• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/synchronization/waitable_event.h"
6 
7 #include "base/synchronization/condition_variable.h"
8 #include "base/synchronization/lock.h"
9 #include "base/message_loop.h"
10 
11 // -----------------------------------------------------------------------------
12 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
13 // support cross-process events (where one process can signal an event which
14 // others are waiting on). Because of this, we can avoid having one thread per
15 // listener in several cases.
16 //
17 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
18 // waiter is either an async wait, in which case we have a Task and the
19 // MessageLoop to run it on, or a blocking wait, in which case we have the
20 // condition variable to signal.
21 //
22 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
23 // waits can be canceled, which means grabbing the lock and removing oneself
24 // from the list.
25 //
26 // Waiting on multiple events is handled by adding a single, synchronous wait to
27 // the wait-list of many events. An event passes a pointer to itself when
28 // firing a waiter and so we can store that pointer to find out which event
29 // triggered.
30 // -----------------------------------------------------------------------------
31 
32 namespace base {
33 
34 // -----------------------------------------------------------------------------
35 // This is just an abstract base class for waking the two types of waiters
36 // -----------------------------------------------------------------------------
WaitableEvent(bool manual_reset,bool initially_signaled)37 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
38     : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
39 }
40 
~WaitableEvent()41 WaitableEvent::~WaitableEvent() {
42 }
43 
Reset()44 void WaitableEvent::Reset() {
45   base::AutoLock locked(kernel_->lock_);
46   kernel_->signaled_ = false;
47 }
48 
Signal()49 void WaitableEvent::Signal() {
50   base::AutoLock locked(kernel_->lock_);
51 
52   if (kernel_->signaled_)
53     return;
54 
55   if (kernel_->manual_reset_) {
56     SignalAll();
57     kernel_->signaled_ = true;
58   } else {
59     // In the case of auto reset, if no waiters were woken, we remain
60     // signaled.
61     if (!SignalOne())
62       kernel_->signaled_ = true;
63   }
64 }
65 
IsSignaled()66 bool WaitableEvent::IsSignaled() {
67   base::AutoLock locked(kernel_->lock_);
68 
69   const bool result = kernel_->signaled_;
70   if (result && !kernel_->manual_reset_)
71     kernel_->signaled_ = false;
72   return result;
73 }
74 
75 // -----------------------------------------------------------------------------
76 // Synchronous waits
77 
78 // -----------------------------------------------------------------------------
79 // This is a synchronous waiter. The thread is waiting on the given condition
80 // variable and the fired flag in this object.
81 // -----------------------------------------------------------------------------
82 class SyncWaiter : public WaitableEvent::Waiter {
83  public:
SyncWaiter()84   SyncWaiter()
85       : fired_(false),
86         signaling_event_(NULL),
87         lock_(),
88         cv_(&lock_) {
89   }
90 
Fire(WaitableEvent * signaling_event)91   bool Fire(WaitableEvent* signaling_event) {
92     base::AutoLock locked(lock_);
93 
94     if (fired_)
95       return false;
96 
97     fired_ = true;
98     signaling_event_ = signaling_event;
99 
100     cv_.Broadcast();
101 
102     // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
103     // the blocking thread's stack.  There is no |delete this;| in Fire.  The
104     // SyncWaiter object is destroyed when it goes out of scope.
105 
106     return true;
107   }
108 
signaling_event() const109   WaitableEvent* signaling_event() const {
110     return signaling_event_;
111   }
112 
113   // ---------------------------------------------------------------------------
114   // These waiters are always stack allocated and don't delete themselves. Thus
115   // there's no problem and the ABA tag is the same as the object pointer.
116   // ---------------------------------------------------------------------------
Compare(void * tag)117   bool Compare(void* tag) {
118     return this == tag;
119   }
120 
121   // ---------------------------------------------------------------------------
122   // Called with lock held.
123   // ---------------------------------------------------------------------------
fired() const124   bool fired() const {
125     return fired_;
126   }
127 
128   // ---------------------------------------------------------------------------
129   // During a TimedWait, we need a way to make sure that an auto-reset
130   // WaitableEvent doesn't think that this event has been signaled between
131   // unlocking it and removing it from the wait-list. Called with lock held.
