• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //--------------------------------------------------------------------*/
2 //--- Massif: a heap profiling tool.                     ms_main.c ---*/
3 //--------------------------------------------------------------------*/
4 
5 /*
6    This file is part of Massif, a Valgrind tool for profiling memory
7    usage of programs.
8 
9    Copyright (C) 2003-2010 Nicholas Nethercote
10       njn@valgrind.org
11 
12    This program is free software; you can redistribute it and/or
13    modify it under the terms of the GNU General Public License as
14    published by the Free Software Foundation; either version 2 of the
15    License, or (at your option) any later version.
16 
17    This program is distributed in the hope that it will be useful, but
18    WITHOUT ANY WARRANTY; without even the implied warranty of
19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20    General Public License for more details.
21 
22    You should have received a copy of the GNU General Public License
23    along with this program; if not, write to the Free Software
24    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25    02111-1307, USA.
26 
27    The GNU General Public License is contained in the file COPYING.
28 */
29 
30 //---------------------------------------------------------------------------
31 // XXX:
32 //---------------------------------------------------------------------------
33 // Todo -- nice, but less critical:
34 // - do a graph-drawing test
35 // - make file format more generic.  Obstacles:
36 //   - unit prefixes are not generic
37 //   - preset column widths for stats are not generic
38 //   - preset column headers are not generic
39 //   - "Massif arguments:" line is not generic
40 // - do snapshots on client requests
41 //   - (Michael Meeks): have an interactive way to request a dump
42 //     (callgrind_control-style)
43 //     - "profile now"
44 //     - "show me the extra allocations since the last snapshot"
45 //     - "start/stop logging" (eg. quickly skip boring bits)
46 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
47 //   Give each graph a title.  (try to do it generically!)
48 // - allow truncation of long fnnames if the exact line number is
49 //   identified?  [hmm, could make getting the name of alloc-fns more
50 //   difficult] [could dump full names to file, truncate in ms_print]
51 // - make --show-below-main=no work
52 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
53 //   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
54 //   m_commandline.c:add_args_from_string() needs to respect single quotes.
55 // - With --stack=yes, want to add a stack trace for detailed snapshots so
56 //   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
57 //   possibly useful even with --stack=no? (Andi Yin)
58 //
59 // Performance:
60 // - To run the benchmarks:
61 //
62 //     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
63 //     time valgrind --tool=massif --depth=100 konqueror
64 //
65 //   The other benchmarks don't do much allocation, and so give similar speeds
66 //   to Nulgrind.
67 //
68 //   Timing results on 'nevermore' (njn's machine) as of r7013:
69 //
70 //     heap      0.53s  ma:12.4s (23.5x, -----)
71 //     tinycc    0.46s  ma: 4.9s (10.7x, -----)
72 //     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
73 //     konqueror 29.6s real  0:21.0s user
74 //
75 //   [Introduction of --time-unit=i as the default slowed things down by
76 //   roughly 0--20%.]
77 //
78 // - get_XCon accounts for about 9% of konqueror startup time.  Try
79 //   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
80 //   Requires factoring out binary search code from various places into a
81 //   VG_(bsearch) function.
82 //
83 // Todo -- low priority:
84 // - In each XPt, record both bytes and the number of allocations, and
85 //   possibly the global number of allocations.
86 // - (Andy Lin) Give a stack trace on detailed snapshots?
87 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
88 //   than a certain size!  Because: "linux's malloc allows to set a
89 //   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
90 //   be handled directly by the kernel, and are guaranteed to be returned to
91 //   the system when freed. So we needed to profile only blocks below this
92 //   limit."
93 //
94 // File format working notes:
95 
96 #if 0
97 desc: --heap-admin=foo
98 cmd: date
99 time_unit: ms
100 #-----------
101 snapshot=0
102 #-----------
103 time=0
104 mem_heap_B=0
105 mem_heap_admin_B=0
106 mem_stacks_B=0
107 heap_tree=empty
108 #-----------
109 snapshot=1
110 #-----------
111 time=353
112 mem_heap_B=5
113 mem_heap_admin_B=0
114 mem_stacks_B=0
115 heap_tree=detailed
116 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
117  n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
118   n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
119    n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
120     n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
121      n1: 5 0x8049821: (within /bin/date)
122       n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
123 
124 
125 n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
126 t_events: B
127 n 0 0 0 0 0
128 n 0 0 0 0 0
129 t1: 5 <string...>
130  t1: 6 <string...>
131 
132 Ideas:
133 - each snapshot specifies an x-axis value and one or more y-axis values.
134 - can display the y-axis values separately if you like
135 - can completely separate connection between snapshots and trees.
136 
137 Challenges:
138 - how to specify and scale/abbreviate units on axes?
139 - how to combine multiple values into the y-axis?
140 
141 --------------------------------------------------------------------------------Command:            date
142 Massif arguments:   --heap-admin=foo
143 ms_print arguments: massif.out
144 --------------------------------------------------------------------------------
145     KB
146 6.472^                                                       :#
147      |                                                       :#  ::  .    .
148      ...
149      |                                     ::@  :@    :@ :@:::#  ::  :    ::::
150    0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
151 
152 Number of snapshots: 50
153  Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
154 --------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
155 --------------------------------------------------------------------------------  0              0                0                0             0            0
156   1            345                5                5             0            0
157   2            353                5                5             0            0
158 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
159 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
160 #endif
161 
162 //---------------------------------------------------------------------------
163 
164 #include "pub_tool_basics.h"
165 #include "pub_tool_vki.h"
166 #include "pub_tool_aspacemgr.h"
167 #include "pub_tool_debuginfo.h"
168 #include "pub_tool_hashtable.h"
169 #include "pub_tool_libcbase.h"
170 #include "pub_tool_libcassert.h"
171 #include "pub_tool_libcfile.h"
172 #include "pub_tool_libcprint.h"
173 #include "pub_tool_libcproc.h"
174 #include "pub_tool_machine.h"
175 #include "pub_tool_mallocfree.h"
176 #include "pub_tool_options.h"
177 #include "pub_tool_replacemalloc.h"
178 #include "pub_tool_stacktrace.h"
179 #include "pub_tool_threadstate.h"
180 #include "pub_tool_tooliface.h"
181 #include "pub_tool_xarray.h"
182 #include "pub_tool_clientstate.h"
183 
184 #include "valgrind.h"           // For {MALLOC,FREE}LIKE_BLOCK
185 
186 //------------------------------------------------------------*/
187 //--- Overview of operation                                ---*/
188 //------------------------------------------------------------*/
189 
190 // The size of the stacks and heap is tracked.  The heap is tracked in a lot
191 // of detail, enough to tell how many bytes each line of code is responsible
192 // for, more or less.  The main data structure is a tree representing the
193 // call tree beneath all the allocation functions like malloc().
194 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
195 // the page level, and each page is treated much like a heap block.  We use
196 // "heap" throughout below to cover this case because the concepts are all the
197 // same.)
198 //
199 // "Snapshots" are recordings of the memory usage.  There are two basic
200 // kinds:
201 // - Normal:  these record the current time, total memory size, total heap
202 //   size, heap admin size and stack size.
203 // - Detailed: these record those things in a normal snapshot, plus a very
204 //   detailed XTree (see below) indicating how the heap is structured.
205 //
206 // Snapshots are taken every so often.  There are two storage classes of
207 // snapshots:
208 // - Temporary:  Massif does a temporary snapshot every so often.  The idea
209 //   is to always have a certain number of temporary snapshots around.  So
210 //   we take them frequently to begin with, but decreasingly often as the
211 //   program continues to run.  Also, we remove some old ones after a while.
212 //   Overall it's a kind of exponential decay thing.  Most of these are
213 //   normal snapshots, a small fraction are detailed snapshots.
214 // - Permanent:  Massif takes a permanent (detailed) snapshot in some
215 //   circumstances.  They are:
216 //   - Peak snapshot:  When the memory usage peak is reached, it takes a
217 //     snapshot.  It keeps this, unless the peak is subsequently exceeded,
218 //     in which case it will overwrite the peak snapshot.
219 //   - User-requested snapshots:  These are done in response to client
220 //     requests.  They are always kept.
221 
222 // Used for printing things when clo_verbosity > 1.
223 #define VERB(verb, format, args...) \
224    if (VG_(clo_verbosity) > verb) { \
225       VG_(dmsg)("Massif: " format, ##args); \
226    }
227 
228 // Used for printing stats when clo_stats == True.
229 #define STATS(format, args...) \
230    if (VG_(clo_stats)) { \
231       VG_(dmsg)("Massif: " format, ##args); \
232    }
233 
234 //------------------------------------------------------------//
235 //--- Statistics                                           ---//
236 //------------------------------------------------------------//
237 
238 // Konqueror startup, to give an idea of the numbers involved with a biggish
239 // program, with default depth:
240 //
241 //  depth=3                   depth=40
242 //  - 310,000 allocations
243 //  - 300,000 frees
244 //  -  15,000 XPts            800,000 XPts
245 //  -   1,800 top-XPts
246 
247 static UInt n_heap_allocs           = 0;
248 static UInt n_heap_reallocs         = 0;
249 static UInt n_heap_frees            = 0;
250 static UInt n_ignored_heap_allocs   = 0;
251 static UInt n_ignored_heap_frees    = 0;
252 static UInt n_ignored_heap_reallocs = 0;
253 static UInt n_stack_allocs          = 0;
254 static UInt n_stack_frees           = 0;
255 static UInt n_xpts                  = 0;
256 static UInt n_xpt_init_expansions   = 0;
257 static UInt n_xpt_later_expansions  = 0;
258 static UInt n_sxpt_allocs           = 0;
259 static UInt n_sxpt_frees            = 0;
260 static UInt n_skipped_snapshots     = 0;
261 static UInt n_real_snapshots        = 0;
262 static UInt n_detailed_snapshots    = 0;
263 static UInt n_peak_snapshots        = 0;
264 static UInt n_cullings              = 0;
265 static UInt n_XCon_redos            = 0;
266 
267 //------------------------------------------------------------//
268 //--- Globals                                              ---//
269 //------------------------------------------------------------//
270 
271 // Number of guest instructions executed so far.  Only used with
272 // --time-unit=i.
273 static Long guest_instrs_executed = 0;
274 
275 static SizeT heap_szB       = 0; // Live heap size
276 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
277 static SizeT stacks_szB     = 0; // Live stacks size
278 
279 // This is the total size from the current peak snapshot, or 0 if no peak
280 // snapshot has been taken yet.
281 static SizeT peak_snapshot_total_szB = 0;
282 
283 // Incremented every time memory is allocated/deallocated, by the
284 // allocated/deallocated amount;  includes heap, heap-admin and stack
285 // memory.  An alternative to milliseconds as a unit of program "time".
286 static ULong total_allocs_deallocs_szB = 0;
287 
288 // When running with --heap=yes --pages-as-heap=no, we don't start taking
289 // snapshots until the first basic block is executed, rather than doing it in
290 // ms_post_clo_init (which is the obvious spot), for two reasons.
291 // - It lets us ignore stack events prior to that, because they're not
292 //   really proper ones and just would screw things up.
293 // - Because there's still some core initialisation to do, and so there
294 //   would be an artificial time gap between the first and second snapshots.
295 //
296 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
297 // earlier due to new_mem_startup so this isn't relevant.
