• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<?xml version="1.0"?> <!-- -*- sgml -*- -->
2<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
3  "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
4[ <!ENTITY % vg-entities SYSTEM "../../docs/xml/vg-entities.xml"> %vg-entities; ]>
5
6<chapter id="cl-manual" xreflabel="Callgrind Manual">
7<title>Callgrind: a call-graph generating cache and branch prediction profiler</title>
8
9
10<para>To use this tool, you must specify
11<option>--tool=callgrind</option> on the
12Valgrind command line.</para>
13
14<sect1 id="cl-manual.use" xreflabel="Overview">
15<title>Overview</title>
16
17<para>Callgrind is a profiling tool that records the call history among
18functions in a program's run as a call-graph.
19By default, the collected data consists of
20the number of instructions executed, their relationship
21to source lines, the caller/callee relationship between functions,
22and the numbers of such calls.
23Optionally, cache simulation and/or branch prediction (similar to Cachegrind)
24can produce further information about the runtime behavior of an application.
25</para>
26
27<para>The profile data is written out to a file at program
28termination. For presentation of the data, and interactive control
29of the profiling, two command line tools are provided:</para>
30<variablelist>
31  <varlistentry>
32  <term><command>callgrind_annotate</command></term>
33  <listitem>
34    <para>This command reads in the profile data, and prints a
35    sorted lists of functions, optionally with source annotation.</para>
36
37    <para>For graphical visualization of the data, try
38    <ulink url="&cl-gui-url;">KCachegrind</ulink>, which is a KDE/Qt based
39    GUI that makes it easy to navigate the large amount of data that
40    Callgrind produces.</para>
41
42  </listitem>
43  </varlistentry>
44
45  <varlistentry>
46  <term><command>callgrind_control</command></term>
47  <listitem>
48    <para>This command enables you to interactively observe and control
49    the status of a program currently running under Callgrind's control,
50    without stopping the program.  You can get statistics information as
51    well as the current stack trace, and you can request zeroing of counters
52    or dumping of profile data.</para>
53  </listitem>
54  </varlistentry>
55</variablelist>
56
57  <sect2 id="cl-manual.functionality" xreflabel="Functionality">
58  <title>Functionality</title>
59
60<para>Cachegrind collects flat profile data: event counts (data reads,
61cache misses, etc.) are attributed directly to the function they
62occurred in.  This cost attribution mechanism is
63called <emphasis>self</emphasis> or <emphasis>exclusive</emphasis>
64attribution.</para>
65
66<para>Callgrind extends this functionality by propagating costs
67across function call boundaries.  If function <function>foo</function> calls
68<function>bar</function>, the costs from <function>bar</function> are added into
69<function>foo</function>'s costs.  When applied to the program as a whole,
70this builds up a picture of so called <emphasis>inclusive</emphasis>
71costs, that is, where the cost of each function includes the costs of
72all functions it called, directly or indirectly.</para>
73
74<para>As an example, the inclusive cost of
75<function>main</function> should be almost 100 percent
76of the total program cost.  Because of costs arising before
77<function>main</function> is run, such as
78initialization of the run time linker and construction of global C++
79objects, the inclusive cost of <function>main</function>
80is not exactly 100 percent of the total program cost.</para>
81
82<para>Together with the call graph, this allows you to find the
83specific call chains starting from
84<function>main</function> in which the majority of the
85program's costs occur.  Caller/callee cost attribution is also useful
86for profiling functions called from multiple call sites, and where
87optimization opportunities depend on changing code in the callers, in
88particular by reducing the call count.</para>
89
90<para>Callgrind's cache simulation is based on that of Cachegrind.
91Read the documentation for <xref linkend="cg-manual"/> first.  The material
92below describes the features supported in addition to Cachegrind's
93features.</para>
94
95<para>Callgrind's ability to detect function calls and returns depends
96on the instruction set of the platform it is run on.  It works best
97on x86 and amd64, and unfortunately currently does not work so well
98on PowerPC code.  This is because there are no explicit call or return
99instructions in the PowerPC instruction set, so Callgrind has to rely
100on heuristics to detect calls and returns.</para>
101
102  </sect2>
103
104  <sect2 id="cl-manual.basics" xreflabel="Basic Usage">
105  <title>Basic Usage</title>
106
107  <para>As with Cachegrind, you probably want to compile with debugging info
108  (the <option>-g</option> option) and with optimization turned on.</para>
109
110  <para>To start a profile run for a program, execute:
111  <screen>valgrind --tool=callgrind [callgrind options] your-program [program options]</screen>
112  </para>
113
114  <para>While the simulation is running, you can observe execution with:
115  <screen>callgrind_control -b</screen>
116  This will print out the current backtrace. To annotate the backtrace with
117  event counts, run
118  <screen>callgrind_control -e -b</screen>
119  </para>
120
121  <para>After program termination, a profile data file named
122  <computeroutput>callgrind.out.&lt;pid&gt;</computeroutput>
123  is generated, where <emphasis>pid</emphasis> is the process ID
124  of the program being profiled.
125  The data file contains information about the calls made in the
126  program among the functions executed, together with
127  <command>Instruction Read</command> (Ir) event counts.</para>
128
129  <para>To generate a function-by-function summary from the profile
130  data file, use
131  <screen>callgrind_annotate [options] callgrind.out.&lt;pid&gt;</screen>
132  This summary is similar to the output you get from a Cachegrind
133  run with cg_annotate: the list
134  of functions is ordered by exclusive cost of functions, which also
135  are the ones that are shown.
136  Important for the additional features of Callgrind are
137  the following two options:</para>
138
139  <itemizedlist>
140    <listitem>
141      <para><option>--inclusive=yes</option>: Instead of using
142      exclusive cost of functions as sorting order, use and show
143      inclusive cost.</para>
144    </listitem>
145
146    <listitem>
147      <para><option>--tree=both</option>: Interleave into the
148      top level list of functions, information on the callers and the callees
149      of each function. In these lines, which represents executed
150      calls, the cost gives the number of events spent in the call.
151      Indented, above each function, there is the list of callers,
152      and below, the list of callees. The sum of events in calls to
153      a given function (caller lines), as well as the sum of events in
154      calls from the function (callee lines) together with the self
155      cost, gives the total inclusive cost of the function.</para>
156     </listitem>
157  </itemizedlist>
158
159  <para>Use <option>--auto=yes</option> to get annotated source code
160  for all relevant functions for which the source can be found. In
161  addition to source annotation as produced by
162  <computeroutput>cg_annotate</computeroutput>, you will see the
163  annotated call sites with call counts. For all other options,
164  consult the (Cachegrind) documentation for
165  <computeroutput>cg_annotate</computeroutput>.
166  </para>
167
168  <para>For better call graph browsing experience, it is highly recommended
169  to use <ulink url="&cl-gui-url;">KCachegrind</ulink>.
