• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_DOUBLE_H_
29 #define V8_DOUBLE_H_
30 
31 #include "diy-fp.h"
32 
33 namespace v8 {
34 namespace internal {
35 
36 // We assume that doubles and uint64_t have the same endianness.
double_to_uint64(double d)37 static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
uint64_to_double(uint64_t d64)38 static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
39 
40 // Helper functions for doubles.
41 class Double {
42  public:
43   static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
44   static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
45   static const uint64_t kSignificandMask =
46       V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
47   static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
48   static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
49   static const int kSignificandSize = 53;
50 
Double()51   Double() : d64_(0) {}
Double(double d)52   explicit Double(double d) : d64_(double_to_uint64(d)) {}
Double(uint64_t d64)53   explicit Double(uint64_t d64) : d64_(d64) {}
Double(DiyFp diy_fp)54   explicit Double(DiyFp diy_fp)
55     : d64_(DiyFpToUint64(diy_fp)) {}
56 
57   // The value encoded by this Double must be greater or equal to +0.0.
58   // It must not be special (infinity, or NaN).
AsDiyFp()59   DiyFp AsDiyFp() const {
60     ASSERT(Sign() > 0);
61     ASSERT(!IsSpecial());
62     return DiyFp(Significand(), Exponent());
63   }
64 
65   // The value encoded by this Double must be strictly greater than 0.
AsNormalizedDiyFp()66   DiyFp AsNormalizedDiyFp() const {
67     ASSERT(value() > 0.0);
68     uint64_t f = Significand();
69     int e = Exponent();
70 
71     // The current double could be a denormal.
72     while ((f & kHiddenBit) == 0) {
73       f <<= 1;
74       e--;
75     }
76     // Do the final shifts in one go.
77     f <<= DiyFp::kSignificandSize - kSignificandSize;
78     e -= DiyFp::kSignificandSize - kSignificandSize;
79     return DiyFp(f, e);
80   }
81 
82   // Returns the double's bit as uint64.
AsUint64()83   uint64_t AsUint64() const {
84     return d64_;
85   }
86 
87   // Returns the next greater double. Returns +infinity on input +infinity.
NextDouble()88   double NextDouble() const {
89     if (d64_ == kInfinity) return Double(kInfinity).value();
90     if (Sign() < 0 && Significand() == 0) {
91       // -0.0
92       return 0.0;
93     }
94     if (Sign() < 0) {
95       return Double(d64_ - 1).value();
96     } else {
97       return Double(d64_ + 1).value();
98     }
99   }
100 
Exponent()101   int Exponent() const {
102     if (IsDenormal()) return kDenormalExponent;
103 
104     uint64_t d64 = AsUint64();
105     int biased_e =
106         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
107     return biased_e - kExponentBias;
108   }
109 
Significand()110   uint64_t Significand() const {
111     uint64_t d64 = AsUint64();
112     uint64_t significand = d64 & kSignificandMask;
113     if (!IsDenormal()) {
114       return significand + kHiddenBit;
115     } else {
116       return significand;
117     }
118   }
119 
120   // Returns true if the double is a denormal.
IsDenormal()121   bool IsDenormal() const {
122     uint64_t d64 = AsUint64();
123     return (d64 & kExponentMask) == 0;
124   }
125 
126   // We consider denormals not to be special.
127   // Hence only Infinity and NaN are special.
IsSpecial()128   bool IsSpecial() const {
129     uint64_t d64 = AsUint64();
130     return (d64 & kExponentMask) == kExponentMask;
131   }
132 
IsNan()133   bool IsNan() const {
134     uint64_t d64 = AsUint64();
135     return ((d64 & kExponentMask) == kExponentMask) &&
136         ((d64 & kSignificandMask) != 0);
137   }
138 
IsInfinite()139   bool IsInfinite() const {
140     uint64_t d64 = AsUint64();
141     return ((d64 & kExponentMask) == kExponentMask) &&
142         ((d64 & kSignificandMask) == 0);
143   }
144 
Sign()145   int Sign() const {
146     uint64_t d64 = AsUint64();
147     return (d64 & kSignMask) == 0? 1: -1;
148   }
149 
150   // Precondition: the value encoded by this Double must be greater or equal
151   // than +0.0.
UpperBoundary()152   DiyFp UpperBoundary() const {
153     ASSERT(Sign() > 0);
154     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
155   }
156 
157   // Returns the two boundaries of this.
158   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
159   // exponent as m_plus.
160   // Precondition: the value encoded by this Double must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)161   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
162     ASSERT(value() > 0.0);
163     DiyFp v = this->AsDiyFp();
164     bool significand_is_zero = (v.f() == kHiddenBit);
165     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
166     DiyFp m_minus;
167     if (significand_is_zero && v.e() != kDenormalExponent) {
168       // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
169       // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
170       // at a distance of 1e8.
171       // The only exception is for the smallest normal: the largest denormal is
172       // at the same distance as its successor.
173       // Note: denormals have the same exponent as the smallest normals.
174       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
175     } else {
176       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
177     }
178     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
179     m_minus.set_e(m_plus.e());
180     *out_m_plus = m_plus;
181     *out_m_minus = m_minus;
182   }
183 
value()184   double value() const { return uint64_to_double(d64_); }
185 
186   // Returns the significand size for a given order of magnitude.
187   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
188   // This function returns the number of significant binary digits v will have
189   // once its encoded into a double. In almost all cases this is equal to
190   // kSignificandSize. The only exception are denormals. They start with leading
191   // zeroes and their effective significand-size is hence smaller.
SignificandSizeForOrderOfMagnitude(int order)192   static int SignificandSizeForOrderOfMagnitude(int order) {
193     if (order >= (kDenormalExponent + kSignificandSize)) {
194       return kSignificandSize;
195     }
196     if (order <= kDenormalExponent) return 0;
197     return order - kDenormalExponent;
198   }
199 
200  private:
201   static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
202   static const int kDenormalExponent = -kExponentBias + 1;
203   static const int kMaxExponent = 0x7FF - kExponentBias;
204   static const uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
205 
206   const uint64_t d64_;
207 
DiyFpToUint64(DiyFp diy_fp)208   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
209     uint64_t significand = diy_fp.f();
210     int exponent = diy_fp.e();
211     while (significand > kHiddenBit + kSignificandMask) {
212       significand >>= 1;
213       exponent++;
214     }
215     if (exponent >= kMaxExponent) {
216       return kInfinity;
217     }
218     if (exponent < kDenormalExponent) {
219       return 0;
220     }
221     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
222       significand <<= 1;
223       exponent--;
224     }
225     uint64_t biased_exponent;
226     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
227       biased_exponent = 0;
228     } else {
229       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
230     }
231     return (significand & kSignificandMask) |
232         (biased_exponent << kPhysicalSignificandSize);
233   }
234 };
235 
236 } }  // namespace v8::internal
237 
238 #endif  // V8_DOUBLE_H_
239