1 /* $NetBSD: sha1.c,v 1.1 2005/12/20 20:29:40 christos Exp $ */
2 /* $OpenBSD: sha1.c,v 1.9 1997/07/23 21:12:32 kstailey Exp $ */
3
4 /*
5 * SHA-1 in C
6 * By Steve Reid <steve@edmweb.com>
7 * 100% Public Domain
8 *
9 * Test Vectors (from FIPS PUB 180-1)
10 * "abc"
11 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
12 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
13 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
14 * A million repetitions of "a"
15 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
16 */
17
18 #define SHA1HANDSOFF /* Copies data before messing with it. */
19
20 #include <sys/cdefs.h>
21 #include <sys/types.h>
22 #include <assert.h>
23 #include <sha1.h>
24 #include <string.h>
25
26 #if HAVE_NBTOOL_CONFIG_H
27 #include "nbtool_config.h"
28 #endif
29
30 #if !HAVE_SHA1_H
31
32 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
33
34 /*
35 * blk0() and blk() perform the initial expand.
36 * I got the idea of expanding during the round function from SSLeay
37 */
38 #if BYTE_ORDER == LITTLE_ENDIAN
39 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
40 |(rol(block->l[i],8)&0x00FF00FF))
41 #else
42 # define blk0(i) block->l[i]
43 #endif
44 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
45 ^block->l[(i+2)&15]^block->l[i&15],1))
46
47 /*
48 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
49 */
50 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
51 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
52 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
53 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
54 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
55
56 typedef union {
57 u_char c[64];
58 u_int l[16];
59 } CHAR64LONG16;
60
61 /* old sparc64 gcc could not compile this */
62 #undef SPARC64_GCC_WORKAROUND
63 #if defined(__sparc64__) && defined(__GNUC__) && __GNUC__ < 3
64 #define SPARC64_GCC_WORKAROUND
65 #endif
66
67 #ifdef SPARC64_GCC_WORKAROUND
68 void do_R01(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *);
69 void do_R2(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *);
70 void do_R3(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *);
71 void do_R4(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *);
72
73 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
74 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
75 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
76 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
77 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
78
79 void
do_R01(u_int32_t * a,u_int32_t * b,u_int32_t * c,u_int32_t * d,u_int32_t * e,CHAR64LONG16 * block)80 do_R01(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *block)
81 {
82 nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2); nR0(c,d,e,a,b, 3);
83 nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5); nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7);
84 nR0(c,d,e,a,b, 8); nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11);
85 nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14); nR0(a,b,c,d,e,15);
86 nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17); nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19);
87 }
88
89 void
do_R2(u_int32_t * a,u_int32_t * b,u_int32_t * c,u_int32_t * d,u_int32_t * e,CHAR64LONG16 * block)90 do_R2(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *block)
91 {
92 nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22); nR2(c,d,e,a,b,23);
93 nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25); nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27);
94 nR2(c,d,e,a,b,28); nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31);
95 nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34); nR2(a,b,c,d,e,35);
96 nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37); nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39);
97 }
98
99 void
do_R3(u_int32_t * a,u_int32_t * b,u_int32_t * c,u_int32_t * d,u_int32_t * e,CHAR64LONG16 * block)100 do_R3(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *block)
101 {
102 nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42); nR3(c,d,e,a,b,43);
103 nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45); nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47);
104 nR3(c,d,e,a,b,48); nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51);
105 nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54); nR3(a,b,c,d,e,55);
106 nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57); nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59);
107 }
108
109 void
do_R4(u_int32_t * a,u_int32_t * b,u_int32_t * c,u_int32_t * d,u_int32_t * e,CHAR64LONG16 * block)110 do_R4(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d, u_int32_t *e, CHAR64LONG16 *block)
111 {
112 nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62); nR4(c,d,e,a,b,63);
113 nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65); nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67);
114 nR4(c,d,e,a,b,68); nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71);
115 nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74); nR4(a,b,c,d,e,75);
116 nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77); nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79);
117 }
118 #endif
119
120 /*
121 * Hash a single 512-bit block. This is the core of the algorithm.
