• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 // Platform specific code for Win32.
29 
30 #define V8_WIN32_HEADERS_FULL
31 #include "win32-headers.h"
32 
33 #include "v8.h"
34 
35 #include "platform.h"
36 #include "vm-state-inl.h"
37 
38 // Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
39 // refer to The Open Group Base Specification for specification of the correct
40 // semantics for these functions.
41 // (http://www.opengroup.org/onlinepubs/000095399/)
42 #ifdef _MSC_VER
43 
44 namespace v8 {
45 namespace internal {
46 
47 // Test for finite value - usually defined in math.h
isfinite(double x)48 int isfinite(double x) {
49   return _finite(x);
50 }
51 
52 }  // namespace v8
53 }  // namespace internal
54 
55 // Test for a NaN (not a number) value - usually defined in math.h
isnan(double x)56 int isnan(double x) {
57   return _isnan(x);
58 }
59 
60 
61 // Test for infinity - usually defined in math.h
isinf(double x)62 int isinf(double x) {
63   return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
64 }
65 
66 
67 // Test if x is less than y and both nominal - usually defined in math.h
isless(double x,double y)68 int isless(double x, double y) {
69   return isnan(x) || isnan(y) ? 0 : x < y;
70 }
71 
72 
73 // Test if x is greater than y and both nominal - usually defined in math.h
isgreater(double x,double y)74 int isgreater(double x, double y) {
75   return isnan(x) || isnan(y) ? 0 : x > y;
76 }
77 
78 
79 // Classify floating point number - usually defined in math.h
fpclassify(double x)80 int fpclassify(double x) {
81   // Use the MS-specific _fpclass() for classification.
82   int flags = _fpclass(x);
83 
84   // Determine class. We cannot use a switch statement because
85   // the _FPCLASS_ constants are defined as flags.
86   if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
87   if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
88   if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
89   if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
90 
91   // All cases should be covered by the code above.
92   ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
93   return FP_NAN;
94 }
95 
96 
97 // Test sign - usually defined in math.h
signbit(double x)98 int signbit(double x) {
99   // We need to take care of the special case of both positive
100   // and negative versions of zero.
101   if (x == 0)
102     return _fpclass(x) & _FPCLASS_NZ;
103   else
104     return x < 0;
105 }
106 
107 
108 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
109 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)110 int strncasecmp(const char* s1, const char* s2, int n) {
111   return _strnicmp(s1, s2, n);
112 }
113 
114 #endif  // _MSC_VER
115 
116 
117 // Extra functions for MinGW. Most of these are the _s functions which are in
118 // the Microsoft Visual Studio C++ CRT.
119 #ifdef __MINGW32__
120 
localtime_s(tm * out_tm,const time_t * time)121 int localtime_s(tm* out_tm, const time_t* time) {
122   tm* posix_local_time_struct = localtime(time);
123   if (posix_local_time_struct == NULL) return 1;
124   *out_tm = *posix_local_time_struct;
125   return 0;
126 }
127 
128 
129 // Not sure this the correct interpretation of _mkgmtime
_mkgmtime(tm * timeptr)130 time_t _mkgmtime(tm* timeptr) {
131   return mktime(timeptr);
132 }
133 
134 
fopen_s(FILE ** pFile,const char * filename,const char * mode)135 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
136   *pFile = fopen(filename, mode);
137   return *pFile != NULL ? 0 : 1;
138 }
139 
140 
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)141 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
142                  const char* format, va_list argptr) {
143   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
144 }
145 #define _TRUNCATE 0
146 
147 
strncpy_s(char * strDest,size_t numberOfElements,const char * strSource,size_t count)148 int strncpy_s(char* strDest, size_t numberOfElements,
149               const char* strSource, size_t count) {
150   strncpy(strDest, strSource, count);
151   return 0;
152 }
153 
154 
MemoryBarrier()155 inline void MemoryBarrier() {
156   int barrier = 0;
157   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
158 }
159 
160 #endif  // __MINGW32__
161 
162 // Generate a pseudo-random number in the range 0-2^31-1. Usually
163 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
random()164 int random() {
165   return rand();
166 }
167 
168 
169 namespace v8 {
170 namespace internal {
171 
ceiling(double x)172 double ceiling(double x) {
173   return ceil(x);
174 }
175 
176 
177 static Mutex* limit_mutex = NULL;
178 
179 #if defined(V8_TARGET_ARCH_IA32)
180 static OS::MemCopyFunction memcopy_function = NULL;
181 static Mutex* memcopy_function_mutex = OS::CreateMutex();
182 // Defined in codegen-ia32.cc.
183 OS::MemCopyFunction CreateMemCopyFunction();
184 
185 // Copy memory area to disjoint memory area.
MemCopy(void * dest,const void * src,size_t size)186 void OS::MemCopy(void* dest, const void* src, size_t size) {
187   if (memcopy_function == NULL) {
188     ScopedLock lock(memcopy_function_mutex);
189     if (memcopy_function == NULL) {
190       OS::MemCopyFunction temp = CreateMemCopyFunction();
191       MemoryBarrier();
192       memcopy_function = temp;
193     }
194   }
195   // Note: here we rely on dependent reads being ordered. This is true
196   // on all architectures we currently support.
197   (*memcopy_function)(dest, src, size);
198 #ifdef DEBUG
199   CHECK_EQ(0, memcmp(dest, src, size));
200 #endif
201 }
202 #endif  // V8_TARGET_ARCH_IA32
203 
204 #ifdef _WIN64
205 typedef double (*ModuloFunction)(double, double);
206 static ModuloFunction modulo_function = NULL;
207 static Mutex* modulo_function_mutex = OS::CreateMutex();
208 // Defined in codegen-x64.cc.
209 ModuloFunction CreateModuloFunction();
210 
modulo(double x,double y)211 double modulo(double x, double y) {
212   if (modulo_function == NULL) {
213     ScopedLock lock(modulo_function_mutex);
214     if (modulo_function == NULL) {
215       ModuloFunction temp = CreateModuloFunction();
216       MemoryBarrier();
217       modulo_function = temp;
218     }
219   }
220   // Note: here we rely on dependent reads being ordered. This is true
221   // on all architectures we currently support.
222   return (*modulo_function)(x, y);
223 }
224 #else  // Win32
225 
modulo(double x,double y)226 double modulo(double x, double y) {
227   // Workaround MS fmod bugs. ECMA-262 says:
228   // dividend is finite and divisor is an infinity => result equals dividend
229   // dividend is a zero and divisor is nonzero finite => result equals dividend
230   if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
231       !(x == 0 && (y != 0 && isfinite(y)))) {
232     x = fmod(x, y);
233   }
234   return x;
235 }
236 
237 #endif  // _WIN64
238 
239 // ----------------------------------------------------------------------------
240 // The Time class represents time on win32. A timestamp is represented as
241 // a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
242 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
243 // January 1, 1970.
244 
245 class Time {
246  public:
247   // Constructors.
248   Time();
249   explicit Time(double jstime);
250   Time(int year, int mon, int day, int hour, int min, int sec);
251 
252   // Convert timestamp to JavaScript representation.
253   double ToJSTime();
254 
255   // Set timestamp to current time.
256   void SetToCurrentTime();
257 
258   // Returns the local timezone offset in milliseconds east of UTC. This is
259   // the number of milliseconds you must add to UTC to get local time, i.e.
260   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
261   // routine also takes into account whether daylight saving is effect
262   // at the time.
263   int64_t LocalOffset();
264 
265   // Returns the daylight savings time offset for the time in milliseconds.