170  If your code
171  has a significant fraction of its cost in <emphasis>cycles</emphasis> (sets
172  of functions calling each other in a recursive manner), you have to
173  use KCachegrind, as <computeroutput>callgrind_annotate</computeroutput>
174  currently does not do any cycle detection, which is important to get correct
175  results in this case.</para>
176
177  <para>If you are additionally interested in measuring the
178  cache behavior of your program, use Callgrind with the option
179  <option><xref linkend="clopt.cache-sim"/>=yes</option>. For
180  branch prediction simulation, use <option><xref linkend="clopt.branch-sim"/>=yes</option>.
181  Expect a further slow down approximately by a factor of 2.</para>
182
183  <para>If the program section you want to profile is somewhere in the
184  middle of the run, it is beneficial to
185  <emphasis>fast forward</emphasis> to this section without any
186  profiling, and then enable profiling.  This is achieved by using
187  the command line option
188  <option><xref linkend="opt.instr-atstart"/>=no</option>
189  and running, in a shell:
190  <computeroutput>callgrind_control -i on</computeroutput> just before the
191  interesting code section is executed. To exactly specify
192  the code position where profiling should start, use the client request
193  <computeroutput><xref linkend="cr.start-instr"/></computeroutput>.</para>
194
195  <para>If you want to be able to see assembly code level annotation, specify
196  <option><xref linkend="opt.dump-instr"/>=yes</option>. This will produce
197  profile data at instruction granularity. Note that the resulting profile
198  data
199  can only be viewed with KCachegrind. For assembly annotation, it also is
200  interesting to see more details of the control flow inside of functions,
201  i.e. (conditional) jumps. This will be collected by further specifying
202  <option><xref linkend="opt.collect-jumps"/>=yes</option>.</para>
203
204  </sect2>
205
206</sect1>
207
208<sect1 id="cl-manual.usage" xreflabel="Advanced Usage">
209<title>Advanced Usage</title>
210
211  <sect2 id="cl-manual.dumps"
212         xreflabel="Multiple dumps from one program run">
213  <title>Multiple profiling dumps from one program run</title>
214
215  <para>Sometimes you are not interested in characteristics of a full
216  program run, but only of a small part of it, for example execution of one
217  algorithm.  If there are multiple algorithms, or one algorithm
218  running with different input data, it may even be useful to get different
219  profile information for different parts of a single program run.</para>
220
221  <para>Profile data files have names of the form
222<screen>
223callgrind.out.<emphasis>pid</emphasis>.<emphasis>part</emphasis>-<emphasis>threadID</emphasis>
224</screen>
225  </para>
226  <para>where <emphasis>pid</emphasis> is the PID of the running
227  program, <emphasis>part</emphasis> is a number incremented on each
228  dump (".part" is skipped for the dump at program termination), and
229  <emphasis>threadID</emphasis> is a thread identification
230  ("-threadID" is only used if you request dumps of individual
231  threads with <option><xref linkend="opt.separate-threads"/>=yes</option>).</para>
232
233  <para>There are different ways to generate multiple profile dumps
234  while a program is running under Callgrind's supervision.  Nevertheless,
235  all methods trigger the same action, which is "dump all profile
236  information since the last dump or program start, and zero cost
237  counters afterwards".  To allow for zeroing cost counters without
238  dumping, there is a second action "zero all cost counters now".
239  The different methods are:</para>
240  <itemizedlist>
241
242    <listitem>
243      <para><command>Dump on program termination.</command>
244      This method is the standard way and doesn't need any special
245      action on your part.</para>
246    </listitem>
247
248    <listitem>
249      <para><command>Spontaneous, interactive dumping.</command> Use
250      <screen>callgrind_control -d [hint [PID/Name]]</screen> to
251      request the dumping of profile information of the supervised
252      application with PID or Name.  <emphasis>hint</emphasis> is an
253      arbitrary string you can optionally specify to later be able to
254      distinguish profile dumps.  The control program will not terminate
255      before the dump is completely written.  Note that the application
256      must be actively running for detection of the dump command. So,
257      for a GUI application, resize the window, or for a server, send a
258      request.</para>
259      <para>If you are using <ulink url="&cl-gui-url;">KCachegrind</ulink>
260      for browsing of profile information, you can use the toolbar
261      button <command>Force dump</command>. This will request a dump
262      and trigger a reload after the dump is written.</para>
263    </listitem>
264
265    <listitem>
266      <para><command>Periodic dumping after execution of a specified
267      number of basic blocks</command>. For this, use the command line
268      option <option><xref linkend="opt.dump-every-bb"/>=count</option>.
269      </para>
270    </listitem>
271
272    <listitem>
273      <para><command>Dumping at enter/leave of specified functions.</command>
274      Use the
275      option <option><xref linkend="opt.dump-before"/>=function</option>
276      and <option><xref linkend="opt.dump-after"/>=function</option>.
277      To zero cost counters before entering a function, use
278      <option><xref linkend="opt.zero-before"/>=function</option>.</para>
279      <para>You can specify these options multiple times for different
280      functions. Function specifications support wildcards: e.g. use
281      <option><xref linkend="opt.dump-before"/>='foo*'</option> to
282      generate dumps before entering any function starting with
283      <emphasis>foo</emphasis>.</para>
284    </listitem>
285
286    <listitem>
287      <para><command>Program controlled dumping.</command>
288      Insert
289      <computeroutput><xref linkend="cr.dump-stats"/>;</computeroutput>
290      at the position in your code where you want a profile dump to happen. Use
291      <computeroutput><xref linkend="cr.zero-stats"/>;</computeroutput> to only
292      zero profile counters.
293      See <xref linkend="cl-manual.clientrequests"/> for more information on
294      Callgrind specific client requests.</para>
295    </listitem>
296  </itemizedlist>
297
298  <para>If you are running a multi-threaded application and specify the
299  command line option <option><xref linkend="opt.separate-threads"/>=yes</option>,
300  every thread will be profiled on its own and will create its own
301  profile dump. Thus, the last two methods will only generate one dump
302  of the currently running thread. With the other methods, you will get
303  multiple dumps (one for each thread) on a dump request.</para>
304
305  </sect2>
306
307
308
309  <sect2 id="cl-manual.limits"
310         xreflabel="Limiting range of event collection">
311  <title>Limiting the range of collected events</title>
312
313  <para>For aggregating events (function enter/leave,
314  instruction execution, memory access) into event numbers,
315  first, the events must be recognizable by Callgrind, and second,
316  the collection state must be enabled.</para>
317
318  <para>Event collection is only possible if <emphasis>instrumentation</emphasis>
319  for program code is enabled. This is the default, but for faster
320  execution (identical to <computeroutput>valgrind --tool=none</computeroutput>),
321  it can be disabled until the program reaches a state in which
322  you want to start collecting profiling data.
323  Callgrind can start without instrumentation
324  by specifying option <option><xref linkend="opt.instr-atstart"/>=no</option>.
325  Instrumentation can be enabled interactively
326  with: <screen>callgrind_control -i on</screen>
327  and off by specifying "off" instead of "on".
