1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_JSREGEXP_H_
29 #define V8_JSREGEXP_H_
30
31 #include "macro-assembler.h"
32 #include "zone-inl.h"
33
34 namespace v8 {
35 namespace internal {
36
37
38 class RegExpMacroAssembler;
39
40
41 class RegExpImpl {
42 public:
43 // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()44 static bool UsesNativeRegExp() {
45 #ifdef V8_INTERPRETED_REGEXP
46 return false;
47 #else
48 return true;
49 #endif
50 }
51
52 // Creates a regular expression literal in the old space.
53 // This function calls the garbage collector if necessary.
54 static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
55 Handle<String> pattern,
56 Handle<String> flags,
57 bool* has_pending_exception);
58
59 // Returns a string representation of a regular expression.
60 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
61 // This function calls the garbage collector if necessary.
62 static Handle<String> ToString(Handle<Object> value);
63
64 // Parses the RegExp pattern and prepares the JSRegExp object with
65 // generic data and choice of implementation - as well as what
66 // the implementation wants to store in the data field.
67 // Returns false if compilation fails.
68 static Handle<Object> Compile(Handle<JSRegExp> re,
69 Handle<String> pattern,
70 Handle<String> flags);
71
72 // See ECMA-262 section 15.10.6.2.
73 // This function calls the garbage collector if necessary.
74 static Handle<Object> Exec(Handle<JSRegExp> regexp,
75 Handle<String> subject,
76 int index,
77 Handle<JSArray> lastMatchInfo);
78
79 // Prepares a JSRegExp object with Irregexp-specific data.
80 static void IrregexpInitialize(Handle<JSRegExp> re,
81 Handle<String> pattern,
82 JSRegExp::Flags flags,
83 int capture_register_count);
84
85
86 static void AtomCompile(Handle<JSRegExp> re,
87 Handle<String> pattern,
88 JSRegExp::Flags flags,
89 Handle<String> match_pattern);
90
91 static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
92 Handle<String> subject,
93 int index,
94 Handle<JSArray> lastMatchInfo);
95
96 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
97
98 // Prepare a RegExp for being executed one or more times (using
99 // IrregexpExecOnce) on the subject.
100 // This ensures that the regexp is compiled for the subject, and that
101 // the subject is flat.
102 // Returns the number of integer spaces required by IrregexpExecOnce
103 // as its "registers" argument. If the regexp cannot be compiled,
104 // an exception is set as pending, and this function returns negative.
105 static int IrregexpPrepare(Handle<JSRegExp> regexp,
106 Handle<String> subject);
107
108 // Execute a regular expression once on the subject, starting from
109 // character "index".
110 // If successful, returns RE_SUCCESS and set the capture positions
111 // in the first registers.
112 // If matching fails, returns RE_FAILURE.
113 // If execution fails, sets a pending exception and returns RE_EXCEPTION.
114 static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp,
115 Handle<String> subject,
116 int index,
117 Vector<int> registers);
118
119 // Execute an Irregexp bytecode pattern.
120 // On a successful match, the result is a JSArray containing
121 // captured positions. On a failure, the result is the null value.
122 // Returns an empty handle in case of an exception.
123 static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
124 Handle<String> subject,
125 int index,
126 Handle<JSArray> lastMatchInfo);
127
128 // Array index in the lastMatchInfo array.
129 static const int kLastCaptureCount = 0;
130 static const int kLastSubject = 1;
131 static const int kLastInput = 2;
132 static const int kFirstCapture = 3;
133 static const int kLastMatchOverhead = 3;
134
135 // Direct offset into the lastMatchInfo array.
136 static const int kLastCaptureCountOffset =
137 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
138 static const int kLastSubjectOffset =
139 FixedArray::kHeaderSize + kLastSubject * kPointerSize;
140 static const int kLastInputOffset =
141 FixedArray::kHeaderSize + kLastInput * kPointerSize;
142 static const int kFirstCaptureOffset =
143 FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
144
145 // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)146 static int GetCapture(FixedArray* array, int index) {
147 return Smi::cast(array->get(index + kFirstCapture))->value();
148 }
149
SetLastCaptureCount(FixedArray * array,int to)150 static void SetLastCaptureCount(FixedArray* array, int to) {
151 array->set(kLastCaptureCount, Smi::FromInt(to));
152 }
153
SetLastSubject(FixedArray * array,String * to)154 static void SetLastSubject(FixedArray* array, String* to) {
155 array->set(kLastSubject, to);
156 }
157
SetLastInput(FixedArray * array,String * to)158 static void SetLastInput(FixedArray* array, String* to) {
159 array->set(kLastInput, to);
160 }
161
SetCapture(FixedArray * array,int index,int to)162 static void SetCapture(FixedArray* array, int index, int to) {
163 array->set(index + kFirstCapture, Smi::FromInt(to));
164 }
165
GetLastCaptureCount(FixedArray * array)166 static int GetLastCaptureCount(FixedArray* array) {
167 return Smi::cast(array->get(kLastCaptureCount))->value();
168 }
169
170 // For acting on the JSRegExp data FixedArray.
171 static int IrregexpMaxRegisterCount(FixedArray* re);
172 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
173 static int IrregexpNumberOfCaptures(FixedArray* re);
174 static int IrregexpNumberOfRegisters(FixedArray* re);
175 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
176 static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
177
178 // Limit the space regexps take up on the heap. In order to limit this we
179 // would like to keep track of the amount of regexp code on the heap. This
180 // is not tracked, however. As a conservative approximation we track the
181 // total regexp code compiled including code that has subsequently been freed
182 // and the total executable memory at any point.
183 static const int kRegExpExecutableMemoryLimit = 16 * MB;
184 static const int kRegWxpCompiledLimit = 1 * MB;
185
186 private:
187 static String* last_ascii_string_;
188 static String* two_byte_cached_string_;
189
190 static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
191 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
192
193
194 // Set the subject cache. The previous string buffer is not deleted, so the
195 // caller should ensure that it doesn't leak.
196 static void SetSubjectCache(String* subject,
197 char* utf8_subject,
198 int uft8_length,
199 int character_position,
200 int utf8_position);
201
202 // A one element cache of the last utf8_subject string and its length. The
203 // subject JS String object is cached in the heap. We also cache a
204 // translation between position and utf8 position.
205 static char* utf8_subject_cache_;
206 static int utf8_length_cache_;
207 static int utf8_position_;
208 static int character_position_;
209 };
210
211
212 // Represents the location of one element relative to the intersection of
213 // two sets. Corresponds to the four areas of a Venn diagram.
