• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of RTTI descriptors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCXXABI.h"
16 #include "clang/AST/RecordLayout.h"
17 #include "clang/AST/Type.h"
18 #include "clang/Frontend/CodeGenOptions.h"
19 #include "CGObjCRuntime.h"
20 
21 using namespace clang;
22 using namespace CodeGen;
23 
24 namespace {
25 class RTTIBuilder {
26   CodeGenModule &CGM;  // Per-module state.
27   llvm::LLVMContext &VMContext;
28 
29   llvm::Type *Int8PtrTy;
30 
31   /// Fields - The fields of the RTTI descriptor currently being built.
32   llvm::SmallVector<llvm::Constant *, 16> Fields;
33 
34   /// GetAddrOfTypeName - Returns the mangled type name of the given type.
35   llvm::GlobalVariable *
36   GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
37 
38   /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
39   /// descriptor of the given type.
40   llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
41 
42   /// BuildVTablePointer - Build the vtable pointer for the given type.
43   void BuildVTablePointer(const Type *Ty);
44 
45   /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
46   /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
47   void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
48 
49   /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
50   /// classes with bases that do not satisfy the abi::__si_class_type_info
51   /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
52   void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
53 
54   /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
55   /// for pointer types.
56   void BuildPointerTypeInfo(QualType PointeeTy);
57 
58   /// BuildObjCObjectTypeInfo - Build the appropriate kind of
59   /// type_info for an object type.
60   void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
61 
62   /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
63   /// struct, used for member pointer types.
64   void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
65 
66 public:
RTTIBuilder(CodeGenModule & CGM)67   RTTIBuilder(CodeGenModule &CGM) : CGM(CGM),
68     VMContext(CGM.getModule().getContext()),
69     Int8PtrTy(llvm::Type::getInt8PtrTy(VMContext)) { }
70 
71   // Pointer type info flags.
72   enum {
73     /// PTI_Const - Type has const qualifier.
74     PTI_Const = 0x1,
75 
76     /// PTI_Volatile - Type has volatile qualifier.
77     PTI_Volatile = 0x2,
78 
79     /// PTI_Restrict - Type has restrict qualifier.
80     PTI_Restrict = 0x4,
81 
82     /// PTI_Incomplete - Type is incomplete.
83     PTI_Incomplete = 0x8,
84 
85     /// PTI_ContainingClassIncomplete - Containing class is incomplete.
86     /// (in pointer to member).
87     PTI_ContainingClassIncomplete = 0x10
88   };
89 
90   // VMI type info flags.
91   enum {
92     /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
93     VMI_NonDiamondRepeat = 0x1,
94 
95     /// VMI_DiamondShaped - Class is diamond shaped.
96     VMI_DiamondShaped = 0x2
97   };
98 
99   // Base class type info flags.
100   enum {
101     /// BCTI_Virtual - Base class is virtual.
102     BCTI_Virtual = 0x1,
103 
104     /// BCTI_Public - Base class is public.
105     BCTI_Public = 0x2
106   };
107 
108   /// BuildTypeInfo - Build the RTTI type info struct for the given type.
109   ///
110   /// \param Force - true to force the creation of this RTTI value
111   /// \param ForEH - true if this is for exception handling
112   llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
113 };
114 }
115 
116 llvm::GlobalVariable *
GetAddrOfTypeName(QualType Ty,llvm::GlobalVariable::LinkageTypes Linkage)117 RTTIBuilder::GetAddrOfTypeName(QualType Ty,
118                                llvm::GlobalVariable::LinkageTypes Linkage) {
119   llvm::SmallString<256> OutName;
120   llvm::raw_svector_ostream Out(OutName);
121   CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
122   Out.flush();
123   llvm::StringRef Name = OutName.str();
124 
125   // We know that the mangled name of the type starts at index 4 of the
126   // mangled name of the typename, so we can just index into it in order to
127   // get the mangled name of the type.
128   llvm::Constant *Init = llvm::ConstantArray::get(VMContext, Name.substr(4));
129 
130   llvm::GlobalVariable *GV =
131     CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
132 
133   GV->setInitializer(Init);
134 
135   return GV;
136 }
137 
GetAddrOfExternalRTTIDescriptor(QualType Ty)138 llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
139   // Mangle the RTTI name.