266   int64_t DaylightSavingsOffset();
267 
268   // Returns a string identifying the current timezone for the
269   // timestamp taking into account daylight saving.
270   char* LocalTimezone();
271 
272  private:
273   // Constants for time conversion.
274   static const int64_t kTimeEpoc = 116444736000000000LL;
275   static const int64_t kTimeScaler = 10000;
276   static const int64_t kMsPerMinute = 60000;
277 
278   // Constants for timezone information.
279   static const int kTzNameSize = 128;
280   static const bool kShortTzNames = false;
281 
282   // Timezone information. We need to have static buffers for the
283   // timezone names because we return pointers to these in
284   // LocalTimezone().
285   static bool tz_initialized_;
286   static TIME_ZONE_INFORMATION tzinfo_;
287   static char std_tz_name_[kTzNameSize];
288   static char dst_tz_name_[kTzNameSize];
289 
290   // Initialize the timezone information (if not already done).
291   static void TzSet();
292 
293   // Guess the name of the timezone from the bias.
294   static const char* GuessTimezoneNameFromBias(int bias);
295 
296   // Return whether or not daylight savings time is in effect at this time.
297   bool InDST();
298 
299   // Return the difference (in milliseconds) between this timestamp and
300   // another timestamp.
301   int64_t Diff(Time* other);
302 
303   // Accessor for FILETIME representation.
ft()304   FILETIME& ft() { return time_.ft_; }
305 
306   // Accessor for integer representation.
t()307   int64_t& t() { return time_.t_; }
308 
309   // Although win32 uses 64-bit integers for representing timestamps,
310   // these are packed into a FILETIME structure. The FILETIME structure
311   // is just a struct representing a 64-bit integer. The TimeStamp union
312   // allows access to both a FILETIME and an integer representation of
313   // the timestamp.
314   union TimeStamp {
315     FILETIME ft_;
316     int64_t t_;
317   };
318 
319   TimeStamp time_;
320 };
321 
322 // Static variables.
323 bool Time::tz_initialized_ = false;
324 TIME_ZONE_INFORMATION Time::tzinfo_;
325 char Time::std_tz_name_[kTzNameSize];
326 char Time::dst_tz_name_[kTzNameSize];
327 
328 
329 // Initialize timestamp to start of epoc.
Time()330 Time::Time() {
331   t() = 0;
332 }
333 
334 
335 // Initialize timestamp from a JavaScript timestamp.
Time(double jstime)336 Time::Time(double jstime) {
337   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
338 }
339 
340 
341 // Initialize timestamp from date/time components.
Time(int year,int mon,int day,int hour,int min,int sec)342 Time::Time(int year, int mon, int day, int hour, int min, int sec) {
343   SYSTEMTIME st;
344   st.wYear = year;
345   st.wMonth = mon;
346   st.wDay = day;
347   st.wHour = hour;
348   st.wMinute = min;
349   st.wSecond = sec;
350   st.wMilliseconds = 0;
351   SystemTimeToFileTime(&st, &ft());
352 }
353 
354 
355 // Convert timestamp to JavaScript timestamp.
ToJSTime()356 double Time::ToJSTime() {
357   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
358 }
359 
360 
361 // Guess the name of the timezone from the bias.
362 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)363 const char* Time::GuessTimezoneNameFromBias(int bias) {
364   static const int kHour = 60;
365   switch (-bias) {
366     case -9*kHour: return "Alaska";
367     case -8*kHour: return "Pacific";
368     case -7*kHour: return "Mountain";
369     case -6*kHour: return "Central";
370     case -5*kHour: return "Eastern";
371     case -4*kHour: return "Atlantic";
372     case  0*kHour: return "GMT";
373     case +1*kHour: return "Central Europe";
374     case +2*kHour: return "Eastern Europe";
375     case +3*kHour: return "Russia";
376     case +5*kHour + 30: return "India";
377     case +8*kHour: return "China";
378     case +9*kHour: return "Japan";
379     case +12*kHour: return "New Zealand";
380     default: return "Local";
381   }
382 }
383 
384 
385 // Initialize timezone information. The timezone information is obtained from
386 // windows. If we cannot get the timezone information we fall back to CET.
387 // Please notice that this code is not thread-safe.
TzSet()388 void Time::TzSet() {
389   // Just return if timezone information has already been initialized.
390   if (tz_initialized_) return;
391 
392   // Initialize POSIX time zone data.
393   _tzset();
394   // Obtain timezone information from operating system.
395   memset(&tzinfo_, 0, sizeof(tzinfo_));
396   if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
397     // If we cannot get timezone information we fall back to CET.
398     tzinfo_.Bias = -60;
399     tzinfo_.StandardDate.wMonth = 10;
400     tzinfo_.StandardDate.wDay = 5;
401     tzinfo_.StandardDate.wHour = 3;
402     tzinfo_.StandardBias = 0;
403     tzinfo_.DaylightDate.wMonth = 3;
404     tzinfo_.DaylightDate.wDay = 5;
405     tzinfo_.DaylightDate.wHour = 2;
406     tzinfo_.DaylightBias = -60;
407   }
408 
409   // Make standard and DST timezone names.
410   OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
411                "%S",
412                tzinfo_.StandardName);
413   std_tz_name_[kTzNameSize - 1] = '\0';
414   OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
415                "%S",
416                tzinfo_.DaylightName);
417   dst_tz_name_[kTzNameSize - 1] = '\0';
418 
419   // If OS returned empty string or resource id (like "@tzres.dll,-211")
420   // simply guess the name from the UTC bias of the timezone.
421   // To properly resolve the resource identifier requires a library load,
422   // which is not possible in a sandbox.
423   if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
424     OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
425                  "%s Standard Time",
426                  GuessTimezoneNameFromBias(tzinfo_.Bias));
427   }
428   if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
429     OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
430                  "%s Daylight Time",
431                  GuessTimezoneNameFromBias(tzinfo_.Bias));
432   }
433 
434   // Timezone information initialized.
435   tz_initialized_ = true;
436 }
437 
438 
439 // Return the difference in milliseconds between this and another timestamp.
Diff(Time * other)440 int64_t Time::Diff(Time* other) {
441   return (t() - other->t()) / kTimeScaler;
442 }
443 
444 
445 // Set timestamp to current time.
SetToCurrentTime()446 void Time::SetToCurrentTime() {
447   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
448   // Because we're fast, we like fast timers which have at least a
449   // 1ms resolution.
450   //
451   // timeGetTime() provides 1ms granularity when combined with
452   // timeBeginPeriod().  If the host application for v8 wants fast
453   // timers, it can use timeBeginPeriod to increase the resolution.
454   //
455   // Using timeGetTime() has a drawback because it is a 32bit value
456   // and hence rolls-over every ~49days.
457   //
458   // To use the clock, we use GetSystemTimeAsFileTime as our base;
459   // and then use timeGetTime to extrapolate current time from the
460   // start time.  To deal with rollovers, we resync the clock
461   // any time when more than kMaxClockElapsedTime has passed or
462   // whenever timeGetTime creates a rollover.
463 
464   static bool initialized = false;
465   static TimeStamp init_time;
466   static DWORD init_ticks;
467   static const int64_t kHundredNanosecondsPerSecond = 10000000;
468   static const int64_t kMaxClockElapsedTime =
469       60*kHundredNanosecondsPerSecond;  // 1 minute
470 
471   // If we are uninitialized, we need to resync the clock.
472   bool needs_resync = !initialized;
473 
474   // Get the current time.
