• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_JSREGEXP_H_
29 #define V8_JSREGEXP_H_
30 
31 #include "macro-assembler.h"
32 #include "zone-inl.h"
33 
34 namespace v8 {
35 namespace internal {
36 
37 
38 class RegExpMacroAssembler;
39 
40 
41 class RegExpImpl {
42  public:
43   // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()44   static bool UsesNativeRegExp() {
45 #ifdef V8_INTERPRETED_REGEXP
46     return false;
47 #else
48     return true;
49 #endif
50   }
51 
52   // Creates a regular expression literal in the old space.
53   // This function calls the garbage collector if necessary.
54   static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
55                                             Handle<String> pattern,
56                                             Handle<String> flags,
57                                             bool* has_pending_exception);
58 
59   // Returns a string representation of a regular expression.
60   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
61   // This function calls the garbage collector if necessary.
62   static Handle<String> ToString(Handle<Object> value);
63 
64   // Parses the RegExp pattern and prepares the JSRegExp object with
65   // generic data and choice of implementation - as well as what
66   // the implementation wants to store in the data field.
67   // Returns false if compilation fails.
68   static Handle<Object> Compile(Handle<JSRegExp> re,
69                                 Handle<String> pattern,
70                                 Handle<String> flags);
71 
72   // See ECMA-262 section 15.10.6.2.
73   // This function calls the garbage collector if necessary.
74   static Handle<Object> Exec(Handle<JSRegExp> regexp,
75                              Handle<String> subject,
76                              int index,
77                              Handle<JSArray> lastMatchInfo);
78 
79   // Prepares a JSRegExp object with Irregexp-specific data.
80   static void IrregexpInitialize(Handle<JSRegExp> re,
81                                  Handle<String> pattern,
82                                  JSRegExp::Flags flags,
83                                  int capture_register_count);
84 
85 
86   static void AtomCompile(Handle<JSRegExp> re,
87                           Handle<String> pattern,
88                           JSRegExp::Flags flags,
89                           Handle<String> match_pattern);
90 
91   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
92                                  Handle<String> subject,
93                                  int index,
94                                  Handle<JSArray> lastMatchInfo);
95 
96   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
97 
98   // Prepare a RegExp for being executed one or more times (using
99   // IrregexpExecOnce) on the subject.
100   // This ensures that the regexp is compiled for the subject, and that
101   // the subject is flat.
102   // Returns the number of integer spaces required by IrregexpExecOnce
103   // as its "registers" argument. If the regexp cannot be compiled,
104   // an exception is set as pending, and this function returns negative.
105   static int IrregexpPrepare(Handle<JSRegExp> regexp,
106                              Handle<String> subject);
107 
108   // Execute a regular expression once on the subject, starting from
109   // character "index".
110   // If successful, returns RE_SUCCESS and set the capture positions
111   // in the first registers.
112   // If matching fails, returns RE_FAILURE.
113   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
114   static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp,
115                                          Handle<String> subject,
116                                          int index,
117                                          Vector<int> registers);
118 
119   // Execute an Irregexp bytecode pattern.
120   // On a successful match, the result is a JSArray containing
121   // captured positions. On a failure, the result is the null value.
122   // Returns an empty handle in case of an exception.
123   static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
124                                      Handle<String> subject,
125                                      int index,
126                                      Handle<JSArray> lastMatchInfo);
127 
128   // Array index in the lastMatchInfo array.
129   static const int kLastCaptureCount = 0;
130   static const int kLastSubject = 1;
131   static const int kLastInput = 2;
132   static const int kFirstCapture = 3;
133   static const int kLastMatchOverhead = 3;
134 
135   // Direct offset into the lastMatchInfo array.
136   static const int kLastCaptureCountOffset =
137       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
138   static const int kLastSubjectOffset =
139       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
140   static const int kLastInputOffset =
141       FixedArray::kHeaderSize + kLastInput * kPointerSize;
142   static const int kFirstCaptureOffset =
143       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
144 
145   // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)146   static int GetCapture(FixedArray* array, int index) {
147     return Smi::cast(array->get(index + kFirstCapture))->value();
148   }
149 
SetLastCaptureCount(FixedArray * array,int to)150   static void SetLastCaptureCount(FixedArray* array, int to) {
151     array->set(kLastCaptureCount, Smi::FromInt(to));
152   }
153 
SetLastSubject(FixedArray * array,String * to)154   static void SetLastSubject(FixedArray* array, String* to) {
155     array->set(kLastSubject, to);
156   }
157 
SetLastInput(FixedArray * array,String * to)158   static void SetLastInput(FixedArray* array, String* to) {
159     array->set(kLastInput, to);
160   }
161 
SetCapture(FixedArray * array,int index,int to)162   static void SetCapture(FixedArray* array, int index, int to) {
163     array->set(index + kFirstCapture, Smi::FromInt(to));
164   }
165 
GetLastCaptureCount(FixedArray * array)166   static int GetLastCaptureCount(FixedArray* array) {
167     return Smi::cast(array->get(kLastCaptureCount))->value();
168   }
169 
170   // For acting on the JSRegExp data FixedArray.
171   static int IrregexpMaxRegisterCount(FixedArray* re);
172   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
173   static int IrregexpNumberOfCaptures(FixedArray* re);
174   static int IrregexpNumberOfRegisters(FixedArray* re);
175   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
176   static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
177 
178   // Limit the space regexps take up on the heap.  In order to limit this we
179   // would like to keep track of the amount of regexp code on the heap.  This
180   // is not tracked, however.  As a conservative approximation we track the
181   // total regexp code compiled including code that has subsequently been freed
182   // and the total executable memory at any point.
183   static const int kRegExpExecutableMemoryLimit = 16 * MB;
184   static const int kRegWxpCompiledLimit = 1 * MB;
185 
186  private:
187   static String* last_ascii_string_;
188   static String* two_byte_cached_string_;
189 
190   static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
191   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
192 
193 
194   // Set the subject cache.  The previous string buffer is not deleted, so the
195   // caller should ensure that it doesn't leak.
196   static void SetSubjectCache(String* subject,
197                               char* utf8_subject,
198                               int uft8_length,
199                               int character_position,
200                               int utf8_position);
201 
202   // A one element cache of the last utf8_subject string and its length.  The
203   // subject JS String object is cached in the heap.  We also cache a
204   // translation between position and utf8 position.
205   static char* utf8_subject_cache_;
206   static int utf8_length_cache_;
207   static int utf8_position_;
208   static int character_position_;
209 };
210 
211 
212 // Represents the location of one element relative to the intersection of
213 // two sets. Corresponds to the four areas of a Venn diagram.