328  Furthermore, instrumentation state can be programatically changed with
329  the macros <computeroutput><xref linkend="cr.start-instr"/>;</computeroutput>
330  and <computeroutput><xref linkend="cr.stop-instr"/>;</computeroutput>.
331  </para>
332
333  <para>In addition to enabling instrumentation, you must also enable
334  event collection for the parts of your program you are interested in.
335  By default, event collection is enabled everywhere.
336  You can limit collection to a specific function
337  by using
338  <option><xref linkend="opt.toggle-collect"/>=function</option>.
339  This will toggle the collection state on entering and leaving
340  the specified functions.
341  When this option is in effect, the default collection state
342  at program start is "off".  Only events happening while running
343  inside of the given function will be collected. Recursive
344  calls of the given function do not trigger any action.</para>
345
346  <para>It is important to note that with instrumentation disabled, the
347  cache simulator cannot see any memory access events, and thus, any
348  simulated cache state will be frozen and wrong without instrumentation.
349  Therefore, to get useful cache events (hits/misses) after switching on
350  instrumentation, the cache first must warm up,
351  probably leading to many <emphasis>cold misses</emphasis>
352  which would not have happened in reality. If you do not want to see these,
353  start event collection a few million instructions after you have enabled
354  instrumentation.</para>
355
356  </sect2>
357
358  <sect2 id="cl-manual.busevents" xreflabel="Counting global bus events">
359  <title>Counting global bus events</title>
360
361  <para>For access to shared data among threads in a multithreaded
362  code, synchronization is required to avoid raced conditions.
363  Synchronization primitives are usually implemented via atomic instructions.
364  However, excessive use of such instructions can lead to performance
365  issues.</para>
366
367  <para>To enable analysis of this problem, Callgrind optionally can count
368  the number of atomic instructions executed. More precisely, for x86/x86_64,
369  these are instructions using a lock prefix. For architectures supporting
370  LL/SC, these are the number of SC instructions executed. For both, the term
371  "global bus events" is used.</para>
372
373  <para>The short name of the event type used for global bus events is "Ge".
374  To count global bus events, use <option><xref linkend="clopt.collect-bus"/>=yes</option>.
375  </para>
376  </sect2>
377
378  <sect2 id="cl-manual.cycles" xreflabel="Avoiding cycles">
379  <title>Avoiding cycles</title>
380
381  <para>Informally speaking, a cycle is a group of functions which
382  call each other in a recursive way.</para>
383
384  <para>Formally speaking, a cycle is a nonempty set S of functions,
385  such that for every pair of functions F and G in S, it is possible
386  to call from F to G (possibly via intermediate functions) and also
387  from G to F.  Furthermore, S must be maximal -- that is, be the
388  largest set of functions satisfying this property.  For example, if
389  a third function H is called from inside S and calls back into S,
390  then H is also part of the cycle and should be included in S.</para>
391
392  <para>Recursion is quite usual in programs, and therefore, cycles
393  sometimes appear in the call graph output of Callgrind. However,
394  the title of this chapter should raise two questions: What is bad
395  about cycles which makes you want to avoid them? And: How can
396  cycles be avoided without changing program code?</para>
397
398  <para>Cycles are not bad in itself, but tend to make performance
399  analysis of your code harder. This is because inclusive costs
400  for calls inside of a cycle are meaningless. The definition of
401  inclusive cost, i.e. self cost of a function plus inclusive cost
402  of its callees, needs a topological order among functions. For
403  cycles, this does not hold true: callees of a function in a cycle include
404  the function itself. Therefore, KCachegrind does cycle detection
405  and skips visualization of any inclusive cost for calls inside
406  of cycles. Further, all functions in a cycle are collapsed into artifical
407  functions called like <computeroutput>Cycle 1</computeroutput>.</para>
408
409  <para>Now, when a program exposes really big cycles (as is
410  true for some GUI code, or in general code using event or callback based
411  programming style), you lose the nice property to let you pinpoint
412  the bottlenecks by following call chains from
413  <function>main</function>, guided via
414  inclusive cost. In addition, KCachegrind loses its ability to show
415  interesting parts of the call graph, as it uses inclusive costs to
416  cut off uninteresting areas.</para>
417
418  <para>Despite the meaningless of inclusive costs in cycles, the big
419  drawback for visualization motivates the possibility to temporarily
420  switch off cycle detection in KCachegrind, which can lead to
421  misguiding visualization. However, often cycles appear because of
422  unlucky superposition of independent call chains in a way that
423  the profile result will see a cycle. Neglecting uninteresting
424  calls with very small measured inclusive cost would break these
425  cycles. In such cases, incorrect handling of cycles by not detecting
426  them still gives meaningful profiling visualization.</para>
427
428  <para>It has to be noted that currently, <command>callgrind_annotate</command>
429  does not do any cycle detection at all. For program executions with function
430  recursion, it e.g. can print nonsense inclusive costs way above 100%.</para>
431
432  <para>After describing why cycles are bad for profiling, it is worth
433  talking about cycle avoidance. The key insight here is that symbols in
434  the profile data do not have to exactly match the symbols found in the
435  program. Instead, the symbol name could encode additional information
436  from the current execution context such as recursion level of the
437  current function, or even some part of the call chain leading to the
438  function. While encoding of additional information into symbols is
439  quite capable of avoiding cycles, it has to be used carefully to not cause
440  symbol explosion. The latter imposes large memory requirement for Callgrind
441  with possible out-of-memory conditions, and big profile data files.</para>
442
443  <para>A further possibility to avoid cycles in Callgrind's profile data
444  output is to simply leave out given functions in the call graph. Of course, this
445  also skips any call information from and to an ignored function, and thus can
446  break a cycle. Candidates for this typically are dispatcher functions in event
447  driven code. The option to ignore calls to a function is
448  <option><xref linkend="opt.fn-skip"/>=function</option>. Aside from
449  possibly breaking cycles, this is used in Callgrind to skip
450  trampoline functions in the PLT sections
451  for calls to functions in shared libraries. You can see the difference
452  if you profile with <option><xref linkend="opt.skip-plt"/>=no</option>.
453  If a call is ignored, its cost events will be propagated to the
454  enclosing function.</para>
455
456  <para>If you have a recursive function, you can distinguish the first
457  10 recursion levels by specifying
458  <option><xref linkend="opt.separate-recs-num"/>=function</option>.