214 enum ElementInSetsRelation {
215 kInsideNone = 0,
216 kInsideFirst = 1,
217 kInsideSecond = 2,
218 kInsideBoth = 3
219 };
220
221
222 // Represents the relation of two sets.
223 // Sets can be either disjoint, partially or fully overlapping, or equal.
224 class SetRelation BASE_EMBEDDED {
225 public:
226 // Relation is represented by a bit saying whether there are elements in
227 // one set that is not in the other, and a bit saying that there are elements
228 // that are in both sets.
229
230 // Location of an element. Corresponds to the internal areas of
231 // a Venn diagram.
232 enum {
233 kInFirst = 1 << kInsideFirst,
234 kInSecond = 1 << kInsideSecond,
235 kInBoth = 1 << kInsideBoth
236 };
SetRelation()237 SetRelation() : bits_(0) {}
~SetRelation()238 ~SetRelation() {}
239 // Add the existence of objects in a particular
SetElementsInFirstSet()240 void SetElementsInFirstSet() { bits_ |= kInFirst; }
SetElementsInSecondSet()241 void SetElementsInSecondSet() { bits_ |= kInSecond; }
SetElementsInBothSets()242 void SetElementsInBothSets() { bits_ |= kInBoth; }
243 // Check the currently known relation of the sets (common functions only,
244 // for other combinations, use value() to get the bits and check them
245 // manually).
246 // Sets are completely disjoint.
Disjoint()247 bool Disjoint() { return (bits_ & kInBoth) == 0; }
248 // Sets are equal.
Equals()249 bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
250 // First set contains second.
Contains()251 bool Contains() { return (bits_ & kInSecond) == 0; }
252 // Second set contains first.
ContainedIn()253 bool ContainedIn() { return (bits_ & kInFirst) == 0; }
NonTrivialIntersection()254 bool NonTrivialIntersection() {
255 return (bits_ == (kInFirst | kInSecond | kInBoth));
256 }
value()257 int value() { return bits_; }
258 private:
259 int bits_;
260 };
261
262
263 class CharacterRange {
264 public:
CharacterRange()265 CharacterRange() : from_(0), to_(0) { }
266 // For compatibility with the CHECK_OK macro
CharacterRange(void * null)267 CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT
CharacterRange(uc16 from,uc16 to)268 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
269 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
270 static Vector<const uc16> GetWordBounds();
Singleton(uc16 value)271 static inline CharacterRange Singleton(uc16 value) {
272 return CharacterRange(value, value);
273 }
Range(uc16 from,uc16 to)274 static inline CharacterRange Range(uc16 from, uc16 to) {
275 ASSERT(from <= to);
276 return CharacterRange(from, to);
277 }
Everything()278 static inline CharacterRange Everything() {
279 return CharacterRange(0, 0xFFFF);
280 }
Contains(uc16 i)281 bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()282 uc16 from() const { return from_; }
set_from(uc16 value)283 void set_from(uc16 value) { from_ = value; }
to()284 uc16 to() const { return to_; }
set_to(uc16 value)285 void set_to(uc16 value) { to_ = value; }
is_valid()286 bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)287 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()288 bool IsSingleton() { return (from_ == to_); }
289 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
290 static void Split(ZoneList<CharacterRange>* base,
291 Vector<const uc16> overlay,
292 ZoneList<CharacterRange>** included,
293 ZoneList<CharacterRange>** excluded);
294 // Whether a range list is in canonical form: Ranges ordered by from value,
295 // and ranges non-overlapping and non-adjacent.
296 static bool IsCanonical(ZoneList<CharacterRange>* ranges);
297 // Convert range list to canonical form. The characters covered by the ranges
298 // will still be the same, but no character is in more than one range, and
299 // adjacent ranges are merged. The resulting list may be shorter than the
300 // original, but cannot be longer.
301 static void Canonicalize(ZoneList<CharacterRange>* ranges);
302 // Check how the set of characters defined by a CharacterRange list relates
303 // to the set of word characters. List must be in canonical form.
304 static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
305 // Takes two character range lists (representing character sets) in canonical
306 // form and merges them.
307 // The characters that are only covered by the first set are added to
308 // first_set_only_out. the characters that are only in the second set are
309 // added to second_set_only_out, and the characters that are in both are
310 // added to both_sets_out.
311 // The pointers to first_set_only_out, second_set_only_out and both_sets_out
312 // should be to empty lists, but they need not be distinct, and may be NULL.
313 // If NULL, the characters are dropped, and if two arguments are the same
314 // pointer, the result is the union of the two sets that would be created
315 // if the pointers had been distinct.
316 // This way, the Merge function can compute all the usual set operations:
317 // union (all three out-sets are equal), intersection (only both_sets_out is
318 // non-NULL), and set difference (only first_set is non-NULL).
319 static void Merge(ZoneList<CharacterRange>* first_set,
320 ZoneList<CharacterRange>* second_set,
321 ZoneList<CharacterRange>* first_set_only_out,
322 ZoneList<CharacterRange>* second_set_only_out,
323 ZoneList<CharacterRange>* both_sets_out);
324 // Negate the contents of a character range in canonical form.
325 static void Negate(ZoneList<CharacterRange>* src,
326 ZoneList<CharacterRange>* dst);
327 static const int kStartMarker = (1 << 24);
328 static const int kPayloadMask = (1 << 24) - 1;
329
330 private:
331 uc16 from_;
332 uc16 to_;
333 };
334
335
336 // A set of unsigned integers that behaves especially well on small
337 // integers (< 32). May do zone-allocation.
338 class OutSet: public ZoneObject {
339 public:
OutSet()340 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
341 OutSet* Extend(unsigned value);
342 bool Get(unsigned value);
343 static const unsigned kFirstLimit = 32;
344
345 private:
346 // Destructively set a value in this set. In most cases you want
347 // to use Extend instead to ensure that only one instance exists
348 // that contains the same values.
349 void Set(unsigned value);
350
351 // The successors are a list of sets that contain the same values
352 // as this set and the one more value that is not present in this
353 // set.
successors()354 ZoneList<OutSet*>* successors() { return successors_; }
355
OutSet(uint32_t first,ZoneList<unsigned> * remaining)356 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
357 : first_(first), remaining_(remaining), successors_(NULL) { }
358 uint32_t first_;
359 ZoneList<unsigned>* remaining_;
360 ZoneList<OutSet*>* successors_;
361 friend class Trace;
362 };
363
364
365 // A mapping from integers, specified as ranges, to a set of integers.