214 enum ElementInSetsRelation {
215   kInsideNone = 0,
216   kInsideFirst = 1,
217   kInsideSecond = 2,
218   kInsideBoth = 3
219 };
220 
221 
222 // Represents the relation of two sets.
223 // Sets can be either disjoint, partially or fully overlapping, or equal.
224 class SetRelation BASE_EMBEDDED {
225  public:
226   // Relation is represented by a bit saying whether there are elements in
227   // one set that is not in the other, and a bit saying that there are elements
228   // that are in both sets.
229 
230   // Location of an element. Corresponds to the internal areas of
231   // a Venn diagram.
232   enum {
233     kInFirst = 1 << kInsideFirst,
234     kInSecond = 1 << kInsideSecond,
235     kInBoth = 1 << kInsideBoth
236   };
SetRelation()237   SetRelation() : bits_(0) {}
~SetRelation()238   ~SetRelation() {}
239   // Add the existence of objects in a particular
SetElementsInFirstSet()240   void SetElementsInFirstSet() { bits_ |= kInFirst; }
SetElementsInSecondSet()241   void SetElementsInSecondSet() { bits_ |= kInSecond; }
SetElementsInBothSets()242   void SetElementsInBothSets() { bits_ |= kInBoth; }
243   // Check the currently known relation of the sets (common functions only,
244   // for other combinations, use value() to get the bits and check them
245   // manually).
246   // Sets are completely disjoint.
Disjoint()247   bool Disjoint() { return (bits_ & kInBoth) == 0; }
248   // Sets are equal.
Equals()249   bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
250   // First set contains second.
Contains()251   bool Contains() { return (bits_ & kInSecond) == 0; }
252   // Second set contains first.
ContainedIn()253   bool ContainedIn() { return (bits_ & kInFirst) == 0; }
NonTrivialIntersection()254   bool NonTrivialIntersection() {
255     return (bits_ == (kInFirst | kInSecond | kInBoth));
256   }
value()257   int value() { return bits_; }
258  private:
259   int bits_;
260 };
261 
262 
263 class CharacterRange {
264  public:
CharacterRange()265   CharacterRange() : from_(0), to_(0) { }
266   // For compatibility with the CHECK_OK macro
CharacterRange(void * null)267   CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
CharacterRange(uc16 from,uc16 to)268   CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
269   static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
270   static Vector<const uc16> GetWordBounds();
Singleton(uc16 value)271   static inline CharacterRange Singleton(uc16 value) {
272     return CharacterRange(value, value);
273   }
Range(uc16 from,uc16 to)274   static inline CharacterRange Range(uc16 from, uc16 to) {
275     ASSERT(from <= to);
276     return CharacterRange(from, to);
277   }
Everything()278   static inline CharacterRange Everything() {
279     return CharacterRange(0, 0xFFFF);
280   }
Contains(uc16 i)281   bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()282   uc16 from() const { return from_; }
set_from(uc16 value)283   void set_from(uc16 value) { from_ = value; }
to()284   uc16 to() const { return to_; }
set_to(uc16 value)285   void set_to(uc16 value) { to_ = value; }
is_valid()286   bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)287   bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()288   bool IsSingleton() { return (from_ == to_); }
289   void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
290   static void Split(ZoneList<CharacterRange>* base,
291                     Vector<const uc16> overlay,
292                     ZoneList<CharacterRange>** included,
293                     ZoneList<CharacterRange>** excluded);
294   // Whether a range list is in canonical form: Ranges ordered by from value,
295   // and ranges non-overlapping and non-adjacent.
296   static bool IsCanonical(ZoneList<CharacterRange>* ranges);
297   // Convert range list to canonical form. The characters covered by the ranges
298   // will still be the same, but no character is in more than one range, and
299   // adjacent ranges are merged. The resulting list may be shorter than the
300   // original, but cannot be longer.
301   static void Canonicalize(ZoneList<CharacterRange>* ranges);
302   // Check how the set of characters defined by a CharacterRange list relates
303   // to the set of word characters. List must be in canonical form.
304   static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
305   // Takes two character range lists (representing character sets) in canonical
306   // form and merges them.
307   // The characters that are only covered by the first set are added to
308   // first_set_only_out. the characters that are only in the second set are
309   // added to second_set_only_out, and the characters that are in both are
310   // added to both_sets_out.
311   // The pointers to first_set_only_out, second_set_only_out and both_sets_out
312   // should be to empty lists, but they need not be distinct, and may be NULL.
313   // If NULL, the characters are dropped, and if two arguments are the same
314   // pointer, the result is the union of the two sets that would be created
315   // if the pointers had been distinct.
316   // This way, the Merge function can compute all the usual set operations:
317   // union (all three out-sets are equal), intersection (only both_sets_out is
318   // non-NULL), and set difference (only first_set is non-NULL).
319   static void Merge(ZoneList<CharacterRange>* first_set,
320                     ZoneList<CharacterRange>* second_set,
321                     ZoneList<CharacterRange>* first_set_only_out,
322                     ZoneList<CharacterRange>* second_set_only_out,
323                     ZoneList<CharacterRange>* both_sets_out);
324   // Negate the contents of a character range in canonical form.
325   static void Negate(ZoneList<CharacterRange>* src,
326                      ZoneList<CharacterRange>* dst);
327   static const int kStartMarker = (1 << 24);
328   static const int kPayloadMask = (1 << 24) - 1;
329 
330  private:
331   uc16 from_;
332   uc16 to_;
333 };
334 
335 
336 // A set of unsigned integers that behaves especially well on small
337 // integers (< 32).  May do zone-allocation.
338 class OutSet: public ZoneObject {
339  public:
OutSet()340   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
341   OutSet* Extend(unsigned value);
342   bool Get(unsigned value);
343   static const unsigned kFirstLimit = 32;
344 
345  private:
346   // Destructively set a value in this set.  In most cases you want
347   // to use Extend instead to ensure that only one instance exists
348   // that contains the same values.
349   void Set(unsigned value);
350 
351   // The successors are a list of sets that contain the same values
352   // as this set and the one more value that is not present in this
353   // set.
successors()354   ZoneList<OutSet*>* successors() { return successors_; }
355 
OutSet(uint32_t first,ZoneList<unsigned> * remaining)356   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
357       : first_(first), remaining_(remaining), successors_(NULL) { }
358   uint32_t first_;
359   ZoneList<unsigned>* remaining_;
360   ZoneList<OutSet*>* successors_;
361   friend class Trace;
362 };
363 
364 
365 // A mapping from integers, specified as ranges, to a set of integers.
366 // Used for mapping character ranges to choices.