459  Or for all functions with
460  <option><xref linkend="opt.separate-recs"/>=10</option>, but this will
461  give you much bigger profile data files.  In the profile data, you will see
462  the recursion levels of "func" as the different functions with names
463  "func", "func'2", "func'3" and so on.</para>
464
465  <para>If you have call chains "A &gt; B &gt; C" and "A &gt; C &gt; B"
466  in your program, you usually get a "false" cycle "B &lt;&gt; C". Use
467  <option><xref linkend="opt.separate-callers-num"/>=B</option>
468  <option><xref linkend="opt.separate-callers-num"/>=C</option>,
469  and functions "B" and "C" will be treated as different functions
470  depending on the direct caller. Using the apostrophe for appending
471  this "context" to the function name, you get "A &gt; B'A &gt; C'B"
472  and "A &gt; C'A &gt; B'C", and there will be no cycle. Use
473  <option><xref linkend="opt.separate-callers"/>=2</option> to get a 2-caller
474  dependency for all functions.  Note that doing this will increase
475  the size of profile data files.</para>
476
477  </sect2>
478
479  <sect2 id="cl-manual.forkingprograms" xreflabel="Forking Programs">
480  <title>Forking Programs</title>
481
482  <para>If your program forks, the child will inherit all the profiling
483  data that has been gathered for the parent. To start with empty profile
484  counter values in the child, the client request
485  <computeroutput><xref linkend="cr.zero-stats"/>;</computeroutput>
486  can be inserted into code to be executed by the child, directly after
487  <computeroutput>fork</computeroutput>.</para>
488
489  <para>However, you will have to make sure that the output file format string
490  (controlled by <option>--callgrind-out-file</option>) does contain
491  <option>%p</option> (which is true by default). Otherwise, the
492  outputs from the parent and child will overwrite each other or will be
493  intermingled, which almost certainly is not what you want.</para>
494
495  <para>You will be able to control the new child independently from
496  the parent via callgrind_control.</para>
497
498  </sect2>
499
500</sect1>
501
502
503<sect1 id="cl-manual.options" xreflabel="Callgrind Command-line Options">
504<title>Callgrind Command-line Options</title>
505
506<para>
507In the following, options are grouped into classes.
508</para>
509<para>
510Some options allow the specification of a function/symbol name, such as
511<option><xref linkend="opt.dump-before"/>=function</option>, or
512<option><xref linkend="opt.fn-skip"/>=function</option>. All these options
513can be specified multiple times for different functions.
514In addition, the function specifications actually are patterns by supporting
515the use of wildcards '*' (zero or more arbitrary characters) and '?'
516(exactly one arbitrary character), similar to file name globbing in the
517shell. This feature is important especially for C++, as without wildcard
518usage, the function would have to be specified in full extent, including
519parameter signature. </para>
520
521<sect2 id="cl-manual.options.creation"
522       xreflabel="Dump creation options">
523<title>Dump creation options</title>
524
525<para>
526These options influence the name and format of the profile data files.
527</para>
528
529<!-- start of xi:include in the manpage -->
530<variablelist id="cl.opts.list.creation">
531
532  <varlistentry id="opt.callgrind-out-file" xreflabel="--callgrind-out-file">
533    <term>
534      <option><![CDATA[--callgrind-out-file=<file> ]]></option>
535    </term>
536    <listitem>
537      <para>Write the profile data to
538            <computeroutput>file</computeroutput> rather than to the default
539            output file,
540            <computeroutput>callgrind.out.&lt;pid&gt;</computeroutput>.  The
541            <option>%p</option> and <option>%q</option> format specifiers
542            can be used to embed the process ID and/or the contents of an
543            environment variable in the name, as is the case for the core
544            option <option><xref linkend="opt.log-file"/></option>.
545            When multiple dumps are made, the file name
546            is modified further; see below.</para>
547    </listitem>
548  </varlistentry>
549
550  <varlistentry id="opt.dump-line" xreflabel="--dump-line">
551    <term>
552      <option><![CDATA[--dump-line=<no|yes> [default: yes] ]]></option>
553    </term>
554    <listitem>
555      <para>This specifies that event counting should be performed at
556      source line granularity. This allows source annotation for sources
557      which are compiled with debug information
558      (<option>-g</option>).</para>
559  </listitem>
560  </varlistentry>
561
562  <varlistentry id="opt.dump-instr" xreflabel="--dump-instr">
563    <term>
564      <option><![CDATA[--dump-instr=<no|yes> [default: no] ]]></option>
565    </term>
566    <listitem>
567      <para>This specifies that event counting should be performed at
568      per-instruction granularity.
569      This allows for assembly code
570      annotation.  Currently the results can only be
571      displayed by KCachegrind.</para>
572  </listitem>
573  </varlistentry>
574
575  <varlistentry id="opt.compress-strings" xreflabel="--compress-strings">
576    <term>
577      <option><![CDATA[--compress-strings=<no|yes> [default: yes] ]]></option>
578    </term>
579    <listitem>
580      <para>This option influences the output format of the profile data.
581      It specifies whether strings (file and function names) should be
582      identified by numbers. This shrinks the file,
583      but makes it more difficult
584      for humans to read (which is not recommended in any case).</para>
585    </listitem>
586  </varlistentry>
587
588  <varlistentry id="opt.compress-pos" xreflabel="--compress-pos">
589    <term>
590      <option><![CDATA[--compress-pos=<no|yes> [default: yes] ]]></option>
591    </term>
592    <listitem>
593      <para>This option influences the output format of the profile data.
594      It specifies whether numerical positions are always specified as absolute
595      values or are allowed to be relative to previous numbers.
596      This shrinks the file size.</para>
597    </listitem>
598  </varlistentry>
599
600  <varlistentry id="opt.combine-dumps" xreflabel="--combine-dumps">
601    <term>
602      <option><![CDATA[--combine-dumps=<no|yes> [default: no] ]]></option>
603    </term>
604    <listitem>
605      <para>When enabled, when multiple profile data parts are to be
606      generated these parts are appended to the same output file.
607      Not recommended.</para>
608  </listitem>
609  </varlistentry>
610
611</variablelist>
612</sect2>
613
614<sect2 id="cl-manual.options.activity"
615       xreflabel="Activity options">
616<title>Activity options</title>
617
618<para>
619These options specify when actions relating to event counts are to
620be executed. For interactive control use callgrind_control.
621</para>
622
623<!-- start of xi:include in the manpage -->
624<variablelist id="cl.opts.list.activity">
625
626  <varlistentry id="opt.dump-every-bb" xreflabel="--dump-every-bb">
627    <term>
628      <option><![CDATA[--dump-every-bb=<count> [default: 0, never] ]]></option>
629    </term>
630    <listitem>
631      <para>Dump profile data every <option>count</option> basic blocks.
632      Whether a dump is needed is only checked when Valgrind's internal
633      scheduler is run. Therefore, the minimum setting useful is about 100000.
634      The count is a 64-bit value to make long dump periods possible.
635      </para>
636    </listitem>
637  </varlistentry>
638
639  <varlistentry id="opt.dump-before" xreflabel="--dump-before">
640    <term>
641      <option><![CDATA[--dump-before=<function> ]]></option>
642    </term>
643    <listitem>
644      <para>Dump when entering <option>function</option>.</para>
645    </listitem>
646  </varlistentry>
647
648  <varlistentry id="opt.zero-before" xreflabel="--zero-before">
649    <term>
650      <option><![CDATA[--zero-before=<function> ]]></option>
651    </term>
652    <listitem>
653      <para>Zero all costs when entering <option>function</option>.</para>
654    </listitem>
655  </varlistentry>
656
657  <varlistentry id="opt.dump-after" xreflabel="--dump-after">
658    <term>
659      <option><![CDATA[--dump-after=<function> ]]></option>
660    </term>
661    <listitem>
662      <para>Dump when leaving <option>function</option>.</para>
663    </listitem>
664  </varlistentry>
665
666</variablelist>
667<!-- end of xi:include in the manpage -->
668</sect2>
669
670<sect2 id="cl-manual.options.collection"
671       xreflabel="Data collection options">
672<title>Data collection options</title>
673
674<para>
675These options specify when events are to be aggregated into event counts.
