1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2010 the V8 project authors. All rights reserved. 34 35 36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ 37 #define V8_MIPS_ASSEMBLER_MIPS_H_ 38 39 #include <stdio.h> 40 #include "assembler.h" 41 #include "constants-mips.h" 42 #include "serialize.h" 43 44 namespace v8 { 45 namespace internal { 46 47 // CPU Registers. 48 // 49 // 1) We would prefer to use an enum, but enum values are assignment- 50 // compatible with int, which has caused code-generation bugs. 51 // 52 // 2) We would prefer to use a class instead of a struct but we don't like 53 // the register initialization to depend on the particular initialization 54 // order (which appears to be different on OS X, Linux, and Windows for the 55 // installed versions of C++ we tried). Using a struct permits C-style 56 // "initialization". Also, the Register objects cannot be const as this 57 // forces initialization stubs in MSVC, making us dependent on initialization 58 // order. 59 // 60 // 3) By not using an enum, we are possibly preventing the compiler from 61 // doing certain constant folds, which may significantly reduce the 62 // code generated for some assembly instructions (because they boil down 63 // to a few constants). If this is a problem, we could change the code 64 // such that we use an enum in optimized mode, and the struct in debug 65 // mode. This way we get the compile-time error checking in debug mode 66 // and best performance in optimized code. 67 68 69 // ----------------------------------------------------------------------------- 70 // Implementation of Register and FPURegister 71 72 // Core register. 73 struct Register { 74 static const int kNumRegisters = v8::internal::kNumRegisters; 75 static const int kNumAllocatableRegisters = 14; // v0 through t7 76 ToAllocationIndexRegister77 static int ToAllocationIndex(Register reg) { 78 return reg.code() - 2; // zero_reg and 'at' are skipped. 79 } 80 FromAllocationIndexRegister81 static Register FromAllocationIndex(int index) { 82 ASSERT(index >= 0 && index < kNumAllocatableRegisters); 83 return from_code(index + 2); // zero_reg and 'at' are skipped. 84 } 85 AllocationIndexToStringRegister86 static const char* AllocationIndexToString(int index) { 87 ASSERT(index >= 0 && index < kNumAllocatableRegisters); 88 const char* const names[] = { 89 "v0", 90 "v1", 91 "a0", 92 "a1", 93 "a2", 94 "a3", 95 "t0", 96 "t1", 97 "t2", 98 "t3", 99 "t4", 100 "t5", 101 "t6", 102 "t7", 103 }; 104 return names[index]; 105 } 106 from_codeRegister107 static Register from_code(int code) { 108 Register r = { code }; 109 return r; 110 } 111 is_validRegister112 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } isRegister113 bool is(Register reg) const { return code_ == reg.code_; } codeRegister114 int code() const { 115 ASSERT(is_valid()); 116 return code_; 117 } bitRegister118 int bit() const { 119 ASSERT(is_valid()); 120 return 1 << code_; 121 } 122 123 // Unfortunately we can't make this private in a struct. 124 int code_; 125 }; 126 127 const Register no_reg = { -1 }; 128 129 const Register zero_reg = { 0 }; 130 const Register at = { 1 }; 131 const Register v0 = { 2 }; 132 const Register v1 = { 3 }; 133 const Register a0 = { 4 }; 134 const Register a1 = { 5 }; 135 const Register a2 = { 6 }; 136 const Register a3 = { 7 }; 137 const Register t0 = { 8 }; 138 const Register t1 = { 9 }; 139 const Register t2 = { 10 }; 140 const Register t3 = { 11 }; 141 const Register t4 = { 12 }; 142 const Register t5 = { 13 }; 143 const Register t6 = { 14 }; 144 const Register t7 = { 15 }; 145 const Register s0 = { 16 }; 146 const Register s1 = { 17 }; 147 const Register s2 = { 18 }; 148 const Register s3 = { 19 }; 149 const Register s4 = { 20 }; 150 const Register s5 = { 21 }; 151 const Register s6 = { 22 }; 152 const Register s7 = { 23 }; 153 const Register t8 = { 24 }; 154 const Register t9 = { 25 }; 155 const Register k0 = { 26 }; 156 const Register k1 = { 27 }; 157 const Register gp = { 28 }; 158 const Register sp = { 29 }; 159 const Register s8_fp = { 30 }; 160 const Register ra = { 31 }; 161 162 163 int ToNumber(Register reg); 164 165 Register ToRegister(int num); 166 167 // Coprocessor register. 168 struct FPURegister { 169 static const int kNumRegisters = v8::internal::kNumFPURegisters; 170 // f0 has been excluded from allocation. This is following ia32 171 // where xmm0 is excluded. 