367 class DispatchTable : public ZoneObject {
368  public:
369   class Entry {
370    public:
Entry()371     Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)372     Entry(uc16 from, uc16 to, OutSet* out_set)
373         : from_(from), to_(to), out_set_(out_set) { }
from()374     uc16 from() { return from_; }
to()375     uc16 to() { return to_; }
set_to(uc16 value)376     void set_to(uc16 value) { to_ = value; }
AddValue(int value)377     void AddValue(int value) { out_set_ = out_set_->Extend(value); }
out_set()378     OutSet* out_set() { return out_set_; }
379    private:
380     uc16 from_;
381     uc16 to_;
382     OutSet* out_set_;
383   };
384 
385   class Config {
386    public:
387     typedef uc16 Key;
388     typedef Entry Value;
389     static const uc16 kNoKey;
390     static const Entry kNoValue;
Compare(uc16 a,uc16 b)391     static inline int Compare(uc16 a, uc16 b) {
392       if (a == b)
393         return 0;
394       else if (a < b)
395         return -1;
396       else
397         return 1;
398     }
399   };
400 
401   void AddRange(CharacterRange range, int value);
402   OutSet* Get(uc16 value);
403   void Dump();
404 
405   template <typename Callback>
ForEach(Callback * callback)406   void ForEach(Callback* callback) { return tree()->ForEach(callback); }
407  private:
408   // There can't be a static empty set since it allocates its
409   // successors in a zone and caches them.
empty()410   OutSet* empty() { return &empty_; }
411   OutSet empty_;
tree()412   ZoneSplayTree<Config>* tree() { return &tree_; }
413   ZoneSplayTree<Config> tree_;
414 };
415 
416 
417 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
418   VISIT(End)                                                         \
419   VISIT(Action)                                                      \
420   VISIT(Choice)                                                      \
421   VISIT(BackReference)                                               \
422   VISIT(Assertion)                                                   \
423   VISIT(Text)
424 
425 
426 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
427   VISIT(Disjunction)                                                 \
428   VISIT(Alternative)                                                 \
429   VISIT(Assertion)                                                   \
430   VISIT(CharacterClass)                                              \
431   VISIT(Atom)                                                        \
432   VISIT(Quantifier)                                                  \
433   VISIT(Capture)                                                     \
434   VISIT(Lookahead)                                                   \
435   VISIT(BackReference)                                               \
436   VISIT(Empty)                                                       \
437   VISIT(Text)
438 
439 
440 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)441 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
442 #undef FORWARD_DECLARE
443 
444 
445 class TextElement {
446  public:
447   enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
448   TextElement() : type(UNINITIALIZED) { }
449   explicit TextElement(Type t) : type(t), cp_offset(-1) { }
450   static TextElement Atom(RegExpAtom* atom);
451   static TextElement CharClass(RegExpCharacterClass* char_class);
452   int length();
453   Type type;
454   union {
455     RegExpAtom* u_atom;
456     RegExpCharacterClass* u_char_class;
457   } data;
458   int cp_offset;
459 };
460 
461 
462 class Trace;
463 
464 
465 struct NodeInfo {
NodeInfoNodeInfo466   NodeInfo()
467       : being_analyzed(false),
468         been_analyzed(false),
469         follows_word_interest(false),
470         follows_newline_interest(false),
471         follows_start_interest(false),
472         at_end(false),
473         visited(false) { }
474 
475   // Returns true if the interests and assumptions of this node
476   // matches the given one.
MatchesNodeInfo477   bool Matches(NodeInfo* that) {
478     return (at_end == that->at_end) &&
479            (follows_word_interest == that->follows_word_interest) &&
480            (follows_newline_interest == that->follows_newline_interest) &&
481            (follows_start_interest == that->follows_start_interest);
482   }
483 
484   // Updates the interests of this node given the interests of the
485   // node preceding it.
AddFromPrecedingNodeInfo486   void AddFromPreceding(NodeInfo* that) {
487     at_end |= that->at_end;
488     follows_word_interest |= that->follows_word_interest;
489     follows_newline_interest |= that->follows_newline_interest;
490     follows_start_interest |= that->follows_start_interest;
491   }
492 
HasLookbehindNodeInfo493   bool HasLookbehind() {
494     return follows_word_interest ||
495            follows_newline_interest ||
496            follows_start_interest;
497   }
498 
499   // Sets the interests of this node to include the interests of the
500   // following node.
AddFromFollowingNodeInfo501   void AddFromFollowing(NodeInfo* that) {
502     follows_word_interest |= that->follows_word_interest;
503     follows_newline_interest |= that->follows_newline_interest;
504     follows_start_interest |= that->follows_start_interest;
505   }
506 
ResetCompilationStateNodeInfo507   void ResetCompilationState() {
508     being_analyzed = false;
509     been_analyzed = false;
510   }
511 
512   bool being_analyzed: 1;
513   bool been_analyzed: 1;
514 
515   // These bits are set of this node has to know what the preceding
516   // character was.
517   bool follows_word_interest: 1;
518   bool follows_newline_interest: 1;
519   bool follows_start_interest: 1;
520 
521   bool at_end: 1;
522   bool visited: 1;
523 };
524 
525 
526 class SiblingList {
527  public:
SiblingList()528   SiblingList() : list_(NULL) { }
length()529   int length() {
530     return list_ == NULL ? 0 : list_->length();
531   }
Ensure(RegExpNode * parent)532   void Ensure(RegExpNode* parent) {
533     if (list_ == NULL) {
534       list_ = new ZoneList<RegExpNode*>(2);
535       list_->Add(parent);
536     }
537   }
Add(RegExpNode * node)538   void Add(RegExpNode* node) { list_->Add(node); }
Get(int index)539   RegExpNode* Get(int index) { return list_->at(index); }
540  private:
541   ZoneList<RegExpNode*>* list_;
542 };
543 
544 
545 // Details of a quick mask-compare check that can look ahead in the
546 // input stream.
547 class QuickCheckDetails {
548  public:
QuickCheckDetails()549   QuickCheckDetails()
550       : characters_(0),
551         mask_(0),
552         value_(0),
553         cannot_match_(false) { }
QuickCheckDetails(int characters)554   explicit QuickCheckDetails(int characters)
555       : characters_(characters),
556         mask_(0),
557         value_(0),
558         cannot_match_(false) { }
559   bool Rationalize(bool ascii);
560   // Merge in the information from another branch of an alternation.
561   void Merge(QuickCheckDetails* other, int from_index);
562   // Advance the current position by some amount.