298 //
299 static Bool have_started_executing_code = False;
300 
301 //------------------------------------------------------------//
302 //--- Alloc fns                                            ---//
303 //------------------------------------------------------------//
304 
305 static XArray* alloc_fns;
306 static XArray* ignore_fns;
307 
init_alloc_fns(void)308 static void init_alloc_fns(void)
309 {
310    // Create the list, and add the default elements.
311    alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
312                                        VG_(free), sizeof(Char*));
313    #define DO(x)  { Char* s = x; VG_(addToXA)(alloc_fns, &s); }
314 
315    // Ordered roughly according to (presumed) frequency.
316    // Nb: The C++ "operator new*" ones are overloadable.  We include them
317    // always anyway, because even if they're overloaded, it would be a
318    // prodigiously stupid overloading that caused them to not allocate
319    // memory.
320    //
321    // XXX: because we don't look at the first stack entry (unless it's a
322    // custom allocation) there's not much point to having all these alloc
323    // functions here -- they should never appear anywhere (I think?) other
324    // than the top stack entry.  The only exceptions are those that in
325    // vg_replace_malloc.c are partly or fully implemented in terms of another
326    // alloc function: realloc (which uses malloc);  valloc,
327    // malloc_zone_valloc, posix_memalign and memalign_common (which use
328    // memalign).
329    //
330    DO("malloc"                                              );
331    DO("__builtin_new"                                       );
332    DO("operator new(unsigned)"                              );
333    DO("operator new(unsigned long)"                         );
334    DO("__builtin_vec_new"                                   );
335    DO("operator new[](unsigned)"                            );
336    DO("operator new[](unsigned long)"                       );
337    DO("calloc"                                              );
338    DO("realloc"                                             );
339    DO("memalign"                                            );
340    DO("posix_memalign"                                      );
341    DO("valloc"                                              );
342    DO("operator new(unsigned, std::nothrow_t const&)"       );
343    DO("operator new[](unsigned, std::nothrow_t const&)"     );
344    DO("operator new(unsigned long, std::nothrow_t const&)"  );
345    DO("operator new[](unsigned long, std::nothrow_t const&)");
346 #if defined(VGP_ppc32_aix5) || defined(VGP_ppc64_aix5)
347    DO("malloc_common"                                       );
348    DO("calloc_common"                                       );
349    DO("realloc_common"                                      );
350    DO("memalign_common"                                     );
351 #elif defined(VGO_darwin)
352    DO("malloc_zone_malloc"                                  );
353    DO("malloc_zone_calloc"                                  );
354    DO("malloc_zone_realloc"                                 );
355    DO("malloc_zone_memalign"                                );
356    DO("malloc_zone_valloc"                                  );
357 #endif
358 }
359 
init_ignore_fns(void)360 static void init_ignore_fns(void)
361 {
362    // Create the (empty) list.
363    ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
364                                         VG_(free), sizeof(Char*));
365 }
366 
367 // Determines if the named function is a member of the XArray.
is_member_fn(XArray * fns,Char * fnname)368 static Bool is_member_fn(XArray* fns, Char* fnname)
369 {
370    Char** fn_ptr;
371    Int i;
372 
373    // Nb: It's a linear search through the list, because we're comparing
374    // strings rather than pointers to strings.
375    // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
376    // iterate through so it wasn't a good choice.
377    for (i = 0; i < VG_(sizeXA)(fns); i++) {
378       fn_ptr = VG_(indexXA)(fns, i);
379       if (VG_STREQ(fnname, *fn_ptr))
380          return True;
381    }
382    return False;
383 }
384 
385 
386 //------------------------------------------------------------//
387 //--- Command line args                                    ---//
388 //------------------------------------------------------------//
389 
390 #define MAX_DEPTH       200
391 
392 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
393 
TimeUnit_to_string(TimeUnit time_unit)394 static Char* TimeUnit_to_string(TimeUnit time_unit)
395 {
396    switch (time_unit) {
397    case TimeI:  return "i";
398    case TimeMS: return "ms";
399    case TimeB:  return "B";
400    default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
401    }
402 }
403 
404 static Bool   clo_heap            = True;
405    // clo_heap_admin is deliberately a word-sized type.  At one point it was
406    // a UInt, but this caused problems on 64-bit machines when it was
407    // multiplied by a small negative number and then promoted to a
408    // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
409 static SSizeT clo_heap_admin      = 8;
410 static Bool   clo_pages_as_heap   = False;
411 static Bool   clo_stacks          = False;
412 static Int    clo_depth           = 30;
413 static double clo_threshold       = 1.0;  // percentage
414 static double clo_peak_inaccuracy = 1.0;  // percentage
415 static Int    clo_time_unit       = TimeI;
416 static Int    clo_detailed_freq   = 10;
417 static Int    clo_max_snapshots   = 100;
418 static Char*  clo_massif_out_file = "massif.out.%p";
419 
420 static XArray* args_for_massif;
421 
ms_process_cmd_line_option(Char * arg)422 static Bool ms_process_cmd_line_option(Char* arg)
423 {
424    Char* tmp_str;
425 
426    // Remember the arg for later use.
427    VG_(addToXA)(args_for_massif, &arg);
428 
429         if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
430    else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
431 
432    else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
433 
434    else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
435 
436    else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
437 
438    else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
439       VG_(addToXA)(alloc_fns, &tmp_str);
440    }
441    else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
442       VG_(addToXA)(ignore_fns, &tmp_str);
443    }
444 
445    else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
446       if (clo_threshold < 0 || clo_threshold > 100) {
447          VG_(fmsg_bad_option)(arg,
448             "--threshold must be between 0.0 and 100.0\n");
449       }
450    }
451 
452    else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
453 
454    else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
455    else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
456    else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
457 
458    else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
459 
460    else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
461 
462    else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
463 
464    else
465       return VG_(replacement_malloc_process_cmd_line_option)(arg);
466 
467    return True;
468 }
469 
ms_print_usage(void)470 static void ms_print_usage(void)
471 {
472    VG_(printf)(
473 "    --heap=no|yes             profile heap blocks [yes]\n"
474 "    --heap-admin=<size>       average admin bytes per heap block;\n"
475 "                               ignored if --heap=no [8]\n"
476 "    --stacks=no|yes           profile stack(s) [no]\n"
477 "    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
478 "    --depth=<number>          depth of contexts [30]\n"
479 "    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
480 "    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
481 "    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
482 "    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
483 "    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
484 "                              or heap bytes alloc'd/dealloc'd [i]\n"
485 "    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
486 "    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
487 "    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
488    );
489 }
490 
ms_print_debug_usage(void)491 static void ms_print_debug_usage(void)
492 {
493    VG_(printf)(
494 "    (none)\n"
495    );
496 }
497 
498 
499 //------------------------------------------------------------//
500 //--- XPts, XTrees and XCons                               ---//
501 //------------------------------------------------------------//
502 
503 // An XPt represents an "execution point", ie. a code address.  Each XPt is
504 // part of a tree of XPts (an "execution tree", or "XTree").  The details of
505 // the heap are represented by a single XTree.
506 //
507 // The root of the tree is 'alloc_xpt', which represents all allocation
508 // functions, eg:
509 // - malloc/calloc/realloc/memalign/new/new[];
510 // - user-specified allocation functions (using --alloc-fn);
511 // - custom allocation (MALLOCLIKE) points
512 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
513 // it makes the code simpler.
514 //
515 // Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
516 // of an XTree (leaf nodes) are "bottom-XPTs".
517 //
518 // Each path from a top-XPt to a bottom-XPt through an XTree gives an
519 // execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
520 // stack sub-traces.)  The number of XCons in an XTree is equal to the
521 // number of bottom-XPTs in that XTree.
522 //
523 //      alloc_xpt       XTrees are bi-directional.
524 //        | ^
525 //        v |
526 //     > parent <       Example: if child1() calls parent() and child2()
527 //    /    |     \      also calls parent(), and parent() calls malloc(),
528 //   |    / \     |     the XTree will look like this.
529 //   |   v   v    |
530 //  child1   child2
531 //
532 // (Note that malformed stack traces can lead to difficulties.  See the
533 // comment at the bottom of get_XCon.)
534 //
535 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
536 // for "saved".  When the XTree is duplicated for a snapshot, we duplicate
537 // it as an SXTree, which is similar but omits some things it does not need,
538 // and aggregates up insignificant nodes.  This is important as an SXTree is
539 // typically much smaller than an XTree.
540 
541 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two
542 // allocations per Pt.
543 
544 typedef struct _XPt XPt;
545 struct _XPt {
546    Addr  ip;              // code address
547 
548    // Bottom-XPts: space for the precise context.
549    // Other XPts:  space of all the descendent bottom-XPts.
550    // Nb: this value goes up and down as the program executes.
551    SizeT szB;
552 
553    XPt*  parent;           // pointer to parent XPt
554 
555    // Children.
556    // n_children and max_children are 32-bit integers.  16-bit integers
557    // are too small -- a very big program might have more than 65536
558    // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
559    UInt  n_children;       // number of children
560    UInt  max_children;     // capacity of children array
561    XPt** children;         // pointers to children XPts
562 };
563 
564 typedef
565    enum {
566       SigSXPt,
567       InsigSXPt
568    }
569    SXPtTag;
570 
571 typedef struct _SXPt SXPt;
572 struct _SXPt {
573    SXPtTag tag;
574    SizeT szB;              // memory size for the node, be it Sig or Insig
575    union {
576       // An SXPt representing a single significant code location.  Much like
577       // an XPt, minus the fields that aren't necessary.
578       struct {
579          Addr   ip;
580          UInt   n_children;
581          SXPt** children;
582       }
583       Sig;
584 
585       // An SXPt representing one or more code locations, all below the
586       // significance threshold.
587       struct {
588          Int   n_xpts;     // number of aggregated XPts
589       }
590       Insig;
591    };
592 };
593 
594 // Fake XPt representing all allocation functions like malloc().  Acts as
595 // parent node to all top-XPts.
596 static XPt* alloc_xpt;
597 
598 // Cheap allocation for blocks that never need to be freed.  Saves about 10%
599 // for Konqueror startup with --depth=40.
perm_malloc(SizeT n_bytes)600 static void* perm_malloc(SizeT n_bytes)
601 {
602    static Addr hp     = 0;    // current heap pointer
603    static Addr hp_lim = 0;    // maximum usable byte in current block
604 
605    #define SUPERBLOCK_SIZE  (1 << 20)         // 1 MB
606 
607    if (hp + n_bytes > hp_lim) {
608       hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE);
609       if (0 == hp)
610          VG_(out_of_memory_NORETURN)( "massif:perm_malloc",
611                                       SUPERBLOCK_SIZE);
612       hp_lim = hp + SUPERBLOCK_SIZE - 1;
613    }
614 
615    hp += n_bytes;
616 
617    return (void*)(hp - n_bytes);
618 }
619 
new_XPt(Addr ip,XPt * parent)620 static XPt* new_XPt(Addr ip, XPt* parent)
621 {
622    // XPts are never freed, so we can use perm_malloc to allocate them.
623    // Note that we cannot use perm_malloc for the 'children' array, because
624    // that needs to be resizable.
625    XPt* xpt    = perm_malloc(sizeof(XPt));
626    xpt->ip     = ip;
627    xpt->szB    = 0;
628    xpt->parent = parent;
629 
630    // We don't initially allocate any space for children.  We let that
631    // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
632    // children anyway.
633    xpt->n_children   = 0;
634    xpt->max_children = 0;
635    xpt->children     = NULL;
636 
637    // Update statistics
638    n_xpts++;
639 
640    return xpt;
641 }
642 
add_child_xpt(XPt * parent,XPt * child)643 static void add_child_xpt(XPt* parent, XPt* child)
644 {
645    // Expand 'children' if necessary.