366 // Used for mapping character ranges to choices.
367 class DispatchTable : public ZoneObject {
368 public:
369 class Entry {
370 public:
Entry()371 Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)372 Entry(uc16 from, uc16 to, OutSet* out_set)
373 : from_(from), to_(to), out_set_(out_set) { }
from()374 uc16 from() { return from_; }
to()375 uc16 to() { return to_; }
set_to(uc16 value)376 void set_to(uc16 value) { to_ = value; }
AddValue(int value)377 void AddValue(int value) { out_set_ = out_set_->Extend(value); }
out_set()378 OutSet* out_set() { return out_set_; }
379 private:
380 uc16 from_;
381 uc16 to_;
382 OutSet* out_set_;
383 };
384
385 class Config {
386 public:
387 typedef uc16 Key;
388 typedef Entry Value;
389 static const uc16 kNoKey;
390 static const Entry kNoValue;
Compare(uc16 a,uc16 b)391 static inline int Compare(uc16 a, uc16 b) {
392 if (a == b)
393 return 0;
394 else if (a < b)
395 return -1;
396 else
397 return 1;
398 }
399 };
400
401 void AddRange(CharacterRange range, int value);
402 OutSet* Get(uc16 value);
403 void Dump();
404
405 template <typename Callback>
ForEach(Callback * callback)406 void ForEach(Callback* callback) { return tree()->ForEach(callback); }
407 private:
408 // There can't be a static empty set since it allocates its
409 // successors in a zone and caches them.
empty()410 OutSet* empty() { return &empty_; }
411 OutSet empty_;
tree()412 ZoneSplayTree<Config>* tree() { return &tree_; }
413 ZoneSplayTree<Config> tree_;
414 };
415
416
417 #define FOR_EACH_NODE_TYPE(VISIT) \
418 VISIT(End) \
419 VISIT(Action) \
420 VISIT(Choice) \
421 VISIT(BackReference) \
422 VISIT(Assertion) \
423 VISIT(Text)
424
425
426 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
427 VISIT(Disjunction) \
428 VISIT(Alternative) \
429 VISIT(Assertion) \
430 VISIT(CharacterClass) \
431 VISIT(Atom) \
432 VISIT(Quantifier) \
433 VISIT(Capture) \
434 VISIT(Lookahead) \
435 VISIT(BackReference) \
436 VISIT(Empty) \
437 VISIT(Text)
438
439
440 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)441 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
442 #undef FORWARD_DECLARE
443
444
445 class TextElement {
446 public:
447 enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
448 TextElement() : type(UNINITIALIZED) { }
449 explicit TextElement(Type t) : type(t), cp_offset(-1) { }
450 static TextElement Atom(RegExpAtom* atom);
451 static TextElement CharClass(RegExpCharacterClass* char_class);
452 int length();
453 Type type;
454 union {
455 RegExpAtom* u_atom;
456 RegExpCharacterClass* u_char_class;
457 } data;
458 int cp_offset;
459 };
460
461
462 class Trace;
463
464
465 struct NodeInfo {
NodeInfoNodeInfo466 NodeInfo()
467 : being_analyzed(false),
468 been_analyzed(false),
469 follows_word_interest(false),
470 follows_newline_interest(false),
471 follows_start_interest(false),
472 at_end(false),
473 visited(false) { }
474
475 // Returns true if the interests and assumptions of this node
476 // matches the given one.
MatchesNodeInfo477 bool Matches(NodeInfo* that) {
478 return (at_end == that->at_end) &&
479 (follows_word_interest == that->follows_word_interest) &&
480 (follows_newline_interest == that->follows_newline_interest) &&
481 (follows_start_interest == that->follows_start_interest);
482 }
483
484 // Updates the interests of this node given the interests of the
485 // node preceding it.
AddFromPrecedingNodeInfo486 void AddFromPreceding(NodeInfo* that) {
487 at_end |= that->at_end;
488 follows_word_interest |= that->follows_word_interest;
489 follows_newline_interest |= that->follows_newline_interest;
490 follows_start_interest |= that->follows_start_interest;
491 }
492
HasLookbehindNodeInfo493 bool HasLookbehind() {
494 return follows_word_interest ||
495 follows_newline_interest ||
496 follows_start_interest;
497 }
498
499 // Sets the interests of this node to include the interests of the
500 // following node.
AddFromFollowingNodeInfo501 void AddFromFollowing(NodeInfo* that) {
502 follows_word_interest |= that->follows_word_interest;
503 follows_newline_interest |= that->follows_newline_interest;
504 follows_start_interest |= that->follows_start_interest;
505 }
506
ResetCompilationStateNodeInfo507 void ResetCompilationState() {
508 being_analyzed = false;
509 been_analyzed = false;
510 }
511
512 bool being_analyzed: 1;
513 bool been_analyzed: 1;
514
515 // These bits are set of this node has to know what the preceding
516 // character was.
517 bool follows_word_interest: 1;
518 bool follows_newline_interest: 1;
519 bool follows_start_interest: 1;
520
521 bool at_end: 1;
522 bool visited: 1;
523 };
524
525
526 class SiblingList {
527 public:
SiblingList()528 SiblingList() : list_(NULL) { }
length()529 int length() {
530 return list_ == NULL ? 0 : list_->length();
531 }
Ensure(RegExpNode * parent)532 void Ensure(RegExpNode* parent) {
533 if (list_ == NULL) {
534 list_ = new ZoneList<RegExpNode*>(2);
535 list_->Add(parent);
536 }
537 }
Add(RegExpNode * node)538 void Add(RegExpNode* node) { list_->Add(node); }
Get(int index)539 RegExpNode* Get(int index) { return list_->at(index); }
540 private:
541 ZoneList<RegExpNode*>* list_;
542 };
543
544
545 // Details of a quick mask-compare check that can look ahead in the
546 // input stream.
547 class QuickCheckDetails {
548 public:
QuickCheckDetails()549 QuickCheckDetails()
550 : characters_(0),
551 mask_(0),
552 value_(0),
553 cannot_match_(false) { }
QuickCheckDetails(int characters)554 explicit QuickCheckDetails(int characters)
555 : characters_(characters),
556 mask_(0),
557 value_(0),
558 cannot_match_(false) { }
559 bool Rationalize(bool ascii);
560 // Merge in the information from another branch of an alternation.
561 void Merge(QuickCheckDetails* other, int from_index);
562 // Advance the current position by some amount.
