• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3 
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8 
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 
13 See the GNU General Public License for more details.
14 
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18 
19 */
20 // mathlib.c -- math primitives
21 
22 #include <math.h>
23 #include "quakedef.h"
24 
25 void Sys_Error (char *error, ...);
26 
27 vec3_t vec3_origin = {0,0,0};
28 int nanmask = 255<<23;
29 
30 /*-----------------------------------------------------------------*/
31 
32 #define DEG2RAD( a ) ( a * M_PI ) / 180.0F
33 
ProjectPointOnPlane(vec3_t dst,const vec3_t p,const vec3_t normal)34 void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
35 {
36 	float d;
37 	vec3_t n;
38 	float inv_denom;
39 
40 	inv_denom = 1.0F / DotProduct( normal, normal );
41 
42 	d = DotProduct( normal, p ) * inv_denom;
43 
44 	n[0] = normal[0] * inv_denom;
45 	n[1] = normal[1] * inv_denom;
46 	n[2] = normal[2] * inv_denom;
47 
48 	dst[0] = p[0] - d * n[0];
49 	dst[1] = p[1] - d * n[1];
50 	dst[2] = p[2] - d * n[2];
51 }
52 
53 /*
54 ** assumes "src" is normalized
55 */
PerpendicularVector(vec3_t dst,const vec3_t src)56 void PerpendicularVector( vec3_t dst, const vec3_t src )
57 {
58 	int	pos;
59 	int i;
60 	float minelem = 1.0F;
61 	vec3_t tempvec;
62 
63 	/*
64 	** find the smallest magnitude axially aligned vector
65 	*/
66 	for ( pos = 0, i = 0; i < 3; i++ )
67 	{
68 		if ( fabs( src[i] ) < minelem )
69 		{
70 			pos = i;
71 			minelem = fabs( src[i] );
72 		}
73 	}
74 	tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
75 	tempvec[pos] = 1.0F;
76 
77 	/*
78 	** project the point onto the plane defined by src
79 	*/
80 	ProjectPointOnPlane( dst, tempvec, src );
81 
82 	/*
83 	** normalize the result
84 	*/
85 	VectorNormalize( dst );
86 }
87 
88 #ifdef _WIN32
89 #pragma optimize( "", off )
90 #endif
91 
92 
RotatePointAroundVector(vec3_t dst,const vec3_t dir,const vec3_t point,float degrees)93 void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
94 {
95 	float	m[3][3];
96 	float	im[3][3];
97 	float	zrot[3][3];
98 	float	tmpmat[3][3];
99 	float	rot[3][3];
100 	int	i;
101 	vec3_t vr, vup, vf;
102 
103 	vf[0] = dir[0];
104 	vf[1] = dir[1];
105 	vf[2] = dir[2];
106 
107 	PerpendicularVector( vr, dir );
108 	CrossProduct( vr, vf, vup );
109 
110 	m[0][0] = vr[0];
111 	m[1][0] = vr[1];
112 	m[2][0] = vr[2];
113 
114 	m[0][1] = vup[0];
115 	m[1][1] = vup[1];
116 	m[2][1] = vup[2];
117 
118 	m[0][2] = vf[0];
119 	m[1][2] = vf[1];
120 	m[2][2] = vf[2];
121 
122 	memcpy( im, m, sizeof( im ) );
123 
124 	im[0][1] = m[1][0];
125 	im[0][2] = m[2][0];
126 	im[1][0] = m[0][1];
127 	im[1][2] = m[2][1];
128 	im[2][0] = m[0][2];
129 	im[2][1] = m[1][2];
130 
131 	memset( zrot, 0, sizeof( zrot ) );
132 	zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
133 
134 	zrot[0][0] = cos( DEG2RAD( degrees ) );
135 	zrot[0][1] = sin( DEG2RAD( degrees ) );
136 	zrot[1][0] = -sin( DEG2RAD( degrees ) );
137 	zrot[1][1] = cos( DEG2RAD( degrees ) );
138 
139 	R_ConcatRotations( m, zrot, tmpmat );
140 	R_ConcatRotations( tmpmat, im, rot );
141 
142 	for ( i = 0; i < 3; i++ )
143 	{
144 		dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
145 	}
146 }
147 
148 #ifdef _WIN32
149 #pragma optimize( "", on )
150 #endif
151 
152 /*-----------------------------------------------------------------*/
153 
anglemod(float a)154 float	anglemod(float a)
155 {
156 #if 0
157 	if (a >= 0)
158 		a -= 360*(int)(a/360);
159 	else
160 		a += 360*( 1 + (int)(-a/360) );
161 #endif
162 	a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
163 	return a;
