• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef SkTypes_DEFINED
18 #define SkTypes_DEFINED
19 
20 #include "SkPreConfig.h"
21 #include "SkUserConfig.h"
22 #include "SkPostConfig.h"
23 
24 #ifndef SK_IGNORE_STDINT_DOT_H
25     #include <stdint.h>
26 #endif
27 
28 #include <stdio.h>
29 
30 /** \file SkTypes.h
31 */
32 
33 /** See SkGraphics::GetVersion() to retrieve these at runtime
34  */
35 #define SKIA_VERSION_MAJOR  1
36 #define SKIA_VERSION_MINOR  0
37 #define SKIA_VERSION_PATCH  0
38 
39 /*
40     memory wrappers to be implemented by the porting layer (platform)
41 */
42 
43 /** Called internally if we run out of memory. The platform implementation must
44     not return, but should either throw an exception or otherwise exit.
45 */
46 extern void  sk_out_of_memory(void);
47 /** Called internally if we hit an unrecoverable error.
48     The platform implementation must not return, but should either throw
49     an exception or otherwise exit.
50 */
51 extern void  sk_throw(void);
52 
53 enum {
54     SK_MALLOC_TEMP  = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
55     SK_MALLOC_THROW = 0x02  //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
56 };
57 /** Return a block of memory (at least 4-byte aligned) of at least the
58     specified size. If the requested memory cannot be returned, either
59     return null (if SK_MALLOC_TEMP bit is clear) or call sk_throw()
60     (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
61 */
62 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
63 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
64 */
65 extern void* sk_malloc_throw(size_t size);
66 /** Same as standard realloc(), but this one never returns null on failure. It will throw
67     an exception if it fails.
68 */
69 extern void* sk_realloc_throw(void* buffer, size_t size);
70 /** Free memory returned by sk_malloc(). It is safe to pass null.
71 */
72 SK_API extern void  sk_free(void*);
73 
74 // bzero is safer than memset, but we can't rely on it, so... sk_bzero()
sk_bzero(void * buffer,size_t size)75 static inline void sk_bzero(void* buffer, size_t size) {
76     memset(buffer, 0, size);
77 }
78 
79 ///////////////////////////////////////////////////////////////////////
80 
81 #define SK_INIT_TO_AVOID_WARNING    = 0
82 
83 #ifndef SkDebugf
84     void SkDebugf(const char format[], ...);
85 #endif
86 
87 #ifdef SK_DEBUG
88     #define SkASSERT(cond)              SK_DEBUGBREAK(cond)
89     #define SkDEBUGCODE(code)           code
90     #define SkDECLAREPARAM(type, var)   , type var
91     #define SkPARAM(var)                , var
92 //  #define SkDEBUGF(args       )       SkDebugf##args
93     #define SkDEBUGF(args       )       SkDebugf args
94     #define SkAssertResult(cond)        SkASSERT(cond)
95 #else
96     #define SkASSERT(cond)
97     #define SkDEBUGCODE(code)
98     #define SkDEBUGF(args)
99     #define SkDECLAREPARAM(type, var)
100     #define SkPARAM(var)
101 
102     // unlike SkASSERT, this guy executes its condition in the non-debug build
103     #define SkAssertResult(cond)        cond
104 #endif
105 
106 namespace {
107 
108 template <bool>
109 struct SkCompileAssert {
110 };
111 
112 }  // namespace
113 
114 #define SK_COMPILE_ASSERT(expr, msg) \
115     typedef SkCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
116 
117 ///////////////////////////////////////////////////////////////////////
118 
119 /**
120  *  Fast type for signed 8 bits. Use for parameter passing and local variables,
121  *  not for storage.