563   void Advance(int by, bool ascii);
564   void Clear();
cannot_match()565   bool cannot_match() { return cannot_match_; }
set_cannot_match()566   void set_cannot_match() { cannot_match_ = true; }
567   struct Position {
PositionPosition568     Position() : mask(0), value(0), determines_perfectly(false) { }
569     uc16 mask;
570     uc16 value;
571     bool determines_perfectly;
572   };
characters()573   int characters() { return characters_; }
set_characters(int characters)574   void set_characters(int characters) { characters_ = characters; }
positions(int index)575   Position* positions(int index) {
576     ASSERT(index >= 0);
577     ASSERT(index < characters_);
578     return positions_ + index;
579   }
mask()580   uint32_t mask() { return mask_; }
value()581   uint32_t value() { return value_; }
582 
583  private:
584   // How many characters do we have quick check information from.  This is
585   // the same for all branches of a choice node.
586   int characters_;
587   Position positions_[4];
588   // These values are the condensate of the above array after Rationalize().
589   uint32_t mask_;
590   uint32_t value_;
591   // If set to true, there is no way this quick check can match at all.
592   // E.g., if it requires to be at the start of the input, and isn't.
593   bool cannot_match_;
594 };
595 
596 
597 class RegExpNode: public ZoneObject {
598  public:
RegExpNode()599   RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
600   virtual ~RegExpNode();
601   virtual void Accept(NodeVisitor* visitor) = 0;
602   // Generates a goto to this node or actually generates the code at this point.
603   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
604   // How many characters must this node consume at a minimum in order to
605   // succeed.  If we have found at least 'still_to_find' characters that
606   // must be consumed there is no need to ask any following nodes whether
607   // they are sure to eat any more characters.  The not_at_start argument is
608   // used to indicate that we know we are not at the start of the input.  In
609   // this case anchored branches will always fail and can be ignored when
610   // determining how many characters are consumed on success.
611   virtual int EatsAtLeast(int still_to_find,
612                           int recursion_depth,
613                           bool not_at_start) = 0;
614   // Emits some quick code that checks whether the preloaded characters match.
615   // Falls through on certain failure, jumps to the label on possible success.
616   // If the node cannot make a quick check it does nothing and returns false.
617   bool EmitQuickCheck(RegExpCompiler* compiler,
618                       Trace* trace,
619                       bool preload_has_checked_bounds,
620                       Label* on_possible_success,
621                       QuickCheckDetails* details_return,
622                       bool fall_through_on_failure);
623   // For a given number of characters this returns a mask and a value.  The
624   // next n characters are anded with the mask and compared with the value.
625   // A comparison failure indicates the node cannot match the next n characters.
626   // A comparison success indicates the node may match.
627   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
628                                     RegExpCompiler* compiler,
629                                     int characters_filled_in,
630                                     bool not_at_start) = 0;
631   static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()632   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
label()633   Label* label() { return &label_; }
634   // If non-generic code is generated for a node (ie the node is not at the
635   // start of the trace) then it cannot be reused.  This variable sets a limit
636   // on how often we allow that to happen before we insist on starting a new
637   // trace and generating generic code for a node that can be reused by flushing
638   // the deferred actions in the current trace and generating a goto.
639   static const int kMaxCopiesCodeGenerated = 10;
640 
info()641   NodeInfo* info() { return &info_; }
642 
AddSibling(RegExpNode * node)643   void AddSibling(RegExpNode* node) { siblings_.Add(node); }
644 
645   // Static version of EnsureSibling that expresses the fact that the
646   // result has the same type as the input.
647   template <class C>
EnsureSibling(C * node,NodeInfo * info,bool * cloned)648   static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
649     return static_cast<C*>(node->EnsureSibling(info, cloned));
650   }
651 
siblings()652   SiblingList* siblings() { return &siblings_; }
set_siblings(SiblingList * other)653   void set_siblings(SiblingList* other) { siblings_ = *other; }
654 
655   // Return the set of possible next characters recognized by the regexp
656   // (or a safe subset, potentially the set of all characters).
657   ZoneList<CharacterRange>* FirstCharacterSet();
658 
659   // Compute (if possible within the budget of traversed nodes) the
660   // possible first characters of the input matched by this node and
661   // its continuation. Returns the remaining budget after the computation.
662   // If the budget is spent, the result is negative, and the cached
663   // first_character_set_ value isn't set.
664   virtual int ComputeFirstCharacterSet(int budget);
665 
666   // Get and set the cached first character set value.
first_character_set()667   ZoneList<CharacterRange>* first_character_set() {
668     return first_character_set_;
669   }
set_first_character_set(ZoneList<CharacterRange> * character_set)670   void set_first_character_set(ZoneList<CharacterRange>* character_set) {
671     first_character_set_ = character_set;
672   }
673 
674  protected:
675   enum LimitResult { DONE, CONTINUE };
676   static const int kComputeFirstCharacterSetFail = -1;
677 
678   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
679 
680   // Returns a sibling of this node whose interests and assumptions
681   // match the ones in the given node info.  If no sibling exists NULL
682   // is returned.
683   RegExpNode* TryGetSibling(NodeInfo* info);
684 
685   // Returns a sibling of this node whose interests match the ones in
686   // the given node info.  The info must not contain any assertions.
687   // If no node exists a new one will be created by cloning the current
688   // node.  The result will always be an instance of the same concrete
689   // class as this node.
690   RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
691 
692   // Returns a clone of this node initialized using the copy constructor
693   // of its concrete class.  Note that the node may have to be pre-
694   // processed before it is on a usable state.
695   virtual RegExpNode* Clone() = 0;
696 
697  private:
698   static const int kFirstCharBudget = 10;
699   Label label_;
700   NodeInfo info_;
701   SiblingList siblings_;
702   ZoneList<CharacterRange>* first_character_set_;
703   // This variable keeps track of how many times code has been generated for
704   // this node (in different traces).  We don't keep track of where the
705   // generated code is located unless the code is generated at the start of
706   // a trace, in which case it is generic and can be reused by flushing the
707   // deferred operations in the current trace and generating a goto.
708   int trace_count_;
709 };
710 
711 
712 // A simple closed interval.