172 static const int kNumAllocatableRegisters = 15; 173 ToAllocationIndexFPURegister174 static int ToAllocationIndex(FPURegister reg) { 175 ASSERT(reg.code() != 0); 176 ASSERT(reg.code() % 2 == 0); 177 return (reg.code() / 2) - 1; 178 } 179 FromAllocationIndexFPURegister180 static FPURegister FromAllocationIndex(int index) { 181 ASSERT(index >= 0 && index < kNumAllocatableRegisters); 182 return from_code((index + 1) * 2); 183 } 184 AllocationIndexToStringFPURegister185 static const char* AllocationIndexToString(int index) { 186 ASSERT(index >= 0 && index < kNumAllocatableRegisters); 187 const char* const names[] = { 188 "f2", 189 "f4", 190 "f6", 191 "f8", 192 "f10", 193 "f12", 194 "f14", 195 "f16", 196 "f18", 197 "f20", 198 "f22", 199 "f24", 200 "f26", 201 "f28", 202 "f30" 203 }; 204 return names[index]; 205 } 206 from_codeFPURegister207 static FPURegister from_code(int code) { 208 FPURegister r = { code }; 209 return r; 210 } 211 is_validFPURegister212 bool is_valid() const { return 0 <= code_ && code_ < kNumFPURegisters ; } isFPURegister213 bool is(FPURegister creg) const { return code_ == creg.code_; } codeFPURegister214 int code() const { 215 ASSERT(is_valid()); 216 return code_; 217 } bitFPURegister218 int bit() const { 219 ASSERT(is_valid()); 220 return 1 << code_; 221 } setcodeFPURegister222 void setcode(int f) { 223 code_ = f; 224 ASSERT(is_valid()); 225 } 226 // Unfortunately we can't make this private in a struct. 227 int code_; 228 }; 229 230 typedef FPURegister DoubleRegister; 231 232 const FPURegister no_creg = { -1 }; 233 234 const FPURegister f0 = { 0 }; // Return value in hard float mode. 235 const FPURegister f1 = { 1 }; 236 const FPURegister f2 = { 2 }; 237 const FPURegister f3 = { 3 }; 238 const FPURegister f4 = { 4 }; 239 const FPURegister f5 = { 5 }; 240 const FPURegister f6 = { 6 }; 241 const FPURegister f7 = { 7 }; 242 const FPURegister f8 = { 8 }; 243 const FPURegister f9 = { 9 }; 244 const FPURegister f10 = { 10 }; 245 const FPURegister f11 = { 11 }; 246 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode. 247 const FPURegister f13 = { 13 }; 248 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode. 249 const FPURegister f15 = { 15 }; 250 const FPURegister f16 = { 16 }; 251 const FPURegister f17 = { 17 }; 252 const FPURegister f18 = { 18 }; 253 const FPURegister f19 = { 19 }; 254 const FPURegister f20 = { 20 }; 255 const FPURegister f21 = { 21 }; 256 const FPURegister f22 = { 22 }; 257 const FPURegister f23 = { 23 }; 258 const FPURegister f24 = { 24 }; 259 const FPURegister f25 = { 25 }; 260 const FPURegister f26 = { 26 }; 261 const FPURegister f27 = { 27 }; 262 const FPURegister f28 = { 28 }; 263 const FPURegister f29 = { 29 }; 264 const FPURegister f30 = { 30 }; 265 const FPURegister f31 = { 31 }; 266 267 // FPU (coprocessor 1) control registers. 268 // Currently only FCSR (#31) is implemented. 269 struct FPUControlRegister { 270 static const int kFCSRRegister = 31; 271 static const int kInvalidFPUControlRegister = -1; 272 is_validFPUControlRegister273 bool is_valid() const { return code_ == kFCSRRegister; } isFPUControlRegister274 bool is(FPUControlRegister creg) const { return code_ == creg.code_; } codeFPUControlRegister275 int code() const { 276 ASSERT(is_valid()); 277 return code_; 278 } bitFPUControlRegister279 int bit() const { 280 ASSERT(is_valid()); 281 return 1 << code_; 282 } setcodeFPUControlRegister283 void setcode(int f) { 284 code_ = f; 285 ASSERT(is_valid()); 286 } 287 // Unfortunately we can't make this private in a struct. 288 int code_; 289 }; 290 291 const FPUControlRegister no_fpucreg = { -1 }; 292 const FPUControlRegister FCSR = { kFCSRRegister }; 293 294 295 // ----------------------------------------------------------------------------- 296 // Machine instruction Operands. 297 298 // Class Operand represents a shifter operand in data processing instructions. 299 class Operand BASE_EMBEDDED { 300 public: 301 // Immediate. 302 INLINE(explicit Operand(int32_t immediate, 303 RelocInfo::Mode rmode = RelocInfo::NONE)); 304 INLINE(explicit Operand(const ExternalReference& f)); 305 INLINE(explicit Operand(const char* s)); 306 INLINE(explicit Operand(Object** opp)); 307 INLINE(explicit Operand(Context** cpp)); 308 explicit Operand(Handle<Object> handle); 309 INLINE(explicit Operand(Smi* value)); 310 311 // Register. 312 INLINE(explicit Operand(Register rm)); 313 314 // Return true if this is a register operand. 315 INLINE(bool is_reg() const); 316 rm()317 Register rm() const { return rm_; } 318 319 private: 320 Register rm_; 321 int32_t imm32_; // Valid if rm_ == no_reg 322 RelocInfo::Mode rmode_; 323 324 friend class Assembler; 325 friend class MacroAssembler; 326 }; 327 328 329 // On MIPS we have only one adressing mode with base_reg + offset. 