140   llvm::SmallString<256> OutName;
141   llvm::raw_svector_ostream Out(OutName);
142   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
143   Out.flush();
144   llvm::StringRef Name = OutName.str();
145 
146   // Look for an existing global.
147   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
148 
149   if (!GV) {
150     // Create a new global variable.
151     GV = new llvm::GlobalVariable(CGM.getModule(), Int8PtrTy, /*Constant=*/true,
152                                   llvm::GlobalValue::ExternalLinkage, 0, Name);
153   }
154 
155   return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
156 }
157 
158 /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
159 /// info for that type is defined in the standard library.
TypeInfoIsInStandardLibrary(const BuiltinType * Ty)160 static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
161   // Itanium C++ ABI 2.9.2:
162   //   Basic type information (e.g. for "int", "bool", etc.) will be kept in
163   //   the run-time support library. Specifically, the run-time support
164   //   library should contain type_info objects for the types X, X* and
165   //   X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
166   //   unsigned char, signed char, short, unsigned short, int, unsigned int,
167   //   long, unsigned long, long long, unsigned long long, float, double,
168   //   long double, char16_t, char32_t, and the IEEE 754r decimal and
169   //   half-precision floating point types.
170   switch (Ty->getKind()) {
171     case BuiltinType::Void:
172     case BuiltinType::NullPtr:
173     case BuiltinType::Bool:
174     case BuiltinType::WChar_S:
175     case BuiltinType::WChar_U:
176     case BuiltinType::Char_U:
177     case BuiltinType::Char_S:
178     case BuiltinType::UChar:
179     case BuiltinType::SChar:
180     case BuiltinType::Short:
181     case BuiltinType::UShort:
182     case BuiltinType::Int:
183     case BuiltinType::UInt:
184     case BuiltinType::Long:
185     case BuiltinType::ULong:
186     case BuiltinType::LongLong:
187     case BuiltinType::ULongLong:
188     case BuiltinType::Float:
189     case BuiltinType::Double:
190     case BuiltinType::LongDouble:
191     case BuiltinType::Char16:
192     case BuiltinType::Char32:
193     case BuiltinType::Int128:
194     case BuiltinType::UInt128:
195       return true;
196 
197     case BuiltinType::Overload:
198     case BuiltinType::Dependent:
199     case BuiltinType::BoundMember:
200     case BuiltinType::UnknownAny:
201       llvm_unreachable("asking for RRTI for a placeholder type!");
202 
203     case BuiltinType::ObjCId:
204     case BuiltinType::ObjCClass:
205     case BuiltinType::ObjCSel:
206       assert(false && "FIXME: Objective-C types are unsupported!");
207   }
208 
209   // Silent gcc.
210   return false;
211 }
212 
TypeInfoIsInStandardLibrary(const PointerType * PointerTy)213 static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
214   QualType PointeeTy = PointerTy->getPointeeType();
215   const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
216   if (!BuiltinTy)
217     return false;
218 
219   // Check the qualifiers.
220   Qualifiers Quals = PointeeTy.getQualifiers();
221   Quals.removeConst();
222 
223   if (!Quals.empty())
224     return false;
225 
226   return TypeInfoIsInStandardLibrary(BuiltinTy);
227 }
228 
229 /// IsStandardLibraryRTTIDescriptor - Returns whether the type
230 /// information for the given type exists in the standard library.
IsStandardLibraryRTTIDescriptor(QualType Ty)231 static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
232   // Type info for builtin types is defined in the standard library.
233   if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
234     return TypeInfoIsInStandardLibrary(BuiltinTy);
235 
236   // Type info for some pointer types to builtin types is defined in the
237   // standard library.
238   if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
239     return TypeInfoIsInStandardLibrary(PointerTy);
240 
241   return false;
242 }
243 
244 /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
245 /// the given type exists somewhere else, and that we should not emit the type
246 /// information in this translation unit.  Assumes that it is not a
247 /// standard-library type.
ShouldUseExternalRTTIDescriptor(CodeGenModule & CGM,QualType Ty)248 static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) {
249   ASTContext &Context = CGM.getContext();
250 
251   // If RTTI is disabled, don't consider key functions.
252   if (!Context.getLangOptions().RTTI) return false;
253 
254   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
255     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
256     if (!RD->hasDefinition())
257       return false;
258 
259     if (!RD->isDynamicClass())
260       return false;
261 
262     return !CGM.getVTables().ShouldEmitVTableInThisTU(RD);
263   }
264 
265   return false;
266 }
267 
268 /// IsIncompleteClassType - Returns whether the given record type is incomplete.