563 void Advance(int by, bool ascii);
564 void Clear();
cannot_match()565 bool cannot_match() { return cannot_match_; }
set_cannot_match()566 void set_cannot_match() { cannot_match_ = true; }
567 struct Position {
PositionPosition568 Position() : mask(0), value(0), determines_perfectly(false) { }
569 uc16 mask;
570 uc16 value;
571 bool determines_perfectly;
572 };
characters()573 int characters() { return characters_; }
set_characters(int characters)574 void set_characters(int characters) { characters_ = characters; }
positions(int index)575 Position* positions(int index) {
576 ASSERT(index >= 0);
577 ASSERT(index < characters_);
578 return positions_ + index;
579 }
mask()580 uint32_t mask() { return mask_; }
value()581 uint32_t value() { return value_; }
582
583 private:
584 // How many characters do we have quick check information from. This is
585 // the same for all branches of a choice node.
586 int characters_;
587 Position positions_[4];
588 // These values are the condensate of the above array after Rationalize().
589 uint32_t mask_;
590 uint32_t value_;
591 // If set to true, there is no way this quick check can match at all.
592 // E.g., if it requires to be at the start of the input, and isn't.
593 bool cannot_match_;
594 };
595
596
597 class RegExpNode: public ZoneObject {
598 public:
RegExpNode()599 RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
600 virtual ~RegExpNode();
601 virtual void Accept(NodeVisitor* visitor) = 0;
602 // Generates a goto to this node or actually generates the code at this point.
603 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
604 // How many characters must this node consume at a minimum in order to
605 // succeed. If we have found at least 'still_to_find' characters that
606 // must be consumed there is no need to ask any following nodes whether
607 // they are sure to eat any more characters. The not_at_start argument is
608 // used to indicate that we know we are not at the start of the input. In
609 // this case anchored branches will always fail and can be ignored when
610 // determining how many characters are consumed on success.
611 virtual int EatsAtLeast(int still_to_find,
612 int recursion_depth,
613 bool not_at_start) = 0;
614 // Emits some quick code that checks whether the preloaded characters match.
615 // Falls through on certain failure, jumps to the label on possible success.
616 // If the node cannot make a quick check it does nothing and returns false.
617 bool EmitQuickCheck(RegExpCompiler* compiler,
618 Trace* trace,
619 bool preload_has_checked_bounds,
620 Label* on_possible_success,
621 QuickCheckDetails* details_return,
622 bool fall_through_on_failure);
623 // For a given number of characters this returns a mask and a value. The
624 // next n characters are anded with the mask and compared with the value.
625 // A comparison failure indicates the node cannot match the next n characters.
626 // A comparison success indicates the node may match.
627 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
628 RegExpCompiler* compiler,
629 int characters_filled_in,
630 bool not_at_start) = 0;
631 static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()632 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
label()633 Label* label() { return &label_; }
634 // If non-generic code is generated for a node (ie the node is not at the
635 // start of the trace) then it cannot be reused. This variable sets a limit
636 // on how often we allow that to happen before we insist on starting a new
637 // trace and generating generic code for a node that can be reused by flushing
638 // the deferred actions in the current trace and generating a goto.
639 static const int kMaxCopiesCodeGenerated = 10;
640
info()641 NodeInfo* info() { return &info_; }
642
AddSibling(RegExpNode * node)643 void AddSibling(RegExpNode* node) { siblings_.Add(node); }
644
645 // Static version of EnsureSibling that expresses the fact that the
646 // result has the same type as the input.
647 template <class C>
EnsureSibling(C * node,NodeInfo * info,bool * cloned)648 static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
649 return static_cast<C*>(node->EnsureSibling(info, cloned));
650 }
651
siblings()652 SiblingList* siblings() { return &siblings_; }
set_siblings(SiblingList * other)653 void set_siblings(SiblingList* other) { siblings_ = *other; }
654
655 // Return the set of possible next characters recognized by the regexp
656 // (or a safe subset, potentially the set of all characters).
657 ZoneList<CharacterRange>* FirstCharacterSet();
658
659 // Compute (if possible within the budget of traversed nodes) the
660 // possible first characters of the input matched by this node and
661 // its continuation. Returns the remaining budget after the computation.
662 // If the budget is spent, the result is negative, and the cached
663 // first_character_set_ value isn't set.
664 virtual int ComputeFirstCharacterSet(int budget);
665
666 // Get and set the cached first character set value.
first_character_set()667 ZoneList<CharacterRange>* first_character_set() {
668 return first_character_set_;
669 }
set_first_character_set(ZoneList<CharacterRange> * character_set)670 void set_first_character_set(ZoneList<CharacterRange>* character_set) {
671 first_character_set_ = character_set;
672 }
673
674 protected:
675 enum LimitResult { DONE, CONTINUE };
676 static const int kComputeFirstCharacterSetFail = -1;
677
678 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
679
680 // Returns a sibling of this node whose interests and assumptions
681 // match the ones in the given node info. If no sibling exists NULL
682 // is returned.
683 RegExpNode* TryGetSibling(NodeInfo* info);
684
685 // Returns a sibling of this node whose interests match the ones in
686 // the given node info. The info must not contain any assertions.
687 // If no node exists a new one will be created by cloning the current
688 // node. The result will always be an instance of the same concrete
689 // class as this node.
690 RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
691
692 // Returns a clone of this node initialized using the copy constructor
693 // of its concrete class. Note that the node may have to be pre-
694 // processed before it is on a usable state.
695 virtual RegExpNode* Clone() = 0;
696
697 private:
698 static const int kFirstCharBudget = 10;
699 Label label_;
700 NodeInfo info_;
701 SiblingList siblings_;
702 ZoneList<CharacterRange>* first_character_set_;
703 // This variable keeps track of how many times code has been generated for
704 // this node (in different traces). We don't keep track of where the
705 // generated code is located unless the code is generated at the start of
706 // a trace, in which case it is generic and can be reused by flushing the
707 // deferred operations in the current trace and generating a goto.
708 int trace_count_;
709 };
710
711
712 // A simple closed interval.