164 }
165 
166 /*
167 ==================
168 BOPS_Error
169 
170 Split out like this for ASM to call.
171 ==================
172 */
BOPS_Error(void)173 void BOPS_Error (void)
174 {
175 	Sys_Error ("BoxOnPlaneSide:  Bad signbits");
176 }
177 
178 #if !id386
179 
180 /*
181 ==================
182 BoxOnPlaneSide
183 
184 Returns 1, 2, or 1 + 2
185 ==================
186 */
BoxOnPlaneSide(vec3_t emins,vec3_t emaxs,mplane_t * p)187 int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, mplane_t *p)
188 {
189 	float	dist1, dist2;
190 	int		sides;
191 
192 #if 0	// this is done by the BOX_ON_PLANE_SIDE macro before calling this
193 		// function
194 // fast axial cases
195 	if (p->type < 3)
196 	{
197 		if (p->dist <= emins[p->type])
198 			return 1;
199 		if (p->dist >= emaxs[p->type])
200 			return 2;
201 		return 3;
202 	}
203 #endif
204 
205 // general case
206 	switch (p->signbits)
207 	{
208 	case 0:
209 dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
210 dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
211 		break;
212 	case 1:
213 dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
214 dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
215 		break;
216 	case 2:
217 dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
218 dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
219 		break;
220 	case 3:
221 dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
222 dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
223 		break;
224 	case 4:
225 dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
226 dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
227 		break;
228 	case 5:
229 dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
230 dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
231 		break;
232 	case 6:
233 dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
234 dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
235 		break;
236 	case 7:
237 dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
238 dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
239 		break;
240 	default:
241 		dist1 = dist2 = 0;		// shut up compiler
242 		BOPS_Error ();
243 		break;
244 	}
245 
246 #if 0
247 	int		i;
248 	vec3_t	corners[2];
249 
250 	for (i=0 ; i<3 ; i++)
251 	{
252 		if (plane->normal[i] < 0)
253 		{
254 			corners[0][i] = emins[i];
255 			corners[1][i] = emaxs[i];
256 		}
257 		else
258 		{
259 			corners[1][i] = emins[i];
260 			corners[0][i] = emaxs[i];
261 		}
262 	}
263 	dist = DotProduct (plane->normal, corners[0]) - plane->dist;
264 	dist2 = DotProduct (plane->normal, corners[1]) - plane->dist;
265 	sides = 0;
266 	if (dist1 >= 0)
267 		sides = 1;
268 	if (dist2 < 0)
269 		sides |= 2;
270 
271 #endif
272 
273 	sides = 0;
274 	if (dist1 >= p->dist)
275 		sides = 1;
276 	if (dist2 < p->dist)
277 		sides |= 2;
278 
279 #ifdef PARANOID
280 if (sides == 0)
281 	Sys_Error ("BoxOnPlaneSide: sides==0");
282 #endif
283 
284 	return sides;
285 }
286 
287 #endif
288 
289 
AngleVectors(vec3_t angles,vec3_t forward,vec3_t right,vec3_t up)290 void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
291 {
292 	float		angle;
293 	float		sr, sp, sy, cr, cp, cy;
294 
295 	angle = angles[YAW] * (M_PI*2 / 360);
296 	sy = sin(angle);
297 	cy = cos(angle);
298 	angle = angles[PITCH] * (M_PI*2 / 360);
299 	sp = sin(angle);
300 	cp = cos(angle);
301 	angle = angles[ROLL] * (M_PI*2 / 360);
302 	sr = sin(angle);
303 	cr = cos(angle);
304 
305 	forward[0] = cp*cy;
306 	forward[1] = cp*sy;
307 	forward[2] = -sp;
308 	right[0] = (-1*sr*sp*cy+-1*cr*-sy);
309 	right[1] = (-1*sr*sp*sy+-1*cr*cy);
310 	right[2] = -1*sr*cp;
311 	up[0] = (cr*sp*cy+-sr*-sy);