IsIncompleteClassType(const RecordType * RecordTy)269 static bool IsIncompleteClassType(const RecordType *RecordTy) {
270   return !RecordTy->getDecl()->isDefinition();
271 }
272 
273 /// ContainsIncompleteClassType - Returns whether the given type contains an
274 /// incomplete class type. This is true if
275 ///
276 ///   * The given type is an incomplete class type.
277 ///   * The given type is a pointer type whose pointee type contains an
278 ///     incomplete class type.
279 ///   * The given type is a member pointer type whose class is an incomplete
280 ///     class type.
281 ///   * The given type is a member pointer type whoise pointee type contains an
282 ///     incomplete class type.
283 /// is an indirect or direct pointer to an incomplete class type.
ContainsIncompleteClassType(QualType Ty)284 static bool ContainsIncompleteClassType(QualType Ty) {
285   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
286     if (IsIncompleteClassType(RecordTy))
287       return true;
288   }
289 
290   if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
291     return ContainsIncompleteClassType(PointerTy->getPointeeType());
292 
293   if (const MemberPointerType *MemberPointerTy =
294       dyn_cast<MemberPointerType>(Ty)) {
295     // Check if the class type is incomplete.
296     const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
297     if (IsIncompleteClassType(ClassType))
298       return true;
299 
300     return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
301   }
302 
303   return false;
304 }
305 
306 /// getTypeInfoLinkage - Return the linkage that the type info and type info
307 /// name constants should have for the given type.
308 static llvm::GlobalVariable::LinkageTypes
getTypeInfoLinkage(CodeGenModule & CGM,QualType Ty)309 getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) {
310   // Itanium C++ ABI 2.9.5p7:
311   //   In addition, it and all of the intermediate abi::__pointer_type_info
312   //   structs in the chain down to the abi::__class_type_info for the
313   //   incomplete class type must be prevented from resolving to the
314   //   corresponding type_info structs for the complete class type, possibly
315   //   by making them local static objects. Finally, a dummy class RTTI is
316   //   generated for the incomplete type that will not resolve to the final
317   //   complete class RTTI (because the latter need not exist), possibly by
318   //   making it a local static object.
319   if (ContainsIncompleteClassType(Ty))
320     return llvm::GlobalValue::InternalLinkage;
321 
322   switch (Ty->getLinkage()) {
323   case NoLinkage:
324   case InternalLinkage:
325   case UniqueExternalLinkage:
326     return llvm::GlobalValue::InternalLinkage;
327 
328   case ExternalLinkage:
329     if (!CGM.getLangOptions().RTTI) {
330       // RTTI is not enabled, which means that this type info struct is going
331       // to be used for exception handling. Give it linkonce_odr linkage.
332       return llvm::GlobalValue::LinkOnceODRLinkage;
333     }
334 
335     if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
336       const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
337       if (RD->isDynamicClass())
338         return CGM.getVTableLinkage(RD);
339     }
340 
341     return llvm::GlobalValue::LinkOnceODRLinkage;
342   }
343 
344   return llvm::GlobalValue::LinkOnceODRLinkage;
345 }
346 
347 // CanUseSingleInheritance - Return whether the given record decl has a "single,
348 // public, non-virtual base at offset zero (i.e. the derived class is dynamic
349 // iff the base is)", according to Itanium C++ ABI, 2.95p6b.
CanUseSingleInheritance(const CXXRecordDecl * RD)350 static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
351   // Check the number of bases.
352   if (RD->getNumBases() != 1)
353     return false;
354 
355   // Get the base.
356   CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
357 
358   // Check that the base is not virtual.
359   if (Base->isVirtual())
360     return false;
361 
362   // Check that the base is public.
363   if (Base->getAccessSpecifier() != AS_public)
364     return false;
365 
366   // Check that the class is dynamic iff the base is.
367   const CXXRecordDecl *BaseDecl =
368     cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
369   if (!BaseDecl->isEmpty() &&
370       BaseDecl->isDynamicClass() != RD->isDynamicClass())
371     return false;
372 
373   return true;
374 }
375 
BuildVTablePointer(const Type * Ty)376 void RTTIBuilder::BuildVTablePointer(const Type *Ty) {
377   // abi::__class_type_info.
