• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "fast-dtoa.h"
31 
32 #include "cached-powers.h"
33 #include "diy-fp.h"
34 #include "double.h"
35 
36 namespace v8 {
37 namespace internal {
38 
39 // The minimal and maximal target exponent define the range of w's binary
40 // exponent, where 'w' is the result of multiplying the input by a cached power
41 // of ten.
42 //
43 // A different range might be chosen on a different platform, to optimize digit
44 // generation, but a smaller range requires more powers of ten to be cached.
45 static const int kMinimalTargetExponent = -60;
46 static const int kMaximalTargetExponent = -32;
47 
48 
49 // Adjusts the last digit of the generated number, and screens out generated
50 // solutions that may be inaccurate. A solution may be inaccurate if it is
51 // outside the safe interval, or if we ctannot prove that it is closer to the
52 // input than a neighboring representation of the same length.
53 //
54 // Input: * buffer containing the digits of too_high / 10^kappa
55 //        * the buffer's length
56 //        * distance_too_high_w == (too_high - w).f() * unit
57 //        * unsafe_interval == (too_high - too_low).f() * unit
58 //        * rest = (too_high - buffer * 10^kappa).f() * unit
59 //        * ten_kappa = 10^kappa * unit
60 //        * unit = the common multiplier
61 // Output: returns true if the buffer is guaranteed to contain the closest
62 //    representable number to the input.
63 //  Modifies the generated digits in the buffer to approach (round towards) w.
RoundWeed(Vector<char> buffer,int length,uint64_t distance_too_high_w,uint64_t unsafe_interval,uint64_t rest,uint64_t ten_kappa,uint64_t unit)64 static bool RoundWeed(Vector<char> buffer,
65                       int length,
66                       uint64_t distance_too_high_w,
67                       uint64_t unsafe_interval,
68                       uint64_t rest,
69                       uint64_t ten_kappa,
70                       uint64_t unit) {
71   uint64_t small_distance = distance_too_high_w - unit;
72   uint64_t big_distance = distance_too_high_w + unit;
73   // Let w_low  = too_high - big_distance, and
74   //     w_high = too_high - small_distance.
75   // Note: w_low < w < w_high
76   //
77   // The real w (* unit) must lie somewhere inside the interval
78   // ]w_low; w_high[ (often written as "(w_low; w_high)")
79 
80   // Basically the buffer currently contains a number in the unsafe interval
81   // ]too_low; too_high[ with too_low < w < too_high
82   //
83   //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
84   //                     ^v 1 unit            ^      ^                 ^      ^
85   //  boundary_high ---------------------     .      .                 .      .
86   //                     ^v 1 unit            .      .                 .      .
87   //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
88   //                                          .      .         ^       .      .
89   //                                          .  big_distance  .       .      .
90   //                                          .      .         .       .    rest
91   //                              small_distance     .         .       .      .
92   //                                          v      .         .       .      .
93   //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
94   //                     ^v 1 unit                   .         .       .      .
95   //  w ----------------------------------------     .         .       .      .
96   //                     ^v 1 unit                   v         .       .      .
97   //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
98   //                                                           .       .      v
99   //  buffer --------------------------------------------------+-------+--------
100   //                                                           .       .
101   //                                                  safe_interval    .
102   //                                                           v       .
103   //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
104   //                     ^v 1 unit                                     .
105   //  boundary_low -------------------------                     unsafe_interval
106   //                     ^v 1 unit                                     v
107   //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
108   //
109   //
110   // Note that the value of buffer could lie anywhere inside the range too_low
111   // to too_high.
112   //
113   // boundary_low, boundary_high and w are approximations of the real boundaries
114   // and v (the input number). They are guaranteed to be precise up to one unit.
115   // In fact the error is guaranteed to be strictly less than one unit.
116   //
117   // Anything that lies outside the unsafe interval is guaranteed not to round
118   // to v when read again.
119   // Anything that lies inside the safe interval is guaranteed to round to v
120   // when read again.
121   // If the number inside the buffer lies inside the unsafe interval but not
122   // inside the safe interval then we simply do not know and bail out (returning
123   // false).
124   //
125   // Similarly we have to take into account the imprecision of 'w' when finding
126   // the closest representation of 'w'. If we have two potential
127   // representations, and one is closer to both w_low and w_high, then we know
128   // it is closer to the actual value v.
129   //
130   // By generating the digits of too_high we got the largest (closest to
131   // too_high) buffer that is still in the unsafe interval. In the case where
132   // w_high < buffer < too_high we try to decrement the buffer.