713 class Interval {
714 public:
Interval()715 Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)716 Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)717 Interval Union(Interval that) {
718 if (that.from_ == kNone)
719 return *this;
720 else if (from_ == kNone)
721 return that;
722 else
723 return Interval(Min(from_, that.from_), Max(to_, that.to_));
724 }
Contains(int value)725 bool Contains(int value) {
726 return (from_ <= value) && (value <= to_);
727 }
is_empty()728 bool is_empty() { return from_ == kNone; }
from()729 int from() { return from_; }
to()730 int to() { return to_; }
Empty()731 static Interval Empty() { return Interval(); }
732 static const int kNone = -1;
733 private:
734 int from_;
735 int to_;
736 };
737
738
739 class SeqRegExpNode: public RegExpNode {
740 public:
SeqRegExpNode(RegExpNode * on_success)741 explicit SeqRegExpNode(RegExpNode* on_success)
742 : on_success_(on_success) { }
on_success()743 RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)744 void set_on_success(RegExpNode* node) { on_success_ = node; }
745 private:
746 RegExpNode* on_success_;
747 };
748
749
750 class ActionNode: public SeqRegExpNode {
751 public:
752 enum Type {
753 SET_REGISTER,
754 INCREMENT_REGISTER,
755 STORE_POSITION,
756 BEGIN_SUBMATCH,
757 POSITIVE_SUBMATCH_SUCCESS,
758 EMPTY_MATCH_CHECK,
759 CLEAR_CAPTURES
760 };
761 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
762 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
763 static ActionNode* StorePosition(int reg,
764 bool is_capture,
765 RegExpNode* on_success);
766 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
767 static ActionNode* BeginSubmatch(int stack_pointer_reg,
768 int position_reg,
769 RegExpNode* on_success);
770 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
771 int restore_reg,
772 int clear_capture_count,
773 int clear_capture_from,
774 RegExpNode* on_success);
775 static ActionNode* EmptyMatchCheck(int start_register,
776 int repetition_register,
777 int repetition_limit,
778 RegExpNode* on_success);
779 virtual void Accept(NodeVisitor* visitor);
780 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
781 virtual int EatsAtLeast(int still_to_find,
782 int recursion_depth,
783 bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)784 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
785 RegExpCompiler* compiler,
786 int filled_in,
787 bool not_at_start) {
788 return on_success()->GetQuickCheckDetails(
789 details, compiler, filled_in, not_at_start);
790 }
type()791 Type type() { return type_; }
792 // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()793 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
Clone()794 virtual ActionNode* Clone() { return new ActionNode(*this); }
795 virtual int ComputeFirstCharacterSet(int budget);
796 private:
797 union {
798 struct {
799 int reg;
800 int value;
801 } u_store_register;
802 struct {
803 int reg;
804 } u_increment_register;
805 struct {
806 int reg;
807 bool is_capture;
808 } u_position_register;
809 struct {
810 int stack_pointer_register;
811 int current_position_register;
812 int clear_register_count;
813 int clear_register_from;
814 } u_submatch;
815 struct {
816 int start_register;
817 int repetition_register;
818 int repetition_limit;
819 } u_empty_match_check;
820 struct {
821 int range_from;
822 int range_to;
823 } u_clear_captures;
824 } data_;
ActionNode(Type type,RegExpNode * on_success)825 ActionNode(Type type, RegExpNode* on_success)
826 : SeqRegExpNode(on_success),
827 type_(type) { }
828 Type type_;
829 friend class DotPrinter;
830 };
831
832
833 class TextNode: public SeqRegExpNode {
834 public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)835 TextNode(ZoneList<TextElement>* elms,
836 RegExpNode* on_success)
837 : SeqRegExpNode(on_success),
838 elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)839 TextNode(RegExpCharacterClass* that,
840 RegExpNode* on_success)
841 : SeqRegExpNode(on_success),
842 elms_(new ZoneList<TextElement>(1)) {
843 elms_->Add(TextElement::CharClass(that));
844 }
845 virtual void Accept(NodeVisitor* visitor);
846 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
847 virtual int EatsAtLeast(int still_to_find,
848 int recursion_depth,
849 bool not_at_start);
850 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
851 RegExpCompiler* compiler,
852 int characters_filled_in,
853 bool not_at_start);
elements()854 ZoneList<TextElement>* elements() { return elms_; }
855 void MakeCaseIndependent(bool is_ascii);
856 virtual int GreedyLoopTextLength();
Clone()857 virtual TextNode* Clone() {
858 TextNode* result = new TextNode(*this);
859 result->CalculateOffsets();
860 return result;
861 }
862 void CalculateOffsets();
863 virtual int ComputeFirstCharacterSet(int budget);
864 private:
865 enum TextEmitPassType {
866 NON_ASCII_MATCH, // Check for characters that can't match.
867 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
868 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
869 CASE_CHARACTER_MATCH, // Case-independent single character check.
870 CHARACTER_CLASS_MATCH // Character class.
871 };
872 static bool SkipPass(int pass, bool ignore_case);
873 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
874 static const int kLastPass = CHARACTER_CLASS_MATCH;
875 void TextEmitPass(RegExpCompiler* compiler,
876 TextEmitPassType pass,
877 bool preloaded,
878 Trace* trace,
879 bool first_element_checked,
880 int* checked_up_to);
881 int Length();
882 ZoneList<TextElement>* elms_;
883 };
884
885
886 class AssertionNode: public SeqRegExpNode {
887 public:
888 enum AssertionNodeType {
889 AT_END,
890 AT_START,
891 AT_BOUNDARY,
892 AT_NON_BOUNDARY,
893 AFTER_NEWLINE,
894 // Types not directly expressible in regexp syntax.
895 // Used for modifying a boundary node if its following character is
896 // known to be word and/or non-word.