378   static const char * const ClassTypeInfo =
379     "_ZTVN10__cxxabiv117__class_type_infoE";
380   // abi::__si_class_type_info.
381   static const char * const SIClassTypeInfo =
382     "_ZTVN10__cxxabiv120__si_class_type_infoE";
383   // abi::__vmi_class_type_info.
384   static const char * const VMIClassTypeInfo =
385     "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
386 
387   const char *VTableName = 0;
388 
389   switch (Ty->getTypeClass()) {
390 #define TYPE(Class, Base)
391 #define ABSTRACT_TYPE(Class, Base)
392 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
393 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
394 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
395 #include "clang/AST/TypeNodes.def"
396     assert(false && "Non-canonical and dependent types shouldn't get here");
397 
398   case Type::LValueReference:
399   case Type::RValueReference:
400     assert(false && "References shouldn't get here");
401 
402   case Type::Builtin:
403   // GCC treats vector and complex types as fundamental types.
404   case Type::Vector:
405   case Type::ExtVector:
406   case Type::Complex:
407   // FIXME: GCC treats block pointers as fundamental types?!
408   case Type::BlockPointer:
409     // abi::__fundamental_type_info.
410     VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
411     break;
412 
413   case Type::ConstantArray:
414   case Type::IncompleteArray:
415   case Type::VariableArray:
416     // abi::__array_type_info.
417     VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
418     break;
419 
420   case Type::FunctionNoProto:
421   case Type::FunctionProto:
422     // abi::__function_type_info.
423     VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
424     break;
425 
426   case Type::Enum:
427     // abi::__enum_type_info.
428     VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
429     break;
430 
431   case Type::Record: {
432     const CXXRecordDecl *RD =
433       cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
434 
435     if (!RD->hasDefinition() || !RD->getNumBases()) {
436       VTableName = ClassTypeInfo;
437     } else if (CanUseSingleInheritance(RD)) {
438       VTableName = SIClassTypeInfo;
439     } else {
440       VTableName = VMIClassTypeInfo;
441     }
442 
443     break;
444   }
445 
446   case Type::ObjCObject:
447     // Ignore protocol qualifiers.
448     Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
449 
450     // Handle id and Class.
451     if (isa<BuiltinType>(Ty)) {
452       VTableName = ClassTypeInfo;
453       break;
454     }
455 
456     assert(isa<ObjCInterfaceType>(Ty));
457     // Fall through.
458 
459   case Type::ObjCInterface:
460     if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
461       VTableName = SIClassTypeInfo;
462     } else {
463       VTableName = ClassTypeInfo;
464     }
465     break;
466 
467   case Type::ObjCObjectPointer:
468   case Type::Pointer:
469     // abi::__pointer_type_info.
470     VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
471     break;
472 
473   case Type::MemberPointer:
474     // abi::__pointer_to_member_type_info.
475     VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
476     break;
477   }
478 
479   llvm::Constant *VTable =
480     CGM.getModule().getOrInsertGlobal(VTableName, Int8PtrTy);
481 
482   llvm::Type *PtrDiffTy =
483     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
484 
485   // The vtable address point is 2.
486   llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
487   VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, &Two, 1);
488   VTable = llvm::ConstantExpr::getBitCast(VTable, Int8PtrTy);
489 
490   Fields.push_back(VTable);
491 }
492 
493 // maybeUpdateRTTILinkage - Will update the linkage of the RTTI data structures
494 // from available_externally to the correct linkage if necessary. An example of
495 // this is:
496 //
497 //   struct A {
498 //     virtual void f();
499 //   };
500 //
501 //   const std::type_info &g() {
502 //     return typeid(A);
503 //   }
504 //
505 //   void A::f() { }
506 //
507 // When we're generating the typeid(A) expression, we do not yet know that
508 // A's key function is defined in this translation unit, so we will give the
509 // typeinfo and typename structures available_externally linkage. When A::f
510 // forces the vtable to be generated, we need to change the linkage of the
511 // typeinfo and typename structs, otherwise we'll end up with undefined
512 // externals when linking.
513 static void
maybeUpdateRTTILinkage(CodeGenModule & CGM,llvm::GlobalVariable * GV,QualType Ty)514 maybeUpdateRTTILinkage(CodeGenModule &CGM, llvm::GlobalVariable *GV,
515                        QualType Ty) {
516   // We're only interested in globals with available_externally linkage.
517   if (!GV->hasAvailableExternallyLinkage())
518     return;
519 
520   // Get the real linkage for the type.