330 // Class MemOperand represents a memory operand in load and store instructions. 331 class MemOperand : public Operand { 332 public: 333 334 explicit MemOperand(Register rn, int32_t offset = 0); 335 336 private: 337 int32_t offset_; 338 339 friend class Assembler; 340 }; 341 342 343 // CpuFeatures keeps track of which features are supported by the target CPU. 344 // Supported features must be enabled by a Scope before use. 345 class CpuFeatures { 346 public: 347 // Detect features of the target CPU. Set safe defaults if the serializer 348 // is enabled (snapshots must be portable). 349 void Probe(bool portable); 350 351 // Check whether a feature is supported by the target CPU. IsSupported(CpuFeature f)352 bool IsSupported(CpuFeature f) const { 353 if (f == FPU && !FLAG_enable_fpu) return false; 354 return (supported_ & (1u << f)) != 0; 355 } 356 357 // Check whether a feature is currently enabled. IsEnabled(CpuFeature f)358 bool IsEnabled(CpuFeature f) const { 359 return (enabled_ & (1u << f)) != 0; 360 } 361 362 // Enable a specified feature within a scope. 363 class Scope BASE_EMBEDDED { 364 #ifdef DEBUG 365 public: Scope(CpuFeature f)366 explicit Scope(CpuFeature f) 367 : cpu_features_(Isolate::Current()->cpu_features()), 368 isolate_(Isolate::Current()) { 369 ASSERT(cpu_features_->IsSupported(f)); 370 ASSERT(!Serializer::enabled() || 371 (cpu_features_->found_by_runtime_probing_ & (1u << f)) == 0); 372 old_enabled_ = cpu_features_->enabled_; 373 cpu_features_->enabled_ |= 1u << f; 374 } ~Scope()375 ~Scope() { 376 ASSERT_EQ(Isolate::Current(), isolate_); 377 cpu_features_->enabled_ = old_enabled_; 378 } 379 private: 380 unsigned old_enabled_; 381 CpuFeatures* cpu_features_; 382 Isolate* isolate_; 383 #else 384 public: 385 explicit Scope(CpuFeature f) {} 386 #endif 387 }; 388 389 private: 390 CpuFeatures(); 391 392 unsigned supported_; 393 unsigned enabled_; 394 unsigned found_by_runtime_probing_; 395 396 friend class Isolate; 397 398 DISALLOW_COPY_AND_ASSIGN(CpuFeatures); 399 }; 400 401 402 class Assembler : public AssemblerBase { 403 public: 404 // Create an assembler. Instructions and relocation information are emitted 405 // into a buffer, with the instructions starting from the beginning and the 406 // relocation information starting from the end of the buffer. See CodeDesc 407 // for a detailed comment on the layout (globals.h). 408 // 409 // If the provided buffer is NULL, the assembler allocates and grows its own 410 // buffer, and buffer_size determines the initial buffer size. The buffer is 411 // owned by the assembler and deallocated upon destruction of the assembler. 412 // 413 // If the provided buffer is not NULL, the assembler uses the provided buffer 414 // for code generation and assumes its size to be buffer_size. If the buffer 415 // is too small, a fatal error occurs. No deallocation of the buffer is done 416 // upon destruction of the assembler. 417 Assembler(void* buffer, int buffer_size); 418 ~Assembler(); 419 420 // Overrides the default provided by FLAG_debug_code. set_emit_debug_code(bool value)421 void set_emit_debug_code(bool value) { emit_debug_code_ = value; } 422 423 // GetCode emits any pending (non-emitted) code and fills the descriptor 424 // desc. GetCode() is idempotent; it returns the same result if no other 425 // Assembler functions are invoked in between GetCode() calls. 426 void GetCode(CodeDesc* desc); 427 428 // Label operations & relative jumps (PPUM Appendix D). 429 // 430 // Takes a branch opcode (cc) and a label (L) and generates 431 // either a backward branch or a forward branch and links it 432 // to the label fixup chain. Usage: 433 // 434 // Label L; // unbound label 435 // j(cc, &L); // forward branch to unbound label 436 // bind(&L); // bind label to the current pc 437 // j(cc, &L); // backward branch to bound label 438 // bind(&L); // illegal: a label may be bound only once 439 // 440 // Note: The same Label can be used for forward and backward branches 441 // but it may be bound only once. 442 void bind(Label* L); // binds an unbound label L to the current code position 443 444 // Returns the branch offset to the given label from the current code position 445 // Links the label to the current position if it is still unbound 446 // Manages the jump elimination optimization if the second parameter is true. 447 int32_t branch_offset(Label* L, bool jump_elimination_allowed); shifted_branch_offset(Label * L,bool jump_elimination_allowed)448 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) { 449 int32_t o = branch_offset(L, jump_elimination_allowed); 450 ASSERT((o & 3) == 0); // Assert the offset is aligned. 