312 	up[1] = (cr*sp*sy+-sr*cy);
313 	up[2] = cr*cp;
314 }
315 
VectorCompare(vec3_t v1,vec3_t v2)316 int VectorCompare (vec3_t v1, vec3_t v2)
317 {
318 	int		i;
319 
320 	for (i=0 ; i<3 ; i++)
321 		if (v1[i] != v2[i])
322 			return 0;
323 
324 	return 1;
325 }
326 
VectorMA(vec3_t veca,float scale,vec3_t vecb,vec3_t vecc)327 void VectorMA (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc)
328 {
329 	vecc[0] = veca[0] + scale*vecb[0];
330 	vecc[1] = veca[1] + scale*vecb[1];
331 	vecc[2] = veca[2] + scale*vecb[2];
332 }
333 
334 
_DotProduct(vec3_t v1,vec3_t v2)335 vec_t _DotProduct (vec3_t v1, vec3_t v2)
336 {
337 	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
338 }
339 
_VectorSubtract(vec3_t veca,vec3_t vecb,vec3_t out)340 void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out)
341 {
342 	out[0] = veca[0]-vecb[0];
343 	out[1] = veca[1]-vecb[1];
344 	out[2] = veca[2]-vecb[2];
345 }
346 
_VectorAdd(vec3_t veca,vec3_t vecb,vec3_t out)347 void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out)
348 {
349 	out[0] = veca[0]+vecb[0];
350 	out[1] = veca[1]+vecb[1];
351 	out[2] = veca[2]+vecb[2];
352 }
353 
_VectorCopy(vec3_t in,vec3_t out)354 void _VectorCopy (vec3_t in, vec3_t out)
355 {
356 	out[0] = in[0];
357 	out[1] = in[1];
358 	out[2] = in[2];
359 }
360 
CrossProduct(vec3_t v1,vec3_t v2,vec3_t cross)361 void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
362 {
363 	cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
364 	cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
365 	cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
366 }
367 
368 double sqrt(double x);
369 
Length(vec3_t v)370 vec_t Length(vec3_t v)
371 {
372 	int		i;
373 	float	length;
374 
375 	length = 0;
376 	for (i=0 ; i< 3 ; i++)
377 		length += v[i]*v[i];
378 	length = sqrt (length);		// FIXME
379 
380 	return length;
381 }
382 
VectorNormalize(vec3_t v)383 float VectorNormalize (vec3_t v)
384 {
385 	float	length, ilength;
386 
387 	length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
388 	length = sqrt (length);		// FIXME
389 
390 	if (length)
391 	{
392 		ilength = 1/length;
393 		v[0] *= ilength;
394 		v[1] *= ilength;
395 		v[2] *= ilength;
396 	}
397 
398 	return length;
399 
400 }
401 
VectorInverse(vec3_t v)402 void VectorInverse (vec3_t v)
403 {
404 	v[0] = -v[0];
405 	v[1] = -v[1];
406 	v[2] = -v[2];
407 }
408 
VectorScale(vec3_t in,vec_t scale,vec3_t out)409 void VectorScale (vec3_t in, vec_t scale, vec3_t out)
410 {
411 	out[0] = in[0]*scale;
412 	out[1] = in[1]*scale;
413 	out[2] = in[2]*scale;
414 }
415 
416 
Q_log2(int val)417 int Q_log2(int val)
418 {
419 	int answer=0;
420 	while ((val>>=1) != 0)
421 		answer++;
422 	return answer;
423 }
424 
425 
426 /*
427 ================
428 R_ConcatRotations
429 ================
430 */
R_ConcatRotations(float in1[3][3],float in2[3][3],float out[3][3])431 void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3])
432 {
433 	out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
434 				in1[0][2] * in2[2][0];
435 	out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
436 				in1[0][2] * in2[2][1];
437 	out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
438 				in1[0][2] * in2[2][2];
439 	out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
440 				in1[1][2] * in2[2][0];
441 	out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
442 				in1[1][2] * in2[2][1];
443 	out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
444 				in1[1][2] * in2[2][2];
445 	out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
446 				in1[2][2] * in2[2][0];
447 	out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