475   TimeStamp time_now;
476   GetSystemTimeAsFileTime(&time_now.ft_);
477   DWORD ticks_now = timeGetTime();
478 
479   // Check if we need to resync due to clock rollover.
480   needs_resync |= ticks_now < init_ticks;
481 
482   // Check if we need to resync due to elapsed time.
483   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
484 
485   // Resync the clock if necessary.
486   if (needs_resync) {
487     GetSystemTimeAsFileTime(&init_time.ft_);
488     init_ticks = ticks_now = timeGetTime();
489     initialized = true;
490   }
491 
492   // Finally, compute the actual time.  Why is this so hard.
493   DWORD elapsed = ticks_now - init_ticks;
494   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
495 }
496 
497 
498 // Return the local timezone offset in milliseconds east of UTC. This
499 // takes into account whether daylight saving is in effect at the time.
500 // Only times in the 32-bit Unix range may be passed to this function.
501 // Also, adding the time-zone offset to the input must not overflow.
502 // The function EquivalentTime() in date.js guarantees this.
LocalOffset()503 int64_t Time::LocalOffset() {
504   // Initialize timezone information, if needed.
505   TzSet();
506 
507   Time rounded_to_second(*this);
508   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
509       1000 * kTimeScaler;
510   // Convert to local time using POSIX localtime function.
511   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
512   // very slow.  Other browsers use localtime().
513 
514   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
515   // POSIX seconds past 1/1/1970 0:00:00.
516   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
517   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
518     return 0;
519   }
520   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
521   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
522 
523   // Convert to local time, as struct with fields for day, hour, year, etc.
524   tm posix_local_time_struct;
525   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
526   // Convert local time in struct to POSIX time as if it were a UTC time.
527   time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
528   Time localtime(1000.0 * local_posix_time);
529 
530   return localtime.Diff(&rounded_to_second);
531 }
532 
533 
534 // Return whether or not daylight savings time is in effect at this time.
InDST()535 bool Time::InDST() {
536   // Initialize timezone information, if needed.
537   TzSet();
538 
539   // Determine if DST is in effect at the specified time.
540   bool in_dst = false;
541   if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
542     // Get the local timezone offset for the timestamp in milliseconds.
543     int64_t offset = LocalOffset();
544 
545     // Compute the offset for DST. The bias parameters in the timezone info
546     // are specified in minutes. These must be converted to milliseconds.
547     int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
548 
549     // If the local time offset equals the timezone bias plus the daylight
550     // bias then DST is in effect.
551     in_dst = offset == dstofs;
552   }
553 
554   return in_dst;
555 }
556 
557 
558 // Return the daylight savings time offset for this time.
DaylightSavingsOffset()559 int64_t Time::DaylightSavingsOffset() {
560   return InDST() ? 60 * kMsPerMinute : 0;
561 }
562 
563 
564 // Returns a string identifying the current timezone for the
565 // timestamp taking into account daylight saving.
LocalTimezone()566 char* Time::LocalTimezone() {
567   // Return the standard or DST time zone name based on whether daylight
568   // saving is in effect at the given time.
569   return InDST() ? dst_tz_name_ : std_tz_name_;
570 }
571 
572 
Setup()573 void OS::Setup() {
574   // Seed the random number generator.
575   // Convert the current time to a 64-bit integer first, before converting it
576   // to an unsigned. Going directly can cause an overflow and the seed to be
577   // set to all ones. The seed will be identical for different instances that
578   // call this setup code within the same millisecond.
579   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
580   srand(static_cast<unsigned int>(seed));
581   limit_mutex = CreateMutex();
582 }
583 
584 
585 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)586 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
587   FILETIME dummy;
588   uint64_t usertime;
589 
590   // Get the amount of time that the thread has executed in user mode.
591   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
592                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
593 
594   // Adjust the resolution to micro-seconds.
595   usertime /= 10;
596 
597   // Convert to seconds and microseconds
598   *secs = static_cast<uint32_t>(usertime / 1000000);
599   *usecs = static_cast<uint32_t>(usertime % 1000000);
600   return 0;
601 }
602 
603 
604 // Returns current time as the number of milliseconds since
605 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()606 double OS::TimeCurrentMillis() {
607   Time t;
608   t.SetToCurrentTime();
609   return t.ToJSTime();
610 }
611 
612 // Returns the tickcounter based on timeGetTime.
Ticks()613 int64_t OS::Ticks() {
614   return timeGetTime() * 1000;  // Convert to microseconds.
615 }
616 
617 
618 // Returns a string identifying the current timezone taking into
619 // account daylight saving.
LocalTimezone(double time)620 const char* OS::LocalTimezone(double time) {
621   return Time(time).LocalTimezone();
622 }
623 
624 
625 // Returns the local time offset in milliseconds east of UTC without
626 // taking daylight savings time into account.
LocalTimeOffset()627 double OS::LocalTimeOffset() {
628   // Use current time, rounded to the millisecond.
629   Time t(TimeCurrentMillis());
630   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
631   return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
632 }
633 
634 
635 // Returns the daylight savings offset in milliseconds for the given
636 // time.
DaylightSavingsOffset(double time)637 double OS::DaylightSavingsOffset(double time) {
638   int64_t offset = Time(time).DaylightSavingsOffset();
639   return static_cast<double>(offset);
640 }
641 
642 
GetLastError()643 int OS::GetLastError() {
644   return ::GetLastError();
645 }
646 
647 
648 // ----------------------------------------------------------------------------
649 // Win32 console output.
650 //
651 // If a Win32 application is linked as a console application it has a normal
652 // standard output and standard error. In this case normal printf works fine
653 // for output. However, if the application is linked as a GUI application,
654 // the process doesn't have a console, and therefore (debugging) output is lost.
655 // This is the case if we are embedded in a windows program (like a browser).
656 // In order to be able to get debug output in this case the the debugging
657 // facility using OutputDebugString. This output goes to the active debugger
658 // for the process (if any). Else the output can be monitored using DBMON.EXE.
659 
660 enum OutputMode {
661   UNKNOWN,  // Output method has not yet been determined.
662   CONSOLE,  // Output is written to stdout.
663   ODS       // Output is written to debug facility.
664 };
665 
666 static OutputMode output_mode = UNKNOWN;  // Current output mode.
667 
668 
669 // Determine if the process has a console for output.
HasConsole()670 static bool HasConsole() {
671   // Only check the first time. Eventual race conditions are not a problem,
672   // because all threads will eventually determine the same mode.
673   if (output_mode == UNKNOWN) {
674     // We cannot just check that the standard output is attached to a console
675     // because this would fail if output is redirected to a file. Therefore we
676     // say that a process does not have an output console if either the
677     // standard output handle is invalid or its file type is unknown.
678     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
679         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
680       output_mode = CONSOLE;
681     else
682       output_mode = ODS;
683   }
684   return output_mode == CONSOLE;
685 }
686 
687 
VPrintHelper(FILE * stream,const char * format,va_list args)688 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
689   if (HasConsole()) {
690     vfprintf(stream, format, args);
691   } else {
692     // It is important to use safe print here in order to avoid
693     // overflowing the buffer. We might truncate the output, but this
694     // does not crash.
695     EmbeddedVector<char, 4096> buffer;
696     OS::VSNPrintF(buffer, format, args);
697     OutputDebugStringA(buffer.start());
698   }
699 }
700 
701 
FOpen(const char * path,const char * mode)702 FILE* OS::FOpen(const char* path, const char* mode) {
703   FILE* result;
704   if (fopen_s(&result, path, mode) == 0) {
705     return result;
706   } else {
707     return NULL;
708   }
709 }
710 
711 
Remove(const char * path)712 bool OS::Remove(const char* path) {
713   return (DeleteFileA(path) != 0);
714 }
715 
716 
717 // Open log file in binary mode to avoid /n -> /r/n conversion.