451 return o >> 2; 452 } 453 454 // Puts a labels target address at the given position. 455 // The high 8 bits are set to zero. 456 void label_at_put(Label* L, int at_offset); 457 458 // Read/Modify the code target address in the branch/call instruction at pc. 459 static Address target_address_at(Address pc); 460 static void set_target_address_at(Address pc, Address target); 461 462 // This sets the branch destination (which gets loaded at the call address). 463 // This is for calls and branches within generated code. set_target_at(Address instruction_payload,Address target)464 inline static void set_target_at(Address instruction_payload, 465 Address target) { 466 set_target_address_at(instruction_payload, target); 467 } 468 469 // This sets the branch destination. 470 // This is for calls and branches to runtime code. set_external_target_at(Address instruction_payload,Address target)471 inline static void set_external_target_at(Address instruction_payload, 472 Address target) { 473 set_target_address_at(instruction_payload, target); 474 } 475 476 // Size of an instruction. 477 static const int kInstrSize = sizeof(Instr); 478 479 // Difference between address of current opcode and target address offset. 480 static const int kBranchPCOffset = 4; 481 482 // Here we are patching the address in the LUI/ORI instruction pair. 483 // These values are used in the serialization process and must be zero for 484 // MIPS platform, as Code, Embedded Object or External-reference pointers 485 // are split across two consecutive instructions and don't exist separately 486 // in the code, so the serializer should not step forwards in memory after 487 // a target is resolved and written. 488 static const int kCallTargetSize = 0 * kInstrSize; 489 static const int kExternalTargetSize = 0 * kInstrSize; 490 491 // Number of consecutive instructions used to store 32bit constant. 492 // Used in RelocInfo::target_address_address() function to tell serializer 493 // address of the instruction that follows LUI/ORI instruction pair. 494 static const int kInstructionsFor32BitConstant = 2; 495 496 // Distance between the instruction referring to the address of the call 497 // target and the return address. 498 static const int kCallTargetAddressOffset = 4 * kInstrSize; 499 500 // Distance between start of patched return sequence and the emitted address 501 // to jump to. 502 static const int kPatchReturnSequenceAddressOffset = 0; 503 504 // Distance between start of patched debug break slot and the emitted address 505 // to jump to. 506 static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize; 507 508 // Difference between address of current opcode and value read from pc 509 // register. 510 static const int kPcLoadDelta = 4; 511 512 // Number of instructions used for the JS return sequence. The constant is 513 // used by the debugger to patch the JS return sequence. 514 static const int kJSReturnSequenceInstructions = 7; 515 static const int kDebugBreakSlotInstructions = 4; 516 static const int kDebugBreakSlotLength = 517 kDebugBreakSlotInstructions * kInstrSize; 518 519 520 // --------------------------------------------------------------------------- 521 // Code generation. 522 523 // Insert the smallest number of nop instructions 524 // possible to align the pc offset to a multiple 525 // of m. m must be a power of 2 (>= 4). 526 void Align(int m); 527 // Aligns code to something that's optimal for a jump target for the platform. 528 void CodeTargetAlign(); 529 530 // Different nop operations are used by the code generator to detect certain 531 // states of the generated code. 532 enum NopMarkerTypes { 533 NON_MARKING_NOP = 0, 534 DEBUG_BREAK_NOP, 535 // IC markers. 536 PROPERTY_ACCESS_INLINED, 537 PROPERTY_ACCESS_INLINED_CONTEXT, 538 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 539 // Helper values. 540 LAST_CODE_MARKER, 541 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED 542 }; 543 544 // type == 0 is the default non-marking type. 545 void nop(unsigned int type = 0) { 546 ASSERT(type < 32); 547 sll(zero_reg, zero_reg, type, true); 548 } 549 550 551 //------- Branch and jump instructions -------- 552 // We don't use likely variant of instructions. 