897 AFTER_NONWORD_CHARACTER,
898 AFTER_WORD_CHARACTER
899 };
AtEnd(RegExpNode * on_success)900 static AssertionNode* AtEnd(RegExpNode* on_success) {
901 return new AssertionNode(AT_END, on_success);
902 }
AtStart(RegExpNode * on_success)903 static AssertionNode* AtStart(RegExpNode* on_success) {
904 return new AssertionNode(AT_START, on_success);
905 }
AtBoundary(RegExpNode * on_success)906 static AssertionNode* AtBoundary(RegExpNode* on_success) {
907 return new AssertionNode(AT_BOUNDARY, on_success);
908 }
AtNonBoundary(RegExpNode * on_success)909 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
910 return new AssertionNode(AT_NON_BOUNDARY, on_success);
911 }
AfterNewline(RegExpNode * on_success)912 static AssertionNode* AfterNewline(RegExpNode* on_success) {
913 return new AssertionNode(AFTER_NEWLINE, on_success);
914 }
915 virtual void Accept(NodeVisitor* visitor);
916 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
917 virtual int EatsAtLeast(int still_to_find,
918 int recursion_depth,
919 bool not_at_start);
920 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
921 RegExpCompiler* compiler,
922 int filled_in,
923 bool not_at_start);
924 virtual int ComputeFirstCharacterSet(int budget);
Clone()925 virtual AssertionNode* Clone() { return new AssertionNode(*this); }
type()926 AssertionNodeType type() { return type_; }
set_type(AssertionNodeType type)927 void set_type(AssertionNodeType type) { type_ = type; }
928 private:
AssertionNode(AssertionNodeType t,RegExpNode * on_success)929 AssertionNode(AssertionNodeType t, RegExpNode* on_success)
930 : SeqRegExpNode(on_success), type_(t) { }
931 AssertionNodeType type_;
932 };
933
934
935 class BackReferenceNode: public SeqRegExpNode {
936 public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)937 BackReferenceNode(int start_reg,
938 int end_reg,
939 RegExpNode* on_success)
940 : SeqRegExpNode(on_success),
941 start_reg_(start_reg),
942 end_reg_(end_reg) { }
943 virtual void Accept(NodeVisitor* visitor);
start_register()944 int start_register() { return start_reg_; }
end_register()945 int end_register() { return end_reg_; }
946 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
947 virtual int EatsAtLeast(int still_to_find,
948 int recursion_depth,
949 bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)950 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
951 RegExpCompiler* compiler,
952 int characters_filled_in,
953 bool not_at_start) {
954 return;
955 }
Clone()956 virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
957 virtual int ComputeFirstCharacterSet(int budget);
958 private:
959 int start_reg_;
960 int end_reg_;
961 };
962
963
964 class EndNode: public RegExpNode {
965 public:
966 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action)967 explicit EndNode(Action action) : action_(action) { }
968 virtual void Accept(NodeVisitor* visitor);
969 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth,bool not_at_start)970 virtual int EatsAtLeast(int still_to_find,
971 int recursion_depth,
972 bool not_at_start) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)973 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
974 RegExpCompiler* compiler,
975 int characters_filled_in,
976 bool not_at_start) {
977 // Returning 0 from EatsAtLeast should ensure we never get here.
978 UNREACHABLE();
979 }
Clone()980 virtual EndNode* Clone() { return new EndNode(*this); }
981 private:
982 Action action_;
983 };
984
985
986 class NegativeSubmatchSuccess: public EndNode {
987 public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start)988 NegativeSubmatchSuccess(int stack_pointer_reg,
989 int position_reg,
990 int clear_capture_count,
991 int clear_capture_start)
992 : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
993 stack_pointer_register_(stack_pointer_reg),
994 current_position_register_(position_reg),
995 clear_capture_count_(clear_capture_count),
996 clear_capture_start_(clear_capture_start) { }
997 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
998
999 private:
1000 int stack_pointer_register_;
1001 int current_position_register_;
1002 int clear_capture_count_;
1003 int clear_capture_start_;
1004 };
1005
1006
1007 class Guard: public ZoneObject {
1008 public:
1009 enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)1010 Guard(int reg, Relation op, int value)
1011 : reg_(reg),
1012 op_(op),
1013 value_(value) { }
reg()1014 int reg() { return reg_; }
op()1015 Relation op() { return op_; }
value()1016 int value() { return value_; }
1017
1018 private:
1019 int reg_;
1020 Relation op_;
1021 int value_;
1022 };
1023
1024
1025 class GuardedAlternative {
1026 public:
GuardedAlternative(RegExpNode * node)1027 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
1028 void AddGuard(Guard* guard);
node()1029 RegExpNode* node() { return node_; }
set_node(RegExpNode * node)1030 void set_node(RegExpNode* node) { node_ = node; }
guards()1031 ZoneList<Guard*>* guards() { return guards_; }
1032
1033 private:
1034 RegExpNode* node_;
1035 ZoneList<Guard*>* guards_;
1036 };
1037
1038
1039 class AlternativeGeneration;
1040
1041
1042 class ChoiceNode: public RegExpNode {
1043 public:
ChoiceNode(int expected_size)1044 explicit ChoiceNode(int expected_size)
1045 : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
1046 table_(NULL),
1047 not_at_start_(false),
1048 being_calculated_(false) { }
1049 virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)1050 void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
alternatives()1051 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1052 DispatchTable* GetTable(bool ignore_case);
1053 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1054 virtual int EatsAtLeast(int still_to_find,
1055 int recursion_depth,
1056 bool not_at_start);
1057 int EatsAtLeastHelper(int still_to_find,
1058 int recursion_depth,
1059 RegExpNode* ignore_this_node,
1060 bool not_at_start);
1061 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1062 RegExpCompiler* compiler,
1063 int characters_filled_in,
1064 bool not_at_start);
Clone()1065 virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
1066
being_calculated()1067 bool being_calculated() { return being_calculated_; }
not_at_start()1068 bool not_at_start() { return not_at_start_; }
set_not_at_start()1069 void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)1070 void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(int i)1071 virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1072
1073 protected:
1074 int GreedyLoopTextLength(GuardedAlternative* alternative);
1075 ZoneList<GuardedAlternative>* alternatives_;
1076
1077 private:
1078 friend class DispatchTableConstructor;
1079 friend class Analysis;
1080 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1081 Guard* guard,
1082 Trace* trace);
1083 int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start);
1084 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1085 Trace* trace,
1086 GuardedAlternative alternative,
1087 AlternativeGeneration* alt_gen,
1088 int preload_characters,
1089 bool next_expects_preload);
1090 DispatchTable* table_;
1091 // If true, this node is never checked at the start of the input.
1092 // Allows a new trace to start with at_start() set to false.