646    tl_assert(parent->n_children <= parent->max_children);
647    if (parent->n_children == parent->max_children) {
648       if (0 == parent->max_children) {
649          parent->max_children = 4;
650          parent->children = VG_(malloc)( "ms.main.acx.1",
651                                          parent->max_children * sizeof(XPt*) );
652          n_xpt_init_expansions++;
653       } else {
654          parent->max_children *= 2;    // Double size
655          parent->children = VG_(realloc)( "ms.main.acx.2",
656                                           parent->children,
657                                           parent->max_children * sizeof(XPt*) );
658          n_xpt_later_expansions++;
659       }
660    }
661 
662    // Insert new child XPt in parent's children list.
663    parent->children[ parent->n_children++ ] = child;
664 }
665 
666 // Reverse comparison for a reverse sort -- biggest to smallest.
SXPt_revcmp_szB(void * n1,void * n2)667 static Int SXPt_revcmp_szB(void* n1, void* n2)
668 {
669    SXPt* sxpt1 = *(SXPt**)n1;
670    SXPt* sxpt2 = *(SXPt**)n2;
671    return ( sxpt1->szB < sxpt2->szB ?  1
672           : sxpt1->szB > sxpt2->szB ? -1
673           :                            0);
674 }
675 
676 //------------------------------------------------------------//
677 //--- XTree Operations                                     ---//
678 //------------------------------------------------------------//
679 
680 // Duplicates an XTree as an SXTree.
dup_XTree(XPt * xpt,SizeT total_szB)681 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
682 {
683    Int  i, n_sig_children, n_insig_children, n_child_sxpts;
684    SizeT sig_child_threshold_szB;
685    SXPt* sxpt;
686 
687    // Number of XPt children  Action for SXPT
688    // ------------------      ---------------
689    // 0 sig, 0 insig          alloc 0 children
690    // N sig, 0 insig          alloc N children, dup all
691    // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
692    // 0 sig, M insig          alloc 1, aggregate M
693 
694    // Work out how big a child must be to be significant.  If the current
695    // total_szB is zero, then we set it to 1, which means everything will be
696    // judged insignificant -- this is sensible, as there's no point showing
697    // any detail for this case.  Unless they used --threshold=0, in which
698    // case we show them everything because that's what they asked for.
699    //
700    // Nb: We do this once now, rather than once per child, because if we do
701    // that the cost of all the divisions adds up to something significant.
702    if (0 == total_szB && 0 != clo_threshold) {
703       sig_child_threshold_szB = 1;
704    } else {
705       sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
706    }
707 
708    // How many children are significant?  And do we need an aggregate SXPt?
709    n_sig_children = 0;
710    for (i = 0; i < xpt->n_children; i++) {
711       if (xpt->children[i]->szB >= sig_child_threshold_szB) {
712          n_sig_children++;
713       }
714    }
715    n_insig_children = xpt->n_children - n_sig_children;
716    n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
717 
718    // Duplicate the XPt.
719    sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
720    n_sxpt_allocs++;
721    sxpt->tag            = SigSXPt;
722    sxpt->szB            = xpt->szB;
723    sxpt->Sig.ip         = xpt->ip;
724    sxpt->Sig.n_children = n_child_sxpts;
725 
726    // Create the SXPt's children.
727    if (n_child_sxpts > 0) {
728       Int j;
729       SizeT sig_children_szB = 0, insig_children_szB = 0;
730       sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
731                                        n_child_sxpts * sizeof(SXPt*));
732 
733       // Duplicate the significant children.  (Nb: sig_children_szB +
734       // insig_children_szB doesn't necessarily equal xpt->szB.)
735       j = 0;
736       for (i = 0; i < xpt->n_children; i++) {
737          if (xpt->children[i]->szB >= sig_child_threshold_szB) {
738             sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
739             sig_children_szB   += xpt->children[i]->szB;
740          } else {
741             insig_children_szB += xpt->children[i]->szB;
742          }
743       }
744 
745       // Create the SXPt for the insignificant children, if any, and put it
746       // in the last child entry.
747       if (n_insig_children > 0) {
748          // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
749          // doesn't involve a call to dup_XTree().
750          SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
751          n_sxpt_allocs++;
752          insig_sxpt->tag = InsigSXPt;
753          insig_sxpt->szB = insig_children_szB;
754          insig_sxpt->Insig.n_xpts = n_insig_children;
755          sxpt->Sig.children[n_sig_children] = insig_sxpt;
756       }
757    } else {
758       sxpt->Sig.children = NULL;
759    }
760 
761    return sxpt;
762 }
763 
free_SXTree(SXPt * sxpt)764 static void free_SXTree(SXPt* sxpt)
765 {
766    Int  i;
767    tl_assert(sxpt != NULL);
768 
769    switch (sxpt->tag) {
770     case SigSXPt:
771       // Free all children SXPts, then the children array.
772       for (i = 0; i < sxpt->Sig.n_children; i++) {
773          free_SXTree(sxpt->Sig.children[i]);
774          sxpt->Sig.children[i] = NULL;
775       }
776       VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
777       break;
778 
779     case InsigSXPt:
780       break;
781 
782     default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
783    }
784 
785    // Free the SXPt itself.
786    VG_(free)(sxpt);     sxpt = NULL;
787    n_sxpt_frees++;
788 }
789 
790 // Sanity checking:  we periodically check the heap XTree with
791 // ms_expensive_sanity_check.
sanity_check_XTree(XPt * xpt,XPt * parent)792 static void sanity_check_XTree(XPt* xpt, XPt* parent)
793 {
794    tl_assert(xpt != NULL);
795 
796    // Check back-pointer.
797    tl_assert2(xpt->parent == parent,
798       "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
799 
800    // Check children counts look sane.
801    tl_assert(xpt->n_children <= xpt->max_children);
802 
803    // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
804    // children's sizes.  See comment at the bottom of get_XCon.
805 }
806 
807 // Sanity checking:  we check SXTrees (which are in snapshots) after
808 // snapshots are created, before they are deleted, and before they are
809 // printed.
sanity_check_SXTree(SXPt * sxpt)810 static void sanity_check_SXTree(SXPt* sxpt)
811 {
812    Int i;
813 
814    tl_assert(sxpt != NULL);
815 
816    // Check the sum of any children szBs equals the SXPt's szB.  Check the
817    // children at the same time.
818    switch (sxpt->tag) {
819     case SigSXPt: {
820       if (sxpt->Sig.n_children > 0) {
821          for (i = 0; i < sxpt->Sig.n_children; i++) {
822             sanity_check_SXTree(sxpt->Sig.children[i]);
823          }
824       }
825       break;
826     }
827     case InsigSXPt:
828       break;         // do nothing
829 
830     default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
831    }
832 }
833 
834 
835 //------------------------------------------------------------//
836 //--- XCon Operations                                      ---//
837 //------------------------------------------------------------//
838 
839 // This is the limit on the number of removed alloc-fns that can be in a
840 // single XCon.
841 #define MAX_OVERESTIMATE   50
842 #define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
843 
844 // This is used for various buffers which can hold function names/IP
845 // description.  Some C++ names can get really long so 1024 isn't big
846 // enough.
847 #define BUF_LEN   2048
848 
849 // Determine if the given IP belongs to a function that should be ignored.
fn_should_be_ignored(Addr ip)850 static Bool fn_should_be_ignored(Addr ip)
851 {
852    static Char buf[BUF_LEN];
853    return
854       ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf)
855       ? True : False );
856 }
857 
858 // Get the stack trace for an XCon, filtering out uninteresting entries:
859 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
860 //   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
861 //   becomes:  a / b / main
862 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
863 // as an alloc-fn.  This is ok.
864 static
get_IPs(ThreadId tid,Bool exclude_first_entry,Addr ips[])865 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
866 {
867    static Char buf[BUF_LEN];
868    Int n_ips, i, n_alloc_fns_removed;
869    Int overestimate;
870    Bool redo;
871 
872    // We ask for a few more IPs than clo_depth suggests we need.  Then we
873    // remove every entry that is an alloc-fn.  Depending on the
874    // circumstances, we may need to redo it all, asking for more IPs.
875    // Details:
876    // - If the original stack trace is smaller than asked-for, redo=False
877    // - Else if after filtering we have >= clo_depth IPs,      redo=False
878    // - Else redo=True
879    // In other words, to redo, we'd have to get a stack trace as big as we
880    // asked for and remove more than 'overestimate' alloc-fns.
881 
882    // Main loop.
883    redo = True;      // Assume this to begin with.
884    for (overestimate = 3; redo; overestimate += 6) {
885       // This should never happen -- would require MAX_OVERESTIMATE
886       // alloc-fns to be removed from the stack trace.
887       if (overestimate > MAX_OVERESTIMATE)
888          VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
889 
890       // Ask for more IPs than clo_depth suggests we need.
891       n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
892                                    NULL/*array to dump SP values in*/,
893                                    NULL/*array to dump FP values in*/,
894                                    0/*first_ip_delta*/ );
895       tl_assert(n_ips > 0);
896 
897       // If the original stack trace is smaller than asked-for, redo=False.
898       if (n_ips < clo_depth + overestimate) { redo = False; }
899 
900       // Filter out alloc fns.  If requested, we automatically remove the
901       // first entry (which presumably will be something like malloc or
902       // __builtin_new that we're sure to filter out) without looking at it,
903       // because VG_(get_fnname) is expensive.
904       n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
905       for (i = n_alloc_fns_removed; i < n_ips; i++) {
906          if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) {
907             if (is_member_fn(alloc_fns, buf)) {
908                n_alloc_fns_removed++;
909             } else {
910                break;
911             }
912          }
913       }
914       // Remove the alloc fns by shuffling the rest down over them.
915       n_ips -= n_alloc_fns_removed;
916       for (i = 0; i < n_ips; i++) {
917          ips[i] = ips[i + n_alloc_fns_removed];
918       }
919 
920       // If after filtering we have >= clo_depth IPs, redo=False
921       if (n_ips >= clo_depth) {
922          redo = False;
923          n_ips = clo_depth;      // Ignore any IPs below --depth.
924       }
925 
926       if (redo) {
927          n_XCon_redos++;
928       }
929    }
930    return n_ips;
931 }
932 
933 // Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
934 // Unless the allocation should be ignored, in which case we return NULL.
get_XCon(ThreadId tid,Bool exclude_first_entry)935 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
936 {
937    static Addr ips[MAX_IPS];
938    Int i;
939    XPt* xpt = alloc_xpt;
940 
941    // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
942    Int n_ips = get_IPs(tid, exclude_first_entry, ips);
943 
944    // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
945    // 'main' is marked as an alloc-fn.)
946    if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
947       return NULL;
948    }
949 
950    // Now do the search/insertion of the XCon.
951    for (i = 0; i < n_ips; i++) {
952       Addr ip = ips[i];
953       Int ch;
954       // Look for IP in xpt's children.
955       // Linear search, ugh -- about 10% of time for konqueror startup tried
956       // caching last result, only hit about 4% for konqueror.
957       // Nb:  this search hits about 98% of the time for konqueror
958       for (ch = 0; True; ch++) {
959          if (ch == xpt->n_children) {
960             // IP not found in the children.
961             // Create and add new child XPt, then stop.
962             XPt* new_child_xpt = new_XPt(ip, xpt);
963             add_child_xpt(xpt, new_child_xpt);
964             xpt = new_child_xpt;
965             break;
966 
967          } else if (ip == xpt->children[ch]->ip) {
968             // Found the IP in the children, stop.