713 class Interval {
714  public:
Interval()715   Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)716   Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)717   Interval Union(Interval that) {
718     if (that.from_ == kNone)
719       return *this;
720     else if (from_ == kNone)
721       return that;
722     else
723       return Interval(Min(from_, that.from_), Max(to_, that.to_));
724   }
Contains(int value)725   bool Contains(int value) {
726     return (from_ <= value) && (value <= to_);
727   }
is_empty()728   bool is_empty() { return from_ == kNone; }
from()729   int from() { return from_; }
to()730   int to() { return to_; }
Empty()731   static Interval Empty() { return Interval(); }
732   static const int kNone = -1;
733  private:
734   int from_;
735   int to_;
736 };
737 
738 
739 class SeqRegExpNode: public RegExpNode {
740  public:
SeqRegExpNode(RegExpNode * on_success)741   explicit SeqRegExpNode(RegExpNode* on_success)
742       : on_success_(on_success) { }
on_success()743   RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)744   void set_on_success(RegExpNode* node) { on_success_ = node; }
745  private:
746   RegExpNode* on_success_;
747 };
748 
749 
750 class ActionNode: public SeqRegExpNode {
751  public:
752   enum Type {
753     SET_REGISTER,
754     INCREMENT_REGISTER,
755     STORE_POSITION,
756     BEGIN_SUBMATCH,
757     POSITIVE_SUBMATCH_SUCCESS,
758     EMPTY_MATCH_CHECK,
759     CLEAR_CAPTURES
760   };
761   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
762   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
763   static ActionNode* StorePosition(int reg,
764                                    bool is_capture,
765                                    RegExpNode* on_success);
766   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
767   static ActionNode* BeginSubmatch(int stack_pointer_reg,
768                                    int position_reg,
769                                    RegExpNode* on_success);
770   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
771                                              int restore_reg,
772                                              int clear_capture_count,
773                                              int clear_capture_from,
774                                              RegExpNode* on_success);
775   static ActionNode* EmptyMatchCheck(int start_register,
776                                      int repetition_register,
777                                      int repetition_limit,
778                                      RegExpNode* on_success);
779   virtual void Accept(NodeVisitor* visitor);
780   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
781   virtual int EatsAtLeast(int still_to_find,
782                           int recursion_depth,
783                           bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)784   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
785                                     RegExpCompiler* compiler,
786                                     int filled_in,
787                                     bool not_at_start) {
788     return on_success()->GetQuickCheckDetails(
789         details, compiler, filled_in, not_at_start);
790   }
type()791   Type type() { return type_; }
792   // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()793   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
Clone()794   virtual ActionNode* Clone() { return new ActionNode(*this); }
795   virtual int ComputeFirstCharacterSet(int budget);
796  private:
797   union {
798     struct {
799       int reg;
800       int value;
801     } u_store_register;
802     struct {
803       int reg;
804     } u_increment_register;
805     struct {
806       int reg;
807       bool is_capture;
808     } u_position_register;
809     struct {
810       int stack_pointer_register;
811       int current_position_register;
812       int clear_register_count;
813       int clear_register_from;
814     } u_submatch;
815     struct {
816       int start_register;
817       int repetition_register;
818       int repetition_limit;
819     } u_empty_match_check;
820     struct {
821       int range_from;
822       int range_to;
823     } u_clear_captures;
824   } data_;
ActionNode(Type type,RegExpNode * on_success)825   ActionNode(Type type, RegExpNode* on_success)
826       : SeqRegExpNode(on_success),
827         type_(type) { }
828   Type type_;
829   friend class DotPrinter;
830 };
831 
832 
833 class TextNode: public SeqRegExpNode {
834  public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)835   TextNode(ZoneList<TextElement>* elms,
836            RegExpNode* on_success)
837       : SeqRegExpNode(on_success),
838         elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)839   TextNode(RegExpCharacterClass* that,
840            RegExpNode* on_success)
841       : SeqRegExpNode(on_success),
842         elms_(new ZoneList<TextElement>(1)) {
843     elms_->Add(TextElement::CharClass(that));
844   }
845   virtual void Accept(NodeVisitor* visitor);
846   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
847   virtual int EatsAtLeast(int still_to_find,
848                           int recursion_depth,
849                           bool not_at_start);
850   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
851                                     RegExpCompiler* compiler,
852                                     int characters_filled_in,
853                                     bool not_at_start);
elements()854   ZoneList<TextElement>* elements() { return elms_; }
855   void MakeCaseIndependent(bool is_ascii);
856   virtual int GreedyLoopTextLength();
Clone()857   virtual TextNode* Clone() {
858     TextNode* result = new TextNode(*this);
859     result->CalculateOffsets();
860     return result;
861   }
862   void CalculateOffsets();
863   virtual int ComputeFirstCharacterSet(int budget);
864  private:
865   enum TextEmitPassType {
866     NON_ASCII_MATCH,             // Check for characters that can't match.
867     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
868     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
869     CASE_CHARACTER_MATCH,        // Case-independent single character check.
870     CHARACTER_CLASS_MATCH        // Character class.
871   };
872   static bool SkipPass(int pass, bool ignore_case);
873   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
874   static const int kLastPass = CHARACTER_CLASS_MATCH;
875   void TextEmitPass(RegExpCompiler* compiler,
876                     TextEmitPassType pass,
877                     bool preloaded,
878                     Trace* trace,
879                     bool first_element_checked,
880                     int* checked_up_to);
881   int Length();
882   ZoneList<TextElement>* elms_;
883 };
884 
885 
886 class AssertionNode: public SeqRegExpNode {
887  public:
888   enum AssertionNodeType {
889     AT_END,
890     AT_START,
891     AT_BOUNDARY,
892     AT_NON_BOUNDARY,
893     AFTER_NEWLINE,
894     // Types not directly expressible in regexp syntax.
895     // Used for modifying a boundary node if its following character is
896     // known to be word and/or non-word.