132   // ---------------------------------------------------------------------------
Disable()133   void Disable() {
134     fired_ = true;
135   }
136 
lock()137   base::Lock* lock() {
138     return &lock_;
139   }
140 
cv()141   base::ConditionVariable* cv() {
142     return &cv_;
143   }
144 
145  private:
146   bool fired_;
147   WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
148   base::Lock lock_;
149   base::ConditionVariable cv_;
150 };
151 
Wait()152 bool WaitableEvent::Wait() {
153   return TimedWait(TimeDelta::FromSeconds(-1));
154 }
155 
TimedWait(const TimeDelta & max_time)156 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
157   const Time end_time(Time::Now() + max_time);
158   const bool finite_time = max_time.ToInternalValue() >= 0;
159 
160   kernel_->lock_.Acquire();
161     if (kernel_->signaled_) {
162       if (!kernel_->manual_reset_) {
163         // In this case we were signaled when we had no waiters. Now that
164         // someone has waited upon us, we can automatically reset.
165         kernel_->signaled_ = false;
166       }
167 
168       kernel_->lock_.Release();
169       return true;
170     }
171 
172     SyncWaiter sw;
173     sw.lock()->Acquire();
174 
175     Enqueue(&sw);
176   kernel_->lock_.Release();
177   // We are violating locking order here by holding the SyncWaiter lock but not
178   // the WaitableEvent lock. However, this is safe because we don't lock @lock_
179   // again before unlocking it.
180 
181   for (;;) {
182     const Time current_time(Time::Now());
183 
184     if (sw.fired() || (finite_time && current_time >= end_time)) {
185       const bool return_value = sw.fired();
186 
187       // We can't acquire @lock_ before releasing the SyncWaiter lock (because
188       // of locking order), however, in between the two a signal could be fired
189       // and @sw would accept it, however we will still return false, so the
190       // signal would be lost on an auto-reset WaitableEvent. Thus we call
191       // Disable which makes sw::Fire return false.
192       sw.Disable();
193       sw.lock()->Release();
194 
195       kernel_->lock_.Acquire();
196         kernel_->Dequeue(&sw, &sw);
197       kernel_->lock_.Release();
198 
199       return return_value;
200     }
201 
202     if (finite_time) {
203       const TimeDelta max_wait(end_time - current_time);
204       sw.cv()->TimedWait(max_wait);
205     } else {
206       sw.cv()->Wait();
207     }
208   }
209 }
210 
211 // -----------------------------------------------------------------------------
212 // Synchronous waiting on multiple objects.
213 
214 static bool  // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)215 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
216              const std::pair<WaitableEvent*, unsigned> &b) {
217   return a.first < b.first;
218 }
219 
220 // static
WaitMany(WaitableEvent ** raw_waitables,size_t count)221 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
222                                size_t count) {
223   DCHECK(count) << "Cannot wait on no events";
224 
225   // We need to acquire the locks in a globally consistent order. Thus we sort
226   // the array of waitables by address. We actually sort a pairs so that we can
227   // map back to the original index values later.
228   std::vector<std::pair<WaitableEvent*, size_t> > waitables;
229   waitables.reserve(count);
230   for (size_t i = 0; i < count; ++i)
231     waitables.push_back(std::make_pair(raw_waitables[i], i));
232 
233   DCHECK_EQ(count, waitables.size());
234 
235   sort(waitables.begin(), waitables.end(), cmp_fst_addr);
236 
237   // The set of waitables must be distinct. Since we have just sorted by
238   // address, we can check this cheaply by comparing pairs of consecutive
239   // elements.
240   for (size_t i = 0; i < waitables.size() - 1; ++i) {
241     DCHECK(waitables[i].first != waitables[i+1].first);
242   }
243 
244   SyncWaiter sw;
245 
246   const size_t r = EnqueueMany(&waitables[0], count, &sw);
247   if (r) {
248     // One of the events is already signaled. The SyncWaiter has not been
249     // enqueued anywhere. EnqueueMany returns the count of remaining waitables
250     // when the signaled one was seen, so the index of the signaled event is
251     // @count - @r.
252     return waitables[count - r].second;
253   }
254 
255   // At this point, we hold the locks on all the WaitableEvents and we have
256   // enqueued our waiter in them all.
257   sw.lock()->Acquire();
258     // Release the WaitableEvent locks in the reverse order
259     for (size_t i = 0; i < count; ++i) {
260       waitables[count - (1 + i)].first->kernel_->lock_.Release();
261     }
262 
263     for (;;) {
264       if (sw.fired())
265         break;
266 
267       sw.cv()->Wait();
268     }
269   sw.lock()->Release();
270 
271   // The address of the WaitableEvent which fired is stored in the SyncWaiter.