553 void b(int16_t offset); b(Label * L)554 void b(Label* L) { b(branch_offset(L, false)>>2); } 555 void bal(int16_t offset); bal(Label * L)556 void bal(Label* L) { bal(branch_offset(L, false)>>2); } 557 558 void beq(Register rs, Register rt, int16_t offset); beq(Register rs,Register rt,Label * L)559 void beq(Register rs, Register rt, Label* L) { 560 beq(rs, rt, branch_offset(L, false) >> 2); 561 } 562 void bgez(Register rs, int16_t offset); 563 void bgezal(Register rs, int16_t offset); 564 void bgtz(Register rs, int16_t offset); 565 void blez(Register rs, int16_t offset); 566 void bltz(Register rs, int16_t offset); 567 void bltzal(Register rs, int16_t offset); 568 void bne(Register rs, Register rt, int16_t offset); bne(Register rs,Register rt,Label * L)569 void bne(Register rs, Register rt, Label* L) { 570 bne(rs, rt, branch_offset(L, false)>>2); 571 } 572 573 // Never use the int16_t b(l)cond version with a branch offset 574 // instead of using the Label* version. See Twiki for infos. 575 576 // Jump targets must be in the current 256 MB-aligned region. ie 28 bits. 577 void j(int32_t target); 578 void jal(int32_t target); 579 void jalr(Register rs, Register rd = ra); 580 void jr(Register target); 581 582 583 //-------Data-processing-instructions--------- 584 585 // Arithmetic. 586 void addu(Register rd, Register rs, Register rt); 587 void subu(Register rd, Register rs, Register rt); 588 void mult(Register rs, Register rt); 589 void multu(Register rs, Register rt); 590 void div(Register rs, Register rt); 591 void divu(Register rs, Register rt); 592 void mul(Register rd, Register rs, Register rt); 593 594 void addiu(Register rd, Register rs, int32_t j); 595 596 // Logical. 597 void and_(Register rd, Register rs, Register rt); 598 void or_(Register rd, Register rs, Register rt); 599 void xor_(Register rd, Register rs, Register rt); 600 void nor(Register rd, Register rs, Register rt); 601 602 void andi(Register rd, Register rs, int32_t j); 603 void ori(Register rd, Register rs, int32_t j); 604 void xori(Register rd, Register rs, int32_t j); 605 void lui(Register rd, int32_t j); 606 607 // Shifts. 608 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 609 // and may cause problems in normal code. coming_from_nop makes sure this 610 // doesn't happen. 611 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 612 void sllv(Register rd, Register rt, Register rs); 613 void srl(Register rd, Register rt, uint16_t sa); 614 void srlv(Register rd, Register rt, Register rs); 615 void sra(Register rt, Register rd, uint16_t sa); 616 void srav(Register rt, Register rd, Register rs); 617 void rotr(Register rd, Register rt, uint16_t sa); 618 void rotrv(Register rd, Register rt, Register rs); 619 620 621 //------------Memory-instructions------------- 622 623 void lb(Register rd, const MemOperand& rs); 624 void lbu(Register rd, const MemOperand& rs); 625 void lh(Register rd, const MemOperand& rs); 626 void lhu(Register rd, const MemOperand& rs); 627 void lw(Register rd, const MemOperand& rs); 628 void lwl(Register rd, const MemOperand& rs); 629 void lwr(Register rd, const MemOperand& rs); 630 void sb(Register rd, const MemOperand& rs); 631 void sh(Register rd, const MemOperand& rs); 632 void sw(Register rd, const MemOperand& rs); 633 void swl(Register rd, const MemOperand& rs); 634 void swr(Register rd, const MemOperand& rs); 635 636 637 //-------------Misc-instructions-------------- 638 639 // Break / Trap instructions. 640 void break_(uint32_t code); 641 void tge(Register rs, Register rt, uint16_t code); 642 void tgeu(Register rs, Register rt, uint16_t code); 643 void tlt(Register rs, Register rt, uint16_t code); 644 void tltu(Register rs, Register rt, uint16_t code); 645 void teq(Register rs, Register rt, uint16_t code); 646 void tne(Register rs, Register rt, uint16_t code); 647 648 // Move from HI/LO register. 649 void mfhi(Register rd); 650 void mflo(Register rd); 651 652 // Set on less than. 653 void slt(Register rd, Register rs, Register rt); 654 void sltu(Register rd, Register rs, Register rt); 655 void slti(Register rd, Register rs, int32_t j); 656 void sltiu(Register rd, Register rs, int32_t j); 657 658 // Conditional move. 659 void movz(Register rd, Register rs, Register rt); 660 void movn(Register rd, Register rs, Register rt); 661 void movt(Register rd, Register rs, uint16_t cc = 0); 662 void movf(Register rd, Register rs, uint16_t cc = 0); 663 664 // Bit twiddling. 665 void clz(Register rd, Register rs); 666 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 667 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 668 669 //--------Coprocessor-instructions---------------- 670 671 // Load, store, and move. 672 void lwc1(FPURegister fd, const MemOperand& src); 673 void ldc1(FPURegister fd, const MemOperand& src); 674 675 void swc1(FPURegister fs, const MemOperand& dst); 676 void sdc1(FPURegister fs, const MemOperand& dst); 677 678 void mtc1(Register rt, FPURegister fs); 679 void mfc1(Register rt, FPURegister fs); 680 681 void ctc1(Register rt, FPUControlRegister fs); 682 void cfc1(Register rt, FPUControlRegister fs); 683 684 // Arithmetic. 