133   // This way the buffer approaches (rounds towards) w.
134   // There are 3 conditions that stop the decrementation process:
135   //   1) the buffer is already below w_high
136   //   2) decrementing the buffer would make it leave the unsafe interval
137   //   3) decrementing the buffer would yield a number below w_high and farther
138   //      away than the current number. In other words:
139   //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
140   // Instead of using the buffer directly we use its distance to too_high.
141   // Conceptually rest ~= too_high - buffer
142   // We need to do the following tests in this order to avoid over- and
143   // underflows.
144   ASSERT(rest <= unsafe_interval);
145   while (rest < small_distance &&  // Negated condition 1
146          unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
147          (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
148           small_distance - rest >= rest + ten_kappa - small_distance)) {
149     buffer[length - 1]--;
150     rest += ten_kappa;
151   }
152 
153   // We have approached w+ as much as possible. We now test if approaching w-
154   // would require changing the buffer. If yes, then we have two possible
155   // representations close to w, but we cannot decide which one is closer.
156   if (rest < big_distance &&
157       unsafe_interval - rest >= ten_kappa &&
158       (rest + ten_kappa < big_distance ||
159        big_distance - rest > rest + ten_kappa - big_distance)) {
160     return false;
161   }
162 
163   // Weeding test.
164   //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
165   //   Since too_low = too_high - unsafe_interval this is equivalent to
166   //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
167   //   Conceptually we have: rest ~= too_high - buffer
168   return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
169 }
170 
171 
172 // Rounds the buffer upwards if the result is closer to v by possibly adding
173 // 1 to the buffer. If the precision of the calculation is not sufficient to
174 // round correctly, return false.
175 // The rounding might shift the whole buffer in which case the kappa is
176 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
177 //
178 // If 2*rest > ten_kappa then the buffer needs to be round up.
179 // rest can have an error of +/- 1 unit. This function accounts for the
180 // imprecision and returns false, if the rounding direction cannot be
181 // unambiguously determined.
182 //
183 // Precondition: rest < ten_kappa.
RoundWeedCounted(Vector<char> buffer,int length,uint64_t rest,uint64_t ten_kappa,uint64_t unit,int * kappa)184 static bool RoundWeedCounted(Vector<char> buffer,
185                              int length,
186                              uint64_t rest,
187                              uint64_t ten_kappa,
188                              uint64_t unit,
189                              int* kappa) {
190   ASSERT(rest < ten_kappa);
191   // The following tests are done in a specific order to avoid overflows. They
192   // will work correctly with any uint64 values of rest < ten_kappa and unit.
193   //
194   // If the unit is too big, then we don't know which way to round. For example
195   // a unit of 50 means that the real number lies within rest +/- 50. If
196   // 10^kappa == 40 then there is no way to tell which way to round.
197   if (unit >= ten_kappa) return false;
198   // Even if unit is just half the size of 10^kappa we are already completely
199   // lost. (And after the previous test we know that the expression will not
200   // over/underflow.)
201   if (ten_kappa - unit <= unit) return false;
202   // If 2 * (rest + unit) <= 10^kappa we can safely round down.
203   if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
204     return true;
205   }
206   // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
207   if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
208     // Increment the last digit recursively until we find a non '9' digit.
209     buffer[length - 1]++;
210     for (int i = length - 1; i > 0; --i) {
211       if (buffer[i] != '0' + 10) break;
212       buffer[i] = '0';
213       buffer[i - 1]++;
214     }
215     // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
216     // exception of the first digit all digits are now '0'. Simply switch the
217     // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
218     // the power (the kappa) is increased.
219     if (buffer[0] == '0' + 10) {
220       buffer[0] = '1';
221       (*kappa) += 1;
222     }
223     return true;
224   }
225   return false;
226 }
227 
228 
229 static const uint32_t kTen4 = 10000;
230 static const uint32_t kTen5 = 100000;
231 static const uint32_t kTen6 = 1000000;
232 static const uint32_t kTen7 = 10000000;
233 static const uint32_t kTen8 = 100000000;
234 static const uint32_t kTen9 = 1000000000;
235 
236 // Returns the biggest power of ten that is less than or equal than the given
237 // number. We furthermore receive the maximum number of bits 'number' has.
238 // If number_bits == 0 then 0^-1 is returned
239 // The number of bits must be <= 32.
240 // Precondition: number < (1 << (number_bits + 1)).