897     AFTER_NONWORD_CHARACTER,
898     AFTER_WORD_CHARACTER
899   };
AtEnd(RegExpNode * on_success)900   static AssertionNode* AtEnd(RegExpNode* on_success) {
901     return new AssertionNode(AT_END, on_success);
902   }
AtStart(RegExpNode * on_success)903   static AssertionNode* AtStart(RegExpNode* on_success) {
904     return new AssertionNode(AT_START, on_success);
905   }
AtBoundary(RegExpNode * on_success)906   static AssertionNode* AtBoundary(RegExpNode* on_success) {
907     return new AssertionNode(AT_BOUNDARY, on_success);
908   }
AtNonBoundary(RegExpNode * on_success)909   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
910     return new AssertionNode(AT_NON_BOUNDARY, on_success);
911   }
AfterNewline(RegExpNode * on_success)912   static AssertionNode* AfterNewline(RegExpNode* on_success) {
913     return new AssertionNode(AFTER_NEWLINE, on_success);
914   }
915   virtual void Accept(NodeVisitor* visitor);
916   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
917   virtual int EatsAtLeast(int still_to_find,
918                           int recursion_depth,
919                           bool not_at_start);
920   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
921                                     RegExpCompiler* compiler,
922                                     int filled_in,
923                                     bool not_at_start);
924   virtual int ComputeFirstCharacterSet(int budget);
Clone()925   virtual AssertionNode* Clone() { return new AssertionNode(*this); }
type()926   AssertionNodeType type() { return type_; }
set_type(AssertionNodeType type)927   void set_type(AssertionNodeType type) { type_ = type; }
928  private:
AssertionNode(AssertionNodeType t,RegExpNode * on_success)929   AssertionNode(AssertionNodeType t, RegExpNode* on_success)
930       : SeqRegExpNode(on_success), type_(t) { }
931   AssertionNodeType type_;
932 };
933 
934 
935 class BackReferenceNode: public SeqRegExpNode {
936  public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)937   BackReferenceNode(int start_reg,
938                     int end_reg,
939                     RegExpNode* on_success)
940       : SeqRegExpNode(on_success),
941         start_reg_(start_reg),
942         end_reg_(end_reg) { }
943   virtual void Accept(NodeVisitor* visitor);
start_register()944   int start_register() { return start_reg_; }
end_register()945   int end_register() { return end_reg_; }
946   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
947   virtual int EatsAtLeast(int still_to_find,
948                           int recursion_depth,
949                           bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)950   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
951                                     RegExpCompiler* compiler,
952                                     int characters_filled_in,
953                                     bool not_at_start) {
954     return;
955   }
Clone()956   virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
957   virtual int ComputeFirstCharacterSet(int budget);
958  private:
959   int start_reg_;
960   int end_reg_;
961 };
962 
963 
964 class EndNode: public RegExpNode {
965  public:
966   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action)967   explicit EndNode(Action action) : action_(action) { }
968   virtual void Accept(NodeVisitor* visitor);
969   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth,bool not_at_start)970   virtual int EatsAtLeast(int still_to_find,
971                           int recursion_depth,
972                           bool not_at_start) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)973   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
974                                     RegExpCompiler* compiler,
975                                     int characters_filled_in,
976                                     bool not_at_start) {
977     // Returning 0 from EatsAtLeast should ensure we never get here.
978     UNREACHABLE();
979   }
Clone()980   virtual EndNode* Clone() { return new EndNode(*this); }
981  private:
982   Action action_;
983 };
984 
985 
986 class NegativeSubmatchSuccess: public EndNode {
987  public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start)988   NegativeSubmatchSuccess(int stack_pointer_reg,
989                           int position_reg,
990                           int clear_capture_count,
991                           int clear_capture_start)
992       : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
993         stack_pointer_register_(stack_pointer_reg),
994         current_position_register_(position_reg),
995         clear_capture_count_(clear_capture_count),
996         clear_capture_start_(clear_capture_start) { }
997   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
998 
999  private:
1000   int stack_pointer_register_;
1001   int current_position_register_;
1002   int clear_capture_count_;
1003   int clear_capture_start_;
1004 };
1005 
1006 
1007 class Guard: public ZoneObject {
1008  public:
1009   enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)1010   Guard(int reg, Relation op, int value)
1011       : reg_(reg),
1012         op_(op),
1013         value_(value) { }
reg()1014   int reg() { return reg_; }
op()1015   Relation op() { return op_; }
value()1016   int value() { return value_; }
1017 
1018  private:
1019   int reg_;
1020   Relation op_;
1021   int value_;
1022 };
1023 
1024 
1025 class GuardedAlternative {
1026  public:
GuardedAlternative(RegExpNode * node)1027   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
1028   void AddGuard(Guard* guard);
node()1029   RegExpNode* node() { return node_; }
set_node(RegExpNode * node)1030   void set_node(RegExpNode* node) { node_ = node; }
guards()1031   ZoneList<Guard*>* guards() { return guards_; }
1032 
1033  private:
1034   RegExpNode* node_;
1035   ZoneList<Guard*>* guards_;
1036 };
1037 
1038 
1039 class AlternativeGeneration;
1040 
1041 
1042 class ChoiceNode: public RegExpNode {
1043  public:
ChoiceNode(int expected_size)1044   explicit ChoiceNode(int expected_size)
1045       : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
1046         table_(NULL),
1047         not_at_start_(false),
1048         being_calculated_(false) { }
1049   virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)1050   void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
alternatives()1051   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1052   DispatchTable* GetTable(bool ignore_case);
1053   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1054   virtual int EatsAtLeast(int still_to_find,
1055                           int recursion_depth,
1056                           bool not_at_start);
1057   int EatsAtLeastHelper(int still_to_find,
1058                         int recursion_depth,
1059                         RegExpNode* ignore_this_node,
1060                         bool not_at_start);
1061   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1062                                     RegExpCompiler* compiler,
1063                                     int characters_filled_in,
1064                                     bool not_at_start);
Clone()1065   virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
1066 
being_calculated()1067   bool being_calculated() { return being_calculated_; }
not_at_start()1068   bool not_at_start() { return not_at_start_; }
set_not_at_start()1069   void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)1070   void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(int i)1071   virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1072 
1073  protected:
1074   int GreedyLoopTextLength(GuardedAlternative* alternative);
1075   ZoneList<GuardedAlternative>* alternatives_;
1076 
1077  private:
1078   friend class DispatchTableConstructor;
1079   friend class Analysis;
1080   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1081                      Guard* guard,
1082                      Trace* trace);
1083   int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start);
1084   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1085                                  Trace* trace,
1086                                  GuardedAlternative alternative,
1087                                  AlternativeGeneration* alt_gen,
1088                                  int preload_characters,
1089                                  bool next_expects_preload);
1090   DispatchTable* table_;
1091   // If true, this node is never checked at the start of the input.
1092   // Allows a new trace to start with at_start() set to false.
1093   bool not_at_start_;
1094   bool being_calculated_;
1095 };
1096 
1097 
1098 class NegativeLookaheadChoiceNode: public ChoiceNode {
1099  public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this)1100   explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1101                                        GuardedAlternative then_do_this)
1102       : ChoiceNode(2) {
1103     AddAlternative(this_must_fail);
1104     AddAlternative(then_do_this);
1105   }
1106   virtual int EatsAtLeast(int still_to_find,
1107                           int recursion_depth,
1108                           bool not_at_start);
1109   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1110                                     RegExpCompiler* compiler,
1111                                     int characters_filled_in,
1112                                     bool not_at_start);
1113   // For a negative lookahead we don't emit the quick check for the
1114   // alternative that is expected to fail.  This is because quick check code
1115   // starts by loading enough characters for the alternative that takes fewest
1116   // characters, but on a negative lookahead the negative branch did not take
1117   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(int i)1118   virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1119   virtual int ComputeFirstCharacterSet(int budget);
1120 };
1121 
1122 
1123 class LoopChoiceNode: public ChoiceNode {
1124  public:
LoopChoiceNode(bool body_can_be_zero_length)1125   explicit LoopChoiceNode(bool body_can_be_zero_length)
1126       : ChoiceNode(2),
1127         loop_node_(NULL),
1128         continue_node_(NULL),
1129         body_can_be_zero_length_(body_can_be_zero_length) { }
1130   void AddLoopAlternative(GuardedAlternative alt);
1131   void AddContinueAlternative(GuardedAlternative alt);
1132   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1133   virtual int EatsAtLeast(int still_to_find,
1134                           int recursion_depth,
1135                           bool not_at_start);
1136   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1137                                     RegExpCompiler* compiler,
1138                                     int characters_filled_in,
1139                                     bool not_at_start);
1140   virtual int ComputeFirstCharacterSet(int budget);
Clone()1141   virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
loop_node()1142   RegExpNode* loop_node() { return loop_node_; }
continue_node()1143   RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1144   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1145   virtual void Accept(NodeVisitor* visitor);
1146 
1147  private:
1148   // AddAlternative is made private for loop nodes because alternatives
1149   // should not be added freely, we need to keep track of which node
1150   // goes back to the node itself.
