1 //===- ScalarEvolutionNormalization.cpp - See below -------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements utilities for working with "normalized" expressions.
11 // See the comments at the top of ScalarEvolutionNormalization.h for details.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/Dominators.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
19 using namespace llvm;
20
21 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
22 /// and now we need to decide whether the user should use the preinc or post-inc
23 /// value. If this user should use the post-inc version of the IV, return true.
24 ///
25 /// Choosing wrong here can break dominance properties (if we choose to use the
26 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
27 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
28 /// should use the post-inc value).
IVUseShouldUsePostIncValue(Instruction * User,Value * Operand,const Loop * L,DominatorTree * DT)29 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
30 const Loop *L, DominatorTree *DT) {
31 // If the user is in the loop, use the preinc value.
32 if (L->contains(User)) return false;
33
34 BasicBlock *LatchBlock = L->getLoopLatch();
35 if (!LatchBlock)
36 return false;
37
38 // Ok, the user is outside of the loop. If it is dominated by the latch
39 // block, use the post-inc value.
40 if (DT->dominates(LatchBlock, User->getParent()))
41 return true;
42
43 // There is one case we have to be careful of: PHI nodes. These little guys
44 // can live in blocks that are not dominated by the latch block, but (since
45 // their uses occur in the predecessor block, not the block the PHI lives in)
46 // should still use the post-inc value. Check for this case now.
47 PHINode *PN = dyn_cast<PHINode>(User);
48 if (!PN || !Operand) return false; // not a phi, not dominated by latch block.
49
50 // Look at all of the uses of Operand by the PHI node. If any use corresponds
51 // to a block that is not dominated by the latch block, give up and use the
52 // preincremented value.
53 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
54 if (PN->getIncomingValue(i) == Operand &&
55 !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
56 return false;
57
58 // Okay, all uses of Operand by PN are in predecessor blocks that really are
59 // dominated by the latch block. Use the post-incremented value.
60 return true;
61 }
62
TransformForPostIncUse(TransformKind Kind,const SCEV * S,Instruction * User,Value * OperandValToReplace,PostIncLoopSet & Loops,ScalarEvolution & SE,DominatorTree & DT)63 const SCEV *llvm::TransformForPostIncUse(TransformKind Kind,
64 const SCEV *S,
65 Instruction *User,
66 Value *OperandValToReplace,
67 PostIncLoopSet &Loops,
68 ScalarEvolution &SE,
69 DominatorTree &DT) {
70 if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S))
71 return S;
72
73 if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) {
74 const SCEV *O = X->getOperand();
75 const SCEV *N = TransformForPostIncUse(Kind, O, User, OperandValToReplace,
76 Loops, SE, DT);
77 if (O != N)
78 switch (S->getSCEVType()) {
79 case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType());
80 case scSignExtend: return SE.getSignExtendExpr(N, S->getType());
81 case scTruncate: return SE.getTruncateExpr(N, S->getType());
82 default: llvm_unreachable("Unexpected SCEVCastExpr kind!");
83 }
84 return S;
85 }
86
87 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
88 // An addrec. This is the interesting part.
89 SmallVector<const SCEV *, 8> Operands;
90 const Loop *L = AR->getLoop();
91 // The addrec conceptually uses its operands at loop entry.
92 Instruction *LUser = L->getHeader()->begin();
93 // Transform each operand.
94 for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
95 I != E; ++I) {
96 const SCEV *O = *I;
97 const SCEV *N = TransformForPostIncUse(Kind, O, LUser, 0, Loops, SE, DT);
98 Operands.push_back(N);
99 }
100 // Conservatively use AnyWrap until/unless we need FlagNW.
101 const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
102 switch (Kind) {
103 default: llvm_unreachable("Unexpected transform name!");
104 case NormalizeAutodetect:
105 if (IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) {
106 const SCEV *TransformedStep =
107 TransformForPostIncUse(Kind, AR->getStepRecurrence(SE),
108 User, OperandValToReplace, Loops, SE, DT);
109 Result = SE.getMinusSCEV(Result, TransformedStep);
110 Loops.insert(L);
111 }
112 #if 0
113 // This assert is conceptually correct, but ScalarEvolution currently
114 // sometimes fails to canonicalize two equal SCEVs to exactly the same
115 // form. It's possibly a pessimization when this happens, but it isn't a
116 // correctness problem, so disable this assert for now.
117 assert(S == TransformForPostIncUse(Denormalize, Result,
118 User, OperandValToReplace,
119 Loops, SE, DT) &&
120 "SCEV normalization is not invertible!");
121 #endif
122 break;
123 case Normalize:
124 if (Loops.count(L)) {
125 const SCEV *TransformedStep =
126 TransformForPostIncUse(Kind, AR->getStepRecurrence(SE),
127 User, OperandValToReplace, Loops, SE, DT);
128 Result = SE.getMinusSCEV(Result, TransformedStep);
129 }
130 #if 0
131 // See the comment on the assert above.
132 assert(S == TransformForPostIncUse(Denormalize, Result,
133 User, OperandValToReplace,
134 Loops, SE, DT) &&
135 "SCEV normalization is not invertible!");
136 #endif
137 break;
138 case Denormalize:
139 if (Loops.count(L))
140 Result = cast<SCEVAddRecExpr>(Result)->getPostIncExpr(SE);
141 break;
142 }
143 return Result;
144 }
145
146 if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) {
147 SmallVector<const SCEV *, 8> Operands;
148 bool Changed = false;
149 // Transform each operand.
150 for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end();
151 I != E; ++I) {
152 const SCEV *O = *I;
153 const SCEV *N = TransformForPostIncUse(Kind, O, User, OperandValToReplace,
154 Loops, SE, DT);
155 Changed |= N != O;
156 Operands.push_back(N);
157 }
158 // If any operand actually changed, return a transformed result.
159 if (Changed)
160 switch (S->getSCEVType()) {
161 case scAddExpr: return SE.getAddExpr(Operands);
162 case scMulExpr: return SE.getMulExpr(Operands);
163 case scSMaxExpr: return SE.getSMaxExpr(Operands);
164 case scUMaxExpr: return SE.getUMaxExpr(Operands);
165 default: llvm_unreachable("Unexpected SCEVNAryExpr kind!");
166 }
167 return S;
168 }
169
170 if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) {
171 const SCEV *LO = X->getLHS();
172 const SCEV *RO = X->getRHS();
173 const SCEV *LN = TransformForPostIncUse(Kind, LO, User, OperandValToReplace,
174 Loops, SE, DT);
175 const SCEV *RN = TransformForPostIncUse(Kind, RO, User, OperandValToReplace,
176 Loops, SE, DT);
177 if (LO != LN || RO != RN)
178 return SE.getUDivExpr(LN, RN);
179 return S;
180 }
181
182 llvm_unreachable("Unexpected SCEV kind!");
183 return 0;
184 }
185