeSizeInBits(Ty)) {
1103     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1104     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1105       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1106     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1107                                        // FIXME: S->getNoWrapFlags(FlagNW)
1108                                        SCEV::FlagAnyWrap));
1109     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1110     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1111     BasicBlock::iterator NewInsertPt =
1112       llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1113     while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt))
1114       ++NewInsertPt;
1115     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1116                       NewInsertPt);
1117     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1118     return V;
1119   }
1120 
1121   // {X,+,F} --> X + {0,+,F}
1122   if (!S->getStart()->isZero()) {
1123     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1124     NewOps[0] = SE.getConstant(Ty, 0);
1125     // FIXME: can use S->getNoWrapFlags()
1126     const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1127 
1128     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1129     // comments on expandAddToGEP for details.
1130     const SCEV *Base = S->getStart();
1131     const SCEV *RestArray[1] = { Rest };
1132     // Dig into the expression to find the pointer base for a GEP.
1133     ExposePointerBase(Base, RestArray[0], SE);
1134     // If we found a pointer, expand the AddRec with a GEP.
1135     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1136       // Make sure the Base isn't something exotic, such as a multiplied
1137       // or divided pointer value. In those cases, the result type isn't
1138       // actually a pointer type.
1139       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1140         Value *StartV = expand(Base);
1141         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1142         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1143       }
1144     }
1145 
1146     // Just do a normal add. Pre-expand the operands to suppress folding.
1147     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1148                                 SE.getUnknown(expand(Rest))));
1149   }
1150 
1151   // If we don't yet have a canonical IV, create one.
1152   if (!CanonicalIV) {
1153     // Create and insert the PHI node for the induction variable in the
1154     // specified loop.
1155     BasicBlock *Header = L->getHeader();
1156     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1157     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1158                                   Header->begin());
1159     rememberInstruction(CanonicalIV);
1160 
1161     Constant *One = ConstantInt::get(Ty, 1);
1162     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1163       BasicBlock *HP = *HPI;
1164       if (L->contains(HP)) {
1165         // Insert a unit add instruction right before the terminator
1166         // corresponding to the back-edge.
1167         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1168                                                      "indvar.next",
1169                                                      HP->getTerminator());
1170         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1171         rememberInstruction(Add);
1172         CanonicalIV->addIncoming(Add, HP);
1173       } else {
1174         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1175       }
1176     }
1177   }
1178 
1179   // {0,+,1} --> Insert a canonical induction variable into the loop!
1180   if (S->isAffine() && S->getOperand(1)->isOne()) {
1181     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1182            "IVs with types different from the canonical IV should "
1183            "already have been handled!");
1184     return CanonicalIV;
1185   }
1186 
1187   // {0,+,F} --> {0,+,1} * F
1188 
1189   // If this is a simple linear addrec, emit it now as a special case.
1190   if (S->isAffine())    // {0,+,F} --> i*F
1191     return
1192       expand(SE.getTruncateOrNoop(
1193         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1194                       SE.getNoopOrAnyExtend(S->getOperand(1),
1195                                             CanonicalIV->getType())),
1196         Ty));
1197 
1198   // If this is a chain of recurrences, turn it into a closed form, using the
1199   // folders, then expandCodeFor the closed form.  This allows the folders to
1200   // simplify the expression without having to build a bunch of special code
1201   // into this folder.
1202   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1203 
1204   // Promote S up to the canonical IV type, if the cast is foldable.
1205   const SCEV *NewS = S;
1206   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1207   if (isa<SCEVAddRecExpr>(Ext))
1208     NewS = Ext;
1209 
1210   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1211   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1212 
1213   // Truncate the result down to the original type, if needed.
1214   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1215   return expand(T);
1216 }
1217 
visitTruncateExpr(const SCEVTruncateExpr * S)1218 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1219   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1220   Value *V = expandCodeFor(S->getOperand(),
1221                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1222   Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1223   rememberInstruction(I);
1224   return I;
1225 }
1226 
visitZeroExtendExpr(const SCEVZeroExtendExpr * S)1227 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1228   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1229   Value *V = expandCodeFor(S->getOperand(),
1230                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1231   Value *I = Builder.CreateZExt(V, Ty, "tmp");
1232   rememberInstruction(I);
1233   return I;
1234 }
1235 
visitSignExtendExpr(const SCEVSignExtendExpr * S)1236 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1237   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1238   Value *V = expandCodeFor(S->getOperand(),
1239                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1240   Value *I = Builder.CreateSExt(V, Ty, "tmp");
1241   rememberInstruction(I);
1242   return I;
1243 }
1244 
visitSMaxExpr(const SCEVSMaxExpr * S)1245 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1246   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1247   Type *Ty = LHS->getType();
1248   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1249     // In the case of mixed integer and pointer types, do the
1250     // rest of the comparisons as integer.
1251     if (S->getOperand(i)->getType() != Ty) {
1252       Ty = SE.getEffectiveSCEVType(Ty);
1253       LHS = InsertNoopCastOfTo(LHS, Ty);
1254     }
1255     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1256     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1257     rememberInstruction(ICmp);
1258     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1259     rememberInstruction(Sel);
1260     LHS = Sel;
1261   }
1262   // In the case of mixed integer and pointer types, cast the
1263   // final result back to the pointer type.