AddAlternative(GuardedAlternative node)1151   void AddAlternative(GuardedAlternative node) {
1152     ChoiceNode::AddAlternative(node);
1153   }
1154 
1155   RegExpNode* loop_node_;
1156   RegExpNode* continue_node_;
1157   bool body_can_be_zero_length_;
1158 };
1159 
1160 
1161 // There are many ways to generate code for a node.  This class encapsulates
1162 // the current way we should be generating.  In other words it encapsulates
1163 // the current state of the code generator.  The effect of this is that we
1164 // generate code for paths that the matcher can take through the regular
1165 // expression.  A given node in the regexp can be code-generated several times
1166 // as it can be part of several traces.  For example for the regexp:
1167 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1168 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
1169 // to match foo is generated only once (the traces have a common prefix).  The
1170 // code to store the capture is deferred and generated (twice) after the places
1171 // where baz has been matched.
1172 class Trace {
1173  public:
1174   // A value for a property that is either known to be true, know to be false,
1175   // or not known.
1176   enum TriBool {
1177     UNKNOWN = -1, FALSE = 0, TRUE = 1
1178   };
1179 
1180   class DeferredAction {
1181    public:
DeferredAction(ActionNode::Type type,int reg)1182     DeferredAction(ActionNode::Type type, int reg)
1183         : type_(type), reg_(reg), next_(NULL) { }
next()1184     DeferredAction* next() { return next_; }
1185     bool Mentions(int reg);
reg()1186     int reg() { return reg_; }
type()1187     ActionNode::Type type() { return type_; }
1188    private:
1189     ActionNode::Type type_;
1190     int reg_;
1191     DeferredAction* next_;
1192     friend class Trace;
1193   };
1194 
1195   class DeferredCapture : public DeferredAction {
1196    public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1197     DeferredCapture(int reg, bool is_capture, Trace* trace)
1198         : DeferredAction(ActionNode::STORE_POSITION, reg),
1199           cp_offset_(trace->cp_offset()),
1200           is_capture_(is_capture) { }
cp_offset()1201     int cp_offset() { return cp_offset_; }
is_capture()1202     bool is_capture() { return is_capture_; }
1203    private:
1204     int cp_offset_;
1205     bool is_capture_;
set_cp_offset(int cp_offset)1206     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1207   };
1208 
1209   class DeferredSetRegister : public DeferredAction {
1210    public:
DeferredSetRegister(int reg,int value)1211     DeferredSetRegister(int reg, int value)
1212         : DeferredAction(ActionNode::SET_REGISTER, reg),
1213           value_(value) { }
value()1214     int value() { return value_; }
1215    private:
1216     int value_;
1217   };
1218 
1219   class DeferredClearCaptures : public DeferredAction {
1220    public:
DeferredClearCaptures(Interval range)1221     explicit DeferredClearCaptures(Interval range)
1222         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1223           range_(range) { }
range()1224     Interval range() { return range_; }
1225    private:
1226     Interval range_;
1227   };
1228 
1229   class DeferredIncrementRegister : public DeferredAction {
1230    public:
DeferredIncrementRegister(int reg)1231     explicit DeferredIncrementRegister(int reg)
1232         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1233   };
1234 
Trace()1235   Trace()
1236       : cp_offset_(0),
1237         actions_(NULL),
1238         backtrack_(NULL),
1239         stop_node_(NULL),
1240         loop_label_(NULL),
1241         characters_preloaded_(0),
1242         bound_checked_up_to_(0),
1243         flush_budget_(100),
1244         at_start_(UNKNOWN) { }
1245 
1246   // End the trace.  This involves flushing the deferred actions in the trace
1247   // and pushing a backtrack location onto the backtrack stack.  Once this is
1248   // done we can start a new trace or go to one that has already been
1249   // generated.
1250   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1251   int cp_offset() { return cp_offset_; }
actions()1252   DeferredAction* actions() { return actions_; }
1253   // A trivial trace is one that has no deferred actions or other state that
1254   // affects the assumptions used when generating code.  There is no recorded
1255   // backtrack location in a trivial trace, so with a trivial trace we will
1256   // generate code that, on a failure to match, gets the backtrack location
1257   // from the backtrack stack rather than using a direct jump instruction.  We
1258   // always start code generation with a trivial trace and non-trivial traces
1259   // are created as we emit code for nodes or add to the list of deferred
1260   // actions in the trace.  The location of the code generated for a node using
1261   // a trivial trace is recorded in a label in the node so that gotos can be
1262   // generated to that code.
is_trivial()1263   bool is_trivial() {
1264     return backtrack_ == NULL &&
1265            actions_ == NULL &&
1266            cp_offset_ == 0 &&
1267            characters_preloaded_ == 0 &&
1268            bound_checked_up_to_ == 0 &&
1269            quick_check_performed_.characters() == 0 &&
1270            at_start_ == UNKNOWN;
1271   }
at_start()1272   TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1273   void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
backtrack()1274   Label* backtrack() { return backtrack_; }
loop_label()1275   Label* loop_label() { return loop_label_; }
stop_node()1276   RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1277   int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1278   int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1279   int flush_budget() { return flush_budget_; }
quick_check_performed()1280   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1281   bool mentions_reg(int reg);
1282   // Returns true if a deferred position store exists to the specified
1283   // register and stores the offset in the out-parameter.  Otherwise
1284   // returns false.