969             xpt = xpt->children[ch];
970             break;
971          }
972       }
973    }
974 
975    // [Note: several comments refer to this comment.  Do not delete it
976    // without updating them.]
977    //
978    // A complication... If all stack traces were well-formed, then the
979    // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
980    // size would always be equal to the sum of its children's sizes, which
981    // is an excellent sanity check.
982    //
983    // Unfortunately, stack traces occasionally are malformed, ie. truncated.
984    // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
985    // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
986    // nor can we do sanity check an XPt's size against its children's sizes.
987    // This is annoying, but must be dealt with.  (Older versions of Massif
988    // had this assertion in, and it was reported to fail by real users a
989    // couple of times.)  Even more annoyingly, I can't come up with a simple
990    // test case that exhibit such a malformed stack trace, so I can't
991    // regression test it.  Sigh.
992    //
993    // However, we can print a warning, so that if it happens (unexpectedly)
994    // in existing regression tests we'll know.  Also, it warns users that
995    // the output snapshots may not add up the way they might expect.
996    //
997    //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
998    if (0 != xpt->n_children) {
999       static Int n_moans = 0;
1000       if (n_moans < 3) {
1001          VG_(umsg)(
1002             "Warning: Malformed stack trace detected.  In Massif's output,\n");
1003          VG_(umsg)(
1004             "         the size of an entry's child entries may not sum up\n");
1005          VG_(umsg)(
1006             "         to the entry's size as they normally do.\n");
1007          n_moans++;
1008          if (3 == n_moans)
1009             VG_(umsg)(
1010             "         (And Massif now won't warn about this again.)\n");
1011       }
1012    }
1013    return xpt;
1014 }
1015 
1016 // Update 'szB' of every XPt in the XCon, by percolating upwards.
update_XCon(XPt * xpt,SSizeT space_delta)1017 static void update_XCon(XPt* xpt, SSizeT space_delta)
1018 {
1019    tl_assert(clo_heap);
1020    tl_assert(NULL != xpt);
1021 
1022    if (0 == space_delta)
1023       return;
1024 
1025    while (xpt != alloc_xpt) {
1026       if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
1027       xpt->szB += space_delta;
1028       xpt = xpt->parent;
1029    }
1030    if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
1031    alloc_xpt->szB += space_delta;
1032 }
1033 
1034 
1035 //------------------------------------------------------------//
1036 //--- Snapshots                                            ---//
1037 //------------------------------------------------------------//
1038 
1039 // Snapshots are done in a way so that we always have a reasonable number of
1040 // them.  We start by taking them quickly.  Once we hit our limit, we cull
1041 // some (eg. half), and start taking them more slowly.  Once we hit the
1042 // limit again, we again cull and then take them even more slowly, and so
1043 // on.
1044 
1045 // Time is measured either in i or ms or bytes, depending on the --time-unit
1046 // option.  It's a Long because it can exceed 32-bits reasonably easily, and
1047 // because we need to allow negative values to represent unset times.
1048 typedef Long Time;
1049 
1050 #define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
1051 
1052 typedef
1053    enum {
1054       Normal = 77,
1055       Peak,
1056       Unused
1057    }
1058    SnapshotKind;
1059 
1060 typedef
1061    struct {
1062       SnapshotKind kind;
1063       Time  time;
1064       SizeT heap_szB;
1065       SizeT heap_extra_szB;// Heap slop + admin bytes.
1066       SizeT stacks_szB;
1067       SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
1068    }                       // otherwise NULL.
1069    Snapshot;
1070 
1071 static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
1072 static Snapshot* snapshots;            // Array of snapshots.
1073 
is_snapshot_in_use(Snapshot * snapshot)1074 static Bool is_snapshot_in_use(Snapshot* snapshot)
1075 {
1076    if (Unused == snapshot->kind) {
1077       // If snapshot is unused, check all the fields are unset.
1078       tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
1079       tl_assert(snapshot->heap_extra_szB == 0);
1080       tl_assert(snapshot->heap_szB       == 0);
1081       tl_assert(snapshot->stacks_szB     == 0);
1082       tl_assert(snapshot->alloc_sxpt     == NULL);
1083       return False;
1084    } else {
1085       tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
1086       return True;
1087    }
1088 }
1089 
is_detailed_snapshot(Snapshot * snapshot)1090 static Bool is_detailed_snapshot(Snapshot* snapshot)
1091 {
1092    return (snapshot->alloc_sxpt ? True : False);
1093 }
1094 
is_uncullable_snapshot(Snapshot * snapshot)1095 static Bool is_uncullable_snapshot(Snapshot* snapshot)
1096 {
1097    return &snapshots[0] == snapshot                   // First snapshot
1098        || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
1099        || snapshot->kind == Peak;                     // Peak snapshot
1100 }
1101 
sanity_check_snapshot(Snapshot * snapshot)1102 static void sanity_check_snapshot(Snapshot* snapshot)
1103 {
1104    if (snapshot->alloc_sxpt) {
1105       sanity_check_SXTree(snapshot->alloc_sxpt);
1106    }
1107 }
1108 
1109 // All the used entries should look used, all the unused ones should be clear.
sanity_check_snapshots_array(void)1110 static void sanity_check_snapshots_array(void)
1111 {
1112    Int i;
1113    for (i = 0; i < next_snapshot_i; i++) {
1114       tl_assert( is_snapshot_in_use( & snapshots[i] ));
1115    }
1116    for (    ; i < clo_max_snapshots; i++) {
1117       tl_assert(!is_snapshot_in_use( & snapshots[i] ));
1118    }
1119 }
1120 
1121 // This zeroes all the fields in the snapshot, but does not free the heap
1122 // XTree if present.  It also does a sanity check unless asked not to;  we
1123 // can't sanity check at startup when clearing the initial snapshots because
1124 // they're full of junk.
clear_snapshot(Snapshot * snapshot,Bool do_sanity_check)1125 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
1126 {
1127    if (do_sanity_check) sanity_check_snapshot(snapshot);
1128    snapshot->kind           = Unused;
1129    snapshot->time           = UNUSED_SNAPSHOT_TIME;
1130    snapshot->heap_extra_szB = 0;
1131    snapshot->heap_szB       = 0;
1132    snapshot->stacks_szB     = 0;
1133    snapshot->alloc_sxpt     = NULL;
1134 }
1135 
1136 // This zeroes all the fields in the snapshot, and frees the heap XTree if
1137 // present.
delete_snapshot(Snapshot * snapshot)1138 static void delete_snapshot(Snapshot* snapshot)
1139 {
1140    // Nb: if there's an XTree, we free it after calling clear_snapshot,
1141    // because clear_snapshot does a sanity check which includes checking the
1142    // XTree.
1143    SXPt* tmp_sxpt = snapshot->alloc_sxpt;
1144    clear_snapshot(snapshot, /*do_sanity_check*/True);
1145    if (tmp_sxpt) {
1146       free_SXTree(tmp_sxpt);
1147    }
1148 }
1149 
VERB_snapshot(Int verbosity,Char * prefix,Int i)1150 static void VERB_snapshot(Int verbosity, Char* prefix, Int i)
1151 {
1152    Snapshot* snapshot = &snapshots[i];
1153    Char* suffix;
1154    switch (snapshot->kind) {
1155    case Peak:   suffix = "p";                                            break;
1156    case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
1157    case Unused: suffix = "u";                                            break;
1158    default:
1159       tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
1160    }
1161    VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n",
1162       prefix, suffix, i,
1163       snapshot->time,
1164       snapshot->heap_szB,
1165       snapshot->heap_extra_szB,
1166       snapshot->stacks_szB
1167    );
1168 }
1169 
1170 // Cull half the snapshots;  we choose those that represent the smallest
1171 // time-spans, because that gives us the most even distribution of snapshots
1172 // over time.  (It's possible to lose interesting spikes, however.)
1173 //
1174 // Algorithm for N snapshots:  We find the snapshot representing the smallest
1175 // timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
1176 // We have to do this one snapshot at a time, rather than finding the (N/2)
1177 // smallest snapshots in one hit, because when a snapshot is removed, its
1178 // neighbours immediately cover greater timespans.  So it's O(N^2), but N is
1179 // small, and it's not done very often.
1180 //
1181 // Once we're done, we return the new smallest interval between snapshots.
1182 // That becomes our minimum time interval.
cull_snapshots(void)1183 static UInt cull_snapshots(void)
1184 {
1185    Int  i, jp, j, jn, min_timespan_i;
1186    Int  n_deleted = 0;
1187    Time min_timespan;
1188 
1189    n_cullings++;
1190 
1191    // Sets j to the index of the first not-yet-removed snapshot at or after i
1192    #define FIND_SNAPSHOT(i, j) \
1193       for (j = i; \
1194            j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
1195            j++) { }
1196 
1197    VERB(2, "Culling...\n");
1198 
1199    // First we remove enough snapshots by clearing them in-place.  Once
1200    // that's done, we can slide the remaining ones down.
1201    for (i = 0; i < clo_max_snapshots/2; i++) {
1202       // Find the snapshot representing the smallest timespan.  The timespan
1203       // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
1204       // snapshot A and B.  We don't consider the first and last snapshots for
1205       // removal.
1206       Snapshot* min_snapshot;
1207       Int min_j;
1208 
1209       // Initial triple: (prev, curr, next) == (jp, j, jn)
1210       // Initial min_timespan is the first one.
1211       jp = 0;
1212       FIND_SNAPSHOT(1,   j);
1213       FIND_SNAPSHOT(j+1, jn);
1214       min_timespan = 0x7fffffffffffffffLL;
1215       min_j        = -1;
1216       while (jn < clo_max_snapshots) {
1217          Time timespan = snapshots[jn].time - snapshots[jp].time;
1218          tl_assert(timespan >= 0);
1219          // Nb: We never cull the peak snapshot.
1220          if (Peak != snapshots[j].kind && timespan < min_timespan) {
1221             min_timespan = timespan;
1222             min_j        = j;
1223          }
1224          // Move on to next triple
1225          jp = j;
1226          j  = jn;
1227          FIND_SNAPSHOT(jn+1, jn);
1228       }
1229       // We've found the least important snapshot, now delete it.  First
1230       // print it if necessary.
1231       tl_assert(-1 != min_j);    // Check we found a minimum.
1232       min_snapshot = & snapshots[ min_j ];
1233       if (VG_(clo_verbosity) > 1) {
1234          Char buf[64];
1235          VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
1236          VERB_snapshot(2, buf, min_j);
1237       }
1238       delete_snapshot(min_snapshot);
1239       n_deleted++;
1240    }
1241 
1242    // Slide down the remaining snapshots over the removed ones.  First set i
1243    // to point to the first empty slot, and j to the first full slot after
1244    // i.  Then slide everything down.
1245    for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
1246    for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
1247    for (  ; j < clo_max_snapshots; j++) {
1248       if (is_snapshot_in_use( &snapshots[j] )) {
1249          snapshots[i++] = snapshots[j];
1250          clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
1251       }
1252    }
1253    next_snapshot_i = i;
1254 
1255    // Check snapshots array looks ok after changes.
1256    sanity_check_snapshots_array();
1257 
1258    // Find the minimum timespan remaining;  that will be our new minimum
1259    // time interval.  Note that above we were finding timespans by measuring
1260    // two intervals around a snapshot that was under consideration for
1261    // deletion.  Here we only measure single intervals because all the
1262    // deletions have occurred.