272   WaitableEvent *const signaled_event = sw.signaling_event();
273   // This will store the index of the raw_waitables which fired.
274   size_t signaled_index = 0;
275 
276   // Take the locks of each WaitableEvent in turn (except the signaled one) and
277   // remove our SyncWaiter from the wait-list
278   for (size_t i = 0; i < count; ++i) {
279     if (raw_waitables[i] != signaled_event) {
280       raw_waitables[i]->kernel_->lock_.Acquire();
281         // There's no possible ABA issue with the address of the SyncWaiter here
282         // because it lives on the stack. Thus the tag value is just the pointer
283         // value again.
284         raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
285       raw_waitables[i]->kernel_->lock_.Release();
286     } else {
287       signaled_index = i;
288     }
289   }
290 
291   return signaled_index;
292 }
293 
294 // -----------------------------------------------------------------------------
295 // If return value == 0:
296 //   The locks of the WaitableEvents have been taken in order and the Waiter has
297 //   been enqueued in the wait-list of each. None of the WaitableEvents are
298 //   currently signaled
299 // else:
300 //   None of the WaitableEvent locks are held. The Waiter has not been enqueued
301 //   in any of them and the return value is the index of the first WaitableEvent
302 //   which was signaled, from the end of the array.
303 // -----------------------------------------------------------------------------
304 // static
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)305 size_t WaitableEvent::EnqueueMany
306     (std::pair<WaitableEvent*, size_t>* waitables,
307      size_t count, Waiter* waiter) {
308   if (!count)
309     return 0;
310 
311   waitables[0].first->kernel_->lock_.Acquire();
312     if (waitables[0].first->kernel_->signaled_) {
313       if (!waitables[0].first->kernel_->manual_reset_)
314         waitables[0].first->kernel_->signaled_ = false;
315       waitables[0].first->kernel_->lock_.Release();
316       return count;
317     }
318 
319     const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
320     if (r) {
321       waitables[0].first->kernel_->lock_.Release();
322     } else {
323       waitables[0].first->Enqueue(waiter);
324     }
325 
326     return r;
327 }
328 
329 // -----------------------------------------------------------------------------
330 
331 
332 // -----------------------------------------------------------------------------
333 // Private functions...
334 
WaitableEventKernel(bool manual_reset,bool initially_signaled)335 WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
336                                                         bool initially_signaled)
337     : manual_reset_(manual_reset),
338       signaled_(initially_signaled) {
339 }
340 
~WaitableEventKernel()341 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
342 }
343 
344 // -----------------------------------------------------------------------------
345 // Wake all waiting waiters. Called with lock held.
346 // -----------------------------------------------------------------------------
SignalAll()347 bool WaitableEvent::SignalAll() {
348   bool signaled_at_least_one = false;
349 
350   for (std::list<Waiter*>::iterator
351        i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
352     if ((*i)->Fire(this))
353       signaled_at_least_one = true;
354   }
355 
356   kernel_->waiters_.clear();
357   return signaled_at_least_one;
358 }
359 
360 // ---------------------------------------------------------------------------
361 // Try to wake a single waiter. Return true if one was woken. Called with lock
362 // held.
363 // ---------------------------------------------------------------------------
SignalOne()364 bool WaitableEvent::SignalOne() {
365   for (;;) {
366     if (kernel_->waiters_.empty())
367       return false;
368 
369     const bool r = (*kernel_->waiters_.begin())->Fire(this);
370     kernel_->waiters_.pop_front();
371     if (r)
372       return true;
373   }
374 }
375 
376 // -----------------------------------------------------------------------------
377 // Add a waiter to the list of those waiting. Called with lock held.
378 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)379 void WaitableEvent::Enqueue(Waiter* waiter) {
380   kernel_->waiters_.push_back(waiter);
381 }
382 
383 // -----------------------------------------------------------------------------
384 // Remove a waiter from the list of those waiting. Return true if the waiter was
385 // actually removed. Called with lock held.
386 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)387 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
388   for (std::list<Waiter*>::iterator
389        i = waiters_.begin(); i != waiters_.end(); ++i) {
390     if (*i == waiter && (*i)->Compare(tag)) {
391       waiters_.erase(i);
392       return true;
393     }
394   }
395 
396   return false;
397 }
398 
399 // -----------------------------------------------------------------------------
400 
401 }  // namespace base
402