1264   if (LHS->getType() != S->getType())
1265     LHS = InsertNoopCastOfTo(LHS, S->getType());
1266   return LHS;
1267 }
1268 
visitUMaxExpr(const SCEVUMaxExpr * S)1269 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1270   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1271   Type *Ty = LHS->getType();
1272   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1273     // In the case of mixed integer and pointer types, do the
1274     // rest of the comparisons as integer.
1275     if (S->getOperand(i)->getType() != Ty) {
1276       Ty = SE.getEffectiveSCEVType(Ty);
1277       LHS = InsertNoopCastOfTo(LHS, Ty);
1278     }
1279     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1280     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1281     rememberInstruction(ICmp);
1282     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1283     rememberInstruction(Sel);
1284     LHS = Sel;
1285   }
1286   // In the case of mixed integer and pointer types, cast the
1287   // final result back to the pointer type.
1288   if (LHS->getType() != S->getType())
1289     LHS = InsertNoopCastOfTo(LHS, S->getType());
1290   return LHS;
1291 }
1292 
expandCodeFor(const SCEV * SH,Type * Ty,Instruction * I)1293 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1294                                    Instruction *I) {
1295   BasicBlock::iterator IP = I;
1296   while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1297     ++IP;
1298   Builder.SetInsertPoint(IP->getParent(), IP);
1299   return expandCodeFor(SH, Ty);
1300 }
1301 
expandCodeFor(const SCEV * SH,Type * Ty)1302 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1303   // Expand the code for this SCEV.
1304   Value *V = expand(SH);
1305   if (Ty) {
1306     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1307            "non-trivial casts should be done with the SCEVs directly!");
1308     V = InsertNoopCastOfTo(V, Ty);
1309   }
1310   return V;
1311 }
1312 
expand(const SCEV * S)1313 Value *SCEVExpander::expand(const SCEV *S) {
1314   // Compute an insertion point for this SCEV object. Hoist the instructions
1315   // as far out in the loop nest as possible.
1316   Instruction *InsertPt = Builder.GetInsertPoint();
1317   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1318        L = L->getParentLoop())
1319     if (SE.isLoopInvariant(S, L)) {
1320       if (!L) break;
1321       if (BasicBlock *Preheader = L->getLoopPreheader())
1322         InsertPt = Preheader->getTerminator();
1323     } else {
1324       // If the SCEV is computable at this level, insert it into the header
1325       // after the PHIs (and after any other instructions that we've inserted
1326       // there) so that it is guaranteed to dominate any user inside the loop.
1327       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1328         InsertPt = L->getHeader()->getFirstNonPHI();
1329       while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1330         InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1331       break;
1332     }
1333 
1334   // Check to see if we already expanded this here.
1335   std::map<std::pair<const SCEV *, Instruction *>,
1336            AssertingVH<Value> >::iterator I =
1337     InsertedExpressions.find(std::make_pair(S, InsertPt));
1338   if (I != InsertedExpressions.end())
1339     return I->second;
1340 
1341   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1342   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1343   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1344 
1345   // Expand the expression into instructions.
1346   Value *V = visit(S);
1347 
1348   // Remember the expanded value for this SCEV at this location.
1349   if (PostIncLoops.empty())
1350     InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1351 
1352   restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1353   return V;
1354 }
1355 
rememberInstruction(Value * I)1356 void SCEVExpander::rememberInstruction(Value *I) {
1357   if (!PostIncLoops.empty())
1358     InsertedPostIncValues.insert(I);
1359   else
1360     InsertedValues.insert(I);
1361 
1362   // If we just claimed an existing instruction and that instruction had
1363   // been the insert point, adjust the insert point forward so that
1364   // subsequently inserted code will be dominated.
1365   if (Builder.GetInsertPoint() == I) {
1366     BasicBlock::iterator It = cast<Instruction>(I);
1367     do { ++It; } while (isInsertedInstruction(It) ||
1368                         isa<DbgInfoIntrinsic>(It));
1369     Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1370   }
1371 }
1372 
restoreInsertPoint(BasicBlock * BB,BasicBlock::iterator I)1373 void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1374   // If we acquired more instructions since the old insert point was saved,
1375   // advance past them.
1376   while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1377 
1378   Builder.SetInsertPoint(BB, I);
1379 }
1380 
1381 /// getOrInsertCanonicalInductionVariable - This method returns the
1382 /// canonical induction variable of the specified type for the specified
1383 /// loop (inserting one if there is none).  A canonical induction variable
1384 /// starts at zero and steps by one on each iteration.
1385 PHINode *
getOrInsertCanonicalInductionVariable(const Loop * L,Type * Ty)1386 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1387                                                     Type *Ty) {
1388   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1389 
1390   // Build a SCEV for {0,+,1}<L>.
1391   // Conservatively use FlagAnyWrap for now.
1392   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1393                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1394 
1395   // Emit code for it.
1396   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1397   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1398   PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1399   if (SaveInsertBB)
1400     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1401 
1402   return V;
1403 }
1404