676Also see <xref linkend="cl-manual.limits"/>.</para>
677
678<!-- start of xi:include in the manpage -->
679<variablelist id="cl.opts.list.collection">
680
681  <varlistentry id="opt.instr-atstart" xreflabel="--instr-atstart">
682    <term>
683      <option><![CDATA[--instr-atstart=<yes|no> [default: yes] ]]></option>
684    </term>
685    <listitem>
686      <para>Specify if you want Callgrind to start simulation and
687      profiling from the beginning of the program.
688      When set to <computeroutput>no</computeroutput>,
689      Callgrind will not be able
690      to collect any information, including calls, but it will have at
691      most a slowdown of around 4, which is the minimum Valgrind
692      overhead.  Instrumentation can be interactively enabled via
693      <computeroutput>callgrind_control -i on</computeroutput>.</para>
694      <para>Note that the resulting call graph will most probably not
695      contain <function>main</function>, but will contain all the
696      functions executed after instrumentation was enabled.
697      Instrumentation can also programatically enabled/disabled. See the
698      Callgrind include file
699      <computeroutput>callgrind.h</computeroutput> for the macro
700      you have to use in your source code.</para> <para>For cache
701      simulation, results will be less accurate when switching on
702      instrumentation later in the program run, as the simulator starts
703      with an empty cache at that moment.  Switch on event collection
704      later to cope with this error.</para>
705    </listitem>
706  </varlistentry>
707
708  <varlistentry id="opt.collect-atstart" xreflabel="--collect-atstart">
709    <term>
710      <option><![CDATA[--collect-atstart=<yes|no> [default: yes] ]]></option>
711    </term>
712    <listitem>
713      <para>Specify whether event collection is enabled at beginning
714      of the profile run.</para>
715      <para>To only look at parts of your program, you have two
716      possibilities:</para>
717      <orderedlist>
718      <listitem>
719        <para>Zero event counters before entering the program part you
720        want to profile, and dump the event counters to a file after
721        leaving that program part.</para>
722        </listitem>
723        <listitem>
724          <para>Switch on/off collection state as needed to only see
725          event counters happening while inside of the program part you
726          want to profile.</para>
727        </listitem>
728      </orderedlist>
729      <para>The second option can be used if the program part you want to
730      profile is called many times. Option 1, i.e. creating a lot of
731      dumps is not practical here.</para>
732      <para>Collection state can be
733      toggled at entry and exit of a given function with the
734      option <option><xref linkend="opt.toggle-collect"/></option>.  If you
735      use this option, collection
736      state should be disabled at the beginning.  Note that the
737      specification of <option>--toggle-collect</option>
738      implicitly sets
739      <option>--collect-state=no</option>.</para>
740      <para>Collection state can be toggled also by inserting the client request
741      <computeroutput>
742      <!-- commented out because it causes broken links in the man page
743      <xref linkend="cr.toggle-collect"/>;
744      -->
745      CALLGRIND_TOGGLE_COLLECT
746      ;</computeroutput>
747      at the needed code positions.</para>
748    </listitem>
749  </varlistentry>
750
751  <varlistentry id="opt.toggle-collect" xreflabel="--toggle-collect">
752    <term>
753      <option><![CDATA[--toggle-collect=<function> ]]></option>
754    </term>
755    <listitem>
756      <para>Toggle collection on entry/exit of <option>function</option>.</para>
757    </listitem>
758  </varlistentry>
759
760  <varlistentry id="opt.collect-jumps" xreflabel="--collect-jumps">
761    <term>
762      <option><![CDATA[--collect-jumps=<no|yes> [default: no] ]]></option>
763    </term>
764    <listitem>
765      <para>This specifies whether information for (conditional) jumps
766      should be collected.  As above, callgrind_annotate currently is not
767      able to show you the data.  You have to use KCachegrind to get jump
768      arrows in the annotated code.</para>
769    </listitem>
770  </varlistentry>
771
772  <varlistentry id="opt.collect-systime" xreflabel="--collect-systime">
773    <term>
774      <option><![CDATA[--collect-systime=<no|yes> [default: no] ]]></option>
775    </term>
776    <listitem>
777      <para>This specifies whether information for system call times
778      should be collected.</para>
779    </listitem>
780  </varlistentry>
781
782  <varlistentry id="clopt.collect-bus" xreflabel="--collect-bus">
783    <term>
784      <option><![CDATA[--collect-bus=<no|yes> [default: no] ]]></option>
785    </term>
786    <listitem>
787      <para>This specifies whether the number of global bus events executed
788      should be collected. The event type "Ge" is used for these events.</para>
789    </listitem>
790  </varlistentry>
791
792</variablelist>
793<!-- end of xi:include in the manpage -->
794</sect2>
795
796<sect2 id="cl-manual.options.separation"
797       xreflabel="Cost entity separation options">
798<title>Cost entity separation options</title>
799
800<para>
801These options specify how event counts should be attributed to execution
802contexts.
803For example, they specify whether the recursion level or the
804call chain leading to a function should be taken into account,
805and whether the thread ID should be considered.
806Also see <xref linkend="cl-manual.cycles"/>.</para>
807
808<!-- start of xi:include in the manpage -->
809<variablelist id="cmd-options.separation">
810
811  <varlistentry id="opt.separate-threads" xreflabel="--separate-threads">
812    <term>
813      <option><![CDATA[--separate-threads=<no|yes> [default: no] ]]></option>
814    </term>
815    <listitem>
816      <para>This option specifies whether profile data should be generated
817      separately for every thread. If yes, the file names get "-threadID"
818      appended.</para>
819    </listitem>
820  </varlistentry>
821
822  <varlistentry id="opt.separate-callers" xreflabel="--separate-callers">
823    <term>
824      <option><![CDATA[--separate-callers=<callers> [default: 0] ]]></option>
825    </term>
826    <listitem>
827      <para>Separate contexts by at most &lt;callers&gt; functions in the
828      call chain. See <xref linkend="cl-manual.cycles"/>.</para>
829    </listitem>
830  </varlistentry>
831
832  <varlistentry id="opt.separate-callers-num" xreflabel="--separate-callers2">
833    <term>
834      <option><![CDATA[--separate-callers<number>=<function> ]]></option>
835    </term>
836    <listitem>
837      <para>Separate <option>number</option> callers for <option>function</option>.
838      See <xref linkend="cl-manual.cycles"/>.</para>
839    </listitem>
840  </varlistentry>
841
842  <varlistentry id="opt.separate-recs" xreflabel="--separate-recs">
843    <term>
844      <option><![CDATA[--separate-recs=<level> [default: 2] ]]></option>
845    </term>
846    <listitem>
847      <para>Separate function recursions by at most <option>level</option> levels.