122  */
123 typedef int S8CPU;
124 
125 /**
126  *  Fast type for unsigned 8 bits. Use for parameter passing and local
127  *  variables, not for storage
128  */
129 typedef unsigned U8CPU;
130 
131 /**
132  *  Fast type for signed 16 bits. Use for parameter passing and local variables,
133  *  not for storage
134  */
135 typedef int S16CPU;
136 
137 /**
138  *  Fast type for unsigned 16 bits. Use for parameter passing and local
139  *  variables, not for storage
140  */
141 typedef unsigned U16CPU;
142 
143 /**
144  *  Meant to be faster than bool (doesn't promise to be 0 or 1,
145  *  just 0 or non-zero
146  */
147 typedef int SkBool;
148 
149 /**
150  *  Meant to be a small version of bool, for storage purposes. Will be 0 or 1
151  */
152 typedef uint8_t SkBool8;
153 
154 #ifdef SK_DEBUG
155     SK_API int8_t      SkToS8(long);
156     SK_API uint8_t     SkToU8(size_t);
157     SK_API int16_t     SkToS16(long);
158     SK_API uint16_t    SkToU16(size_t);
159     SK_API int32_t     SkToS32(long);
160     SK_API uint32_t    SkToU32(size_t);
161 #else
162     #define SkToS8(x)   ((int8_t)(x))
163     #define SkToU8(x)   ((uint8_t)(x))
164     #define SkToS16(x)  ((int16_t)(x))
165     #define SkToU16(x)  ((uint16_t)(x))
166     #define SkToS32(x)  ((int32_t)(x))
167     #define SkToU32(x)  ((uint32_t)(x))
168 #endif
169 
170 /** Returns 0 or 1 based on the condition
171 */
172 #define SkToBool(cond)  ((cond) != 0)
173 
174 #define SK_MaxS16   32767
175 #define SK_MinS16   -32767
176 #define SK_MaxU16   0xFFFF
177 #define SK_MinU16   0
178 #define SK_MaxS32   0x7FFFFFFF
179 #define SK_MinS32   0x80000001
180 #define SK_MaxU32   0xFFFFFFFF
181 #define SK_MinU32   0
182 #define SK_NaN32    0x80000000
183 
184 /** Returns true if the value can be represented with signed 16bits
185  */
SkIsS16(long x)186 static inline bool SkIsS16(long x) {
187     return (int16_t)x == x;
188 }
189 
190 /** Returns true if the value can be represented with unsigned 16bits
191  */
SkIsU16(long x)192 static inline bool SkIsU16(long x) {
193     return (uint16_t)x == x;
194 }
195 
196 //////////////////////////////////////////////////////////////////////////////
197 #ifndef SK_OFFSETOF
198     #define SK_OFFSETOF(type, field)    ((char*)&(((type*)1)->field) - (char*)1)
199 #endif
200 
201 /** Returns the number of entries in an array (not a pointer)
202 */
203 #define SK_ARRAY_COUNT(array)       (sizeof(array) / sizeof(array[0]))
204 
205 /** Returns x rounded up to a multiple of 2
206 */
207 #define SkAlign2(x)     (((x) + 1) >> 1 << 1)
208 /** Returns x rounded up to a multiple of 4
209 */
210 #define SkAlign4(x)     (((x) + 3) >> 2 << 2)
211 
212 typedef uint32_t SkFourByteTag;
213 #define SkSetFourByteTag(a, b, c, d)    (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
214 
215 /** 32 bit integer to hold a unicode value
216 */
217 typedef int32_t SkUnichar;
218 /** 32 bit value to hold a millisecond count
219 */
220 typedef uint32_t SkMSec;
221 /** 1 second measured in milliseconds
222 */
223 #define SK_MSec1 1000
224 /** maximum representable milliseconds
225 */
226 #define SK_MSecMax 0x7FFFFFFF
227 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
228 */
229 #define SkMSec_LT(a, b)     ((int32_t)(a) - (int32_t)(b) < 0)
230 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
231 */
232 #define SkMSec_LE(a, b)     ((int32_t)(a) - (int32_t)(b) <= 0)
233 
234 /****************************************************************************
235     The rest of these only build with C++
236 */
237 #ifdef __cplusplus
238 
239 /** Faster than SkToBool for integral conditions. Returns 0 or 1
240 */
Sk32ToBool(uint32_t n)241 static inline int Sk32ToBool(uint32_t n) {
242     return (n | (0-n)) >> 31;
243 }
244 
SkTSwap(T & a,T & b)245 template <typename T> inline void SkTSwap(T& a, T& b) {
246     T c(a);
247     a = b;