1093 bool not_at_start_;
1094 bool being_calculated_;
1095 };
1096
1097
1098 class NegativeLookaheadChoiceNode: public ChoiceNode {
1099 public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this)1100 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1101 GuardedAlternative then_do_this)
1102 : ChoiceNode(2) {
1103 AddAlternative(this_must_fail);
1104 AddAlternative(then_do_this);
1105 }
1106 virtual int EatsAtLeast(int still_to_find,
1107 int recursion_depth,
1108 bool not_at_start);
1109 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1110 RegExpCompiler* compiler,
1111 int characters_filled_in,
1112 bool not_at_start);
1113 // For a negative lookahead we don't emit the quick check for the
1114 // alternative that is expected to fail. This is because quick check code
1115 // starts by loading enough characters for the alternative that takes fewest
1116 // characters, but on a negative lookahead the negative branch did not take
1117 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(int i)1118 virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1119 virtual int ComputeFirstCharacterSet(int budget);
1120 };
1121
1122
1123 class LoopChoiceNode: public ChoiceNode {
1124 public:
LoopChoiceNode(bool body_can_be_zero_length)1125 explicit LoopChoiceNode(bool body_can_be_zero_length)
1126 : ChoiceNode(2),
1127 loop_node_(NULL),
1128 continue_node_(NULL),
1129 body_can_be_zero_length_(body_can_be_zero_length) { }
1130 void AddLoopAlternative(GuardedAlternative alt);
1131 void AddContinueAlternative(GuardedAlternative alt);
1132 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1133 virtual int EatsAtLeast(int still_to_find,
1134 int recursion_depth,
1135 bool not_at_start);
1136 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1137 RegExpCompiler* compiler,
1138 int characters_filled_in,
1139 bool not_at_start);
1140 virtual int ComputeFirstCharacterSet(int budget);
Clone()1141 virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
loop_node()1142 RegExpNode* loop_node() { return loop_node_; }
continue_node()1143 RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1144 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1145 virtual void Accept(NodeVisitor* visitor);
1146
1147 private:
1148 // AddAlternative is made private for loop nodes because alternatives
1149 // should not be added freely, we need to keep track of which node
1150 // goes back to the node itself.
AddAlternative(GuardedAlternative node)1151 void AddAlternative(GuardedAlternative node) {
1152 ChoiceNode::AddAlternative(node);
1153 }
1154
1155 RegExpNode* loop_node_;
1156 RegExpNode* continue_node_;
1157 bool body_can_be_zero_length_;
1158 };
1159
1160
1161 // There are many ways to generate code for a node. This class encapsulates
1162 // the current way we should be generating. In other words it encapsulates
1163 // the current state of the code generator. The effect of this is that we
1164 // generate code for paths that the matcher can take through the regular
1165 // expression. A given node in the regexp can be code-generated several times
1166 // as it can be part of several traces. For example for the regexp:
1167 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1168 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1169 // to match foo is generated only once (the traces have a common prefix). The
1170 // code to store the capture is deferred and generated (twice) after the places
1171 // where baz has been matched.
1172 class Trace {
1173 public:
1174 // A value for a property that is either known to be true, know to be false,
1175 // or not known.
1176 enum TriBool {
1177 UNKNOWN = -1, FALSE = 0, TRUE = 1
1178 };
1179
1180 class DeferredAction {
1181 public:
DeferredAction(ActionNode::Type type,int reg)1182 DeferredAction(ActionNode::Type type, int reg)
1183 : type_(type), reg_(reg), next_(NULL) { }
next()1184 DeferredAction* next() { return next_; }
1185 bool Mentions(int reg);
reg()1186 int reg() { return reg_; }
type()1187 ActionNode::Type type() { return type_; }
1188 private:
1189 ActionNode::Type type_;
1190 int reg_;
1191 DeferredAction* next_;
1192 friend class Trace;
1193 };
1194
1195 class DeferredCapture : public DeferredAction {
1196 public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1197 DeferredCapture(int reg, bool is_capture, Trace* trace)
1198 : DeferredAction(ActionNode::STORE_POSITION, reg),
1199 cp_offset_(trace->cp_offset()),
1200 is_capture_(is_capture) { }
cp_offset()1201 int cp_offset() { return cp_offset_; }
is_capture()1202 bool is_capture() { return is_capture_; }
1203 private:
1204 int cp_offset_;
1205 bool is_capture_;
set_cp_offset(int cp_offset)1206 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1207 };
1208
1209 class DeferredSetRegister : public DeferredAction {
1210 public:
DeferredSetRegister(int reg,int value)1211 DeferredSetRegister(int reg, int value)
1212 : DeferredAction(ActionNode::SET_REGISTER, reg),
1213 value_(value) { }
value()1214 int value() { return value_; }
1215 private:
1216 int value_;
1217 };
1218
1219 class DeferredClearCaptures : public DeferredAction {
1220 public:
DeferredClearCaptures(Interval range)1221 explicit DeferredClearCaptures(Interval range)
1222 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1223 range_(range) { }
range()1224 Interval range() { return range_; }
1225 private:
1226 Interval range_;
1227 };
1228
1229 class DeferredIncrementRegister : public DeferredAction {
1230 public:
DeferredIncrementRegister(int reg)1231 explicit DeferredIncrementRegister(int reg)
1232 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1233 };
1234
Trace()1235 Trace()
1236 : cp_offset_(0),
1237 actions_(NULL),
1238 backtrack_(NULL),
1239 stop_node_(NULL),
1240 loop_label_(NULL),
1241 characters_preloaded_(0),
1242 bound_checked_up_to_(0),
1243 flush_budget_(100),
1244 at_start_(UNKNOWN) { }
1245
1246 // End the trace. This involves flushing the deferred actions in the trace
1247 // and pushing a backtrack location onto the backtrack stack. Once this is
1248 // done we can start a new trace or go to one that has already been
1249 // generated.
1250 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1251 int cp_offset() { return cp_offset_; }
actions()1252 DeferredAction* actions() { return actions_; }
1253 // A trivial trace is one that has no deferred actions or other state that
1254 // affects the assumptions used when generating code. There is no recorded
1255 // backtrack location in a trivial trace, so with a trivial trace we will
1256 // generate code that, on a failure to match, gets the backtrack location
1257 // from the backtrack stack rather than using a direct jump instruction. We
1258 // always start code generation with a trivial trace and non-trivial traces
1259 // are created as we emit code for nodes or add to the list of deferred
1260 // actions in the trace. The location of the code generated for a node using
1261 // a trivial trace is recorded in a label in the node so that gotos can be
1262 // generated to that code.
is_trivial()1263 bool is_trivial() {
1264 return backtrack_ == NULL &&
1265 actions_ == NULL &&
1266 cp_offset_ == 0 &&
1267 characters_preloaded_ == 0 &&
1268 bound_checked_up_to_ == 0 &&
1269 quick_check_performed_.characters() == 0 &&
1270 at_start_ == UNKNOWN;
1271 }
at_start()1272 TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1273 void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
backtrack()1274 Label* backtrack() { return backtrack_; }
loop_label()1275 Label* loop_label() { return loop_label_; }
stop_node()1276 RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1277 int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1278 int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1279 int flush_budget() { return flush_budget_; }
quick_check_performed()1280 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1281 bool mentions_reg(int reg);
1282 // Returns true if a deferred position store exists to the specified
1283 // register and stores the offset in the out-parameter. Otherwise
1284 // returns false.