718 const char* const OS::LogFileOpenMode = "wb";
719 
720 
721 // Print (debug) message to console.
Print(const char * format,...)722 void OS::Print(const char* format, ...) {
723   va_list args;
724   va_start(args, format);
725   VPrint(format, args);
726   va_end(args);
727 }
728 
729 
VPrint(const char * format,va_list args)730 void OS::VPrint(const char* format, va_list args) {
731   VPrintHelper(stdout, format, args);
732 }
733 
734 
FPrint(FILE * out,const char * format,...)735 void OS::FPrint(FILE* out, const char* format, ...) {
736   va_list args;
737   va_start(args, format);
738   VFPrint(out, format, args);
739   va_end(args);
740 }
741 
742 
VFPrint(FILE * out,const char * format,va_list args)743 void OS::VFPrint(FILE* out, const char* format, va_list args) {
744   VPrintHelper(out, format, args);
745 }
746 
747 
748 // Print error message to console.
PrintError(const char * format,...)749 void OS::PrintError(const char* format, ...) {
750   va_list args;
751   va_start(args, format);
752   VPrintError(format, args);
753   va_end(args);
754 }
755 
756 
VPrintError(const char * format,va_list args)757 void OS::VPrintError(const char* format, va_list args) {
758   VPrintHelper(stderr, format, args);
759 }
760 
761 
SNPrintF(Vector<char> str,const char * format,...)762 int OS::SNPrintF(Vector<char> str, const char* format, ...) {
763   va_list args;
764   va_start(args, format);
765   int result = VSNPrintF(str, format, args);
766   va_end(args);
767   return result;
768 }
769 
770 
VSNPrintF(Vector<char> str,const char * format,va_list args)771 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
772   int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
773   // Make sure to zero-terminate the string if the output was
774   // truncated or if there was an error.
775   if (n < 0 || n >= str.length()) {
776     if (str.length() > 0)
777       str[str.length() - 1] = '\0';
778     return -1;
779   } else {
780     return n;
781   }
782 }
783 
784 
StrChr(char * str,int c)785 char* OS::StrChr(char* str, int c) {
786   return const_cast<char*>(strchr(str, c));
787 }
788 
789 
StrNCpy(Vector<char> dest,const char * src,size_t n)790 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
791   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
792   size_t buffer_size = static_cast<size_t>(dest.length());
793   if (n + 1 > buffer_size)  // count for trailing '\0'
794     n = _TRUNCATE;
795   int result = strncpy_s(dest.start(), dest.length(), src, n);
796   USE(result);
797   ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
798 }
799 
800 
801 // We keep the lowest and highest addresses mapped as a quick way of
802 // determining that pointers are outside the heap (used mostly in assertions
803 // and verification).  The estimate is conservative, ie, not all addresses in
804 // 'allocated' space are actually allocated to our heap.  The range is
805 // [lowest, highest), inclusive on the low and and exclusive on the high end.
806 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
807 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
808 
809 
UpdateAllocatedSpaceLimits(void * address,int size)810 static void UpdateAllocatedSpaceLimits(void* address, int size) {
811   ASSERT(limit_mutex != NULL);
812   ScopedLock lock(limit_mutex);
813 
814   lowest_ever_allocated = Min(lowest_ever_allocated, address);
815   highest_ever_allocated =
816       Max(highest_ever_allocated,
817           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
818 }
819 
820 
IsOutsideAllocatedSpace(void * pointer)821 bool OS::IsOutsideAllocatedSpace(void* pointer) {
822   if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
823     return true;
824   // Ask the Windows API
825   if (IsBadWritePtr(pointer, 1))
826     return true;
827   return false;
828 }
829 
830 
831 // Get the system's page size used by VirtualAlloc() or the next power
832 // of two. The reason for always returning a power of two is that the
833 // rounding up in OS::Allocate expects that.
GetPageSize()834 static size_t GetPageSize() {
835   static size_t page_size = 0;
836   if (page_size == 0) {
837     SYSTEM_INFO info;
838     GetSystemInfo(&info);
839     page_size = RoundUpToPowerOf2(info.dwPageSize);
840   }
841   return page_size;
842 }
843 
844 
845 // The allocation alignment is the guaranteed alignment for
846 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()847 size_t OS::AllocateAlignment() {
848   static size_t allocate_alignment = 0;
849   if (allocate_alignment == 0) {
850     SYSTEM_INFO info;
851     GetSystemInfo(&info);
852     allocate_alignment = info.dwAllocationGranularity;
853   }
854   return allocate_alignment;
855 }
856 
857 
Allocate(const size_t requested,size_t * allocated,bool is_executable)858 void* OS::Allocate(const size_t requested,
859                    size_t* allocated,
860                    bool is_executable) {
861   // The address range used to randomize RWX allocations in OS::Allocate
862   // Try not to map pages into the default range that windows loads DLLs
863   // Use a multiple of 64k to prevent committing unused memory.
864   // Note: This does not guarantee RWX regions will be within the
865   // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
866 #ifdef V8_HOST_ARCH_64_BIT
867   static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
868   static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
869 #else
870   static const intptr_t kAllocationRandomAddressMin = 0x04000000;
871   static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
872 #endif
873 
874   // VirtualAlloc rounds allocated size to page size automatically.
875   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
876   intptr_t address = 0;
877 
878   // Windows XP SP2 allows Data Excution Prevention (DEP).
879   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
880 
881   // For exectutable pages try and randomize the allocation address
882   if (prot == PAGE_EXECUTE_READWRITE &&
883       msize >= static_cast<size_t>(Page::kPageSize)) {
884     address = (V8::RandomPrivate(Isolate::Current()) << kPageSizeBits)
885       | kAllocationRandomAddressMin;
886     address &= kAllocationRandomAddressMax;
887   }
888 
889   LPVOID mbase = VirtualAlloc(reinterpret_cast<void *>(address),
890                               msize,
891                               MEM_COMMIT | MEM_RESERVE,
892                               prot);
893   if (mbase == NULL && address != 0)
894     mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
895 
896   if (mbase == NULL) {
897     LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed"));
898     return NULL;
899   }
900 
901   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
902 
903   *allocated = msize;
904   UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
905   return mbase;
906 }
907 
908 
Free(void * address,const size_t size)909 void OS::Free(void* address, const size_t size) {
910   // TODO(1240712): VirtualFree has a return value which is ignored here.
911   VirtualFree(address, 0, MEM_RELEASE);
912   USE(size);
913 }
914 
915 
916 #ifdef ENABLE_HEAP_PROTECTION
917 
Protect(void * address,size_t size)918 void OS::Protect(void* address, size_t size) {
919   // TODO(1240712): VirtualProtect has a return value which is ignored here.
920   DWORD old_protect;
921   VirtualProtect(address, size, PAGE_READONLY, &old_protect);
922 }
923 
924 
Unprotect(void * address,size_t size,bool is_executable)925 void OS::Unprotect(void* address, size_t size, bool is_executable) {
926   // TODO(1240712): VirtualProtect has a return value which is ignored here.
927   DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
928   DWORD old_protect;
929   VirtualProtect(address, size, new_protect, &old_protect);
930 }
931 
932 #endif
933 
934 
Sleep(int milliseconds)935 void OS::Sleep(int milliseconds) {
936   ::Sleep(milliseconds);
937 }
938 
939 
Abort()940 void OS::Abort() {
941   if (!IsDebuggerPresent()) {
942 #ifdef _MSC_VER
943     // Make the MSVCRT do a silent abort.