848      See <xref linkend="cl-manual.cycles"/>.</para>
849    </listitem>
850  </varlistentry>
851
852  <varlistentry id="opt.separate-recs-num" xreflabel="--separate-recs10">
853    <term>
854      <option><![CDATA[--separate-recs<number>=<function> ]]></option>
855    </term>
856    <listitem>
857      <para>Separate <option>number</option> recursions for <option>function</option>.
858      See <xref linkend="cl-manual.cycles"/>.</para>
859    </listitem>
860  </varlistentry>
861
862  <varlistentry id="opt.skip-plt" xreflabel="--skip-plt">
863    <term>
864      <option><![CDATA[--skip-plt=<no|yes> [default: yes] ]]></option>
865    </term>
866    <listitem>
867      <para>Ignore calls to/from PLT sections.</para>
868    </listitem>
869  </varlistentry>
870
871  <varlistentry id="opt.skip-direct-rec" xreflabel="--skip-direct-rec">
872    <term>
873      <option><![CDATA[--skip-direct-rec=<no|yes> [default: yes] ]]></option>
874    </term>
875    <listitem>
876      <para>Ignore direct recursions.</para>
877    </listitem>
878  </varlistentry>
879
880  <varlistentry id="opt.fn-skip" xreflabel="--fn-skip">
881    <term>
882      <option><![CDATA[--fn-skip=<function> ]]></option>
883    </term>
884    <listitem>
885      <para>Ignore calls to/from a given function.  E.g. if you have a
886      call chain A &gt; B &gt; C, and you specify function B to be
887      ignored, you will only see A &gt; C.</para>
888      <para>This is very convenient to skip functions handling callback
889      behaviour.  For example, with the signal/slot mechanism in the
890      Qt graphics library, you only want
891      to see the function emitting a signal to call the slots connected
892      to that signal. First, determine the real call chain to see the
893      functions needed to be skipped, then use this option.</para>
894    </listitem>
895  </varlistentry>
896
897<!--
898    commenting out as it is only enabled with CLG_EXPERIMENTAL.  (Nb: I had to
899    insert a space between the double dash to avoid XML comment problems.)
900
901  <varlistentry id="opt.fn-group">
902    <term>
903      <option><![CDATA[- -fn-group<number>=<function> ]]></option>
904    </term>
905    <listitem>
906      <para>Put a function into a separate group. This influences the
907      context name for cycle avoidance. All functions inside such a
908      group are treated as being the same for context name building, which
909      resembles the call chain leading to a context. By specifying function
910      groups with this option, you can shorten the context name, as functions
911      in the same group will not appear in sequence in the name. </para>
912    </listitem>
913  </varlistentry>
914-->
915
916</variablelist>
917<!-- end of xi:include in the manpage -->
918</sect2>
919
920
921<sect2 id="cl-manual.options.simulation"
922       xreflabel="Simulation options">
923<title>Simulation options</title>
924
925<!-- start of xi:include in the manpage -->
926<variablelist id="cl.opts.list.simulation">
927
928  <varlistentry id="clopt.cache-sim" xreflabel="--cache-sim">
929    <term>
930      <option><![CDATA[--cache-sim=<yes|no> [default: no] ]]></option>
931    </term>
932    <listitem>
933      <para>Specify if you want to do full cache simulation.  By default,
934      only instruction read accesses will be counted ("Ir").
935      With cache simulation, further event counters are enabled:
936      Cache misses on instruction reads ("I1mr"/"ILmr"),
937      data read accesses ("Dr") and related cache misses ("D1mr"/"DLmr"),
938      data write accesses ("Dw") and related cache misses ("D1mw"/"DLmw").
939      For more information, see <xref linkend="cg-manual"/>.
940      </para>
941    </listitem>
942  </varlistentry>
943
944  <varlistentry id="clopt.branch-sim" xreflabel="--branch-sim">
945    <term>
946      <option><![CDATA[--branch-sim=<yes|no> [default: no] ]]></option>
947    </term>
948    <listitem>
949      <para>Specify if you want to do branch prediction simulation.
950      Further event counters are enabled: Number of executed conditional
951      branches and related predictor misses ("Bc"/"Bcm"), executed indirect
952      jumps and related misses of the jump address predictor ("Bi"/"Bim").
953      </para>
954    </listitem>
955  </varlistentry>
956
957</variablelist>
958<!-- end of xi:include in the manpage -->
959</sect2>
960
961
962<sect2 id="cl-manual.options.cachesimulation"
963       xreflabel="Cache simulation options">
964<title>Cache simulation options</title>
965
966<!-- start of xi:include in the manpage -->
967<variablelist id="cl.opts.list.cachesimulation">
968
969  <varlistentry id="opt.simulate-wb" xreflabel="--simulate-wb">
970    <term>
971      <option><![CDATA[--simulate-wb=<yes|no> [default: no] ]]></option>
972    </term>
973    <listitem>
974      <para>Specify whether write-back behavior should be simulated, allowing
975      to distinguish LL caches misses with and without write backs.
976      The cache model of Cachegrind/Callgrind does not specify write-through
977      vs. write-back behavior, and this also is not relevant for the number
978      of generated miss counts. However, with explicit write-back simulation
979      it can be decided whether a miss triggers not only the loading of a new
980      cache line, but also if a write back of a dirty cache line had to take
981      place before. The new dirty miss events are ILdmr, DLdmr, and DLdmw,
982      for misses because of instruction read, data read, and data write,
983      respectively. As they produce two memory transactions, they should
984      account for a doubled time estimation in relation to a normal miss.
985      </para>
986    </listitem>
987  </varlistentry>
988
989  <varlistentry id="opt.simulate-hwpref" xreflabel="--simulate-hwpref">
990    <term>
991      <option><![CDATA[--simulate-hwpref=<yes|no> [default: no] ]]></option>
992    </term>
993    <listitem>
994      <para>Specify whether simulation of a hardware prefetcher should be
995      added which is able to detect stream access in the second level cache
996      by comparing accesses to separate to each page.
997      As the simulation can not decide about any timing issues of prefetching,
998      it is assumed that any hardware prefetch triggered succeeds before a
999      real access is done. Thus, this gives a best-case scenario by covering
1000      all possible stream accesses.</para>
1001    </listitem>
1002  </varlistentry>
1003
1004  <varlistentry id="opt.cacheuse" xreflabel="--cacheuse">
1005    <term>
1006      <option><![CDATA[--cacheuse=<yes|no> [default: no] ]]></option>
1007    </term>
1008    <listitem>
1009      <para>Specify whether cache line use should be collected. For every
1010      cache line, from loading to it being evicted, the number of accesses
1011      as well as the number of actually used bytes is determined. This
1012      behavior is related to the code which triggered loading of the cache
1013      line. In contrast to miss counters, which shows the position where
1014      the symptoms of bad cache behavior (i.e. latencies) happens, the
1015      use counters try to pinpoint at the reason (i.e. the code with the
1016      bad access behavior). The new counters are defined in a way such
1017      that worse behavior results in higher cost.
