1 // Copyright 2009, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 #include "googleurl/src/url_canon_ip.h"
31
32 #include <stdlib.h>
33
34 #include "base/basictypes.h"
35 #include "base/logging.h"
36 #include "googleurl/src/url_canon_internal.h"
37
38 namespace url_canon {
39
40 namespace {
41
42 // Converts one of the character types that represent a numerical base to the
43 // corresponding base.
BaseForType(SharedCharTypes type)44 int BaseForType(SharedCharTypes type) {
45 switch (type) {
46 case CHAR_HEX:
47 return 16;
48 case CHAR_DEC:
49 return 10;
50 case CHAR_OCT:
51 return 8;
52 default:
53 return 0;
54 }
55 }
56
57 template<typename CHAR, typename UCHAR>
DoFindIPv4Components(const CHAR * spec,const url_parse::Component & host,url_parse::Component components[4])58 bool DoFindIPv4Components(const CHAR* spec,
59 const url_parse::Component& host,
60 url_parse::Component components[4]) {
61 if (!host.is_nonempty())
62 return false;
63
64 int cur_component = 0; // Index of the component we're working on.
65 int cur_component_begin = host.begin; // Start of the current component.
66 int end = host.end();
67 for (int i = host.begin; /* nothing */; i++) {
68 if (i >= end || spec[i] == '.') {
69 // Found the end of the current component.
70 int component_len = i - cur_component_begin;
71 components[cur_component] =
72 url_parse::Component(cur_component_begin, component_len);
73
74 // The next component starts after the dot.
75 cur_component_begin = i + 1;
76 cur_component++;
77
78 // Don't allow empty components (two dots in a row), except we may
79 // allow an empty component at the end (this would indicate that the
80 // input ends in a dot). We also want to error if the component is
81 // empty and it's the only component (cur_component == 1).
82 if (component_len == 0 && (i < end || cur_component == 1))
83 return false;
84
85 if (i >= end)
86 break; // End of the input.
87
88 if (cur_component == 4) {
89 // Anything else after the 4th component is an error unless it is a
90 // dot that would otherwise be treated as the end of input.
91 if (spec[i] == '.' && i + 1 == end)
92 break;
93 return false;
94 }
95 } else if (static_cast<UCHAR>(spec[i]) >= 0x80 ||
96 !IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
97 // Invalid character for an IPv4 address.
98 return false;
99 }
100 }
101
102 // Fill in any unused components.
103 while (cur_component < 4)
104 components[cur_component++] = url_parse::Component();
105 return true;
106 }
107
108 // Converts an IPv4 component to a 32-bit number, while checking for overflow.
109 //
110 // Possible return values:
111 // - IPV4 - The number was valid, and did not overflow.
112 // - BROKEN - The input was numeric, but too large for a 32-bit field.
113 // - NEUTRAL - Input was not numeric.
114 //
115 // The input is assumed to be ASCII. FindIPv4Components should have stripped
116 // out any input that is greater than 7 bits. The components are assumed
117 // to be non-empty.
118 template<typename CHAR>
IPv4ComponentToNumber(const CHAR * spec,const url_parse::Component & component,uint32 * number)119 CanonHostInfo::Family IPv4ComponentToNumber(
120 const CHAR* spec,
121 const url_parse::Component& component,
122 uint32* number) {
123 // Figure out the base
124 SharedCharTypes base;
125 int base_prefix_len = 0; // Size of the prefix for this base.
126 if (spec[component.begin] == '0') {
127 // Either hex or dec, or a standalone zero.
128 if (component.len == 1) {
129 base = CHAR_DEC;
130 } else if (spec[component.begin + 1] == 'X' ||
131 spec[component.begin + 1] == 'x') {
132 base = CHAR_HEX;
133 base_prefix_len = 2;
134 } else {
135 base = CHAR_OCT;
136 base_prefix_len = 1;
137 }
138 } else {
139 base = CHAR_DEC;
140 }
141
142 // Extend the prefix to consume all leading zeros.