122 */
SHA1Transform(state,buffer)123 void SHA1Transform(state, buffer)
124 u_int32_t state[5];
125 const u_char buffer[64];
126 {
127 u_int32_t a, b, c, d, e;
128 CHAR64LONG16 *block;
129
130 #ifdef SHA1HANDSOFF
131 CHAR64LONG16 workspace;
132 #endif
133
134 assert(buffer != 0);
135 assert(state != 0);
136
137 #ifdef SHA1HANDSOFF
138 block = &workspace;
139 (void)memcpy(block, buffer, 64);
140 #else
141 block = (CHAR64LONG16 *)(void *)buffer;
142 #endif
143
144 /* Copy context->state[] to working vars */
145 a = state[0];
146 b = state[1];
147 c = state[2];
148 d = state[3];
149 e = state[4];
150
151 #ifdef SPARC64_GCC_WORKAROUND
152 do_R01(&a, &b, &c, &d, &e, block);
153 do_R2(&a, &b, &c, &d, &e, block);
154 do_R3(&a, &b, &c, &d, &e, block);
155 do_R4(&a, &b, &c, &d, &e, block);
156 #else
157 /* 4 rounds of 20 operations each. Loop unrolled. */
158 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
159 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
160 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
161 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
162 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
163 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
164 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
165 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
166 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
167 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
168 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
169 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
170 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
171 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
172 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
173 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
174 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
175 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
176 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
177 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
178 #endif
179
180 /* Add the working vars back into context.state[] */
181 state[0] += a;
182 state[1] += b;
183 state[2] += c;
184 state[3] += d;
185 state[4] += e;
186
187 /* Wipe variables */
188 a = b = c = d = e = 0;
189 }
190
191
192 /*
193 * SHA1Init - Initialize new context
194 */
SHA1Init(context)195 void SHA1Init(context)
196 SHA1_CTX *context;
197 {
198
199 assert(context != 0);
200
201 /* SHA1 initialization constants */
202 context->state[0] = 0x67452301;
203 context->state[1] = 0xEFCDAB89;
204 context->state[2] = 0x98BADCFE;
205 context->state[3] = 0x10325476;
206 context->state[4] = 0xC3D2E1F0;
207 context->count[0] = context->count[1] = 0;
208 }
209
210
211 /*
212 * Run your data through this.
213 */
SHA1Update(context,data,len)214 void SHA1Update(context, data, len)
215 SHA1_CTX *context;
216 const u_char *data;
217 u_int len;
218 {
219 u_int i, j;
220
221 assert(context != 0);
222 assert(data != 0);
223
224 j = context->count[0];
225 if ((context->count[0] += len << 3) < j)
226 context->count[1] += (len>>29)+1;
227 j = (j >> 3) & 63;
228 if ((j + len) > 63) {
229 (void)memcpy(&context->buffer[j], data, (i = 64-j));
230 SHA1Transform(context->state, context->buffer);
231 for ( ; i + 63 < len; i += 64)
232 SHA1Transform(context->state, &data[i]);
233 j = 0;
234 } else {
235 i = 0;
236 }
237 (void)memcpy(&context->buffer[j], &data[i], len - i);
238 }
239
240
241 /*
242 * Add padding and return the message digest.
243 */
SHA1Final(digest,context)244 void SHA1Final(digest, context)
245 u_char digest[20];
246 SHA1_CTX* context;
247 {
248 u_int i;
249 u_char finalcount[8];
250
251 assert(digest != 0);
252 assert(context != 0);
253
254 for (i = 0; i < 8; i++) {
255 finalcount[i] = (u_char)((context->count[(i >= 4 ? 0 : 1)]
256 >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
257 }
258 SHA1Update(context, (const u_char *)"\200", 1);
259 while ((context->count[0] & 504) != 448)
260 SHA1Update(context, (const u_char *)"\0", 1);
261 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
262
263 if (digest) {
264 for (i = 0; i < 20; i++)
265 digest[i] = (u_char)
266 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
267 }
268 }
269
270 #endif /* HAVE_SHA1_H */
271