• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #ifndef lint
17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.8 2002/05/28 18:15:04 alfred Exp $";
18 #endif
19 
20 #include "math.h"
21 #include "math_private.h"
22 
23 static const float
24 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
25 two   =  2.0000000000e+00, /* 0x40000000 */
26 one   =  1.0000000000e+00; /* 0x3F800000 */
27 
28 static const float zero  =  0.0000000000e+00;
29 
30 float
__ieee754_jnf(int n,float x)31 __ieee754_jnf(int n, float x)
32 {
33 	int32_t i,hx,ix, sgn;
34 	float a, b, temp, di;
35 	float z, w;
36 
37     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
38      * Thus, J(-n,x) = J(n,-x)
39      */
40 	GET_FLOAT_WORD(hx,x);
41 	ix = 0x7fffffff&hx;
42     /* if J(n,NaN) is NaN */
43 	if(ix>0x7f800000) return x+x;
44 	if(n<0){
45 		n = -n;
46 		x = -x;
47 		hx ^= 0x80000000;
48 	}
49 	if(n==0) return(__ieee754_j0f(x));
50 	if(n==1) return(__ieee754_j1f(x));
51 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
52 	x = fabsf(x);
53 	if(ix==0||ix>=0x7f800000) 	/* if x is 0 or inf */
54 	    b = zero;
55 	else if((float)n<=x) {
56 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
57 	    a = __ieee754_j0f(x);
58 	    b = __ieee754_j1f(x);
59 	    for(i=1;i<n;i++){
60 		temp = b;
61 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
62 		a = temp;
63 	    }
64 	} else {
65 	    if(ix<0x30800000) {	/* x < 2**-29 */
66     /* x is tiny, return the first Taylor expansion of J(n,x)
67      * J(n,x) = 1/n!*(x/2)^n  - ...
68      */
69 		if(n>33)	/* underflow */
70 		    b = zero;
71 		else {
72 		    temp = x*(float)0.5; b = temp;
73 		    for (a=one,i=2;i<=n;i++) {
74 			a *= (float)i;		/* a = n! */
75 			b *= temp;		/* b = (x/2)^n */
76 		    }
77 		    b = b/a;
78 		}
79 	    } else {
80 		/* use backward recurrence */
81 		/* 			x      x^2      x^2
82 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
83 		 *			2n  - 2(n+1) - 2(n+2)
84 		 *
85 		 * 			1      1        1
86 		 *  (for large x)   =  ----  ------   ------   .....
87 		 *			2n   2(n+1)   2(n+2)
88 		 *			-- - ------ - ------ -
89 		 *			 x     x         x
90 		 *
91 		 * Let w = 2n/x and h=2/x, then the above quotient
92 		 * is equal to the continued fraction:
93 		 *		    1
94 		 *	= -----------------------
95 		 *		       1
96 		 *	   w - -----------------
97 		 *			  1
98 		 * 	        w+h - ---------
99 		 *		       w+2h - ...
100 		 *
101 		 * To determine how many terms needed, let
102 		 * Q(0) = w, Q(1) = w(w+h) - 1,
103 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
104 		 * When Q(k) > 1e4	good for single
105 		 * When Q(k) > 1e9	good for double
106 		 * When Q(k) > 1e17	good for quadruple
107 		 */
108 	    /* determine k */
109 		float t,v;
110 		float q0,q1,h,tmp; int32_t k,m;
111 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
112 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
113 		while(q1<(float)1.0e9) {
114 			k += 1; z += h;
115 			tmp = z*q1 - q0;
116 			q0 = q1;
117 			q1 = tmp;
118 		}
119 		m = n+n;
120 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
121 		a = t;
122 		b = one;
123 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
124 		 *  Hence, if n*(log(2n/x)) > ...
125 		 *  single 8.8722839355e+01
126 		 *  double 7.09782712893383973096e+02
127 		 *  long double 1.1356523406294143949491931077970765006170e+04
128 		 *  then recurrent value may overflow and the result is
129 		 *  likely underflow to zero
130 		 */
131 		tmp = n;
132 		v = two/x;
133 		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
134 		if(tmp<(float)8.8721679688e+01) {
135 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
136 		        temp = b;
137 			b *= di;
138 			b  = b/x - a;
139 		        a = temp;
140 			di -= two;
141 	     	    }
142 		} else {
143 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
144 		        temp = b;
145 			b *= di;
146 			b  = b/x - a;
147 		        a = temp;
148 			di -= two;
149 		    /* scale b to avoid spurious overflow */
150 			if(b>(float)1e10) {
151 			    a /= b;
152 			    t /= b;
153 			    b  = one;
154 			}
155 	     	    }
156 		}
157 	    	b = (t*__ieee754_j0f(x)/b);
158 	    }
159 	}
160 	if(sgn==1) return -b; else return b;
161 }
162 
163 float
__ieee754_ynf(int n,float x)164 __ieee754_ynf(int n, float x)
165 {
166 	int32_t i,hx,ix,ib;
167 	int32_t sign;
168 	float a, b, temp;
169 
170 	GET_FLOAT_WORD(hx,x);
171 	ix = 0x7fffffff&hx;
172     /* if Y(n,NaN) is NaN */
173 	if(ix>0x7f800000) return x+x;
174 	if(ix==0) return -one/zero;
175 	if(hx<0) return zero/zero;
176 	sign = 1;
177 	if(n<0){
178 		n = -n;
179 		sign = 1 - ((n&1)<<1);
180 	}
181 	if(n==0) return(__ieee754_y0f(x));
182 	if(n==1) return(sign*__ieee754_y1f(x));
183 	if(ix==0x7f800000) return zero;
184 
185 	a = __ieee754_y0f(x);
186 	b = __ieee754_y1f(x);
187 	/* quit if b is -inf */
188 	GET_FLOAT_WORD(ib,b);
189 	for(i=1; i<n && (((uint32_t)ib) != 0xff800000); i++){
190 	    temp = b;
191 	    b = ((float)(i+i)/x)*b - a;
192 	    GET_FLOAT_WORD(ib,b);
193 	    a = temp;
194 	}
195 	if(sign>0) return b; else return -b;
196 }
197