944     _set_abort_behavior(0, _WRITE_ABORT_MSG);
945     _set_abort_behavior(0, _CALL_REPORTFAULT);
946 #endif  // _MSC_VER
947     abort();
948   } else {
949     DebugBreak();
950   }
951 }
952 
953 
DebugBreak()954 void OS::DebugBreak() {
955 #ifdef _MSC_VER
956   __debugbreak();
957 #else
958   ::DebugBreak();
959 #endif
960 }
961 
962 
963 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
964  public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,int size)965   Win32MemoryMappedFile(HANDLE file,
966                         HANDLE file_mapping,
967                         void* memory,
968                         int size)
969       : file_(file),
970         file_mapping_(file_mapping),
971         memory_(memory),
972         size_(size) { }
973   virtual ~Win32MemoryMappedFile();
memory()974   virtual void* memory() { return memory_; }
size()975   virtual int size() { return size_; }
976  private:
977   HANDLE file_;
978   HANDLE file_mapping_;
979   void* memory_;
980   int size_;
981 };
982 
983 
open(const char * name)984 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
985   // Open a physical file
986   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
987       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
988   if (file == INVALID_HANDLE_VALUE) return NULL;
989 
990   int size = static_cast<int>(GetFileSize(file, NULL));
991 
992   // Create a file mapping for the physical file
993   HANDLE file_mapping = CreateFileMapping(file, NULL,
994       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
995   if (file_mapping == NULL) return NULL;
996 
997   // Map a view of the file into memory
998   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
999   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1000 }
1001 
1002 
create(const char * name,int size,void * initial)1003 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
1004     void* initial) {
1005   // Open a physical file
1006   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
1007       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
1008   if (file == NULL) return NULL;
1009   // Create a file mapping for the physical file
1010   HANDLE file_mapping = CreateFileMapping(file, NULL,
1011       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
1012   if (file_mapping == NULL) return NULL;
1013   // Map a view of the file into memory
1014   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1015   if (memory) memmove(memory, initial, size);
1016   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1017 }
1018 
1019 
~Win32MemoryMappedFile()1020 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
1021   if (memory_ != NULL)
1022     UnmapViewOfFile(memory_);
1023   CloseHandle(file_mapping_);
1024   CloseHandle(file_);
1025 }
1026 
1027 
1028 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
1029 // dynamically. This is to avoid being depending on dbghelp.dll and
1030 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
1031 // kernel32.dll at some point so loading functions defines in TlHelp32.h
1032 // dynamically might not be necessary any more - for some versions of Windows?).
1033 
1034 // Function pointers to functions dynamically loaded from dbghelp.dll.
1035 #define DBGHELP_FUNCTION_LIST(V)  \
1036   V(SymInitialize)                \
1037   V(SymGetOptions)                \
1038   V(SymSetOptions)                \
1039   V(SymGetSearchPath)             \
1040   V(SymLoadModule64)              \
1041   V(StackWalk64)                  \
1042   V(SymGetSymFromAddr64)          \
1043   V(SymGetLineFromAddr64)         \
1044   V(SymFunctionTableAccess64)     \
1045   V(SymGetModuleBase64)
1046 
1047 // Function pointers to functions dynamically loaded from dbghelp.dll.
1048 #define TLHELP32_FUNCTION_LIST(V)  \
1049   V(CreateToolhelp32Snapshot)      \
1050   V(Module32FirstW)                \
1051   V(Module32NextW)
1052 
1053 // Define the decoration to use for the type and variable name used for
1054 // dynamically loaded DLL function..
1055 #define DLL_FUNC_TYPE(name) _##name##_
1056 #define DLL_FUNC_VAR(name) _##name
1057 
1058 // Define the type for each dynamically loaded DLL function. The function
1059 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1060 // from the Windows include files are redefined here to have the function
1061 // definitions to be as close to the ones in the original .h files as possible.
1062 #ifndef IN
1063 #define IN
1064 #endif
1065 #ifndef VOID
1066 #define VOID void
1067 #endif
1068 
1069 // DbgHelp isn't supported on MinGW yet
1070 #ifndef __MINGW32__
1071 // DbgHelp.h functions.
1072 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
1073                                                        IN PSTR UserSearchPath,
1074                                                        IN BOOL fInvadeProcess);
1075 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1076 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1077 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1078     IN HANDLE hProcess,
1079     OUT PSTR SearchPath,
1080     IN DWORD SearchPathLength);
1081 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1082     IN HANDLE hProcess,
1083     IN HANDLE hFile,
1084     IN PSTR ImageName,
1085     IN PSTR ModuleName,
1086     IN DWORD64 BaseOfDll,
1087     IN DWORD SizeOfDll);
1088 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1089     DWORD MachineType,
1090     HANDLE hProcess,
1091     HANDLE hThread,
1092     LPSTACKFRAME64 StackFrame,
1093     PVOID ContextRecord,
1094     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1095     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1096     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1097     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1098 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1099     IN HANDLE hProcess,
1100     IN DWORD64 qwAddr,
1101     OUT PDWORD64 pdwDisplacement,
1102     OUT PIMAGEHLP_SYMBOL64 Symbol);
1103 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1104     IN HANDLE hProcess,
1105     IN DWORD64 qwAddr,
1106     OUT PDWORD pdwDisplacement,
1107     OUT PIMAGEHLP_LINE64 Line64);
1108 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1109 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1110     HANDLE hProcess,
1111     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1112 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1113     HANDLE hProcess,
1114     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1115 
1116 // TlHelp32.h functions.
1117 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1118     DWORD dwFlags,
1119     DWORD th32ProcessID);
1120 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1121                                                         LPMODULEENTRY32W lpme);
1122 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1123                                                        LPMODULEENTRY32W lpme);
1124 
1125 #undef IN
1126 #undef VOID
1127 
1128 // Declare a variable for each dynamically loaded DLL function.
1129 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1130 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1131 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1132 #undef DEF_DLL_FUNCTION
1133 
1134 // Load the functions. This function has a lot of "ugly" macros in order to
1135 // keep down code duplication.
1136 
1137 static bool LoadDbgHelpAndTlHelp32() {
1138   static bool dbghelp_loaded = false;
1139 
1140   if (dbghelp_loaded) return true;
1141 
1142   HMODULE module;
1143 
1144   // Load functions from the dbghelp.dll module.
1145   module = LoadLibrary(TEXT("dbghelp.dll"));
1146   if (module == NULL) {
1147     return false;
1148   }
1149 
1150 #define LOAD_DLL_FUNC(name)                                                 \
1151   DLL_FUNC_VAR(name) =                                                      \
1152       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1153 
1154 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1155 
1156 #undef LOAD_DLL_FUNC
1157 
1158   // Load functions from the kernel32.dll module (the TlHelp32.h function used
1159   // to be in tlhelp32.dll but are now moved to kernel32.dll).
1160   module = LoadLibrary(TEXT("kernel32.dll"));
1161   if (module == NULL) {
1162     return false;
1163   }
1164 
1165 #define LOAD_DLL_FUNC(name)                                                 \
1166   DLL_FUNC_VAR(name) =                                                      \
1167       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1168 
1169 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1170 
1171 #undef LOAD_DLL_FUNC
1172 
1173   // Check that all functions where loaded.