143 while (base_prefix_len < component.len &&
144 spec[component.begin + base_prefix_len] == '0')
145 base_prefix_len++;
146
147 // Put the component, minus any base prefix, into a NULL-terminated buffer so
148 // we can call the standard library. Because leading zeros have already been
149 // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
150 // overflow check.
151 const int kMaxComponentLen = 16;
152 char buf[kMaxComponentLen + 1]; // digits + '\0'
153 int dest_i = 0;
154 for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
155 // We know the input is 7-bit, so convert to narrow (if this is the wide
156 // version of the template) by casting.
157 char input = static_cast<char>(spec[i]);
158
159 // Validate that this character is OK for the given base.
160 if (!IsCharOfType(input, base))
161 return CanonHostInfo::NEUTRAL;
162
163 // Fill the buffer, if there's space remaining. This check allows us to
164 // verify that all characters are numeric, even those that don't fit.
165 if (dest_i < kMaxComponentLen)
166 buf[dest_i++] = input;
167 }
168
169 buf[dest_i] = '\0';
170
171 // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
172 // number can overflow a 64-bit number in <= 16 characters).
173 uint64 num = _strtoui64(buf, NULL, BaseForType(base));
174
175 // Check for 32-bit overflow.
176 if (num > kuint32max)
177 return CanonHostInfo::BROKEN;
178
179 // No overflow. Success!
180 *number = static_cast<uint32>(num);
181 return CanonHostInfo::IPV4;
182 }
183
184 // Writes the given address (with each character representing one dotted
185 // part of an IPv4 address) to the output, and updating |*out_host| to
186 // identify the added portion.
AppendIPv4Address(const unsigned char address[4],CanonOutput * output,url_parse::Component * out_host)187 void AppendIPv4Address(const unsigned char address[4],
188 CanonOutput* output,
189 url_parse::Component* out_host) {
190 out_host->begin = output->length();
191 for (int i = 0; i < 4; i++) {
192 char str[16];
193 _itoa_s(address[i], str, 10);
194
195 for (int ch = 0; str[ch] != 0; ch++)
196 output->push_back(str[ch]);
197
198 if (i != 3)
199 output->push_back('.');
200 }
201 out_host->len = output->length() - out_host->begin;
202 }
203
204 // See declaration of IPv4AddressToNumber for documentation.
205 template<typename CHAR>
DoIPv4AddressToNumber(const CHAR * spec,const url_parse::Component & host,unsigned char address[4],int * num_ipv4_components)206 CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
207 const url_parse::Component& host,
208 unsigned char address[4],
209 int* num_ipv4_components) {
210 // The identified components. Not all may exist.
211 url_parse::Component components[4];
212 if (!FindIPv4Components(spec, host, components))
213 return CanonHostInfo::NEUTRAL;
214
215 // Convert existing components to digits. Values up to
216 // |existing_components| will be valid.
217 uint32 component_values[4];
218 int existing_components = 0;
219 for (int i = 0; i < 4; i++) {
220 if (components[i].len <= 0)
221 continue;
222 CanonHostInfo::Family family = IPv4ComponentToNumber(
223 spec, components[i], &component_values[existing_components]);
224
225 // Stop if we hit an invalid non-empty component.
226 if (family != CanonHostInfo::IPV4)
227 return family;
228
229 existing_components++;
230 }
231
232 // Use that sequence of numbers to fill out the 4-component IP address.
233
234 // First, process all components but the last, while making sure each fits
235 // within an 8-bit field.
236 for (int i = 0; i < existing_components - 1; i++) {
237 if (component_values[i] > kuint8max)
238 return CanonHostInfo::BROKEN;
239 address[i] = static_cast<unsigned char>(component_values[i]);
240 }
241
242 // Next, consume the last component to fill in the remaining bytes.