685 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 686 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 687 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 688 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 689 void abs_d(FPURegister fd, FPURegister fs); 690 void mov_d(FPURegister fd, FPURegister fs); 691 void neg_d(FPURegister fd, FPURegister fs); 692 void sqrt_d(FPURegister fd, FPURegister fs); 693 694 // Conversion. 695 void cvt_w_s(FPURegister fd, FPURegister fs); 696 void cvt_w_d(FPURegister fd, FPURegister fs); 697 void trunc_w_s(FPURegister fd, FPURegister fs); 698 void trunc_w_d(FPURegister fd, FPURegister fs); 699 void round_w_s(FPURegister fd, FPURegister fs); 700 void round_w_d(FPURegister fd, FPURegister fs); 701 void floor_w_s(FPURegister fd, FPURegister fs); 702 void floor_w_d(FPURegister fd, FPURegister fs); 703 void ceil_w_s(FPURegister fd, FPURegister fs); 704 void ceil_w_d(FPURegister fd, FPURegister fs); 705 706 void cvt_l_s(FPURegister fd, FPURegister fs); 707 void cvt_l_d(FPURegister fd, FPURegister fs); 708 void trunc_l_s(FPURegister fd, FPURegister fs); 709 void trunc_l_d(FPURegister fd, FPURegister fs); 710 void round_l_s(FPURegister fd, FPURegister fs); 711 void round_l_d(FPURegister fd, FPURegister fs); 712 void floor_l_s(FPURegister fd, FPURegister fs); 713 void floor_l_d(FPURegister fd, FPURegister fs); 714 void ceil_l_s(FPURegister fd, FPURegister fs); 715 void ceil_l_d(FPURegister fd, FPURegister fs); 716 717 void cvt_s_w(FPURegister fd, FPURegister fs); 718 void cvt_s_l(FPURegister fd, FPURegister fs); 719 void cvt_s_d(FPURegister fd, FPURegister fs); 720 721 void cvt_d_w(FPURegister fd, FPURegister fs); 722 void cvt_d_l(FPURegister fd, FPURegister fs); 723 void cvt_d_s(FPURegister fd, FPURegister fs); 724 725 // Conditions and branches. 726 void c(FPUCondition cond, SecondaryField fmt, 727 FPURegister ft, FPURegister fs, uint16_t cc = 0); 728 729 void bc1f(int16_t offset, uint16_t cc = 0); 730 void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); } 731 void bc1t(int16_t offset, uint16_t cc = 0); 732 void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); } 733 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 734 735 // Check the code size generated from label to here. InstructionsGeneratedSince(Label * l)736 int InstructionsGeneratedSince(Label* l) { 737 return (pc_offset() - l->pos()) / kInstrSize; 738 } 739 740 // Class for scoping postponing the trampoline pool generation. 741 class BlockTrampolinePoolScope { 742 public: BlockTrampolinePoolScope(Assembler * assem)743 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 744 assem_->StartBlockTrampolinePool(); 745 } ~BlockTrampolinePoolScope()746 ~BlockTrampolinePoolScope() { 747 assem_->EndBlockTrampolinePool(); 748 } 749 750 private: 751 Assembler* assem_; 752 753 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 754 }; 755 756 // Debugging. 757 758 // Mark address of the ExitJSFrame code. 759 void RecordJSReturn(); 760 761 // Mark address of a debug break slot. 762 void RecordDebugBreakSlot(); 763 764 // Record a comment relocation entry that can be used by a disassembler. 765 // Use --code-comments to enable. 766 void RecordComment(const char* msg); 767 768 // Writes a single byte or word of data in the code stream. Used for 769 // inline tables, e.g., jump-tables. 770 void db(uint8_t data); 771 void dd(uint32_t data); 772 pc_offset()773 int32_t pc_offset() const { return pc_ - buffer_; } 774 positions_recorder()775 PositionsRecorder* positions_recorder() { return &positions_recorder_; } 776 can_peephole_optimize(int instructions)777 bool can_peephole_optimize(int instructions) { 778 if (!allow_peephole_optimization_) return false; 779 if (last_bound_pos_ > pc_offset() - instructions * kInstrSize) return false; 780 return reloc_info_writer.last_pc() <= pc_ - instructions * kInstrSize; 781 } 782 783 // Postpone the generation of the trampoline pool for the specified number of 784 // instructions. 785 void BlockTrampolinePoolFor(int instructions); 786 787 // Check if there is less than kGap bytes available in the buffer. 