1174   bool result =
1175 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1176 
1177 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1178 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1179 
1180 #undef DLL_FUNC_LOADED
1181   true;
1182 
1183   dbghelp_loaded = result;
1184   return result;
1185   // NOTE: The modules are never unloaded and will stay around until the
1186   // application is closed.
1187 }
1188 
1189 
1190 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1191 static bool LoadSymbols(HANDLE process_handle) {
1192   static bool symbols_loaded = false;
1193 
1194   if (symbols_loaded) return true;
1195 
1196   BOOL ok;
1197 
1198   // Initialize the symbol engine.
1199   ok = _SymInitialize(process_handle,  // hProcess
1200                       NULL,            // UserSearchPath
1201                       false);          // fInvadeProcess
1202   if (!ok) return false;
1203 
1204   DWORD options = _SymGetOptions();
1205   options |= SYMOPT_LOAD_LINES;
1206   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1207   options = _SymSetOptions(options);
1208 
1209   char buf[OS::kStackWalkMaxNameLen] = {0};
1210   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1211   if (!ok) {
1212     int err = GetLastError();
1213     PrintF("%d\n", err);
1214     return false;
1215   }
1216 
1217   HANDLE snapshot = _CreateToolhelp32Snapshot(
1218       TH32CS_SNAPMODULE,       // dwFlags
1219       GetCurrentProcessId());  // th32ProcessId
1220   if (snapshot == INVALID_HANDLE_VALUE) return false;
1221   MODULEENTRY32W module_entry;
1222   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1223   BOOL cont = _Module32FirstW(snapshot, &module_entry);
1224   while (cont) {
1225     DWORD64 base;
1226     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1227     // both unicode and ASCII strings even though the parameter is PSTR.
1228     base = _SymLoadModule64(
1229         process_handle,                                       // hProcess
1230         0,                                                    // hFile
1231         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1232         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1233         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1234         module_entry.modBaseSize);                            // SizeOfDll
1235     if (base == 0) {
1236       int err = GetLastError();
1237       if (err != ERROR_MOD_NOT_FOUND &&
1238           err != ERROR_INVALID_HANDLE) return false;
1239     }
1240     LOG(i::Isolate::Current(),
1241         SharedLibraryEvent(
1242             module_entry.szExePath,
1243             reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1244             reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1245                                            module_entry.modBaseSize)));
1246     cont = _Module32NextW(snapshot, &module_entry);
1247   }
1248   CloseHandle(snapshot);
1249 
1250   symbols_loaded = true;
1251   return true;
1252 }
1253 
1254 
LogSharedLibraryAddresses()1255 void OS::LogSharedLibraryAddresses() {
1256   // SharedLibraryEvents are logged when loading symbol information.
1257   // Only the shared libraries loaded at the time of the call to
1258   // LogSharedLibraryAddresses are logged.  DLLs loaded after
1259   // initialization are not accounted for.
1260   if (!LoadDbgHelpAndTlHelp32()) return;
1261   HANDLE process_handle = GetCurrentProcess();
1262   LoadSymbols(process_handle);
1263 }
1264 
1265 
SignalCodeMovingGC()1266 void OS::SignalCodeMovingGC() {
1267 }
1268 
1269 
1270 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1271 
1272 // Switch off warning 4748 (/GS can not protect parameters and local variables
1273 // from local buffer overrun because optimizations are disabled in function) as
1274 // it is triggered by the use of inline assembler.
1275 #pragma warning(push)
1276 #pragma warning(disable : 4748)
StackWalk(Vector<OS::StackFrame> frames)1277 int OS::StackWalk(Vector<OS::StackFrame> frames) {
1278   BOOL ok;
1279 
1280   // Load the required functions from DLL's.
1281   if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1282 
1283   // Get the process and thread handles.
1284   HANDLE process_handle = GetCurrentProcess();
1285   HANDLE thread_handle = GetCurrentThread();
1286 
1287   // Read the symbols.
1288   if (!LoadSymbols(process_handle)) return kStackWalkError;
1289 
1290   // Capture current context.
1291   CONTEXT context;
1292   RtlCaptureContext(&context);
1293 
1294   // Initialize the stack walking
1295   STACKFRAME64 stack_frame;
1296   memset(&stack_frame, 0, sizeof(stack_frame));
1297 #ifdef  _WIN64
1298   stack_frame.AddrPC.Offset = context.Rip;
1299   stack_frame.AddrFrame.Offset = context.Rbp;
1300   stack_frame.AddrStack.Offset = context.Rsp;
1301 #else
1302   stack_frame.AddrPC.Offset = context.Eip;
1303   stack_frame.AddrFrame.Offset = context.Ebp;
1304   stack_frame.AddrStack.Offset = context.Esp;
1305 #endif
1306   stack_frame.AddrPC.Mode = AddrModeFlat;
1307   stack_frame.AddrFrame.Mode = AddrModeFlat;
1308   stack_frame.AddrStack.Mode = AddrModeFlat;
1309   int frames_count = 0;
1310 
1311   // Collect stack frames.
1312   int frames_size = frames.length();
1313   while (frames_count < frames_size) {
1314     ok = _StackWalk64(
1315         IMAGE_FILE_MACHINE_I386,    // MachineType
1316         process_handle,             // hProcess
1317         thread_handle,              // hThread
1318         &stack_frame,               // StackFrame
1319         &context,                   // ContextRecord
1320         NULL,                       // ReadMemoryRoutine
1321         _SymFunctionTableAccess64,  // FunctionTableAccessRoutine
1322         _SymGetModuleBase64,        // GetModuleBaseRoutine
1323         NULL);                      // TranslateAddress
1324     if (!ok) break;
1325 
1326     // Store the address.
1327     ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address.
1328     frames[frames_count].address =
1329         reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1330 
1331     // Try to locate a symbol for this frame.
1332     DWORD64 symbol_displacement;
1333     SmartPointer<IMAGEHLP_SYMBOL64> symbol(
1334         NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
1335     if (symbol.is_empty()) return kStackWalkError;  // Out of memory.
1336     memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1337     (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1338     (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
1339     ok = _SymGetSymFromAddr64(process_handle,             // hProcess
1340                               stack_frame.AddrPC.Offset,  // Address
1341                               &symbol_displacement,       // Displacement
1342                               *symbol);                   // Symbol
1343     if (ok) {
1344       // Try to locate more source information for the symbol.
1345       IMAGEHLP_LINE64 Line;
1346       memset(&Line, 0, sizeof(Line));
1347       Line.SizeOfStruct = sizeof(Line);
1348       DWORD line_displacement;
1349       ok = _SymGetLineFromAddr64(
1350           process_handle,             // hProcess
1351           stack_frame.AddrPC.Offset,  // dwAddr
1352           &line_displacement,         // pdwDisplacement
1353           &Line);                     // Line
1354       // Format a text representation of the frame based on the information
1355       // available.
1356       if (ok) {
1357         SNPrintF(MutableCStrVector(frames[frames_count].text,
1358                                    kStackWalkMaxTextLen),
1359                  "%s %s:%d:%d",
1360                  (*symbol)->Name, Line.FileName, Line.LineNumber,
1361                  line_displacement);
1362       } else {
1363         SNPrintF(MutableCStrVector(frames[frames_count].text,
1364                                    kStackWalkMaxTextLen),
1365                  "%s",
1366                  (*symbol)->Name);
1367       }
1368       // Make sure line termination is in place.
1369       frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1370     } else {
1371       // No text representation of this frame
1372       frames[frames_count].text[0] = '\0';
1373 
1374       // Continue if we are just missing a module (for non C/C++ frames a
1375       // module will never be found).