BiggestPowerTen(uint32_t number,int number_bits,uint32_t * power,int * exponent)241 static void BiggestPowerTen(uint32_t number,
242                             int number_bits,
243                             uint32_t* power,
244                             int* exponent) {
245   switch (number_bits) {
246     case 32:
247     case 31:
248     case 30:
249       if (kTen9 <= number) {
250         *power = kTen9;
251         *exponent = 9;
252         break;
253       }  // else fallthrough
254     case 29:
255     case 28:
256     case 27:
257       if (kTen8 <= number) {
258         *power = kTen8;
259         *exponent = 8;
260         break;
261       }  // else fallthrough
262     case 26:
263     case 25:
264     case 24:
265       if (kTen7 <= number) {
266         *power = kTen7;
267         *exponent = 7;
268         break;
269       }  // else fallthrough
270     case 23:
271     case 22:
272     case 21:
273     case 20:
274       if (kTen6 <= number) {
275         *power = kTen6;
276         *exponent = 6;
277         break;
278       }  // else fallthrough
279     case 19:
280     case 18:
281     case 17:
282       if (kTen5 <= number) {
283         *power = kTen5;
284         *exponent = 5;
285         break;
286       }  // else fallthrough
287     case 16:
288     case 15:
289     case 14:
290       if (kTen4 <= number) {
291         *power = kTen4;
292         *exponent = 4;
293         break;
294       }  // else fallthrough
295     case 13:
296     case 12:
297     case 11:
298     case 10:
299       if (1000 <= number) {
300         *power = 1000;
301         *exponent = 3;
302         break;
303       }  // else fallthrough
304     case 9:
305     case 8:
306     case 7:
307       if (100 <= number) {
308         *power = 100;
309         *exponent = 2;
310         break;
311       }  // else fallthrough
312     case 6:
313     case 5:
314     case 4:
315       if (10 <= number) {
316         *power = 10;
317         *exponent = 1;
318         break;
319       }  // else fallthrough
320     case 3:
321     case 2:
322     case 1:
323       if (1 <= number) {
324         *power = 1;
325         *exponent = 0;
326         break;
327       }  // else fallthrough
328     case 0:
329       *power = 0;
330       *exponent = -1;
331       break;
332     default:
333       // Following assignments are here to silence compiler warnings.
334       *power = 0;
335       *exponent = 0;
336       UNREACHABLE();
337   }
338 }
339 
340 
341 // Generates the digits of input number w.
342 // w is a floating-point number (DiyFp), consisting of a significand and an
343 // exponent. Its exponent is bounded by kMinimalTargetExponent and
344 // kMaximalTargetExponent.
345 //       Hence -60 <= w.e() <= -32.
346 //
347 // Returns false if it fails, in which case the generated digits in the buffer
348 // should not be used.
349 // Preconditions:
350 //  * low, w and high are correct up to 1 ulp (unit in the last place). That
351 //    is, their error must be less than a unit of their last digits.
352 //  * low.e() == w.e() == high.e()
353 //  * low < w < high, and taking into account their error: low~ <= high~
354 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
355 // Postconditions: returns false if procedure fails.
356 //   otherwise:
357 //     * buffer is not null-terminated, but len contains the number of digits.
358 //     * buffer contains the shortest possible decimal digit-sequence
359 //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
360 //       correct values of low and high (without their error).
361 //     * if more than one decimal representation gives the minimal number of
362 //       decimal digits then the one closest to W (where W is the correct value
363 //       of w) is chosen.
364 // Remark: this procedure takes into account the imprecision of its input
365 //   numbers. If the precision is not enough to guarantee all the postconditions
366 //   then false is returned. This usually happens rarely (~0.5%).
367 //
368 // Say, for the sake of example, that
369 //   w.e() == -48, and w.f() == 0x1234567890abcdef
370 // w's value can be computed by w.f() * 2^w.e()
371 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
372 //  -> w's integral part is 0x1234
373 //  w's fractional part is therefore 0x567890abcdef.
374 // Printing w's integral part is easy (simply print 0x1234 in decimal).
375 // In order to print its fraction we repeatedly multiply the fraction by 10 and
376 // get each digit. Example the first digit after the point would be computed by
377 //   (0x567890abcdef * 10) >> 48. -> 3
378 // The whole thing becomes slightly more complicated because we want to stop
379 // once we have enough digits. That is, once the digits inside the buffer
380 // represent 'w' we can stop. Everything inside the interval low - high
381 // represents w. However we have to pay attention to low, high and w's
382 // imprecision.