788 // If this is the case, we need to grow the buffer before emitting 789 // an instruction or relocation information. overflow()790 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 791 792 // Get the number of bytes available in the buffer. available_space()793 inline int available_space() const { return reloc_info_writer.pos() - pc_; } 794 795 // Read/patch instructions. instr_at(byte * pc)796 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } instr_at_put(byte * pc,Instr instr)797 static void instr_at_put(byte* pc, Instr instr) { 798 *reinterpret_cast<Instr*>(pc) = instr; 799 } instr_at(int pos)800 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } instr_at_put(int pos,Instr instr)801 void instr_at_put(int pos, Instr instr) { 802 *reinterpret_cast<Instr*>(buffer_ + pos) = instr; 803 } 804 805 // Check if an instruction is a branch of some kind. 806 static bool IsBranch(Instr instr); 807 808 static bool IsNop(Instr instr, unsigned int type); 809 static bool IsPop(Instr instr); 810 static bool IsPush(Instr instr); 811 static bool IsLwRegFpOffset(Instr instr); 812 static bool IsSwRegFpOffset(Instr instr); 813 static bool IsLwRegFpNegOffset(Instr instr); 814 static bool IsSwRegFpNegOffset(Instr instr); 815 816 static Register GetRt(Instr instr); 817 818 static int32_t GetBranchOffset(Instr instr); 819 static bool IsLw(Instr instr); 820 static int16_t GetLwOffset(Instr instr); 821 static Instr SetLwOffset(Instr instr, int16_t offset); 822 823 static bool IsSw(Instr instr); 824 static Instr SetSwOffset(Instr instr, int16_t offset); 825 static bool IsAddImmediate(Instr instr); 826 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 827 828 void CheckTrampolinePool(bool force_emit = false); 829 830 protected: emit_debug_code()831 bool emit_debug_code() const { return emit_debug_code_; } 832 buffer_space()833 int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 834 835 // Decode branch instruction at pos and return branch target pos. 836 int target_at(int32_t pos); 837 838 // Patch branch instruction at pos to branch to given branch target pos. 839 void target_at_put(int32_t pos, int32_t target_pos); 840 841 // Say if we need to relocate with this mode. 842 bool MustUseReg(RelocInfo::Mode rmode); 843 844 // Record reloc info for current pc_. 845 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 846 847 // Block the emission of the trampoline pool before pc_offset. BlockTrampolinePoolBefore(int pc_offset)848 void BlockTrampolinePoolBefore(int pc_offset) { 849 if (no_trampoline_pool_before_ < pc_offset) 850 no_trampoline_pool_before_ = pc_offset; 851 } 852 StartBlockTrampolinePool()853 void StartBlockTrampolinePool() { 854 trampoline_pool_blocked_nesting_++; 855 } EndBlockTrampolinePool()856 void EndBlockTrampolinePool() { 857 trampoline_pool_blocked_nesting_--; 858 } 859 is_trampoline_pool_blocked()860 bool is_trampoline_pool_blocked() const { 861 return trampoline_pool_blocked_nesting_ > 0; 862 } 863 864 private: 865 // Code buffer: 866 // The buffer into which code and relocation info are generated. 867 byte* buffer_; 868 int buffer_size_; 869 // True if the assembler owns the buffer, false if buffer is external. 870 bool own_buffer_; 871 872 // Buffer size and constant pool distance are checked together at regular 873 // intervals of kBufferCheckInterval emitted bytes. 874 static const int kBufferCheckInterval = 1*KB/2; 875 876 // Code generation. 877 // The relocation writer's position is at least kGap bytes below the end of 878 // the generated instructions. This is so that multi-instruction sequences do 879 // not have to check for overflow. The same is true for writes of large 880 // relocation info entries. 881 static const int kGap = 32; 882 byte* pc_; // The program counter - moves forward. 883 884 885 // Repeated checking whether the trampoline pool should be emitted is rather 886 // expensive. By default we only check again once a number of instructions 887 // has been generated. 888 static const int kCheckConstIntervalInst = 32; 889 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; 890 891 int next_buffer_check_; // pc offset of next buffer check. 892 893 // Emission of the trampoline pool may be blocked in some code sequences. 894 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 895 int no_trampoline_pool_before_; // Block emission before this pc offset. 896 897 // Keep track of the last emitted pool to guarantee a maximal distance. 898 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 899 900 // Relocation information generation. 901 // Each relocation is encoded as a variable size value. 902 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; 903 RelocInfoWriter reloc_info_writer; 904 905 // The bound position, before this we cannot do instruction elimination. 