248     b = c;
249 }
250 
SkAbs32(int32_t value)251 static inline int32_t SkAbs32(int32_t value) {
252 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
253     if (value < 0)
254         value = -value;
255     return value;
256 #else
257     int32_t mask = value >> 31;
258     return (value ^ mask) - mask;
259 #endif
260 }
261 
SkMax32(int32_t a,int32_t b)262 static inline int32_t SkMax32(int32_t a, int32_t b) {
263     if (a < b)
264         a = b;
265     return a;
266 }
267 
SkMin32(int32_t a,int32_t b)268 static inline int32_t SkMin32(int32_t a, int32_t b) {
269     if (a > b)
270         a = b;
271     return a;
272 }
273 
SkSign32(int32_t a)274 static inline int32_t SkSign32(int32_t a) {
275     return (a >> 31) | ((unsigned) -a >> 31);
276 }
277 
SkFastMin32(int32_t value,int32_t max)278 static inline int32_t SkFastMin32(int32_t value, int32_t max) {
279 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
280     if (value > max)
281         value = max;
282     return value;
283 #else
284     int diff = max - value;
285     // clear diff if it is negative (clear if value > max)
286     diff &= (diff >> 31);
287     return value + diff;
288 #endif
289 }
290 
291 /** Returns signed 32 bit value pinned between min and max, inclusively
292 */
SkPin32(int32_t value,int32_t min,int32_t max)293 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
294 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
295     if (value < min)
296         value = min;
297     if (value > max)
298         value = max;
299 #else
300     if (value < min)
301         value = min;
302     else if (value > max)
303         value = max;
304 #endif
305     return value;
306 }
307 
SkSetClearShift(uint32_t bits,bool cond,unsigned shift)308 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
309                                        unsigned shift) {
310     SkASSERT((int)cond == 0 || (int)cond == 1);
311     return (bits & ~(1 << shift)) | ((int)cond << shift);
312 }
313 
SkSetClearMask(uint32_t bits,bool cond,uint32_t mask)314 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
315                                       uint32_t mask) {
316     return cond ? bits | mask : bits & ~mask;
317 }
318 
319 ///////////////////////////////////////////////////////////////////////////////
320 
321 /** Use to combine multiple bits in a bitmask in a type safe way.
322  */
323 template <typename T>
SkTBitOr(T a,T b)324 T SkTBitOr(T a, T b) {
325     return (T)(a | b);
326 }
327 
328 /**
329  *  Use to cast a pointer to a different type, and maintaining strict-aliasing
330  */
SkTCast(const void * ptr)331 template <typename Dst> Dst SkTCast(const void* ptr) {
332     union {
333         const void* src;
334         Dst dst;
335     } data;
336     data.src = ptr;
337     return data.dst;
338 }
339 
340 //////////////////////////////////////////////////////////////////////////////
341 
342 /** \class SkNoncopyable
343 
344 SkNoncopyable is the base class for objects that may do not want to
345 be copied. It hides its copy-constructor and its assignment-operator.
346 */
347 class SK_API SkNoncopyable {
348 public:
SkNoncopyable()349     SkNoncopyable() {}
350 
351 private:
352     SkNoncopyable(const SkNoncopyable&);
353     SkNoncopyable& operator=(const SkNoncopyable&);
354 };
355 
356 class SkAutoFree : SkNoncopyable {
357 public:
SkAutoFree()358     SkAutoFree() : fPtr(NULL) {}
SkAutoFree(void * ptr)359     explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
~SkAutoFree()360     ~SkAutoFree() { sk_free(fPtr); }
361 
362     /** Return the currently allocate buffer, or null
363     */
get()364     void* get() const { return fPtr; }
365 
366     /** Assign a new ptr allocated with sk_malloc (or null), and return the
367         previous ptr. Note it is the caller's responsibility to sk_free the
368         returned ptr.