1263    //
1264    // But we have to be careful -- some snapshots (eg. snapshot 0, and the
1265    // peak snapshot) are uncullable.  If two uncullable snapshots end up
1266    // next to each other, they'll never be culled (assuming the peak doesn't
1267    // change), and the time gap between them will not change.  However, the
1268    // time between the remaining cullable snapshots will grow ever larger.
1269    // This means that the min_timespan found will always be that between the
1270    // two uncullable snapshots, and it will be much smaller than it should
1271    // be.  To avoid this problem, when computing the minimum timespan, we
1272    // ignore any timespans between two uncullable snapshots.
1273    tl_assert(next_snapshot_i > 1);
1274    min_timespan = 0x7fffffffffffffffLL;
1275    min_timespan_i = -1;
1276    for (i = 1; i < next_snapshot_i; i++) {
1277       if (is_uncullable_snapshot(&snapshots[i]) &&
1278           is_uncullable_snapshot(&snapshots[i-1]))
1279       {
1280          VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
1281       } else {
1282          Time timespan = snapshots[i].time - snapshots[i-1].time;
1283          tl_assert(timespan >= 0);
1284          if (timespan < min_timespan) {
1285             min_timespan = timespan;
1286             min_timespan_i = i;
1287          }
1288       }
1289    }
1290    tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
1291 
1292    // Print remaining snapshots, if necessary.
1293    if (VG_(clo_verbosity) > 1) {
1294       VERB(2, "Finished culling (%3d of %3d deleted)\n",
1295          n_deleted, clo_max_snapshots);
1296       for (i = 0; i < next_snapshot_i; i++) {
1297          VERB_snapshot(2, "  post-cull", i);
1298       }
1299       VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
1300          min_timespan, min_timespan_i-1, min_timespan_i);
1301    }
1302 
1303    return min_timespan;
1304 }
1305 
get_time(void)1306 static Time get_time(void)
1307 {
1308    // Get current time, in whatever time unit we're using.
1309    if (clo_time_unit == TimeI) {
1310       return guest_instrs_executed;
1311    } else if (clo_time_unit == TimeMS) {
1312       // Some stuff happens between the millisecond timer being initialised
1313       // to zero and us taking our first snapshot.  We determine that time
1314       // gap so we can subtract it from all subsequent times so that our
1315       // first snapshot is considered to be at t = 0ms.  Unfortunately, a
1316       // bunch of symbols get read after the first snapshot is taken but
1317       // before the second one (which is triggered by the first allocation),
1318       // so when the time-unit is 'ms' we always have a big gap between the
1319       // first two snapshots.  But at least users won't have to wonder why
1320       // the first snapshot isn't at t=0.
1321       static Bool is_first_get_time = True;
1322       static Time start_time_ms;
1323       if (is_first_get_time) {
1324          start_time_ms = VG_(read_millisecond_timer)();
1325          is_first_get_time = False;
1326          return 0;
1327       } else {
1328          return VG_(read_millisecond_timer)() - start_time_ms;
1329       }
1330    } else if (clo_time_unit == TimeB) {
1331       return total_allocs_deallocs_szB;
1332    } else {
1333       tl_assert2(0, "bad --time-unit value");
1334    }
1335 }
1336 
1337 // Take a snapshot, and only that -- decisions on whether to take a
1338 // snapshot, or what kind of snapshot, are made elsewhere.
1339 // Nb: we call the arg "my_time" because "time" shadows a global declaration
1340 // in /usr/include/time.h on Darwin.
1341 static void
take_snapshot(Snapshot * snapshot,SnapshotKind kind,Time my_time,Bool is_detailed)1342 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
1343               Bool is_detailed)
1344 {
1345    tl_assert(!is_snapshot_in_use(snapshot));
1346    if (!clo_pages_as_heap) {
1347       tl_assert(have_started_executing_code);
1348    }
1349 
1350    // Heap and heap admin.
1351    if (clo_heap) {
1352       snapshot->heap_szB = heap_szB;
1353       if (is_detailed) {
1354          SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1355          snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
1356          tl_assert(           alloc_xpt->szB == heap_szB);
1357          tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
1358       }
1359       snapshot->heap_extra_szB = heap_extra_szB;
1360    }
1361 
1362    // Stack(s).
1363    if (clo_stacks) {
1364       snapshot->stacks_szB = stacks_szB;
1365    }
1366 
1367    // Rest of snapshot.
1368    snapshot->kind = kind;
1369    snapshot->time = my_time;
1370    sanity_check_snapshot(snapshot);
1371 
1372    // Update stats.
1373    if (Peak == kind) n_peak_snapshots++;
1374    if (is_detailed)  n_detailed_snapshots++;
1375    n_real_snapshots++;
1376 }
1377 
1378 
1379 // Take a snapshot, if it's time, or if we've hit a peak.
1380 static void
maybe_take_snapshot(SnapshotKind kind,Char * what)1381 maybe_take_snapshot(SnapshotKind kind, Char* what)
1382 {
1383    // 'min_time_interval' is the minimum time interval between snapshots.
1384    // If we try to take a snapshot and less than this much time has passed,
1385    // we don't take it.  It gets larger as the program runs longer.  It's
1386    // initialised to zero so that we begin by taking snapshots as quickly as
1387    // possible.
1388    static Time min_time_interval = 0;
1389    // Zero allows startup snapshot.
1390    static Time earliest_possible_time_of_next_snapshot = 0;
1391    static Int  n_snapshots_since_last_detailed         = 0;
1392    static Int  n_skipped_snapshots_since_last_snapshot = 0;
1393 
1394    Snapshot* snapshot;
1395    Bool      is_detailed;
1396    // Nb: we call this variable "my_time" because "time" shadows a global
1397    // declaration in /usr/include/time.h on Darwin.
1398    Time      my_time = get_time();
1399 
1400    switch (kind) {
1401     case Normal:
1402       // Only do a snapshot if it's time.
1403       if (my_time < earliest_possible_time_of_next_snapshot) {
1404          n_skipped_snapshots++;
1405          n_skipped_snapshots_since_last_snapshot++;
1406          return;
1407       }
1408       is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1409       break;
1410 
1411     case Peak: {
1412       // Because we're about to do a deallocation, we're coming down from a
1413       // local peak.  If it is (a) actually a global peak, and (b) a certain
1414       // amount bigger than the previous peak, then we take a peak snapshot.
1415       // By not taking a snapshot for every peak, we save a lot of effort --
1416       // because many peaks remain peak only for a short time.
1417       SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1418       SizeT excess_szB_for_new_peak =
1419          (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1420       if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1421          return;
1422       }
1423       is_detailed = True;
1424       break;
1425     }
1426 
1427     default:
1428       tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1429    }
1430 
1431    // Take the snapshot.
1432    snapshot = & snapshots[next_snapshot_i];
1433    take_snapshot(snapshot, kind, my_time, is_detailed);
1434 
1435    // Record if it was detailed.
1436    if (is_detailed) {
1437       n_snapshots_since_last_detailed = 0;
1438    } else {
1439       n_snapshots_since_last_detailed++;
1440    }
1441 
1442    // Update peak data, if it's a Peak snapshot.
1443    if (Peak == kind) {
1444       Int i, number_of_peaks_snapshots_found = 0;
1445 
1446       // Sanity check the size, then update our recorded peak.
1447       SizeT snapshot_total_szB =
1448          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1449       tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1450          "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1451       peak_snapshot_total_szB = snapshot_total_szB;
1452 
1453       // Find the old peak snapshot, if it exists, and mark it as normal.
1454       for (i = 0; i < next_snapshot_i; i++) {
1455          if (Peak == snapshots[i].kind) {
1456             snapshots[i].kind = Normal;
1457             number_of_peaks_snapshots_found++;
1458          }
1459       }
1460       tl_assert(number_of_peaks_snapshots_found <= 1);
1461    }
1462 
1463    // Finish up verbosity and stats stuff.
1464    if (n_skipped_snapshots_since_last_snapshot > 0) {
1465       VERB(2, "  (skipped %d snapshot%s)\n",
1466          n_skipped_snapshots_since_last_snapshot,
1467          ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1468    }
1469    VERB_snapshot(2, what, next_snapshot_i);
1470    n_skipped_snapshots_since_last_snapshot = 0;
1471 
1472    // Cull the entries, if our snapshot table is full.
1473    next_snapshot_i++;
1474    if (clo_max_snapshots == next_snapshot_i) {
1475       min_time_interval = cull_snapshots();
1476    }
1477 
1478    // Work out the earliest time when the next snapshot can happen.
1479    earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1480 }
1481 
1482 
1483 //------------------------------------------------------------//
1484 //--- Sanity checking                                      ---//
1485 //------------------------------------------------------------//
1486 
ms_cheap_sanity_check(void)1487 static Bool ms_cheap_sanity_check ( void )
1488 {
1489    return True;   // Nothing useful we can cheaply check.
1490 }
1491 
ms_expensive_sanity_check(void)1492 static Bool ms_expensive_sanity_check ( void )
1493 {
1494    sanity_check_XTree(alloc_xpt, /*parent*/NULL);
1495    sanity_check_snapshots_array();
1496    return True;
1497 }
1498 
1499 
1500 //------------------------------------------------------------//
1501 //--- Heap management                                      ---//
1502 //------------------------------------------------------------//
1503 
1504 // Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
1505 // which is a foothold into the XCon at which it was allocated.  From
1506 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and
1507 // decremented (at deallocation).
1508 //
1509 // Nb: first two fields must match core's VgHashNode.
1510 typedef
1511    struct _HP_Chunk {
1512       struct _HP_Chunk* next;
1513       Addr              data;       // Ptr to actual block
1514       SizeT             req_szB;    // Size requested
1515       SizeT             slop_szB;   // Extra bytes given above those requested
1516       XPt*              where;      // Where allocated; bottom-XPt
1517    }
1518    HP_Chunk;
1519 
1520 static VgHashTable malloc_list  = NULL;   // HP_Chunks
1521 
update_alloc_stats(SSizeT szB_delta)1522 static void update_alloc_stats(SSizeT szB_delta)
1523 {
1524    // Update total_allocs_deallocs_szB.
1525    if (szB_delta < 0) szB_delta = -szB_delta;
1526    total_allocs_deallocs_szB += szB_delta;
1527 }
1528 
update_heap_stats(SSizeT heap_szB_delta,Int heap_extra_szB_delta)1529 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1530 {
1531    if (heap_szB_delta < 0)
1532       tl_assert(heap_szB >= -heap_szB_delta);
1533    if (heap_extra_szB_delta < 0)
1534       tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1535 
1536    heap_extra_szB += heap_extra_szB_delta;
1537    heap_szB       += heap_szB_delta;
1538 
1539    update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1540 }
1541 
1542 static
record_block(ThreadId tid,void * p,SizeT req_szB,SizeT slop_szB,Bool exclude_first_entry,Bool maybe_snapshot)1543 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1544                     Bool exclude_first_entry, Bool maybe_snapshot )
1545 {
1546    // Make new HP_Chunk node, add to malloc_list
1547    HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
1548    hc->req_szB  = req_szB;
1549    hc->slop_szB = slop_szB;
1550    hc->data     = (Addr)p;
1551    hc->where    = NULL;
1552    VG_(HT_add_node)(malloc_list, hc);
1553 
1554    if (clo_heap) {
1555       VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1556 
1557       hc->where = get_XCon( tid, exclude_first_entry );
1558 
1559       if (hc->where) {
1560          // Update statistics.