243 uint32 last_value = component_values[existing_components - 1];
244 for (int i = 3; i >= existing_components - 1; i--) {
245 address[i] = static_cast<unsigned char>(last_value);
246 last_value >>= 8;
247 }
248
249 // If the last component has residual bits, report overflow.
250 if (last_value != 0)
251 return CanonHostInfo::BROKEN;
252
253 // Tell the caller how many components we saw.
254 *num_ipv4_components = existing_components;
255
256 // Success!
257 return CanonHostInfo::IPV4;
258 }
259
260 // Return true if we've made a final IPV4/BROKEN decision, false if the result
261 // is NEUTRAL, and we could use a second opinion.
262 template<typename CHAR, typename UCHAR>
DoCanonicalizeIPv4Address(const CHAR * spec,const url_parse::Component & host,CanonOutput * output,CanonHostInfo * host_info)263 bool DoCanonicalizeIPv4Address(const CHAR* spec,
264 const url_parse::Component& host,
265 CanonOutput* output,
266 CanonHostInfo* host_info) {
267 unsigned char address[4];
268 host_info->family = IPv4AddressToNumber(
269 spec, host, address, &host_info->num_ipv4_components);
270
271 switch (host_info->family) {
272 case CanonHostInfo::IPV4:
273 // Definitely an IPv4 address.
274 AppendIPv4Address(address, output, &host_info->out_host);
275 return true;
276 case CanonHostInfo::BROKEN:
277 // Definitely broken.
278 return true;
279 default:
280 // Could be IPv6 or a hostname.
281 return false;
282 }
283 }
284
285 // Helper class that describes the main components of an IPv6 input string.
286 // See the following examples to understand how it breaks up an input string:
287 //
288 // [Example 1]: input = "[::aa:bb]"
289 // ==> num_hex_components = 2
290 // ==> hex_components[0] = Component(3,2) "aa"
291 // ==> hex_components[1] = Component(6,2) "bb"
292 // ==> index_of_contraction = 0
293 // ==> ipv4_component = Component(0, -1)
294 //
295 // [Example 2]: input = "[1:2::3:4:5]"
296 // ==> num_hex_components = 5
297 // ==> hex_components[0] = Component(1,1) "1"
298 // ==> hex_components[1] = Component(3,1) "2"
299 // ==> hex_components[2] = Component(6,1) "3"
300 // ==> hex_components[3] = Component(8,1) "4"
301 // ==> hex_components[4] = Component(10,1) "5"
302 // ==> index_of_contraction = 2
303 // ==> ipv4_component = Component(0, -1)
304 //
305 // [Example 3]: input = "[::ffff:192.168.0.1]"
306 // ==> num_hex_components = 1
307 // ==> hex_components[0] = Component(3,4) "ffff"
308 // ==> index_of_contraction = 0
309 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
310 //
311 // [Example 4]: input = "[1::]"
312 // ==> num_hex_components = 1
313 // ==> hex_components[0] = Component(1,1) "1"
314 // ==> index_of_contraction = 1
315 // ==> ipv4_component = Component(0, -1)
316 //
317 // [Example 5]: input = "[::192.168.0.1]"
318 // ==> num_hex_components = 0
319 // ==> index_of_contraction = 0
320 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
321 //
322 struct IPv6Parsed {
323 // Zero-out the parse information.
reseturl_canon::__anon7cfdf62a0111::IPv6Parsed324 void reset() {
325 num_hex_components = 0;
326 index_of_contraction = -1;
327 ipv4_component.reset();
328 }
329
330 // There can be up to 8 hex components (colon separated) in the literal.
331 url_parse::Component hex_components[8];
332
333 // The count of hex components present. Ranges from [0,8].
334 int num_hex_components;
335
336 // The index of the hex component that the "::" contraction precedes, or
337 // -1 if there is no contraction.
338 int index_of_contraction;
339
340 // The range of characters which are an IPv4 literal.