1018      AcCost1 and AcCost2 are counters showing bad temporal locality
1019      for L1 and LL caches, respectively. This is done by summing up
1020      reciprocal values of the numbers of accesses of each cache line,
1021      multiplied by 1000 (as only integer costs are allowed). E.g. for
1022      a given source line with 5 read accesses, a value of 5000 AcCost
1023      means that for every access, a new cache line was loaded and directly
1024      evicted afterwards without further accesses. Similarly, SpLoss1/2
1025      shows bad spatial locality for L1 and LL caches, respectively. It
1026      gives the <emphasis>spatial loss</emphasis> count of bytes which
1027      were loaded into cache but never accessed. It pinpoints at code
1028      accessing data in a way such that cache space is wasted. This hints
1029      at bad layout of data structures in memory. Assuming a cache line
1030      size of 64 bytes and 100 L1 misses for a given source line, the
1031      loading of 6400 bytes into L1 was triggered. If SpLoss1 shows a
1032      value of 3200 for this line, this means that half of the loaded data was
1033      never used, or using a better data layout, only half of the cache
1034      space would have been needed.
1035      Please note that for cache line use counters, it currently is
1036      not possible to provide meaningful inclusive costs. Therefore,
1037      inclusive cost of these counters should be ignored.
1038      </para>
1039    </listitem>
1040  </varlistentry>
1041
1042  <varlistentry id="opt.I1" xreflabel="--I1">
1043    <term>
1044      <option><![CDATA[--I1=<size>,<associativity>,<line size> ]]></option>
1045    </term>
1046    <listitem>
1047      <para>Specify the size, associativity and line size of the level 1
1048      instruction cache.  </para>
1049    </listitem>
1050  </varlistentry>
1051
1052  <varlistentry id="opt.D1" xreflabel="--D1">
1053    <term>
1054      <option><![CDATA[--D1=<size>,<associativity>,<line size> ]]></option>
1055    </term>
1056    <listitem>
1057      <para>Specify the size, associativity and line size of the level 1
1058      data cache.</para>
1059    </listitem>
1060  </varlistentry>
1061
1062  <varlistentry id="opt.LL" xreflabel="--LL">
1063    <term>
1064      <option><![CDATA[--LL=<size>,<associativity>,<line size> ]]></option>
1065    </term>
1066    <listitem>
1067      <para>Specify the size, associativity and line size of the last-level
1068      cache.</para>
1069    </listitem>
1070  </varlistentry>
1071</variablelist>
1072<!-- end of xi:include in the manpage -->
1073
1074</sect2>
1075
1076</sect1>
1077
1078<sect1 id="cl-manual.clientrequests" xreflabel="Client request reference">
1079<title>Callgrind specific client requests</title>
1080
1081<para>Callgrind provides the following specific client requests in
1082<filename>callgrind.h</filename>.  See that file for the exact details of
1083their arguments.</para>
1084
1085<variablelist id="cl.clientrequests.list">
1086
1087  <varlistentry id="cr.dump-stats" xreflabel="CALLGRIND_DUMP_STATS">
1088    <term>
1089      <computeroutput>CALLGRIND_DUMP_STATS</computeroutput>
1090    </term>
1091    <listitem>
1092      <para>Force generation of a profile dump at specified position
1093      in code, for the current thread only. Written counters will be reset
1094      to zero.</para>
1095    </listitem>
1096  </varlistentry>
1097
1098  <varlistentry id="cr.dump-stats-at" xreflabel="CALLGRIND_DUMP_STATS_AT">
1099    <term>
1100      <computeroutput>CALLGRIND_DUMP_STATS_AT(string)</computeroutput>
1101    </term>
1102    <listitem>
1103      <para>Same as <computeroutput>CALLGRIND_DUMP_STATS</computeroutput>,
1104      but allows to specify a string to be able to distinguish profile
1105      dumps.</para>
1106    </listitem>
1107  </varlistentry>
1108
1109  <varlistentry id="cr.zero-stats" xreflabel="CALLGRIND_ZERO_STATS">
1110    <term>
1111      <computeroutput>CALLGRIND_ZERO_STATS</computeroutput>
1112    </term>
1113    <listitem>
1114      <para>Reset the profile counters for the current thread to zero.</para>
1115    </listitem>
1116  </varlistentry>
1117
1118  <varlistentry id="cr.toggle-collect" xreflabel="CALLGRIND_TOGGLE_COLLECT">
1119    <term>
1120      <computeroutput>CALLGRIND_TOGGLE_COLLECT</computeroutput>
1121    </term>
1122    <listitem>
1123      <para>Toggle the collection state. This allows to ignore events
1124      with regard to profile counters. See also options
1125      <option><xref linkend="opt.collect-atstart"/></option> and
1126      <option><xref linkend="opt.toggle-collect"/></option>.</para>
1127    </listitem>
1128  </varlistentry>
1129
1130  <varlistentry id="cr.start-instr" xreflabel="CALLGRIND_START_INSTRUMENTATION">
1131    <term>
1132      <computeroutput>CALLGRIND_START_INSTRUMENTATION</computeroutput>
1133    </term>
1134    <listitem>
1135      <para>Start full Callgrind instrumentation if not already enabled.
1136      When cache simulation is done, this will flush the simulated cache
1137      and lead to an artifical cache warmup phase afterwards with
1138      cache misses which would not have happened in reality.  See also
1139      option <option><xref linkend="opt.instr-atstart"/></option>.</para>
1140    </listitem>
1141  </varlistentry>
1142
1143  <varlistentry id="cr.stop-instr" xreflabel="CALLGRIND_STOP_INSTRUMENTATION">
1144    <term>
1145      <computeroutput>CALLGRIND_STOP_INSTRUMENTATION</computeroutput>
1146    </term>
1147    <listitem>
1148      <para>Stop full Callgrind instrumentation if not already disabled.