1561          n_heap_allocs++;
1562 
1563          // Update heap stats.
1564          update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1565 
1566          // Update XTree.
1567          update_XCon(hc->where, req_szB);
1568 
1569          // Maybe take a snapshot.
1570          if (maybe_snapshot) {
1571             maybe_take_snapshot(Normal, "  alloc");
1572          }
1573 
1574       } else {
1575          // Ignored allocation.
1576          n_ignored_heap_allocs++;
1577 
1578          VERB(3, "(ignored)\n");
1579       }
1580 
1581       VERB(3, ">>>\n");
1582    }
1583 
1584    return p;
1585 }
1586 
1587 static __inline__
alloc_and_record_block(ThreadId tid,SizeT req_szB,SizeT req_alignB,Bool is_zeroed)1588 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1589                                Bool is_zeroed )
1590 {
1591    SizeT actual_szB, slop_szB;
1592    void* p;
1593 
1594    if ((SSizeT)req_szB < 0) return NULL;
1595 
1596    // Allocate and zero if necessary.
1597    p = VG_(cli_malloc)( req_alignB, req_szB );
1598    if (!p) {
1599       return NULL;
1600    }
1601    if (is_zeroed) VG_(memset)(p, 0, req_szB);
1602    actual_szB = VG_(malloc_usable_size)(p);
1603    tl_assert(actual_szB >= req_szB);
1604    slop_szB = actual_szB - req_szB;
1605 
1606    // Record block.
1607    record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1608                 /*maybe_snapshot*/True);
1609 
1610    return p;
1611 }
1612 
1613 static __inline__
unrecord_block(void * p,Bool maybe_snapshot)1614 void unrecord_block ( void* p, Bool maybe_snapshot )
1615 {
1616    // Remove HP_Chunk from malloc_list
1617    HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1618    if (NULL == hc) {
1619       return;   // must have been a bogus free()
1620    }
1621 
1622    if (clo_heap) {
1623       VERB(3, "<<< unrecord_block\n");
1624 
1625       if (hc->where) {
1626          // Update statistics.
1627          n_heap_frees++;
1628 
1629          // Maybe take a peak snapshot, since it's a deallocation.
1630          if (maybe_snapshot) {
1631             maybe_take_snapshot(Peak, "de-PEAK");
1632          }
1633 
1634          // Update heap stats.
1635          update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1636 
1637          // Update XTree.
1638          update_XCon(hc->where, -hc->req_szB);
1639 
1640          // Maybe take a snapshot.
1641          if (maybe_snapshot) {
1642             maybe_take_snapshot(Normal, "dealloc");
1643          }
1644 
1645       } else {
1646          n_ignored_heap_frees++;
1647 
1648          VERB(3, "(ignored)\n");
1649       }
1650 
1651       VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1652    }
1653 
1654    // Actually free the chunk, and the heap block (if necessary)
1655    VG_(free)( hc );  hc = NULL;
1656 }
1657 
1658 // Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
1659 // ignored, but the realloc is not requested to be ignored, and we are
1660 // shrinking the block, then we have to ignore the realloc -- otherwise we
1661 // could end up with negative heap sizes.  This isn't a danger if we are
1662 // growing such a block, but for consistency (it also simplifies things) we
1663 // ignore such reallocs as well.
1664 static __inline__
realloc_block(ThreadId tid,void * p_old,SizeT new_req_szB)1665 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1666 {
1667    HP_Chunk* hc;
1668    void*     p_new;
1669    SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1670    XPt      *old_where, *new_where;
1671    Bool      is_ignored = False;
1672 
1673    // Remove the old block
1674    hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1675    if (hc == NULL) {
1676       return NULL;   // must have been a bogus realloc()
1677    }
1678 
1679    old_req_szB  = hc->req_szB;
1680    old_slop_szB = hc->slop_szB;
1681 
1682    tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
1683    if (clo_heap) {
1684       VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1685 
1686       if (hc->where) {
1687          // Update statistics.
1688          n_heap_reallocs++;
1689 
1690          // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1691          if (new_req_szB < old_req_szB) {
1692             maybe_take_snapshot(Peak, "re-PEAK");
1693          }
1694       } else {
1695          // The original malloc was ignored, so we have to ignore the
1696          // realloc as well.
1697          is_ignored = True;
1698       }
1699    }
1700 
1701    // Actually do the allocation, if necessary.
1702    if (new_req_szB <= old_req_szB + old_slop_szB) {
1703       // New size is smaller or same;  block not moved.
1704       p_new = p_old;
1705       new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1706 
1707    } else {
1708       // New size is bigger;  make new block, copy shared contents, free old.
1709       p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1710       if (!p_new) {
1711          // Nb: if realloc fails, NULL is returned but the old block is not
1712          // touched.  What an awful function.
1713          return NULL;
1714       }
1715       VG_(memcpy)(p_new, p_old, old_req_szB);
1716       VG_(cli_free)(p_old);
1717       new_actual_szB = VG_(malloc_usable_size)(p_new);
1718       tl_assert(new_actual_szB >= new_req_szB);
1719       new_slop_szB = new_actual_szB - new_req_szB;
1720    }
1721 
1722    if (p_new) {
1723       // Update HP_Chunk.
1724       hc->data     = (Addr)p_new;
1725       hc->req_szB  = new_req_szB;
1726       hc->slop_szB = new_slop_szB;
1727       old_where    = hc->where;
1728       hc->where    = NULL;
1729 
1730       // Update XTree.
1731       if (clo_heap) {
1732          new_where = get_XCon( tid, /*exclude_first_entry*/True);
1733          if (!is_ignored && new_where) {
1734             hc->where = new_where;
1735             update_XCon(old_where, -old_req_szB);
1736             update_XCon(new_where,  new_req_szB);
1737          } else {
1738             // The realloc itself is ignored.
1739             is_ignored = True;
1740 
1741             // Update statistics.
1742             n_ignored_heap_reallocs++;
1743          }
1744       }
1745    }
1746 
1747    // Now insert the new hc (with a possibly new 'data' field) into
1748    // malloc_list.  If this realloc() did not increase the memory size, we
1749    // will have removed and then re-added hc unnecessarily.  But that's ok
1750    // because shrinking a block with realloc() is (presumably) much rarer
1751    // than growing it, and this way simplifies the growing case.
1752    VG_(HT_add_node)(malloc_list, hc);
1753 
1754    if (clo_heap) {
1755       if (!is_ignored) {
1756          // Update heap stats.
1757          update_heap_stats(new_req_szB - old_req_szB,
1758                           new_slop_szB - old_slop_szB);
1759 
1760          // Maybe take a snapshot.
1761          maybe_take_snapshot(Normal, "realloc");
1762       } else {
1763 
1764          VERB(3, "(ignored)\n");
1765       }
1766 
1767       VERB(3, ">>> (%ld, %ld)\n",
1768          new_req_szB - old_req_szB, new_slop_szB - old_slop_szB);
1769    }
1770 
1771    return p_new;
1772 }
1773 
1774 
1775 //------------------------------------------------------------//
1776 //--- malloc() et al replacement wrappers                  ---//
1777 //------------------------------------------------------------//
1778 
ms_malloc(ThreadId tid,SizeT szB)1779 static void* ms_malloc ( ThreadId tid, SizeT szB )
1780 {
1781    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1782 }
1783 
ms___builtin_new(ThreadId tid,SizeT szB)1784 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1785 {
1786    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1787 }
1788 
ms___builtin_vec_new(ThreadId tid,SizeT szB)1789 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1790 {
1791    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1792 }
1793 
ms_calloc(ThreadId tid,SizeT m,SizeT szB)1794 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1795 {
1796    return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1797 }
1798 
ms_memalign(ThreadId tid,SizeT alignB,SizeT szB)1799 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1800 {
1801    return alloc_and_record_block( tid, szB, alignB, False );
1802 }
1803 
ms_free(ThreadId tid,void * p)1804 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1805 {
1806    unrecord_block(p, /*maybe_snapshot*/True);
1807    VG_(cli_free)(p);
1808 }
1809 
ms___builtin_delete(ThreadId tid,void * p)1810 static void ms___builtin_delete ( ThreadId tid, void* p )
1811 {
1812    unrecord_block(p, /*maybe_snapshot*/True);
1813    VG_(cli_free)(p);
1814 }
1815 
ms___builtin_vec_delete(ThreadId tid,void * p)1816 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1817 {
1818    unrecord_block(p, /*maybe_snapshot*/True);
1819    VG_(cli_free)(p);
1820 }
1821 
ms_realloc(ThreadId tid,void * p_old,SizeT new_szB)1822 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1823 {
1824    return realloc_block(tid, p_old, new_szB);
1825 }
1826 
ms_malloc_usable_size(ThreadId tid,void * p)1827 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1828 {
1829    HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1830 
1831    return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1832 }
1833 
1834 //------------------------------------------------------------//
1835 //--- Page handling                                        ---//
1836 //------------------------------------------------------------//
1837 
1838 static
ms_record_page_mem(Addr a,SizeT len)1839 void ms_record_page_mem ( Addr a, SizeT len )
1840 {
1841    ThreadId tid = VG_(get_running_tid)();
1842    Addr end;
1843    tl_assert(VG_IS_PAGE_ALIGNED(len));
1844    tl_assert(len >= VKI_PAGE_SIZE);
1845    // Record the first N-1 pages as blocks, but don't do any snapshots.
1846    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1847       record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1848                     /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1849    }
1850    // Record the last page as a block, and maybe do a snapshot afterwards.
1851    record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1852                  /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1853 }
1854 
1855 static
ms_unrecord_page_mem(Addr a,SizeT len)1856 void ms_unrecord_page_mem( Addr a, SizeT len )
1857 {
1858    Addr end;
1859    tl_assert(VG_IS_PAGE_ALIGNED(len));
1860    tl_assert(len >= VKI_PAGE_SIZE);
1861    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1862       unrecord_block((void*)a, /*maybe_snapshot*/False);
1863    }
1864    unrecord_block((void*)a, /*maybe_snapshot*/True);
1865 }
1866 
1867 //------------------------------------------------------------//
1868 
1869 static
ms_new_mem_mmap(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1870 void ms_new_mem_mmap ( Addr a, SizeT len,
1871                        Bool rr, Bool ww, Bool xx, ULong di_handle )
1872 {
1873    tl_assert(VG_IS_PAGE_ALIGNED(len));
1874    ms_record_page_mem(a, len);
1875 }
1876 
1877 static
ms_new_mem_startup(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1878 void ms_new_mem_startup( Addr a, SizeT len,
1879                          Bool rr, Bool ww, Bool xx, ULong di_handle )
1880 {
1881    // startup maps are always be page-sized, except the trampoline page is
1882    // marked by the core as only being the size of the trampoline itself,
1883    // which is something like 57 bytes.  Round it up to page size.