341 url_parse::Component ipv4_component;
342 };
343
344 // Parse the IPv6 input string. If parsing succeeded returns true and fills
345 // |parsed| with the information. If parsing failed (because the input is
346 // invalid) returns false.
347 template<typename CHAR, typename UCHAR>
DoParseIPv6(const CHAR * spec,const url_parse::Component & host,IPv6Parsed * parsed)348 bool DoParseIPv6(const CHAR* spec,
349 const url_parse::Component& host,
350 IPv6Parsed* parsed) {
351 // Zero-out the info.
352 parsed->reset();
353
354 if (!host.is_nonempty())
355 return false;
356
357 // The index for start and end of address range (no brackets).
358 int begin = host.begin;
359 int end = host.end();
360
361 int cur_component_begin = begin; // Start of the current component.
362
363 // Scan through the input, searching for hex components, "::" contractions,
364 // and IPv4 components.
365 for (int i = begin; /* i <= end */; i++) {
366 bool is_colon = spec[i] == ':';
367 bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
368
369 // We reached the end of the current component if we encounter a colon
370 // (separator between hex components, or start of a contraction), or end of
371 // input.
372 if (is_colon || i == end) {
373 int component_len = i - cur_component_begin;
374
375 // A component should not have more than 4 hex digits.
376 if (component_len > 4)
377 return false;
378
379 // Don't allow empty components.
380 if (component_len == 0) {
381 // The exception is when contractions appear at beginning of the
382 // input or at the end of the input.
383 if (!((is_contraction && i == begin) || (i == end &&
384 parsed->index_of_contraction == parsed->num_hex_components)))
385 return false;
386 }
387
388 // Add the hex component we just found to running list.
389 if (component_len > 0) {
390 // Can't have more than 8 components!
391 if (parsed->num_hex_components >= 8)
392 return false;
393
394 parsed->hex_components[parsed->num_hex_components++] =
395 url_parse::Component(cur_component_begin, component_len);
396 }
397 }
398
399 if (i == end)
400 break; // Reached the end of the input, DONE.
401
402 // We found a "::" contraction.
403 if (is_contraction) {
404 // There can be at most one contraction in the literal.
405 if (parsed->index_of_contraction != -1)
406 return false;
407 parsed->index_of_contraction = parsed->num_hex_components;
408 ++i; // Consume the colon we peeked.
409 }
410
411 if (is_colon) {
412 // Colons are separators between components, keep track of where the
413 // current component started (after this colon).
414 cur_component_begin = i + 1;
415 } else {
416 if (static_cast<UCHAR>(spec[i]) >= 0x80)
417 return false; // Not ASCII.
418
419 if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
420 // Regular components are hex numbers. It is also possible for
421 // a component to be an IPv4 address in dotted form.
422 if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
423 // Since IPv4 address can only appear at the end, assume the rest
424 // of the string is an IPv4 address. (We will parse this separately
425 // later).
426 parsed->ipv4_component = url_parse::Component(
427 cur_component_begin, end - cur_component_begin);
428 break;
429 } else {
430 // The character was neither a hex digit, nor an IPv4 character.
431 return false;
432 }
433 }
434 }
435 }
436
437 return true;
438 }
439
440 // Verifies the parsed IPv6 information, checking that the various components
441 // add up to the right number of bits (hex components are 16 bits, while
442 // embedded IPv4 formats are 32 bits, and contractions are placeholdes for
443 // 16 or more bits). Returns true if sizes match up, false otherwise. On
444 // success writes the length of the contraction (if any) to
445 // |out_num_bytes_of_contraction|.
CheckIPv6ComponentsSize(const IPv6Parsed & parsed,int * out_num_bytes_of_contraction)446 bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
447 int* out_num_bytes_of_contraction) {
448 // Each group of four hex digits contributes 16 bits.
449 int num_bytes_without_contraction = parsed.num_hex_components * 2;
450
451 // If an IPv4 address was embedded at the end, it contributes 32 bits.