1285   bool GetStoredPosition(int reg, int* cp_offset);
1286   // These set methods and AdvanceCurrentPositionInTrace should be used only on
1287   // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1288   void add_action(DeferredAction* new_action) {
1289     ASSERT(new_action->next_ == NULL);
1290     new_action->next_ = actions_;
1291     actions_ = new_action;
1292   }
set_backtrack(Label * backtrack)1293   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1294   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1295   void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1296   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1297   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1298   void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1299   void set_quick_check_performed(QuickCheckDetails* d) {
1300     quick_check_performed_ = *d;
1301   }
1302   void InvalidateCurrentCharacter();
1303   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1304  private:
1305   int FindAffectedRegisters(OutSet* affected_registers);
1306   void PerformDeferredActions(RegExpMacroAssembler* macro,
1307                                int max_register,
1308                                OutSet& affected_registers,
1309                                OutSet* registers_to_pop,
1310                                OutSet* registers_to_clear);
1311   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1312                                 int max_register,
1313                                 OutSet& registers_to_pop,
1314                                 OutSet& registers_to_clear);
1315   int cp_offset_;
1316   DeferredAction* actions_;
1317   Label* backtrack_;
1318   RegExpNode* stop_node_;
1319   Label* loop_label_;
1320   int characters_preloaded_;
1321   int bound_checked_up_to_;
1322   QuickCheckDetails quick_check_performed_;
1323   int flush_budget_;
1324   TriBool at_start_;
1325 };
1326 
1327 
1328 class NodeVisitor {
1329  public:
~NodeVisitor()1330   virtual ~NodeVisitor() { }
1331 #define DECLARE_VISIT(Type)                                          \
1332   virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1333 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1334 #undef DECLARE_VISIT
1335   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1336 };
1337 
1338 
1339 // Node visitor used to add the start set of the alternatives to the
1340 // dispatch table of a choice node.
1341 class DispatchTableConstructor: public NodeVisitor {
1342  public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case)1343   DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1344       : table_(table),
1345         choice_index_(-1),
1346         ignore_case_(ignore_case) { }
1347 
1348   void BuildTable(ChoiceNode* node);
1349 
AddRange(CharacterRange range)1350   void AddRange(CharacterRange range) {
1351     table()->AddRange(range, choice_index_);
1352   }
1353 
1354   void AddInverse(ZoneList<CharacterRange>* ranges);
1355 
1356 #define DECLARE_VISIT(Type)                                          \
1357   virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1358 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1359 #undef DECLARE_VISIT
1360 
1361   DispatchTable* table() { return table_; }
set_choice_index(int value)1362   void set_choice_index(int value) { choice_index_ = value; }
1363 
1364  protected:
1365   DispatchTable* table_;
1366   int choice_index_;
1367   bool ignore_case_;
1368 };
1369 
1370 
1371 // Assertion propagation moves information about assertions such as
1372 // \b to the affected nodes.  For instance, in /.\b./ information must
1373 // be propagated to the first '.' that whatever follows needs to know
1374 // if it matched a word or a non-word, and to the second '.' that it
1375 // has to check if it succeeds a word or non-word.  In this case the
1376 // result will be something like:
1377 //
1378 //   +-------+        +------------+
1379 //   |   .   |        |      .     |
1380 //   +-------+  --->  +------------+
1381 //   | word? |        | check word |
1382 //   +-------+        +------------+
1383 class Analysis: public NodeVisitor {
1384  public:
Analysis(bool ignore_case,bool is_ascii)1385   Analysis(bool ignore_case, bool is_ascii)
1386       : ignore_case_(ignore_case),
1387         is_ascii_(is_ascii),
1388         error_message_(NULL) { }
1389   void EnsureAnalyzed(RegExpNode* node);
1390 
1391 #define DECLARE_VISIT(Type)                                          \
1392   virtual void Visit##Type(Type##Node* that);
1393 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1394 #undef DECLARE_VISIT
1395   virtual void VisitLoopChoice(LoopChoiceNode* that);
1396 
has_failed()1397   bool has_failed() { return error_message_ != NULL; }
error_message()1398   const char* error_message() {
1399     ASSERT(error_message_ != NULL);
1400     return error_message_;
1401   }
fail(const char * error_message)1402   void fail(const char* error_message) {
1403     error_message_ = error_message;
1404   }
1405  private:
1406   bool ignore_case_;
1407   bool is_ascii_;
1408   const char* error_message_;
1409 
1410   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1411 };
1412 
1413 
1414 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1415   RegExpCompileData()
1416     : tree(NULL),
1417       node(NULL),
1418       simple(true),
1419       contains_anchor(false),
1420       capture_count(0) { }
1421   RegExpTree* tree;
1422   RegExpNode* node;
1423   bool simple;
1424   bool contains_anchor;
1425   Handle<String> error;
1426   int capture_count;
1427 };
1428 
1429 
1430 class RegExpEngine: public AllStatic {
1431  public:
1432   struct CompilationResult {
CompilationResultCompilationResult1433     explicit CompilationResult(const char* error_message)
1434         : error_message(error_message),
1435           code(HEAP->the_hole_value()),
1436           num_registers(0) {}
CompilationResultCompilationResult1437     CompilationResult(Object* code, int registers)
1438       : error_message(NULL),
1439         code(code),
1440         num_registers(registers) {}
1441     const char* error_message;
1442     Object* code;
1443     int num_registers;
1444   };
1445 
1446   static CompilationResult Compile(RegExpCompileData* input,
1447                                    bool ignore_case,
1448                                    bool multiline,
1449                                    Handle<String> pattern,
1450                                    bool is_ascii);
1451 
1452   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1453 };
1454 
1455 
1456 class OffsetsVector {
1457  public:
OffsetsVector(int num_registers)1458   explicit inline OffsetsVector(int num_registers)
1459       : offsets_vector_length_(num_registers) {
1460     if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1461       vector_ = NewArray<int>(offsets_vector_length_);
1462     } else {
1463       vector_ = Isolate::Current()->jsregexp_static_offsets_vector();
1464     }
1465   }
~OffsetsVector()1466   inline ~OffsetsVector() {
1467     if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1468       DeleteArray(vector_);
1469       vector_ = NULL;
1470     }
1471   }
vector()1472   inline int* vector() { return vector_; }
length()1473   inline int length() { return offsets_vector_length_; }
1474 
1475   static const int kStaticOffsetsVectorSize = 50;
1476 
1477  private:
static_offsets_vector_address(Isolate * isolate)1478   static Address static_offsets_vector_address(Isolate* isolate) {
1479     return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector());
1480   }
1481 
1482   int* vector_;
1483   int offsets_vector_length_;
1484 
1485   friend class ExternalReference;
1486 };
1487 
1488 
1489 } }  // namespace v8::internal
1490 
1491 #endif  // V8_JSREGEXP_H_
1492