DigitGen(DiyFp low,DiyFp w,DiyFp high,Vector<char> buffer,int * length,int * kappa)383 static bool DigitGen(DiyFp low,
384                      DiyFp w,
385                      DiyFp high,
386                      Vector<char> buffer,
387                      int* length,
388                      int* kappa) {
389   ASSERT(low.e() == w.e() && w.e() == high.e());
390   ASSERT(low.f() + 1 <= high.f() - 1);
391   ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
392   // low, w and high are imprecise, but by less than one ulp (unit in the last
393   // place).
394   // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
395   // the new numbers are outside of the interval we want the final
396   // representation to lie in.
397   // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
398   // numbers that are certain to lie in the interval. We will use this fact
399   // later on.
400   // We will now start by generating the digits within the uncertain
401   // interval. Later we will weed out representations that lie outside the safe
402   // interval and thus _might_ lie outside the correct interval.
403   uint64_t unit = 1;
404   DiyFp too_low = DiyFp(low.f() - unit, low.e());
405   DiyFp too_high = DiyFp(high.f() + unit, high.e());
406   // too_low and too_high are guaranteed to lie outside the interval we want the
407   // generated number in.
408   DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
409   // We now cut the input number into two parts: the integral digits and the
410   // fractionals. We will not write any decimal separator though, but adapt
411   // kappa instead.
412   // Reminder: we are currently computing the digits (stored inside the buffer)
413   // such that:   too_low < buffer * 10^kappa < too_high
414   // We use too_high for the digit_generation and stop as soon as possible.
415   // If we stop early we effectively round down.
416   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
417   // Division by one is a shift.
418   uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
419   // Modulo by one is an and.
420   uint64_t fractionals = too_high.f() & (one.f() - 1);
421   uint32_t divisor;
422   int divisor_exponent;
423   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
424                   &divisor, &divisor_exponent);
425   *kappa = divisor_exponent + 1;
426   *length = 0;
427   // Loop invariant: buffer = too_high / 10^kappa  (integer division)
428   // The invariant holds for the first iteration: kappa has been initialized
429   // with the divisor exponent + 1. And the divisor is the biggest power of ten
430   // that is smaller than integrals.
431   while (*kappa > 0) {
432     int digit = integrals / divisor;
433     buffer[*length] = '0' + digit;
434     (*length)++;
435     integrals %= divisor;
436     (*kappa)--;
437     // Note that kappa now equals the exponent of the divisor and that the
438     // invariant thus holds again.
439     uint64_t rest =
440         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
441     // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
442     // Reminder: unsafe_interval.e() == one.e()
443     if (rest < unsafe_interval.f()) {
444       // Rounding down (by not emitting the remaining digits) yields a number
445       // that lies within the unsafe interval.
446       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
447                        unsafe_interval.f(), rest,
448                        static_cast<uint64_t>(divisor) << -one.e(), unit);
449     }
450     divisor /= 10;
451   }
452 
453   // The integrals have been generated. We are at the point of the decimal
454   // separator. In the following loop we simply multiply the remaining digits by
455   // 10 and divide by one. We just need to pay attention to multiply associated
456   // data (like the interval or 'unit'), too.
457   // Note that the multiplication by 10 does not overflow, because w.e >= -60
458   // and thus one.e >= -60.
459   ASSERT(one.e() >= -60);
460   ASSERT(fractionals < one.f());
461   ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
462   while (true) {
463     fractionals *= 10;
464     unit *= 10;
465     unsafe_interval.set_f(unsafe_interval.f() * 10);
466     // Integer division by one.
467     int digit = static_cast<int>(fractionals >> -one.e());
468     buffer[*length] = '0' + digit;
469     (*length)++;
470     fractionals &= one.f() - 1;  // Modulo by one.
471     (*kappa)--;
472     if (fractionals < unsafe_interval.f()) {
473       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
474                        unsafe_interval.f(), fractionals, one.f(), unit);
475     }
476   }
477 }
478 
479 
480 
481 // Generates (at most) requested_digits of input number w.
482 // w is a floating-point number (DiyFp), consisting of a significand and an
483 // exponent. Its exponent is bounded by kMinimalTargetExponent and
484 // kMaximalTargetExponent.
485 //       Hence -60 <= w.e() <= -32.
486 //
487 // Returns false if it fails, in which case the generated digits in the buffer
488 // should not be used.
489 // Preconditions:
490 //  * w is correct up to 1 ulp (unit in the last place). That
491 //    is, its error must be strictly less than a unit of its last digit.