521   llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty);
522 
523   // If variable is supposed to have available_externally linkage, we don't
524   // need to do anything.
525   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
526     return;
527 
528   // Update the typeinfo linkage.
529   GV->setLinkage(Linkage);
530 
531   // Get the typename global.
532   llvm::SmallString<256> OutName;
533   llvm::raw_svector_ostream Out(OutName);
534   CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
535   Out.flush();
536   llvm::StringRef Name = OutName.str();
537 
538   llvm::GlobalVariable *TypeNameGV = CGM.getModule().getNamedGlobal(Name);
539 
540   assert(TypeNameGV->hasAvailableExternallyLinkage() &&
541          "Type name has different linkage from type info!");
542 
543   // And update its linkage.
544   TypeNameGV->setLinkage(Linkage);
545 }
546 
BuildTypeInfo(QualType Ty,bool Force)547 llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
548   // We want to operate on the canonical type.
549   Ty = CGM.getContext().getCanonicalType(Ty);
550 
551   // Check if we've already emitted an RTTI descriptor for this type.
552   llvm::SmallString<256> OutName;
553   llvm::raw_svector_ostream Out(OutName);
554   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
555   Out.flush();
556   llvm::StringRef Name = OutName.str();
557 
558   llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
559   if (OldGV && !OldGV->isDeclaration()) {
560     maybeUpdateRTTILinkage(CGM, OldGV, Ty);
561 
562     return llvm::ConstantExpr::getBitCast(OldGV, Int8PtrTy);
563   }
564 
565   // Check if there is already an external RTTI descriptor for this type.
566   bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
567   if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
568     return GetAddrOfExternalRTTIDescriptor(Ty);
569 
570   // Emit the standard library with external linkage.
571   llvm::GlobalVariable::LinkageTypes Linkage;
572   if (IsStdLib)
573     Linkage = llvm::GlobalValue::ExternalLinkage;
574   else
575     Linkage = getTypeInfoLinkage(CGM, Ty);
576 
577   // Add the vtable pointer.
578   BuildVTablePointer(cast<Type>(Ty));
579 
580   // And the name.
581   llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
582 
583   llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
584   Fields.push_back(llvm::ConstantExpr::getBitCast(TypeName, Int8PtrTy));
585 
586   switch (Ty->getTypeClass()) {
587 #define TYPE(Class, Base)
588 #define ABSTRACT_TYPE(Class, Base)
589 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
590 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
591 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
592 #include "clang/AST/TypeNodes.def"
593     assert(false && "Non-canonical and dependent types shouldn't get here");
594 
595   // GCC treats vector types as fundamental types.
596   case Type::Builtin:
597   case Type::Vector:
598   case Type::ExtVector:
599   case Type::Complex:
600   case Type::BlockPointer:
601     // Itanium C++ ABI 2.9.5p4:
602     // abi::__fundamental_type_info adds no data members to std::type_info.
603     break;
604 
605   case Type::LValueReference:
606   case Type::RValueReference:
607     assert(false && "References shouldn't get here");
608 
609   case Type::ConstantArray:
610   case Type::IncompleteArray:
611   case Type::VariableArray:
612     // Itanium C++ ABI 2.9.5p5:
613     // abi::__array_type_info adds no data members to std::type_info.
614     break;
615 
616   case Type::FunctionNoProto:
617   case Type::FunctionProto:
618     // Itanium C++ ABI 2.9.5p5:
619     // abi::__function_type_info adds no data members to std::type_info.
620     break;
621 
622   case Type::Enum:
623     // Itanium C++ ABI 2.9.5p5:
624     // abi::__enum_type_info adds no data members to std::type_info.
625     break;
626 
627   case Type::Record: {
628     const CXXRecordDecl *RD =
629       cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
630     if (!RD->hasDefinition() || !RD->getNumBases()) {
631       // We don't need to emit any fields.
632       break;
633     }
634 
635     if (CanUseSingleInheritance(RD))
636       BuildSIClassTypeInfo(RD);
637     else
638       BuildVMIClassTypeInfo(RD);
639 
640     break;
641   }
642 
643   case Type::ObjCObject:
644   case Type::ObjCInterface:
645     BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
646     break;
647 
648   case Type::ObjCObjectPointer:
649     BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
650     break;
651 
652   case Type::Pointer:
653     BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
654     break;
655 
656   case Type::MemberPointer:
657     BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
658     break;
659   }
660 
661   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
662 
663   llvm::GlobalVariable *GV =
664     new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
665                              /*Constant=*/true, Linkage, Init, Name);
666 
667   // If there's already an old global variable, replace it with the new one.