452 if (parsed.ipv4_component.is_valid())
453 num_bytes_without_contraction += 4;
454
455 // If there was a "::" contraction, its size is going to be:
456 // MAX([16bits], [128bits] - num_bytes_without_contraction).
457 int num_bytes_of_contraction = 0;
458 if (parsed.index_of_contraction != -1) {
459 num_bytes_of_contraction = 16 - num_bytes_without_contraction;
460 if (num_bytes_of_contraction < 2)
461 num_bytes_of_contraction = 2;
462 }
463
464 // Check that the numbers add up.
465 if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
466 return false;
467
468 *out_num_bytes_of_contraction = num_bytes_of_contraction;
469 return true;
470 }
471
472 // Converts a hex comonent into a number. This cannot fail since the caller has
473 // already verified that each character in the string was a hex digit, and
474 // that there were no more than 4 characters.
475 template<typename CHAR>
IPv6HexComponentToNumber(const CHAR * spec,const url_parse::Component & component)476 uint16 IPv6HexComponentToNumber(const CHAR* spec,
477 const url_parse::Component& component) {
478 DCHECK(component.len <= 4);
479
480 // Copy the hex string into a C-string.
481 char buf[5];
482 for (int i = 0; i < component.len; ++i)
483 buf[i] = static_cast<char>(spec[component.begin + i]);
484 buf[component.len] = '\0';
485
486 // Convert it to a number (overflow is not possible, since with 4 hex
487 // characters we can at most have a 16 bit number).
488 return static_cast<uint16>(_strtoui64(buf, NULL, 16));
489 }
490
491 // Converts an IPv6 address to a 128-bit number (network byte order), returning
492 // true on success. False means that the input was not a valid IPv6 address.
493 template<typename CHAR, typename UCHAR>
DoIPv6AddressToNumber(const CHAR * spec,const url_parse::Component & host,unsigned char address[16])494 bool DoIPv6AddressToNumber(const CHAR* spec,
495 const url_parse::Component& host,
496 unsigned char address[16]) {
497 // Make sure the component is bounded by '[' and ']'.
498 int end = host.end();
499 if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']')
500 return false;
501
502 // Exclude the square brackets.
503 url_parse::Component ipv6_comp(host.begin + 1, host.len - 2);
504
505 // Parse the IPv6 address -- identify where all the colon separated hex
506 // components are, the "::" contraction, and the embedded IPv4 address.
507 IPv6Parsed ipv6_parsed;
508 if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
509 return false;
510
511 // Do some basic size checks to make sure that the address doesn't
512 // specify more than 128 bits or fewer than 128 bits. This also resolves
513 // how may zero bytes the "::" contraction represents.
514 int num_bytes_of_contraction;
515 if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
516 return false;
517
518 int cur_index_in_address = 0;
519
520 // Loop through each hex components, and contraction in order.
521 for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
522 // Append the contraction if it appears before this component.
523 if (i == ipv6_parsed.index_of_contraction) {
524 for (int j = 0; j < num_bytes_of_contraction; ++j)
525 address[cur_index_in_address++] = 0;
526 }
527 // Append the hex component's value.
528 if (i != ipv6_parsed.num_hex_components) {
529 // Get the 16-bit value for this hex component.
530 uint16 number = IPv6HexComponentToNumber<CHAR>(
531 spec, ipv6_parsed.hex_components[i]);
532 // Append to |address|, in network byte order.
533 address[cur_index_in_address++] = (number & 0xFF00) >> 8;
534 address[cur_index_in_address++] = (number & 0x00FF);
535 }
536 }
537
538 // If there was an IPv4 section, convert it into a 32-bit number and append
539 // it to |address|.