1285 bool GetStoredPosition(int reg, int* cp_offset);
1286 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1287 // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1288 void add_action(DeferredAction* new_action) {
1289 ASSERT(new_action->next_ == NULL);
1290 new_action->next_ = actions_;
1291 actions_ = new_action;
1292 }
set_backtrack(Label * backtrack)1293 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1294 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1295 void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1296 void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1297 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1298 void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1299 void set_quick_check_performed(QuickCheckDetails* d) {
1300 quick_check_performed_ = *d;
1301 }
1302 void InvalidateCurrentCharacter();
1303 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1304 private:
1305 int FindAffectedRegisters(OutSet* affected_registers);
1306 void PerformDeferredActions(RegExpMacroAssembler* macro,
1307 int max_register,
1308 OutSet& affected_registers,
1309 OutSet* registers_to_pop,
1310 OutSet* registers_to_clear);
1311 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1312 int max_register,
1313 OutSet& registers_to_pop,
1314 OutSet& registers_to_clear);
1315 int cp_offset_;
1316 DeferredAction* actions_;
1317 Label* backtrack_;
1318 RegExpNode* stop_node_;
1319 Label* loop_label_;
1320 int characters_preloaded_;
1321 int bound_checked_up_to_;
1322 QuickCheckDetails quick_check_performed_;
1323 int flush_budget_;
1324 TriBool at_start_;
1325 };
1326
1327
1328 class NodeVisitor {
1329 public:
~NodeVisitor()1330 virtual ~NodeVisitor() { }
1331 #define DECLARE_VISIT(Type) \
1332 virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1333 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1334 #undef DECLARE_VISIT
1335 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1336 };
1337
1338
1339 // Node visitor used to add the start set of the alternatives to the
1340 // dispatch table of a choice node.
1341 class DispatchTableConstructor: public NodeVisitor {
1342 public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case)1343 DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1344 : table_(table),
1345 choice_index_(-1),
1346 ignore_case_(ignore_case) { }
1347
1348 void BuildTable(ChoiceNode* node);
1349
AddRange(CharacterRange range)1350 void AddRange(CharacterRange range) {
1351 table()->AddRange(range, choice_index_);
1352 }
1353
1354 void AddInverse(ZoneList<CharacterRange>* ranges);
1355
1356 #define DECLARE_VISIT(Type) \
1357 virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1358 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1359 #undef DECLARE_VISIT
1360
1361 DispatchTable* table() { return table_; }
set_choice_index(int value)1362 void set_choice_index(int value) { choice_index_ = value; }
1363
1364 protected:
1365 DispatchTable* table_;
1366 int choice_index_;
1367 bool ignore_case_;
1368 };
1369
1370
1371 // Assertion propagation moves information about assertions such as
1372 // \b to the affected nodes. For instance, in /.\b./ information must
1373 // be propagated to the first '.' that whatever follows needs to know
1374 // if it matched a word or a non-word, and to the second '.' that it
1375 // has to check if it succeeds a word or non-word. In this case the
1376 // result will be something like:
1377 //
1378 // +-------+ +------------+
1379 // | . | | . |
1380 // +-------+ ---> +------------+
1381 // | word? | | check word |
1382 // +-------+ +------------+
1383 class Analysis: public NodeVisitor {
1384 public:
Analysis(bool ignore_case,bool is_ascii)1385 Analysis(bool ignore_case, bool is_ascii)
1386 : ignore_case_(ignore_case),
1387 is_ascii_(is_ascii),
1388 error_message_(NULL) { }
1389 void EnsureAnalyzed(RegExpNode* node);
1390
1391 #define DECLARE_VISIT(Type) \
1392 virtual void Visit##Type(Type##Node* that);
1393 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1394 #undef DECLARE_VISIT
1395 virtual void VisitLoopChoice(LoopChoiceNode* that);
1396
has_failed()1397 bool has_failed() { return error_message_ != NULL; }
error_message()1398 const char* error_message() {
1399 ASSERT(error_message_ != NULL);
1400 return error_message_;
1401 }
fail(const char * error_message)1402 void fail(const char* error_message) {
1403 error_message_ = error_message;
1404 }
1405 private:
1406 bool ignore_case_;
1407 bool is_ascii_;
1408 const char* error_message_;
1409
1410 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1411 };
1412
1413
1414 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1415 RegExpCompileData()
1416 : tree(NULL),
1417 node(NULL),
1418 simple(true),
1419 contains_anchor(false),
1420 capture_count(0) { }
1421 RegExpTree* tree;
1422 RegExpNode* node;
1423 bool simple;
1424 bool contains_anchor;
1425 Handle<String> error;
1426 int capture_count;
1427 };
1428
1429
1430 class RegExpEngine: public AllStatic {
1431 public:
1432 struct CompilationResult {
CompilationResultCompilationResult1433 explicit CompilationResult(const char* error_message)
1434 : error_message(error_message),
1435 code(HEAP->the_hole_value()),
1436 num_registers(0) {}
CompilationResultCompilationResult1437 CompilationResult(Object* code, int registers)
1438 : error_message(NULL),
1439 code(code),
1440 num_registers(registers) {}
1441 const char* error_message;
1442 Object* code;
1443 int num_registers;
1444 };
1445
1446 static CompilationResult Compile(RegExpCompileData* input,
1447 bool ignore_case,
1448 bool multiline,
1449 Handle<String> pattern,
1450 bool is_ascii);
1451
1452 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1453 };
1454
1455
1456 class OffsetsVector {
1457 public:
OffsetsVector(int num_registers)1458 explicit inline OffsetsVector(int num_registers)
1459 : offsets_vector_length_(num_registers) {
1460 if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1461 vector_ = NewArray<int>(offsets_vector_length_);
1462 } else {
1463 vector_ = Isolate::Current()->jsregexp_static_offsets_vector();
1464 }
1465 }
~OffsetsVector()1466 inline ~OffsetsVector() {
1467 if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1468 DeleteArray(vector_);
1469 vector_ = NULL;
1470 }
1471 }
vector()1472 inline int* vector() { return vector_; }
length()1473 inline int length() { return offsets_vector_length_; }
1474
1475 static const int kStaticOffsetsVectorSize = 50;
1476
1477 private:
static_offsets_vector_address(Isolate * isolate)1478 static Address static_offsets_vector_address(Isolate* isolate) {
1479 return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector());
1480 }
1481
1482 int* vector_;
1483 int offsets_vector_length_;
1484
1485 friend class ExternalReference;
1486 };
1487
1488
1489 } } // namespace v8::internal
1490
1491 #endif // V8_JSREGEXP_H_
1492