1149      This flushes Valgrinds translation cache, and does no additional
1150      instrumentation afterwards: it effectivly will run at the same
1151      speed as Nulgrind, i.e. at minimal slowdown. Use this to
1152      speed up the Callgrind run for uninteresting code parts. Use
1153      <computeroutput><xref linkend="cr.start-instr"/></computeroutput> to
1154      enable instrumentation again.  See also option
1155      <option><xref linkend="opt.instr-atstart"/></option>.</para>
1156    </listitem>
1157  </varlistentry>
1158
1159</variablelist>
1160
1161</sect1>
1162
1163
1164
1165<sect1 id="cl-manual.callgrind_annotate-options" xreflabel="callgrind_annotate Command-line Options">
1166<title>callgrind_annotate Command-line Options</title>
1167
1168<!-- start of xi:include in the manpage -->
1169<variablelist id="callgrind_annotate.opts.list">
1170
1171  <varlistentry>
1172    <term><option>-h --help</option></term>
1173    <listitem>
1174      <para>Show summary of options.</para>
1175    </listitem>
1176  </varlistentry>
1177
1178  <varlistentry>
1179    <term><option>--version</option></term>
1180    <listitem>
1181      <para>Show version of callgrind_annotate.</para>
1182    </listitem>
1183  </varlistentry>
1184
1185  <varlistentry>
1186    <term>
1187      <option>--show=A,B,C [default: all]</option>
1188    </term>
1189    <listitem>
1190      <para>Only show figures for events A,B,C.</para>
1191    </listitem>
1192  </varlistentry>
1193
1194  <varlistentry>
1195    <term>
1196      <option>--sort=A,B,C</option>
1197    </term>
1198    <listitem>
1199      <para>Sort columns by events A,B,C [event column order].</para>
1200    </listitem>
1201  </varlistentry>
1202
1203  <varlistentry>
1204    <term>
1205      <option><![CDATA[--threshold=<0--100> [default: 99%] ]]></option>
1206    </term>
1207    <listitem>
1208      <para>Percentage of counts (of primary sort event) we are
1209      interested in.</para>
1210    </listitem>
1211  </varlistentry>
1212
1213  <varlistentry>
1214    <term>
1215      <option><![CDATA[--auto=<yes|no> [default: no] ]]></option>
1216    </term>
1217    <listitem>
1218      <para>Annotate all source files containing functions that helped
1219      reach the event count threshold.</para>
1220    </listitem>
1221  </varlistentry>
1222
1223  <varlistentry>
1224    <term>
1225      <option>--context=N [default: 8] </option>
1226    </term>
1227    <listitem>
1228      <para>Print N lines of context before and after annotated
1229      lines.</para>
1230    </listitem>
1231  </varlistentry>
1232
1233  <varlistentry>
1234    <term>
1235      <option><![CDATA[--inclusive=<yes|no> [default: no] ]]></option>
1236    </term>
1237    <listitem>
1238      <para>Add subroutine costs to functions calls.</para>
1239    </listitem>
1240  </varlistentry>
1241
1242  <varlistentry>
1243    <term>
1244      <option><![CDATA[--tree=<none|caller|calling|both> [default: none] ]]></option>
1245    </term>
1246    <listitem>
1247      <para>Print for each function their callers, the called functions
1248      or both.</para>
1249    </listitem>
1250  </varlistentry>
1251
1252  <varlistentry>
1253    <term>
1254      <option><![CDATA[-I, --include=<dir> ]]></option>
1255    </term>
1256    <listitem>
1257      <para>Add <option>dir</option> to the list of directories to search
1258      for source files.</para>
1259  </listitem>
1260  </varlistentry>
1261
1262</variablelist>
1263<!-- end of xi:include in the manpage -->
1264
1265
1266</sect1>
1267
1268
1269
1270
1271<sect1 id="cl-manual.callgrind_control-options" xreflabel="callgrind_control Command-line Options">
1272<title>callgrind_control Command-line Options</title>
1273
1274<para>By default, callgrind_control acts on all programs run by the
1275  current user under Callgrind.  It is possible to limit the actions to
1276  specified Callgrind runs by providing a list of pids or program names as
1277  argument.  The default action is to give some brief information about the
1278  applications being run under Callgrind.</para>
1279
1280<!-- start of xi:include in the manpage -->
1281<variablelist id="callgrind_control.opts.list">
1282
1283  <varlistentry>
1284    <term><option>-h --help</option></term>
1285    <listitem>
1286      <para>Show a short description, usage, and summary of options.</para>
1287    </listitem>
1288  </varlistentry>
1289
1290  <varlistentry>
1291    <term><option>--version</option></term>
1292    <listitem>
1293      <para>Show version of callgrind_control.</para>
1294    </listitem>
1295  </varlistentry>
1296
1297  <varlistentry>
1298    <term><option>-l --long</option></term>
1299    <listitem>
1300      <para>Show also the working directory, in addition to the brief
1301      information given by default.
1302      </para>
1303    </listitem>
1304  </varlistentry>
1305
1306  <varlistentry>
1307    <term><option>-s --stat</option></term>
1308    <listitem>
1309      <para>Show statistics information about active Callgrind runs.</para>
1310    </listitem>
1311  </varlistentry>
1312
1313  <varlistentry>
1314    <term><option>-b --back</option></term>
1315    <listitem>
1316      <para>Show stack/back traces of each thread in active Callgrind runs. For
1317      each active function in the stack trace, also the number of invocations
1318      since program start (or last dump) is shown. This option can be
1319      combined with -e to show inclusive cost of active functions.</para>
1320    </listitem>
1321  </varlistentry>
1322
1323  <varlistentry>
1324    <term><option><![CDATA[-e [A,B,...] ]]></option> (default: all)</term>
1325    <listitem>
1326      <para>Show the current per-thread, exclusive cost values of event
1327      counters. If no explicit event names are given, figures for all event
1328      types which are collected in the given Callgrind run are
1329      shown. Otherwise, only figures for event types A, B, ... are shown. If
1330      this option is combined with -b, inclusive cost for the functions of
1331      each active stack frame is provided, too.
1332      </para>
1333    </listitem>
1334  </varlistentry>
1335
1336  <varlistentry>
1337    <term><option><![CDATA[--dump[=<desc>] ]]></option> (default: no description)</term>
1338    <listitem>
1339      <para>Request the dumping of profile information. Optionally, a
1340      description can be specified which is written into the dump as part of
1341      the information giving the reason which triggered the dump action. This
1342      can be used to distinguish multiple dumps.</para>
1343    </listitem>
1344  </varlistentry>
1345
1346  <varlistentry>
1347    <term><option>-z --zero</option></term>
1348    <listitem>
1349      <para>Zero all event counters.</para>
1350    </listitem>
1351  </varlistentry>
1352
1353  <varlistentry>
1354    <term><option>-k --kill</option></term>
1355    <listitem>
1356      <para>Force a Callgrind run to be terminated.</para>
1357    </listitem>
1358  </varlistentry>
1359
1360  <varlistentry>
1361    <term><option><![CDATA[--instr=<on|off>]]></option></term>
1362    <listitem>
1363      <para>Switch instrumentation mode on or off. If a Callgrind run has
1364      instrumentation disabled, no simulation is done and no events are
1365      counted. This is useful to skip uninteresting program parts, as there
1366      is much less slowdown (same as with the Valgrind tool "none"). See also
1367      the Callgrind option <option>--instr-atstart</option>.</para>
1368    </listitem>
1369  </varlistentry>
1370
1371  <varlistentry>
1372    <term><option><![CDATA[-w=<dir>]]></option></term>
1373    <listitem>
1374      <para>Specify the startup directory of an active Callgrind run. On some
1375      systems, active Callgrind runs can not be detected. To be able to
1376      control these, the failed auto-detection can be worked around by
1377      specifying the directory where a Callgrind run was started.</para>
1378    </listitem>
1379  </varlistentry>
1380</variablelist>
1381<!-- end of xi:include in the manpage -->
1382
1383</sect1>
1384
1385</chapter>
1386