492 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
493 //
494 // Postconditions: returns false if procedure fails.
495 //   otherwise:
496 //     * buffer is not null-terminated, but length contains the number of
497 //       digits.
498 //     * the representation in buffer is the most precise representation of
499 //       requested_digits digits.
500 //     * buffer contains at most requested_digits digits of w. If there are less
501 //       than requested_digits digits then some trailing '0's have been removed.
502 //     * kappa is such that
503 //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
504 //
505 // Remark: This procedure takes into account the imprecision of its input
506 //   numbers. If the precision is not enough to guarantee all the postconditions
507 //   then false is returned. This usually happens rarely, but the failure-rate
508 //   increases with higher requested_digits.
DigitGenCounted(DiyFp w,int requested_digits,Vector<char> buffer,int * length,int * kappa)509 static bool DigitGenCounted(DiyFp w,
510                             int requested_digits,
511                             Vector<char> buffer,
512                             int* length,
513                             int* kappa) {
514   ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
515   ASSERT(kMinimalTargetExponent >= -60);
516   ASSERT(kMaximalTargetExponent <= -32);
517   // w is assumed to have an error less than 1 unit. Whenever w is scaled we
518   // also scale its error.
519   uint64_t w_error = 1;
520   // We cut the input number into two parts: the integral digits and the
521   // fractional digits. We don't emit any decimal separator, but adapt kappa
522   // instead. Example: instead of writing "1.2" we put "12" into the buffer and
523   // increase kappa by 1.
524   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
525   // Division by one is a shift.
526   uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
527   // Modulo by one is an and.
528   uint64_t fractionals = w.f() & (one.f() - 1);
529   uint32_t divisor;
530   int divisor_exponent;
531   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
532                   &divisor, &divisor_exponent);
533   *kappa = divisor_exponent + 1;
534   *length = 0;
535 
536   // Loop invariant: buffer = w / 10^kappa  (integer division)
537   // The invariant holds for the first iteration: kappa has been initialized
538   // with the divisor exponent + 1. And the divisor is the biggest power of ten
539   // that is smaller than 'integrals'.
540   while (*kappa > 0) {
541     int digit = integrals / divisor;
542     buffer[*length] = '0' + digit;
543     (*length)++;
544     requested_digits--;
545     integrals %= divisor;
546     (*kappa)--;
547     // Note that kappa now equals the exponent of the divisor and that the
548     // invariant thus holds again.
549     if (requested_digits == 0) break;
550     divisor /= 10;
551   }
552 
553   if (requested_digits == 0) {
554     uint64_t rest =
555         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
556     return RoundWeedCounted(buffer, *length, rest,
557                             static_cast<uint64_t>(divisor) << -one.e(), w_error,
558                             kappa);
559   }
560 
561   // The integrals have been generated. We are at the point of the decimal
562   // separator. In the following loop we simply multiply the remaining digits by
563   // 10 and divide by one. We just need to pay attention to multiply associated
564   // data (the 'unit'), too.
565   // Note that the multiplication by 10 does not overflow, because w.e >= -60
566   // and thus one.e >= -60.
567   ASSERT(one.e() >= -60);
568   ASSERT(fractionals < one.f());
569   ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
570   while (requested_digits > 0 && fractionals > w_error) {
571     fractionals *= 10;
572     w_error *= 10;
573     // Integer division by one.
574     int digit = static_cast<int>(fractionals >> -one.e());
575     buffer[*length] = '0' + digit;
576     (*length)++;
577     requested_digits--;
578     fractionals &= one.f() - 1;  // Modulo by one.
579     (*kappa)--;
580   }
581   if (requested_digits != 0) return false;
582   return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
583                           kappa);
584 }
585 
586 
587 // Provides a decimal representation of v.
588 // Returns true if it succeeds, otherwise the result cannot be trusted.
589 // There will be *length digits inside the buffer (not null-terminated).
590 // If the function returns true then
591 //        v == (double) (buffer * 10^decimal_exponent).
592 // The digits in the buffer are the shortest representation possible: no
593 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
594 // chosen even if the longer one would be closer to v.
595 // The last digit will be closest to the actual v. That is, even if several
596 // digits might correctly yield 'v' when read again, the closest will be
597 // computed.
Grisu3(double v,Vector<char> buffer,int * length,int * decimal_exponent)598 static bool Grisu3(double v,
599                    Vector<char> buffer,
600                    int* length,
601                    int* decimal_exponent) {
602   DiyFp w = Double(v).AsNormalizedDiyFp();
603   // boundary_minus and boundary_plus are the boundaries between v and its
604   // closest floating-point neighbors. Any number strictly between
605   // boundary_minus and boundary_plus will round to v when convert to a double.