1376       int err = GetLastError();
1377       if (err != ERROR_MOD_NOT_FOUND) {
1378         break;
1379       }
1380     }
1381 
1382     frames_count++;
1383   }
1384 
1385   // Return the number of frames filled in.
1386   return frames_count;
1387 }
1388 
1389 // Restore warnings to previous settings.
1390 #pragma warning(pop)
1391 
1392 #else  // __MINGW32__
LogSharedLibraryAddresses()1393 void OS::LogSharedLibraryAddresses() { }
SignalCodeMovingGC()1394 void OS::SignalCodeMovingGC() { }
StackWalk(Vector<OS::StackFrame> frames)1395 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1396 #endif  // __MINGW32__
1397 
1398 
CpuFeaturesImpliedByPlatform()1399 uint64_t OS::CpuFeaturesImpliedByPlatform() {
1400   return 0;  // Windows runs on anything.
1401 }
1402 
1403 
nan_value()1404 double OS::nan_value() {
1405 #ifdef _MSC_VER
1406   // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1407   // in mask set, so value equals mask.
1408   static const __int64 nanval = kQuietNaNMask;
1409   return *reinterpret_cast<const double*>(&nanval);
1410 #else  // _MSC_VER
1411   return NAN;
1412 #endif  // _MSC_VER
1413 }
1414 
1415 
ActivationFrameAlignment()1416 int OS::ActivationFrameAlignment() {
1417 #ifdef _WIN64
1418   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1419 #else
1420   return 8;  // Floating-point math runs faster with 8-byte alignment.
1421 #endif
1422 }
1423 
1424 
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)1425 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
1426   MemoryBarrier();
1427   *ptr = value;
1428 }
1429 
1430 
IsReserved()1431 bool VirtualMemory::IsReserved() {
1432   return address_ != NULL;
1433 }
1434 
1435 
VirtualMemory(size_t size)1436 VirtualMemory::VirtualMemory(size_t size) {
1437   address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
1438   size_ = size;
1439 }
1440 
1441 
~VirtualMemory()1442 VirtualMemory::~VirtualMemory() {
1443   if (IsReserved()) {
1444     if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
1445   }
1446 }
1447 
1448 
Commit(void * address,size_t size,bool is_executable)1449 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1450   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1451   if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
1452     return false;
1453   }
1454 
1455   UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
1456   return true;
1457 }
1458 
1459 
Uncommit(void * address,size_t size)1460 bool VirtualMemory::Uncommit(void* address, size_t size) {
1461   ASSERT(IsReserved());
1462   return VirtualFree(address, size, MEM_DECOMMIT) != false;
1463 }
1464 
1465 
1466 // ----------------------------------------------------------------------------
1467 // Win32 thread support.
1468 
1469 // Definition of invalid thread handle and id.
1470 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1471 
1472 // Entry point for threads. The supplied argument is a pointer to the thread
1473 // object. The entry function dispatches to the run method in the thread
1474 // object. It is important that this function has __stdcall calling
1475 // convention.
ThreadEntry(void * arg)1476 static unsigned int __stdcall ThreadEntry(void* arg) {
1477   Thread* thread = reinterpret_cast<Thread*>(arg);
1478   // This is also initialized by the last parameter to _beginthreadex() but we
1479   // don't know which thread will run first (the original thread or the new
1480   // one) so we initialize it here too.
1481   Thread::SetThreadLocal(Isolate::isolate_key(), thread->isolate());
1482   thread->Run();
1483   return 0;
1484 }
1485 
1486 
1487 class Thread::PlatformData : public Malloced {
1488  public:
PlatformData(HANDLE thread)1489   explicit PlatformData(HANDLE thread) : thread_(thread) {}
1490   HANDLE thread_;
1491 };
1492 
1493 
1494 // Initialize a Win32 thread object. The thread has an invalid thread
1495 // handle until it is started.
1496 
Thread(Isolate * isolate,const Options & options)1497 Thread::Thread(Isolate* isolate, const Options& options)
1498     : isolate_(isolate),
1499       stack_size_(options.stack_size) {
1500   data_ = new PlatformData(kNoThread);
1501   set_name(options.name);
1502 }
1503 
1504 
Thread(Isolate * isolate,const char * name)1505 Thread::Thread(Isolate* isolate, const char* name)
1506     : isolate_(isolate),
1507       stack_size_(0) {
1508   data_ = new PlatformData(kNoThread);
1509   set_name(name);
1510 }
1511 
1512 
set_name(const char * name)1513 void Thread::set_name(const char* name) {
1514   OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name));
1515   name_[sizeof(name_) - 1] = '\0';
1516 }
1517 
1518 
1519 // Close our own handle for the thread.
~Thread()1520 Thread::~Thread() {
1521   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1522   delete data_;
1523 }
1524 
1525 
1526 // Create a new thread. It is important to use _beginthreadex() instead of
1527 // the Win32 function CreateThread(), because the CreateThread() does not
1528 // initialize thread specific structures in the C runtime library.
Start()1529 void Thread::Start() {
1530   data_->thread_ = reinterpret_cast<HANDLE>(
1531       _beginthreadex(NULL,
1532                      static_cast<unsigned>(stack_size_),
1533                      ThreadEntry,
1534                      this,
1535                      0,
1536                      NULL));
1537 }
1538 
1539 
1540 // Wait for thread to terminate.
Join()1541 void Thread::Join() {
1542   WaitForSingleObject(data_->thread_, INFINITE);
1543 }
1544 
1545 
CreateThreadLocalKey()1546 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1547   DWORD result = TlsAlloc();
1548   ASSERT(result != TLS_OUT_OF_INDEXES);
1549   return static_cast<LocalStorageKey>(result);
1550 }
1551 
1552 
DeleteThreadLocalKey(LocalStorageKey key)1553 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1554   BOOL result = TlsFree(static_cast<DWORD>(key));
1555   USE(result);
1556   ASSERT(result);
1557 }
1558 
1559 
GetThreadLocal(LocalStorageKey key)1560 void* Thread::GetThreadLocal(LocalStorageKey key) {
1561   return TlsGetValue(static_cast<DWORD>(key));
1562 }
1563 
1564 
SetThreadLocal(LocalStorageKey key,void * value)1565 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1566   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1567   USE(result);
1568   ASSERT(result);
1569 }
1570 
1571 
1572 
YieldCPU()1573 void Thread::YieldCPU() {
1574   Sleep(0);
1575 }
1576 
1577 
1578 // ----------------------------------------------------------------------------
1579 // Win32 mutex support.
1580 //
1581 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1582 // faster than Win32 Mutex objects because they are implemented using user mode
1583 // atomic instructions. Therefore we only do ring transitions if there is lock
1584 // contention.
1585 
1586 class Win32Mutex : public Mutex {
1587  public:
1588 
Win32Mutex()1589   Win32Mutex() { InitializeCriticalSection(&cs_); }
1590 
~Win32Mutex()1591   virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1592 
Lock()1593   virtual int Lock() {
1594     EnterCriticalSection(&cs_);
1595     return 0;
1596   }
1597 
Unlock()1598   virtual int Unlock() {
1599     LeaveCriticalSection(&cs_);
1600     return 0;
1601   }
1602 
1603 
TryLock()1604   virtual bool TryLock() {
1605     // Returns non-zero if critical section is entered successfully entered.
1606     return TryEnterCriticalSection(&cs_);
1607   }
1608 
1609  private:
1610   CRITICAL_SECTION cs_;  // Critical section used for mutex
1611 };
1612 
1613 
CreateMutex()1614 Mutex* OS::CreateMutex() {
1615   return new Win32Mutex();
1616 }
1617 
1618 
1619 // ----------------------------------------------------------------------------
1620 // Win32 semaphore support.