540 if (ipv6_parsed.ipv4_component.is_valid()) {
541 // We only allow the embedded IPv4 syntax to be used for "compat" and
542 // "mapped" formats:
543 // "mapped" ==> 0:0:0:0:0:ffff:<IPv4-literal>
544 // "compat" ==> 0:0:0:0:0:0000:<IPv4-literal>
545 for (int j = 0; j < 10; ++j) {
546 if (address[j] != 0)
547 return false;
548 }
549 if (!((address[10] == 0 && address[11] == 0) ||
550 (address[10] == 0xFF && address[11] == 0xFF)))
551 return false;
552
553 // Append the 32-bit number to |address|.
554 int ignored_num_ipv4_components;
555 if (CanonHostInfo::IPV4 !=
556 IPv4AddressToNumber(spec,
557 ipv6_parsed.ipv4_component,
558 &address[cur_index_in_address],
559 &ignored_num_ipv4_components))
560 return false;
561 }
562
563 return true;
564 }
565
566 // Searches for the longest sequence of zeros in |address|, and writes the
567 // range into |contraction_range|. The run of zeros must be at least 16 bits,
568 // and if there is a tie the first is chosen.
ChooseIPv6ContractionRange(const unsigned char address[16],url_parse::Component * contraction_range)569 void ChooseIPv6ContractionRange(const unsigned char address[16],
570 url_parse::Component* contraction_range) {
571 // The longest run of zeros in |address| seen so far.
572 url_parse::Component max_range;
573
574 // The current run of zeros in |address| being iterated over.
575 url_parse::Component cur_range;
576
577 for (int i = 0; i < 16; i += 2) {
578 // Test for 16 bits worth of zero.
579 bool is_zero = (address[i] == 0 && address[i + 1] == 0);
580
581 if (is_zero) {
582 // Add the zero to the current range (or start a new one).
583 if (!cur_range.is_valid())
584 cur_range = url_parse::Component(i, 0);
585 cur_range.len += 2;
586 }
587
588 if (!is_zero || i == 14) {
589 // Just completed a run of zeros. If the run is greater than 16 bits,
590 // it is a candidate for the contraction.
591 if (cur_range.len > 2 && cur_range.len > max_range.len) {
592 max_range = cur_range;
593 }
594 cur_range.reset();
595 }
596 }
597 *contraction_range = max_range;
598 }
599
600 // Return true if we've made a final IPV6/BROKEN decision, false if the result
601 // is NEUTRAL, and we could use a second opinion.
602 template<typename CHAR, typename UCHAR>
DoCanonicalizeIPv6Address(const CHAR * spec,const url_parse::Component & host,CanonOutput * output,CanonHostInfo * host_info)603 bool DoCanonicalizeIPv6Address(const CHAR* spec,
604 const url_parse::Component& host,
605 CanonOutput* output,
606 CanonHostInfo* host_info) {
607 // Turn the IP address into a 128 bit number.
608 unsigned char address[16];
609 if (!IPv6AddressToNumber(spec, host, address)) {
610 // If it's not an IPv6 address, scan for characters that should *only*
611 // exist in an IPv6 address.
612 for (int i = host.begin; i < host.end(); i++) {
613 switch (spec[i]) {
614 case '[':
615 case ']':
616 case ':':
617 host_info->family = CanonHostInfo::BROKEN;
618 return true;
619 }
620 }
621
622 // No invalid characters. Could still be IPv4 or a hostname.
623 host_info->family = CanonHostInfo::NEUTRAL;
624 return false;
625 }
626
627 host_info->out_host.begin = output->length();
628 output->push_back('[');
629
630 // We will now output the address according to the rules in:
631 // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
632
633 // Start by finding where to place the "::" contraction (if any).
634 url_parse::Component contraction_range;
635 ChooseIPv6ContractionRange(address, &contraction_range);
636
637 for (int i = 0; i <= 14;) {
638 // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
639 DCHECK(i % 2 == 0);
640 if (i == contraction_range.begin && contraction_range.len > 0) {
641 // Jump over the contraction.