448 				in1[2][2] * in2[2][1];
449 	out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
450 				in1[2][2] * in2[2][2];
451 }
452 
453 
454 /*
455 ================
456 R_ConcatTransforms
457 ================
458 */
R_ConcatTransforms(float in1[3][4],float in2[3][4],float out[3][4])459 void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4])
460 {
461 	out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
462 				in1[0][2] * in2[2][0];
463 	out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
464 				in1[0][2] * in2[2][1];
465 	out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
466 				in1[0][2] * in2[2][2];
467 	out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
468 				in1[0][2] * in2[2][3] + in1[0][3];
469 	out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
470 				in1[1][2] * in2[2][0];
471 	out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
472 				in1[1][2] * in2[2][1];
473 	out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
474 				in1[1][2] * in2[2][2];
475 	out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
476 				in1[1][2] * in2[2][3] + in1[1][3];
477 	out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
478 				in1[2][2] * in2[2][0];
479 	out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
480 				in1[2][2] * in2[2][1];
481 	out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
482 				in1[2][2] * in2[2][2];
483 	out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
484 				in1[2][2] * in2[2][3] + in1[2][3];
485 }
486 
487 
488 /*
489 ===================
490 FloorDivMod
491 
492 Returns mathematically correct (floor-based) quotient and remainder for
493 numer and denom, both of which should contain no fractional part. The
494 quotient must fit in 32 bits.
495 ====================
496 */
497 
FloorDivMod(double numer,double denom,int * quotient,int * rem)498 void FloorDivMod (double numer, double denom, int *quotient,
499 		int *rem)
500 {
501 	int		q, r;
502 	double	x;
503 
504 #ifndef PARANOID
505 	if (denom <= 0.0)
506 		Sys_Error ("FloorDivMod: bad denominator %d\n", denom);
507 
508 //	if ((floor(numer) != numer) || (floor(denom) != denom))
509 //		Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n",
510 //				numer, denom);
511 #endif
512 
513 	if (numer >= 0.0)
514 	{
515 
516 		x = floor(numer / denom);
517 		q = (int)x;
518 		r = (int)floor(numer - (x * denom));
519 	}
520 	else
521 	{
522 	//
523 	// perform operations with positive values, and fix mod to make floor-based
524 	//
525 		x = floor(-numer / denom);
526 		q = -(int)x;
527 		r = (int)floor(-numer - (x * denom));
528 		if (r != 0)
529 		{
530 			q--;
531 			r = (int)denom - r;
532 		}
533 	}
534 
535 	*quotient = q;
536 	*rem = r;
537 }
538 
539 
540 /*
541 ===================
542 GreatestCommonDivisor
543 ====================
544 */
GreatestCommonDivisor(int i1,int i2)545 int GreatestCommonDivisor (int i1, int i2)
546 {
547 	if (i1 > i2)
548 	{
549 		if (i2 == 0)
550 			return (i1);
551 		return GreatestCommonDivisor (i2, i1 % i2);
552 	}
553 	else
554 	{
555 		if (i1 == 0)
556 			return (i2);
557 		return GreatestCommonDivisor (i1, i2 % i1);
558 	}
559 }
560 
561 
562 #if !id386
563 
564 // TODO: move to nonintel.c
565 
566 /*
567 ===================
568 Invert24To16
569 
570 Inverts an 8.24 value to a 16.16 value
571 ====================
572 */
573 
Invert24To16(fixed16_t val)574 fixed16_t Invert24To16(fixed16_t val)
575 {
576 	if (val < 256)
577 		return (0xFFFFFFFF);
578 
579 	return (fixed16_t)
580 			(((double)0x10000 * (double)0x1000000 / (double)val) + 0.5);
581 }
582 
583 #endif
584