606   // Grisu3 will never output representations that lie exactly on a boundary.
607   DiyFp boundary_minus, boundary_plus;
608   Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
609   ASSERT(boundary_plus.e() == w.e());
610   DiyFp ten_mk;  // Cached power of ten: 10^-k
611   int mk;        // -k
612   int ten_mk_minimal_binary_exponent =
613      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
614   int ten_mk_maximal_binary_exponent =
615      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
616   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
617       ten_mk_minimal_binary_exponent,
618       ten_mk_maximal_binary_exponent,
619       &ten_mk, &mk);
620   ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
621           DiyFp::kSignificandSize) &&
622          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
623           DiyFp::kSignificandSize));
624   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
625   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
626 
627   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
628   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
629   // off by a small amount.
630   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
631   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
632   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
633   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
634   ASSERT(scaled_w.e() ==
635          boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
636   // In theory it would be possible to avoid some recomputations by computing
637   // the difference between w and boundary_minus/plus (a power of 2) and to
638   // compute scaled_boundary_minus/plus by subtracting/adding from
639   // scaled_w. However the code becomes much less readable and the speed
640   // enhancements are not terriffic.
641   DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
642   DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
643 
644   // DigitGen will generate the digits of scaled_w. Therefore we have
645   // v == (double) (scaled_w * 10^-mk).
646   // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
647   // integer than it will be updated. For instance if scaled_w == 1.23 then
648   // the buffer will be filled with "123" und the decimal_exponent will be
649   // decreased by 2.
650   int kappa;
651   bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
652                          buffer, length, &kappa);
653   *decimal_exponent = -mk + kappa;
654   return result;
655 }
656 
657 
658 // The "counted" version of grisu3 (see above) only generates requested_digits
659 // number of digits. This version does not generate the shortest representation,
660 // and with enough requested digits 0.1 will at some point print as 0.9999999...
661 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
662 // therefore the rounding strategy for halfway cases is irrelevant.
Grisu3Counted(double v,int requested_digits,Vector<char> buffer,int * length,int * decimal_exponent)663 static bool Grisu3Counted(double v,
664                           int requested_digits,
665                           Vector<char> buffer,
666                           int* length,
667                           int* decimal_exponent) {
668   DiyFp w = Double(v).AsNormalizedDiyFp();
669   DiyFp ten_mk;  // Cached power of ten: 10^-k
670   int mk;        // -k
671   int ten_mk_minimal_binary_exponent =
672      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
673   int ten_mk_maximal_binary_exponent =
674      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
675   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
676       ten_mk_minimal_binary_exponent,
677       ten_mk_maximal_binary_exponent,
678       &ten_mk, &mk);
679   ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
680           DiyFp::kSignificandSize) &&
681          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
682           DiyFp::kSignificandSize));
683   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
684   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
685 
686   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
687   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
688   // off by a small amount.
689   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
690   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
691   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
692   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
693 
694   // We now have (double) (scaled_w * 10^-mk).
695   // DigitGen will generate the first requested_digits digits of scaled_w and
696   // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
697   // will not always be exactly the same since DigitGenCounted only produces a
698   // limited number of digits.)
699   int kappa;
700   bool result = DigitGenCounted(scaled_w, requested_digits,
701                                 buffer, length, &kappa);
702   *decimal_exponent = -mk + kappa;
703   return result;
704 }
705 
706 
FastDtoa(double v,FastDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)707 bool FastDtoa(double v,
708               FastDtoaMode mode,
709               int requested_digits,
710               Vector<char> buffer,
711               int* length,
712               int* decimal_point) {
713   ASSERT(v > 0);
714   ASSERT(!Double(v).IsSpecial());
715 
716   bool result = false;
717   int decimal_exponent = 0;
718   switch (mode) {
719     case FAST_DTOA_SHORTEST:
720       result = Grisu3(v, buffer, length, &decimal_exponent);
721       break;
722     case FAST_DTOA_PRECISION:
723       result = Grisu3Counted(v, requested_digits,
724                              buffer, length, &decimal_exponent);
725       break;
726     default:
727       UNREACHABLE();
728   }
729   if (result) {
730     *decimal_point = *length + decimal_exponent;
731     buffer[*length] = '\0';
732   }
733   return result;
734 }
735 
736 } }  // namespace v8::internal
737