642 if (i == 0)
643 output->push_back(':');
644 output->push_back(':');
645 i = contraction_range.end();
646 } else {
647 // Consume the next 16 bits from |address|.
648 int x = address[i] << 8 | address[i + 1];
649
650 i += 2;
651
652 // Stringify the 16 bit number (at most requires 4 hex digits).
653 char str[5];
654 _itoa_s(x, str, 16);
655 for (int ch = 0; str[ch] != 0; ++ch)
656 output->push_back(str[ch]);
657
658 // Put a colon after each number, except the last.
659 if (i < 16)
660 output->push_back(':');
661 }
662 }
663
664 output->push_back(']');
665 host_info->out_host.len = output->length() - host_info->out_host.begin;
666
667 host_info->family = CanonHostInfo::IPV6;
668 return true;
669 }
670
671 } // namespace
672
FindIPv4Components(const char * spec,const url_parse::Component & host,url_parse::Component components[4])673 bool FindIPv4Components(const char* spec,
674 const url_parse::Component& host,
675 url_parse::Component components[4]) {
676 return DoFindIPv4Components<char, unsigned char>(spec, host, components);
677 }
678
FindIPv4Components(const char16 * spec,const url_parse::Component & host,url_parse::Component components[4])679 bool FindIPv4Components(const char16* spec,
680 const url_parse::Component& host,
681 url_parse::Component components[4]) {
682 return DoFindIPv4Components<char16, char16>(spec, host, components);
683 }
684
CanonicalizeIPAddress(const char * spec,const url_parse::Component & host,CanonOutput * output,CanonHostInfo * host_info)685 void CanonicalizeIPAddress(const char* spec,
686 const url_parse::Component& host,
687 CanonOutput* output,
688 CanonHostInfo* host_info) {
689 if (DoCanonicalizeIPv4Address<char, unsigned char>(
690 spec, host, output, host_info))
691 return;
692 if (DoCanonicalizeIPv6Address<char, unsigned char>(
693 spec, host, output, host_info))
694 return;
695 }
696
CanonicalizeIPAddress(const char16 * spec,const url_parse::Component & host,CanonOutput * output,CanonHostInfo * host_info)697 void CanonicalizeIPAddress(const char16* spec,
698 const url_parse::Component& host,
699 CanonOutput* output,
700 CanonHostInfo* host_info) {
701 if (DoCanonicalizeIPv4Address<char16, char16>(
702 spec, host, output, host_info))
703 return;
704 if (DoCanonicalizeIPv6Address<char16, char16>(
705 spec, host, output, host_info))
706 return;
707 }
708
IPv4AddressToNumber(const char * spec,const url_parse::Component & host,unsigned char address[4],int * num_ipv4_components)709 CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
710 const url_parse::Component& host,
711 unsigned char address[4],
712 int* num_ipv4_components) {
713 return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components);
714 }
715
IPv4AddressToNumber(const char16 * spec,const url_parse::Component & host,unsigned char address[4],int * num_ipv4_components)716 CanonHostInfo::Family IPv4AddressToNumber(const char16* spec,
717 const url_parse::Component& host,
718 unsigned char address[4],
719 int* num_ipv4_components) {
720 return DoIPv4AddressToNumber<char16>(
721 spec, host, address, num_ipv4_components);
722 }
723
IPv6AddressToNumber(const char * spec,const url_parse::Component & host,unsigned char address[16])724 bool IPv6AddressToNumber(const char* spec,
725 const url_parse::Component& host,
726 unsigned char address[16]) {
727 return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
728 }
729
IPv6AddressToNumber(const char16 * spec,const url_parse::Component & host,unsigned char address[16])730 bool IPv6AddressToNumber(const char16* spec,
731 const url_parse::Component& host,
732 unsigned char address[16]) {
733 return DoIPv6AddressToNumber<char16, char16>(spec, host, address);
734 }
735
736
737 } // namespace url_canon
738