668   if (OldGV) {
669     GV->takeName(OldGV);
670     llvm::Constant *NewPtr =
671       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
672     OldGV->replaceAllUsesWith(NewPtr);
673     OldGV->eraseFromParent();
674   }
675 
676   // GCC only relies on the uniqueness of the type names, not the
677   // type_infos themselves, so we can emit these as hidden symbols.
678   // But don't do this if we're worried about strict visibility
679   // compatibility.
680   if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
681     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
682 
683     CGM.setTypeVisibility(GV, RD, CodeGenModule::TVK_ForRTTI);
684     CGM.setTypeVisibility(TypeName, RD, CodeGenModule::TVK_ForRTTIName);
685   } else {
686     Visibility TypeInfoVisibility = DefaultVisibility;
687     if (CGM.getCodeGenOpts().HiddenWeakVTables &&
688         Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
689       TypeInfoVisibility = HiddenVisibility;
690 
691     // The type name should have the same visibility as the type itself.
692     Visibility ExplicitVisibility = Ty->getVisibility();
693     TypeName->setVisibility(CodeGenModule::
694                             GetLLVMVisibility(ExplicitVisibility));
695 
696     TypeInfoVisibility = minVisibility(TypeInfoVisibility, Ty->getVisibility());
697     GV->setVisibility(CodeGenModule::GetLLVMVisibility(TypeInfoVisibility));
698   }
699 
700   GV->setUnnamedAddr(true);
701 
702   return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
703 }
704 
705 /// ComputeQualifierFlags - Compute the pointer type info flags from the
706 /// given qualifier.
ComputeQualifierFlags(Qualifiers Quals)707 static unsigned ComputeQualifierFlags(Qualifiers Quals) {
708   unsigned Flags = 0;
709 
710   if (Quals.hasConst())
711     Flags |= RTTIBuilder::PTI_Const;
712   if (Quals.hasVolatile())
713     Flags |= RTTIBuilder::PTI_Volatile;
714   if (Quals.hasRestrict())
715     Flags |= RTTIBuilder::PTI_Restrict;
716 
717   return Flags;
718 }
719 
720 /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
721 /// for the given Objective-C object type.
BuildObjCObjectTypeInfo(const ObjCObjectType * OT)722 void RTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
723   // Drop qualifiers.
724   const Type *T = OT->getBaseType().getTypePtr();
725   assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
726 
727   // The builtin types are abi::__class_type_infos and don't require
728   // extra fields.
729   if (isa<BuiltinType>(T)) return;
730 
731   ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
732   ObjCInterfaceDecl *Super = Class->getSuperClass();
733 
734   // Root classes are also __class_type_info.
735   if (!Super) return;
736 
737   QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
738 
739   // Everything else is single inheritance.
740   llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(SuperTy);
741   Fields.push_back(BaseTypeInfo);
742 }
743 
744 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
745 /// inheritance, according to the Itanium C++ ABI, 2.95p6b.
BuildSIClassTypeInfo(const CXXRecordDecl * RD)746 void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
747   // Itanium C++ ABI 2.9.5p6b:
748   // It adds to abi::__class_type_info a single member pointing to the
749   // type_info structure for the base type,
750   llvm::Constant *BaseTypeInfo =
751     RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType());
752   Fields.push_back(BaseTypeInfo);
753 }
754 
755 namespace {
756   /// SeenBases - Contains virtual and non-virtual bases seen when traversing
757   /// a class hierarchy.
758   struct SeenBases {
759     llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
760     llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
761   };
762 }
763 
764 /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
765 /// abi::__vmi_class_type_info.
766 ///
ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier * Base,SeenBases & Bases)767 static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
768                                              SeenBases &Bases) {
769 
770   unsigned Flags = 0;
771 
772   const CXXRecordDecl *BaseDecl =
773     cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
774 
775   if (Base->isVirtual()) {
776     if (Bases.VirtualBases.count(BaseDecl)) {
777       // If this virtual base has been seen before, then the class is diamond
778       // shaped.