906 int last_bound_pos_; 907 908 // Code emission. 909 inline void CheckBuffer(); 910 void GrowBuffer(); 911 inline void emit(Instr x); 912 inline void CheckTrampolinePoolQuick(); 913 914 // Instruction generation. 915 // We have 3 different kind of encoding layout on MIPS. 916 // However due to many different types of objects encoded in the same fields 917 // we have quite a few aliases for each mode. 918 // Using the same structure to refer to Register and FPURegister would spare a 919 // few aliases, but mixing both does not look clean to me. 920 // Anyway we could surely implement this differently. 921 922 void GenInstrRegister(Opcode opcode, 923 Register rs, 924 Register rt, 925 Register rd, 926 uint16_t sa = 0, 927 SecondaryField func = NULLSF); 928 929 void GenInstrRegister(Opcode opcode, 930 Register rs, 931 Register rt, 932 uint16_t msb, 933 uint16_t lsb, 934 SecondaryField func); 935 936 void GenInstrRegister(Opcode opcode, 937 SecondaryField fmt, 938 FPURegister ft, 939 FPURegister fs, 940 FPURegister fd, 941 SecondaryField func = NULLSF); 942 943 void GenInstrRegister(Opcode opcode, 944 SecondaryField fmt, 945 Register rt, 946 FPURegister fs, 947 FPURegister fd, 948 SecondaryField func = NULLSF); 949 950 void GenInstrRegister(Opcode opcode, 951 SecondaryField fmt, 952 Register rt, 953 FPUControlRegister fs, 954 SecondaryField func = NULLSF); 955 956 957 void GenInstrImmediate(Opcode opcode, 958 Register rs, 959 Register rt, 960 int32_t j); 961 void GenInstrImmediate(Opcode opcode, 962 Register rs, 963 SecondaryField SF, 964 int32_t j); 965 void GenInstrImmediate(Opcode opcode, 966 Register r1, 967 FPURegister r2, 968 int32_t j); 969 970 971 void GenInstrJump(Opcode opcode, 972 uint32_t address); 973 974 // Helpers. 975 void LoadRegPlusOffsetToAt(const MemOperand& src); 976 977 // Labels. 978 void print(Label* L); 979 void bind_to(Label* L, int pos); 980 void link_to(Label* L, Label* appendix); 981 void next(Label* L); 982 983 // One trampoline consists of: 984 // - space for trampoline slots, 985 // - space for labels. 986 // 987 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 988 // Space for trampoline slots preceeds space for labels. Each label is of one 989 // instruction size, so total amount for labels is equal to 990 // label_count * kInstrSize. 991 class Trampoline { 992 public: Trampoline(int start,int slot_count,int label_count)993 Trampoline(int start, int slot_count, int label_count) { 994 start_ = start; 995 next_slot_ = start; 996 free_slot_count_ = slot_count; 997 next_label_ = start + slot_count * 2 * kInstrSize; 998 free_label_count_ = label_count; 999 end_ = next_label_ + (label_count - 1) * kInstrSize; 1000 } start()1001 int start() { 1002 return start_; 1003 } end()1004 int end() { 1005 return end_; 1006 } take_slot()1007 int take_slot() { 1008 int trampoline_slot = next_slot_; 1009 ASSERT(free_slot_count_ > 0); 1010 free_slot_count_--; 1011 next_slot_ += 2 * kInstrSize; 1012 return trampoline_slot; 1013 } take_label()1014 int take_label() { 1015 int label_pos = next_label_; 1016 ASSERT(free_label_count_ > 0); 1017 free_label_count_--; 1018 next_label_ += kInstrSize; 1019 return label_pos; 1020 } 1021 private: 1022 int start_; 1023 int end_; 1024 int next_slot_; 1025 int free_slot_count_; 1026 int next_label_; 1027 int free_label_count_; 1028 }; 1029 1030 int32_t get_label_entry(int32_t pos, bool next_pool = true); 1031 int32_t get_trampoline_entry(int32_t pos, bool next_pool = true); 1032 1033 static const int kSlotsPerTrampoline = 2304; 1034 static const int kLabelsPerTrampoline = 8; 1035 static const int kTrampolineInst = 1036 2 * kSlotsPerTrampoline + kLabelsPerTrampoline; 1037 static const int kTrampolineSize = kTrampolineInst * kInstrSize; 1038 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; 1039 static const int kMaxDistBetweenPools = 1040 kMaxBranchOffset - 2 * kTrampolineSize; 1041 1042 List<Trampoline> trampolines_; 1043 1044 friend class RegExpMacroAssemblerMIPS; 1045 friend class RelocInfo; 1046 friend class CodePatcher; 1047 friend class BlockTrampolinePoolScope; 1048 1049 PositionsRecorder positions_recorder_; 1050 bool allow_peephole_optimization_; 1051 bool emit_debug_code_; 1052 friend class PositionsRecorder; 1053 friend class EnsureSpace; 1054 }; 1055 1056 1057 class EnsureSpace BASE_EMBEDDED { 1058 public: EnsureSpace(Assembler * assembler)1059 explicit EnsureSpace(Assembler* assembler) { 1060 assembler->CheckBuffer(); 1061 } 1062 }; 1063 1064 } } // namespace v8::internal 1065 1066 #endif // V8_ARM_ASSEMBLER_MIPS_H_ 1067