1884    len = VG_PGROUNDUP(len);
1885    ms_record_page_mem(a, len);
1886 }
1887 
1888 static
ms_new_mem_brk(Addr a,SizeT len,ThreadId tid)1889 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1890 {
1891    tl_assert(VG_IS_PAGE_ALIGNED(len));
1892    ms_record_page_mem(a, len);
1893 }
1894 
1895 static
ms_copy_mem_remap(Addr from,Addr to,SizeT len)1896 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1897 {
1898    tl_assert(VG_IS_PAGE_ALIGNED(len));
1899    ms_unrecord_page_mem(from, len);
1900    ms_record_page_mem(to, len);
1901 }
1902 
1903 static
ms_die_mem_munmap(Addr a,SizeT len)1904 void ms_die_mem_munmap( Addr a, SizeT len )
1905 {
1906    tl_assert(VG_IS_PAGE_ALIGNED(len));
1907    ms_unrecord_page_mem(a, len);
1908 }
1909 
1910 static
ms_die_mem_brk(Addr a,SizeT len)1911 void ms_die_mem_brk( Addr a, SizeT len )
1912 {
1913    tl_assert(VG_IS_PAGE_ALIGNED(len));
1914    ms_unrecord_page_mem(a, len);
1915 }
1916 
1917 //------------------------------------------------------------//
1918 //--- Stacks                                               ---//
1919 //------------------------------------------------------------//
1920 
1921 // We really want the inlining to occur...
1922 #define INLINE    inline __attribute__((always_inline))
1923 
update_stack_stats(SSizeT stack_szB_delta)1924 static void update_stack_stats(SSizeT stack_szB_delta)
1925 {
1926    if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1927    stacks_szB += stack_szB_delta;
1928 
1929    update_alloc_stats(stack_szB_delta);
1930 }
1931 
new_mem_stack_2(SizeT len,Char * what)1932 static INLINE void new_mem_stack_2(SizeT len, Char* what)
1933 {
1934    if (have_started_executing_code) {
1935       VERB(3, "<<< new_mem_stack (%ld)\n", len);
1936       n_stack_allocs++;
1937       update_stack_stats(len);
1938       maybe_take_snapshot(Normal, what);
1939       VERB(3, ">>>\n");
1940    }
1941 }
1942 
die_mem_stack_2(SizeT len,Char * what)1943 static INLINE void die_mem_stack_2(SizeT len, Char* what)
1944 {
1945    if (have_started_executing_code) {
1946       VERB(3, "<<< die_mem_stack (%ld)\n", -len);
1947       n_stack_frees++;
1948       maybe_take_snapshot(Peak,   "stkPEAK");
1949       update_stack_stats(-len);
1950       maybe_take_snapshot(Normal, what);
1951       VERB(3, ">>>\n");
1952    }
1953 }
1954 
new_mem_stack(Addr a,SizeT len)1955 static void new_mem_stack(Addr a, SizeT len)
1956 {
1957    new_mem_stack_2(len, "stk-new");
1958 }
1959 
die_mem_stack(Addr a,SizeT len)1960 static void die_mem_stack(Addr a, SizeT len)
1961 {
1962    die_mem_stack_2(len, "stk-die");
1963 }
1964 
new_mem_stack_signal(Addr a,SizeT len,ThreadId tid)1965 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1966 {
1967    new_mem_stack_2(len, "sig-new");
1968 }
1969 
die_mem_stack_signal(Addr a,SizeT len)1970 static void die_mem_stack_signal(Addr a, SizeT len)
1971 {
1972    die_mem_stack_2(len, "sig-die");
1973 }
1974 
1975 
1976 //------------------------------------------------------------//
1977 //--- Client Requests                                      ---//
1978 //------------------------------------------------------------//
1979 
ms_handle_client_request(ThreadId tid,UWord * argv,UWord * ret)1980 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1981 {
1982    switch (argv[0]) {
1983    case VG_USERREQ__MALLOCLIKE_BLOCK: {
1984       void* p   = (void*)argv[1];
1985       SizeT szB =        argv[2];
1986       record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1987                     /*maybe_snapshot*/True );
1988       *ret = 0;
1989       return True;
1990    }
1991    case VG_USERREQ__FREELIKE_BLOCK: {
1992       void* p = (void*)argv[1];
1993       unrecord_block(p, /*maybe_snapshot*/True);
1994       *ret = 0;
1995       return True;
1996    }
1997    default:
1998       *ret = 0;
1999       return False;
2000    }
2001 }
2002 
2003 //------------------------------------------------------------//
2004 //--- Instrumentation                                      ---//
2005 //------------------------------------------------------------//
2006 
add_counter_update(IRSB * sbOut,Int n)2007 static void add_counter_update(IRSB* sbOut, Int n)
2008 {
2009    #if defined(VG_BIGENDIAN)
2010    # define END Iend_BE
2011    #elif defined(VG_LITTLEENDIAN)
2012    # define END Iend_LE
2013    #else
2014    # error "Unknown endianness"
2015    #endif
2016    // Add code to increment 'guest_instrs_executed' by 'n', like this:
2017    //   WrTmp(t1, Load64(&guest_instrs_executed))
2018    //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
2019    //   Store(&guest_instrs_executed, t2)
2020    IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
2021    IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
2022    IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
2023 
2024    IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
2025    IRStmt* st2 =
2026       IRStmt_WrTmp(t2,
2027                    IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
2028                                            IRExpr_Const(IRConst_U64(n))));
2029    IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
2030 
2031    addStmtToIRSB( sbOut, st1 );
2032    addStmtToIRSB( sbOut, st2 );
2033    addStmtToIRSB( sbOut, st3 );
2034 }
2035 
ms_instrument2(IRSB * sbIn)2036 static IRSB* ms_instrument2( IRSB* sbIn )
2037 {
2038    Int   i, n = 0;
2039    IRSB* sbOut;
2040 
2041    // We increment the instruction count in two places:
2042    // - just before any Ist_Exit statements;
2043    // - just before the IRSB's end.
2044    // In the former case, we zero 'n' and then continue instrumenting.
2045 
2046    sbOut = deepCopyIRSBExceptStmts(sbIn);
2047 
2048    for (i = 0; i < sbIn->stmts_used; i++) {
2049       IRStmt* st = sbIn->stmts[i];
2050 
2051       if (!st || st->tag == Ist_NoOp) continue;
2052 
2053       if (st->tag == Ist_IMark) {
2054          n++;
2055       } else if (st->tag == Ist_Exit) {
2056          if (n > 0) {
2057             // Add an increment before the Exit statement, then reset 'n'.
2058             add_counter_update(sbOut, n);
2059             n = 0;
2060          }
2061       }
2062       addStmtToIRSB( sbOut, st );
2063    }
2064 
2065    if (n > 0) {
2066       // Add an increment before the SB end.
2067       add_counter_update(sbOut, n);
2068    }
2069    return sbOut;
2070 }
2071 
2072 static
ms_instrument(VgCallbackClosure * closure,IRSB * sbIn,VexGuestLayout * layout,VexGuestExtents * vge,IRType gWordTy,IRType hWordTy)2073 IRSB* ms_instrument ( VgCallbackClosure* closure,
2074                       IRSB* sbIn,
2075                       VexGuestLayout* layout,
2076                       VexGuestExtents* vge,
2077                       IRType gWordTy, IRType hWordTy )
2078 {
2079    if (! have_started_executing_code) {
2080       // Do an initial sample to guarantee that we have at least one.
2081       // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
2082       // 'maybe_take_snapshot's internal static variables are initialised.
2083       have_started_executing_code = True;
2084       maybe_take_snapshot(Normal, "startup");
2085    }
2086 
2087    if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
2088    else if (clo_time_unit == TimeMS) { return sbIn; }
2089    else if (clo_time_unit == TimeB)  { return sbIn; }
2090    else                              { tl_assert2(0, "bad --time-unit value"); }
2091 }
2092 
2093 
2094 //------------------------------------------------------------//
2095 //--- Writing snapshots                                    ---//
2096 //------------------------------------------------------------//
2097 
2098 Char FP_buf[BUF_LEN];
2099 
2100 // XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here.
2101 // Then change Cachegrind to use it too.
2102 #define FP(format, args...) ({ \
2103    VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \
2104    FP_buf[BUF_LEN-1] = '\0';  /* Make sure the string is terminated. */ \
2105    VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \
2106 })
2107 
2108 // Nb: uses a static buffer, each call trashes the last string returned.
make_perc(double x)2109 static Char* make_perc(double x)
2110 {
2111    static Char mbuf[32];
2112 
2113    VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf);
2114    // XXX: this is bogus if the denominator was zero -- resulting string is
2115    // something like "0 --%")
2116    if (' ' == mbuf[0]) mbuf[0] = '0';
2117    return mbuf;
2118 }
2119 
pp_snapshot_SXPt(Int fd,SXPt * sxpt,Int depth,Char * depth_str,Int depth_str_len,SizeT snapshot_heap_szB,SizeT snapshot_total_szB)2120 static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str,
2121                             Int depth_str_len,
2122                             SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
2123 {
2124    Int   i, j, n_insig_children_sxpts;
2125    SXPt* child = NULL;
2126 
2127    // Used for printing function names.  Is made static to keep it out
2128    // of the stack frame -- this function is recursive.  Obviously this
2129    // now means its contents are trashed across the recursive call.
2130    static Char ip_desc_array[BUF_LEN];
2131    Char* ip_desc = ip_desc_array;
2132 
2133    switch (sxpt->tag) {
2134     case SigSXPt:
2135       // Print the SXPt itself.
2136       if (0 == depth) {
2137          if (clo_heap) {
2138             ip_desc =
2139                ( clo_pages_as_heap
2140                ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
2141                : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
2142                );
2143          } else {
2144             // XXX: --alloc-fns?
2145          }
2146       } else {
2147          // If it's main-or-below-main, we (if appropriate) ignore everything
2148          // below it by pretending it has no children.
2149          if ( ! VG_(clo_show_below_main) ) {
2150             Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
2151             if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
2152                sxpt->Sig.n_children = 0;
2153             }
2154          }
2155 
2156          // We need the -1 to get the line number right, But I'm not sure why.
2157          ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN);
2158       }
2159 
2160       // Do the non-ip_desc part first...
2161       FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
2162 
2163       // For ip_descs beginning with "0xABCD...:" addresses, we first
2164       // measure the length of the "0xabcd: " address at the start of the
2165       // ip_desc.
2166       j = 0;
2167       if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
2168          j = 2;
2169          while (True) {
2170             if (ip_desc[j]) {
2171                if (':' == ip_desc[j]) break;
2172                j++;
2173             } else {
2174                tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
2175             }
2176          }
2177       }
2178       // Nb: We treat this specially (ie. we don't use FP) so that if the
2179       // ip_desc is too long (eg. due to a long C++ function name), it'll
2180       // get truncated, but the '\n' is still there so its a valid file.
2181       // (At one point we were truncating without adding the '\n', which
2182       // caused bug #155929.)
2183       //
2184       // Also, we account for the length of the address in ip_desc when
2185       // truncating.  (The longest address we could have is 18 chars:  "0x"
2186       // plus 16 address digits.)  This ensures that the truncated function
2187       // name always has the same length, which makes truncation
2188       // deterministic and thus makes testing easier.
2189       tl_assert(j <= 18);
2190       VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc);
2191       FP_buf[BUF_LEN-18+j-5] = '.';    // "..." at the end make the
2192       FP_buf[BUF_LEN-18+j-4] = '.';    //   truncation more obvious.
2193       FP_buf[BUF_LEN-18+j-3] = '.';
2194       FP_buf[BUF_LEN-18+j-2] = '\n';   // The last char is '\n'.
2195       FP_buf[BUF_LEN-18+j-1] = '\0';   // The string is terminated.
2196       VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf));
2197 
2198       // Indent.
2199       tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
2200       depth_str[depth+0] = ' ';
2201       depth_str[depth+1] = '\0';
2202 
2203       // Sort SXPt's children by szB (reverse order:  biggest to smallest).
2204       // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
2205       // two reasons.  First, if we do it during dup_XTree, it can get
2206       // expensive (eg. 15% of execution time for konqueror
2207       // startup/shutdown).  Second, this way we get the Insig SXPt (if one
2208       // is present) in its sorted position, not at the end.