779       Flags |= RTTIBuilder::VMI_DiamondShaped;
780     } else {
781       if (Bases.NonVirtualBases.count(BaseDecl))
782         Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
783 
784       // Mark the virtual base as seen.
785       Bases.VirtualBases.insert(BaseDecl);
786     }
787   } else {
788     if (Bases.NonVirtualBases.count(BaseDecl)) {
789       // If this non-virtual base has been seen before, then the class has non-
790       // diamond shaped repeated inheritance.
791       Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
792     } else {
793       if (Bases.VirtualBases.count(BaseDecl))
794         Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
795 
796       // Mark the non-virtual base as seen.
797       Bases.NonVirtualBases.insert(BaseDecl);
798     }
799   }
800 
801   // Walk all bases.
802   for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(),
803        E = BaseDecl->bases_end(); I != E; ++I)
804     Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
805 
806   return Flags;
807 }
808 
ComputeVMIClassTypeInfoFlags(const CXXRecordDecl * RD)809 static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
810   unsigned Flags = 0;
811   SeenBases Bases;
812 
813   // Walk all bases.
814   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
815        E = RD->bases_end(); I != E; ++I)
816     Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
817 
818   return Flags;
819 }
820 
821 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
822 /// classes with bases that do not satisfy the abi::__si_class_type_info
823 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
BuildVMIClassTypeInfo(const CXXRecordDecl * RD)824 void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
825   llvm::Type *UnsignedIntLTy =
826     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
827 
828   // Itanium C++ ABI 2.9.5p6c:
829   //   __flags is a word with flags describing details about the class
830   //   structure, which may be referenced by using the __flags_masks
831   //   enumeration. These flags refer to both direct and indirect bases.
832   unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
833   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
834 
835   // Itanium C++ ABI 2.9.5p6c:
836   //   __base_count is a word with the number of direct proper base class
837   //   descriptions that follow.
838   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
839 
840   if (!RD->getNumBases())
841     return;
842 
843   llvm::Type *LongLTy =
844     CGM.getTypes().ConvertType(CGM.getContext().LongTy);
845 
846   // Now add the base class descriptions.
847 
848   // Itanium C++ ABI 2.9.5p6c:
849   //   __base_info[] is an array of base class descriptions -- one for every
850   //   direct proper base. Each description is of the type:
851   //
852   //   struct abi::__base_class_type_info {
853   //   public:
854   //     const __class_type_info *__base_type;
855   //     long __offset_flags;
856   //
857   //     enum __offset_flags_masks {
858   //       __virtual_mask = 0x1,
859   //       __public_mask = 0x2,
860   //       __offset_shift = 8
861   //     };
862   //   };
863   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
864        E = RD->bases_end(); I != E; ++I) {
865     const CXXBaseSpecifier *Base = I;
866 
867     // The __base_type member points to the RTTI for the base type.
868     Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType()));
869 
870     const CXXRecordDecl *BaseDecl =
871       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
872 
873     int64_t OffsetFlags = 0;
874 
875     // All but the lower 8 bits of __offset_flags are a signed offset.
876     // For a non-virtual base, this is the offset in the object of the base
877     // subobject. For a virtual base, this is the offset in the virtual table of
878     // the virtual base offset for the virtual base referenced (negative).
879     CharUnits Offset;
880     if (Base->isVirtual())
881       Offset =
882         CGM.getVTables().getVirtualBaseOffsetOffset(RD, BaseDecl);
883     else {
884       const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
885       Offset = Layout.getBaseClassOffset(BaseDecl);
886     };
887 
888     OffsetFlags = Offset.getQuantity() << 8;
889 
890     // The low-order byte of __offset_flags contains flags, as given by the
891     // masks from the enumeration __offset_flags_masks.
892     if (Base->isVirtual())
893       OffsetFlags |= BCTI_Virtual;
894     if (Base->getAccessSpecifier() == AS_public)
895       OffsetFlags |= BCTI_Public;
896 
897     Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
898   }
899 }
900 
901 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
902 /// used for pointer types.
BuildPointerTypeInfo(QualType PointeeTy)903 void RTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
904   Qualifiers Quals;
905   QualType UnqualifiedPointeeTy =
906     CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
907 
908   // Itanium C++ ABI 2.9.5p7:
909   //   __flags is a flag word describing the cv-qualification and other
910   //   attributes of the type pointed to
911   unsigned Flags = ComputeQualifierFlags(Quals);
912 
913   // Itanium C++ ABI 2.9.5p7:
914   //   When the abi::__pbase_type_info is for a direct or indirect pointer to an
915   //   incomplete class type, the incomplete target type flag is set.