369     */
set(void * ptr)370     void* set(void* ptr) {
371         void* prev = fPtr;
372         fPtr = ptr;
373         return prev;
374     }
375 
376     /** Transfer ownership of the current ptr to the caller, setting the
377         internal reference to null. Note the caller is reponsible for calling
378         sk_free on the returned address.
379     */
detach()380     void* detach() { return this->set(NULL); }
381 
382     /** Free the current buffer, and set the internal reference to NULL. Same
383         as calling sk_free(detach())
384     */
free()385     void free() {
386         sk_free(fPtr);
387         fPtr = NULL;
388     }
389 
390 private:
391     void* fPtr;
392     // illegal
393     SkAutoFree(const SkAutoFree&);
394     SkAutoFree& operator=(const SkAutoFree&);
395 };
396 
397 class SkAutoMalloc : public SkAutoFree {
398 public:
SkAutoMalloc(size_t size)399     explicit SkAutoMalloc(size_t size)
400         : SkAutoFree(sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP)) {}
401 
SkAutoMalloc(size_t size,unsigned flags)402     SkAutoMalloc(size_t size, unsigned flags)
403         : SkAutoFree(sk_malloc_flags(size, flags)) {}
SkAutoMalloc()404     SkAutoMalloc() {}
405 
406     void* alloc(size_t size,
407                 unsigned flags = (SK_MALLOC_THROW | SK_MALLOC_TEMP)) {
408         sk_free(set(sk_malloc_flags(size, flags)));
409         return get();
410     }
411 };
412 
413 /**
414  *  Manage an allocated block of memory. If the requested size is <= kSize, then
415  *  the allocation will come from the stack rather than the heap. This object
416  *  is the sole manager of the lifetime of the block, so the caller must not
417  *  call sk_free() or delete on the block.
418  */
419 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
420 public:
421     /**
422      *  Creates initially empty storage. get() returns a ptr, but it is to
423      *  a zero-byte allocation. Must call realloc(size) to return an allocated
424      *  block.
425      */
SkAutoSMalloc()426     SkAutoSMalloc() {
427         fPtr = fStorage;
428     }
429 
430     /**
431      *  Allocate a block of the specified size. If size <= kSize, then the
432      *  allocation will come from the stack, otherwise it will be dynamically
433      *  allocated.
434      */
SkAutoSMalloc(size_t size)435     explicit SkAutoSMalloc(size_t size) {
436         fPtr = fStorage;
437         this->realloc(size);
438     }
439 
440     /**
441      *  Free the allocated block (if any). If the block was small enought to
442      *  have been allocated on the stack (size <= kSize) then this does nothing.
443      */
~SkAutoSMalloc()444     ~SkAutoSMalloc() {
445         if (fPtr != (void*)fStorage) {
446             sk_free(fPtr);
447         }
448     }
449 
450     /**
451      *  Return the allocated block. May return non-null even if the block is
452      *  of zero size. Since this may be on the stack or dynamically allocated,
453      *  the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
454      *  to manage it.
455      */
get()456     void* get() const { return fPtr; }
457 
458     /**
459      *  Return a new block of the requested size, freeing (as necessary) any
460      *  previously allocated block. As with the constructor, if size <= kSize
461      *  then the return block may be allocated locally, rather than from the
462      *  heap.
463      */
realloc(size_t size)464     void* realloc(size_t size) {
465         if (fPtr != (void*)fStorage) {
466             sk_free(fPtr);
467         }
468 
469         if (size <= kSize) {
470             fPtr = fStorage;
471         } else {
472             fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
473         }
474         return fPtr;
475     }
476 
477 private:
478     void*       fPtr;
479     uint32_t    fStorage[(kSize + 3) >> 2];
480     // illegal
481     SkAutoSMalloc(const SkAutoSMalloc&);
482     SkAutoSMalloc& operator=(const SkAutoSMalloc&);
483 };
484 
485 #endif /* C++ */
486 
487 #endif
488 
489