2209       VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
2210                  SXPt_revcmp_szB);
2211 
2212       // Print the SXPt's children.  They should already be in sorted order.
2213       n_insig_children_sxpts = 0;
2214       for (i = 0; i < sxpt->Sig.n_children; i++) {
2215          child = sxpt->Sig.children[i];
2216 
2217          if (InsigSXPt == child->tag)
2218             n_insig_children_sxpts++;
2219 
2220          // Ok, print the child.  NB: contents of ip_desc_array will be
2221          // trashed by this recursive call.  Doesn't matter currently,
2222          // but worth noting.
2223          pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len,
2224             snapshot_heap_szB, snapshot_total_szB);
2225       }
2226 
2227       // Unindent.
2228       depth_str[depth+0] = '\0';
2229       depth_str[depth+1] = '\0';
2230 
2231       // There should be 0 or 1 Insig children SXPts.
2232       tl_assert(n_insig_children_sxpts <= 1);
2233       break;
2234 
2235     case InsigSXPt: {
2236       Char* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
2237       FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n",
2238          depth_str, sxpt->szB, sxpt->Insig.n_xpts, s,
2239          make_perc(clo_threshold));
2240       break;
2241     }
2242 
2243     default:
2244       tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
2245    }
2246 }
2247 
pp_snapshot(Int fd,Snapshot * snapshot,Int snapshot_n)2248 static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n)
2249 {
2250    sanity_check_snapshot(snapshot);
2251 
2252    FP("#-----------\n");
2253    FP("snapshot=%d\n", snapshot_n);
2254    FP("#-----------\n");
2255    FP("time=%lld\n",            snapshot->time);
2256    FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
2257    FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
2258    FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
2259 
2260    if (is_detailed_snapshot(snapshot)) {
2261       // Detailed snapshot -- print heap tree.
2262       Int   depth_str_len = clo_depth + 3;
2263       Char* depth_str = VG_(malloc)("ms.main.pps.1",
2264                                     sizeof(Char) * depth_str_len);
2265       SizeT snapshot_total_szB =
2266          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
2267       depth_str[0] = '\0';   // Initialise depth_str to "".
2268 
2269       FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
2270       pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str,
2271                        depth_str_len, snapshot->heap_szB,
2272                        snapshot_total_szB);
2273 
2274       VG_(free)(depth_str);
2275 
2276    } else {
2277       FP("heap_tree=empty\n");
2278    }
2279 }
2280 
write_snapshots_to_file(void)2281 static void write_snapshots_to_file(void)
2282 {
2283    Int i, fd;
2284    SysRes sres;
2285 
2286    // Setup output filename.  Nb: it's important to do this now, ie. as late
2287    // as possible.  If we do it at start-up and the program forks and the
2288    // output file format string contains a %p (pid) specifier, both the
2289    // parent and child will incorrectly write to the same file;  this
2290    // happened in 3.3.0.
2291    Char* massif_out_file =
2292       VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
2293 
2294    sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
2295                                      VKI_S_IRUSR|VKI_S_IWUSR);
2296    if (sr_isError(sres)) {
2297       // If the file can't be opened for whatever reason (conflict
2298       // between multiple cachegrinded processes?), give up now.
2299       VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
2300       VG_(umsg)("       ... so profiling results will be missing.\n");
2301       VG_(free)(massif_out_file);
2302       return;
2303    } else {
2304       fd = sr_Res(sres);
2305       VG_(free)(massif_out_file);
2306    }
2307 
2308    // Print massif-specific options that were used.
2309    // XXX: is it worth having a "desc:" line?  Could just call it "options:"
2310    // -- this file format isn't as generic as Cachegrind's, so the
2311    // implied genericity of "desc:" is bogus.
2312    FP("desc:");
2313    for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
2314       Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i);
2315       FP(" %s", arg);
2316    }
2317    if (0 == i) FP(" (none)");
2318    FP("\n");
2319 
2320    // Print "cmd:" line.
2321    FP("cmd: ");
2322    if (VG_(args_the_exename)) {
2323       FP("%s", VG_(args_the_exename));
2324       for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
2325          HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
2326          if (arg)
2327             FP(" %s", arg);
2328       }
2329    } else {
2330       FP(" ???");
2331    }
2332    FP("\n");
2333 
2334    FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
2335 
2336    for (i = 0; i < next_snapshot_i; i++) {
2337       Snapshot* snapshot = & snapshots[i];
2338       pp_snapshot(fd, snapshot, i);     // Detailed snapshot!
2339    }
2340 }
2341 
2342 
2343 //------------------------------------------------------------//
2344 //--- Finalisation                                         ---//
2345 //------------------------------------------------------------//
2346 
ms_fini(Int exit_status)2347 static void ms_fini(Int exit_status)
2348 {
2349    // Output.
2350    write_snapshots_to_file();
2351 
2352    // Stats
2353    tl_assert(n_xpts > 0);  // always have alloc_xpt
2354    STATS("heap allocs:           %u\n", n_heap_allocs);
2355    STATS("heap reallocs:         %u\n", n_heap_reallocs);
2356    STATS("heap frees:            %u\n", n_heap_frees);
2357    STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
2358    STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
2359    STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
2360    STATS("stack allocs:          %u\n", n_stack_allocs);
2361    STATS("stack frees:           %u\n", n_stack_frees);
2362    STATS("XPts:                  %u\n", n_xpts);
2363    STATS("top-XPts:              %u (%d%%)\n",
2364       alloc_xpt->n_children,
2365       ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
2366    STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
2367    STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
2368    STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
2369    STATS("SXPt frees:            %u\n", n_sxpt_frees);
2370    STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
2371    STATS("real snapshots:        %u\n", n_real_snapshots);
2372    STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
2373    STATS("peak snapshots:        %u\n", n_peak_snapshots);
2374    STATS("cullings:              %u\n", n_cullings);
2375    STATS("XCon redos:            %u\n", n_XCon_redos);
2376 }
2377 
2378 
2379 //------------------------------------------------------------//
2380 //--- Initialisation                                       ---//
2381 //------------------------------------------------------------//
2382 
ms_post_clo_init(void)2383 static void ms_post_clo_init(void)
2384 {
2385    Int i;
2386    Char* LD_PRELOAD_val;
2387    Char* s;
2388    Char* s2;
2389 
2390    // Check options.
2391    if (clo_pages_as_heap) {
2392       if (clo_stacks) {
2393          VG_(fmsg_bad_option)(
2394             "--pages-as-heap=yes together with --stacks=yes", "");
2395       }
2396    }
2397    if (!clo_heap) {
2398       clo_pages_as_heap = False;
2399    }
2400 
2401    // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
2402    // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2403    // platform-equivalent).  We replace it entirely with spaces because then
2404    // the linker doesn't complain (it does complain if we just change the name
2405    // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
2406    // before tool initialisation, so this seems the best way to do it.
2407    if (clo_pages_as_heap) {
2408       clo_heap_admin = 0;     // No heap admin on pages.
2409 
2410       LD_PRELOAD_val = VG_(getenv)( (Char*)VG_(LD_PRELOAD_var_name) );
2411       tl_assert(LD_PRELOAD_val);
2412 
2413       // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2414       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2415       tl_assert(s2);
2416 
2417       // Now find the vgpreload_massif-$PLATFORM entry.
2418       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2419       tl_assert(s2);
2420 
2421       // Blank out everything to the previous ':', which must be there because
2422       // of the preceding vgpreload_core-$PLATFORM entry.
2423       for (s = s2; *s != ':'; s--) {
2424          *s = ' ';
2425       }
2426 
2427       // Blank out everything to the end of the entry, which will be '\0' if
2428       // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
2429       for (s = s2; *s != ':' && *s != '\0'; s++) {
2430          *s = ' ';
2431       }
2432    }
2433 
2434    // Print alloc-fns and ignore-fns, if necessary.
2435    if (VG_(clo_verbosity) > 1) {
2436       VERB(1, "alloc-fns:\n");
2437       for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2438          Char** fn_ptr = VG_(indexXA)(alloc_fns, i);
2439          VERB(1, "  %s\n", *fn_ptr);
2440       }
2441 
2442       VERB(1, "ignore-fns:\n");
2443       if (0 == VG_(sizeXA)(ignore_fns)) {
2444          VERB(1, "  <empty>\n");
2445       }
2446       for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2447          Char** fn_ptr = VG_(indexXA)(ignore_fns, i);
2448          VERB(1, "  %d: %s\n", i, *fn_ptr);
2449       }
2450    }
2451 
2452    // Events to track.
2453    if (clo_stacks) {
2454       VG_(track_new_mem_stack)        ( new_mem_stack        );
2455       VG_(track_die_mem_stack)        ( die_mem_stack        );
2456       VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2457       VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2458    }
2459 
2460    if (clo_pages_as_heap) {
2461       VG_(track_new_mem_startup) ( ms_new_mem_startup );
2462       VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
2463       VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
2464 
2465       VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
2466 
2467       VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
2468       VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
2469    }
2470 
2471    // Initialise snapshot array, and sanity-check it.
2472    snapshots = VG_(malloc)("ms.main.mpoci.1",
2473                            sizeof(Snapshot) * clo_max_snapshots);
2474    // We don't want to do snapshot sanity checks here, because they're
2475    // currently uninitialised.
2476    for (i = 0; i < clo_max_snapshots; i++) {
2477       clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2478    }
2479    sanity_check_snapshots_array();
2480 }
2481 
ms_pre_clo_init(void)2482 static void ms_pre_clo_init(void)
2483 {
2484    VG_(details_name)            ("Massif");
2485    VG_(details_version)         (NULL);
2486    VG_(details_description)     ("a heap profiler");
2487    VG_(details_copyright_author)(
2488       "Copyright (C) 2003-2010, and GNU GPL'd, by Nicholas Nethercote");
2489    VG_(details_bug_reports_to)  (VG_BUGS_TO);
2490 
2491    // Basic functions.
2492    VG_(basic_tool_funcs)          (ms_post_clo_init,
2493                                    ms_instrument,
2494                                    ms_fini);
2495 
2496    // Needs.
2497    VG_(needs_libc_freeres)();
2498    VG_(needs_command_line_options)(ms_process_cmd_line_option,
2499                                    ms_print_usage,
2500                                    ms_print_debug_usage);
2501    VG_(needs_client_requests)     (ms_handle_client_request);
2502    VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
2503                                    ms_expensive_sanity_check);
2504    VG_(needs_malloc_replacement)  (ms_malloc,
2505                                    ms___builtin_new,
2506                                    ms___builtin_vec_new,
2507                                    ms_memalign,
2508                                    ms_calloc,
2509                                    ms_free,
2510                                    ms___builtin_delete,
2511                                    ms___builtin_vec_delete,
2512                                    ms_realloc,
2513                                    ms_malloc_usable_size,
2514                                    0 );
2515 
2516    // HP_Chunks.
2517    malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2518 
2519    // Dummy node at top of the context structure.
2520    alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
2521 
2522    // Initialise alloc_fns and ignore_fns.
2523    init_alloc_fns();
2524    init_ignore_fns();
2525 
2526    // Initialise args_for_massif.
2527    args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2528                                 VG_(free), sizeof(HChar*));
2529 }
2530 
2531 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2532 
2533 //--------------------------------------------------------------------//
2534 //--- end                                                          ---//
2535 //--------------------------------------------------------------------//
2536