916   if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
917     Flags |= PTI_Incomplete;
918 
919   llvm::Type *UnsignedIntLTy =
920     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
921   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
922 
923   // Itanium C++ ABI 2.9.5p7:
924   //  __pointee is a pointer to the std::type_info derivation for the
925   //  unqualified type being pointed to.
926   llvm::Constant *PointeeTypeInfo =
927     RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
928   Fields.push_back(PointeeTypeInfo);
929 }
930 
931 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
932 /// struct, used for member pointer types.
BuildPointerToMemberTypeInfo(const MemberPointerType * Ty)933 void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
934   QualType PointeeTy = Ty->getPointeeType();
935 
936   Qualifiers Quals;
937   QualType UnqualifiedPointeeTy =
938     CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
939 
940   // Itanium C++ ABI 2.9.5p7:
941   //   __flags is a flag word describing the cv-qualification and other
942   //   attributes of the type pointed to.
943   unsigned Flags = ComputeQualifierFlags(Quals);
944 
945   const RecordType *ClassType = cast<RecordType>(Ty->getClass());
946 
947   // Itanium C++ ABI 2.9.5p7:
948   //   When the abi::__pbase_type_info is for a direct or indirect pointer to an
949   //   incomplete class type, the incomplete target type flag is set.
950   if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
951     Flags |= PTI_Incomplete;
952 
953   if (IsIncompleteClassType(ClassType))
954     Flags |= PTI_ContainingClassIncomplete;
955 
956   llvm::Type *UnsignedIntLTy =
957     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
958   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
959 
960   // Itanium C++ ABI 2.9.5p7:
961   //   __pointee is a pointer to the std::type_info derivation for the
962   //   unqualified type being pointed to.
963   llvm::Constant *PointeeTypeInfo =
964     RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
965   Fields.push_back(PointeeTypeInfo);
966 
967   // Itanium C++ ABI 2.9.5p9:
968   //   __context is a pointer to an abi::__class_type_info corresponding to the
969   //   class type containing the member pointed to
970   //   (e.g., the "A" in "int A::*").
971   Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0)));
972 }
973 
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)974 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
975                                                        bool ForEH) {
976   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
977   // FIXME: should we even be calling this method if RTTI is disabled
978   // and it's not for EH?
979   if (!ForEH && !getContext().getLangOptions().RTTI) {
980     llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
981     return llvm::Constant::getNullValue(Int8PtrTy);
982   }
983 
984   if (ForEH && Ty->isObjCObjectPointerType() && !Features.NeXTRuntime) {
985     return Runtime->GetEHType(Ty);
986   }
987 
988   return RTTIBuilder(*this).BuildTypeInfo(Ty);
989 }
990 
EmitFundamentalRTTIDescriptor(QualType Type)991 void CodeGenModule::EmitFundamentalRTTIDescriptor(QualType Type) {
992   QualType PointerType = Context.getPointerType(Type);
993   QualType PointerTypeConst = Context.getPointerType(Type.withConst());
994   RTTIBuilder(*this).BuildTypeInfo(Type, true);
995   RTTIBuilder(*this).BuildTypeInfo(PointerType, true);
996   RTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
997 }
998 
EmitFundamentalRTTIDescriptors()999 void CodeGenModule::EmitFundamentalRTTIDescriptors() {
1000   QualType FundamentalTypes[] = { Context.VoidTy, Context.NullPtrTy,
1001                                   Context.BoolTy, Context.WCharTy,
1002                                   Context.CharTy, Context.UnsignedCharTy,
1003                                   Context.SignedCharTy, Context.ShortTy,
1004                                   Context.UnsignedShortTy, Context.IntTy,
1005                                   Context.UnsignedIntTy, Context.LongTy,
1006                                   Context.UnsignedLongTy, Context.LongLongTy,
1007                                   Context.UnsignedLongLongTy, Context.FloatTy,
1008                                   Context.DoubleTy, Context.LongDoubleTy,
1009                                   Context.Char16Ty, Context.Char32Ty };
1010   for (unsigned i = 0; i < sizeof(FundamentalTypes)/sizeof(QualType); ++i)
1011     EmitFundamentalRTTIDescriptor(FundamentalTypes[i]);
1012 }
1013