1621 //
1622 // On Win32 semaphores are implemented using Win32 Semaphore objects. The
1623 // semaphores are anonymous. Also, the semaphores are initialized to have
1624 // no upper limit on count.
1625 
1626 
1627 class Win32Semaphore : public Semaphore {
1628  public:
Win32Semaphore(int count)1629   explicit Win32Semaphore(int count) {
1630     sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1631   }
1632 
~Win32Semaphore()1633   ~Win32Semaphore() {
1634     CloseHandle(sem);
1635   }
1636 
Wait()1637   void Wait() {
1638     WaitForSingleObject(sem, INFINITE);
1639   }
1640 
Wait(int timeout)1641   bool Wait(int timeout) {
1642     // Timeout in Windows API is in milliseconds.
1643     DWORD millis_timeout = timeout / 1000;
1644     return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1645   }
1646 
Signal()1647   void Signal() {
1648     LONG dummy;
1649     ReleaseSemaphore(sem, 1, &dummy);
1650   }
1651 
1652  private:
1653   HANDLE sem;
1654 };
1655 
1656 
CreateSemaphore(int count)1657 Semaphore* OS::CreateSemaphore(int count) {
1658   return new Win32Semaphore(count);
1659 }
1660 
1661 
1662 // ----------------------------------------------------------------------------
1663 // Win32 socket support.
1664 //
1665 
1666 class Win32Socket : public Socket {
1667  public:
Win32Socket()1668   explicit Win32Socket() {
1669     // Create the socket.
1670     socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1671   }
Win32Socket(SOCKET socket)1672   explicit Win32Socket(SOCKET socket): socket_(socket) { }
~Win32Socket()1673   virtual ~Win32Socket() { Shutdown(); }
1674 
1675   // Server initialization.
1676   bool Bind(const int port);
1677   bool Listen(int backlog) const;
1678   Socket* Accept() const;
1679 
1680   // Client initialization.
1681   bool Connect(const char* host, const char* port);
1682 
1683   // Shutdown socket for both read and write.
1684   bool Shutdown();
1685 
1686   // Data Transimission
1687   int Send(const char* data, int len) const;
1688   int Receive(char* data, int len) const;
1689 
1690   bool SetReuseAddress(bool reuse_address);
1691 
IsValid() const1692   bool IsValid() const { return socket_ != INVALID_SOCKET; }
1693 
1694  private:
1695   SOCKET socket_;
1696 };
1697 
1698 
Bind(const int port)1699 bool Win32Socket::Bind(const int port) {
1700   if (!IsValid())  {
1701     return false;
1702   }
1703 
1704   sockaddr_in addr;
1705   memset(&addr, 0, sizeof(addr));
1706   addr.sin_family = AF_INET;
1707   addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1708   addr.sin_port = htons(port);
1709   int status = bind(socket_,
1710                     reinterpret_cast<struct sockaddr *>(&addr),
1711                     sizeof(addr));
1712   return status == 0;
1713 }
1714 
1715 
Listen(int backlog) const1716 bool Win32Socket::Listen(int backlog) const {
1717   if (!IsValid()) {
1718     return false;
1719   }
1720 
1721   int status = listen(socket_, backlog);
1722   return status == 0;
1723 }
1724 
1725 
Accept() const1726 Socket* Win32Socket::Accept() const {
1727   if (!IsValid()) {
1728     return NULL;
1729   }
1730 
1731   SOCKET socket = accept(socket_, NULL, NULL);
1732   if (socket == INVALID_SOCKET) {
1733     return NULL;
1734   } else {
1735     return new Win32Socket(socket);
1736   }
1737 }
1738 
1739 
Connect(const char * host,const char * port)1740 bool Win32Socket::Connect(const char* host, const char* port) {
1741   if (!IsValid()) {
1742     return false;
1743   }
1744 
1745   // Lookup host and port.
1746   struct addrinfo *result = NULL;
1747   struct addrinfo hints;
1748   memset(&hints, 0, sizeof(addrinfo));
1749   hints.ai_family = AF_INET;
1750   hints.ai_socktype = SOCK_STREAM;
1751   hints.ai_protocol = IPPROTO_TCP;
1752   int status = getaddrinfo(host, port, &hints, &result);
1753   if (status != 0) {
1754     return false;
1755   }
1756 
1757   // Connect.
1758   status = connect(socket_,
1759                    result->ai_addr,
1760                    static_cast<int>(result->ai_addrlen));
1761   freeaddrinfo(result);
1762   return status == 0;
1763 }
1764 
1765 
Shutdown()1766 bool Win32Socket::Shutdown() {
1767   if (IsValid()) {
1768     // Shutdown socket for both read and write.
1769     int status = shutdown(socket_, SD_BOTH);
1770     closesocket(socket_);
1771     socket_ = INVALID_SOCKET;
1772     return status == SOCKET_ERROR;
1773   }
1774   return true;
1775 }
1776 
1777 
Send(const char * data,int len) const1778 int Win32Socket::Send(const char* data, int len) const {
1779   int status = send(socket_, data, len, 0);
1780   return status;
1781 }
1782 
1783 
Receive(char * data,int len) const1784 int Win32Socket::Receive(char* data, int len) const {
1785   int status = recv(socket_, data, len, 0);
1786   return status;
1787 }
1788 
1789 
SetReuseAddress(bool reuse_address)1790 bool Win32Socket::SetReuseAddress(bool reuse_address) {
1791   BOOL on = reuse_address ? true : false;
1792   int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1793                           reinterpret_cast<char*>(&on), sizeof(on));
1794   return status == SOCKET_ERROR;
1795 }
1796 
1797 
Setup()1798 bool Socket::Setup() {
1799   // Initialize Winsock32
1800   int err;
1801   WSADATA winsock_data;
1802   WORD version_requested = MAKEWORD(1, 0);
1803   err = WSAStartup(version_requested, &winsock_data);
1804   if (err != 0) {
1805     PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1806   }
1807 
1808   return err == 0;
1809 }
1810 
1811 
LastError()1812 int Socket::LastError() {
1813   return WSAGetLastError();
1814 }
1815 
1816 
HToN(uint16_t value)1817 uint16_t Socket::HToN(uint16_t value) {
1818   return htons(value);
1819 }
1820 
1821 
NToH(uint16_t value)1822 uint16_t Socket::NToH(uint16_t value) {
1823   return ntohs(value);
1824 }
1825 
1826 
HToN(uint32_t value)1827 uint32_t Socket::HToN(uint32_t value) {
1828   return htonl(value);
1829 }
1830 
1831 
NToH(uint32_t value)1832 uint32_t Socket::NToH(uint32_t value) {
1833   return ntohl(value);
1834 }
1835 
1836 
CreateSocket()1837 Socket* OS::CreateSocket() {
1838   return new Win32Socket();
1839 }
1840 
1841 
1842 #ifdef ENABLE_LOGGING_AND_PROFILING
1843 
1844 // ----------------------------------------------------------------------------
1845 // Win32 profiler support.
1846 
1847 class Sampler::PlatformData : public Malloced {
1848  public:
1849   // Get a handle to the calling thread. This is the thread that we are
1850   // going to profile. We need to make a copy of the handle because we are
1851   // going to use it in the sampler thread. Using GetThreadHandle() will
1852   // not work in this case. We're using OpenThread because DuplicateHandle
1853   // for some reason doesn't work in Chrome's sandbox.
PlatformData()1854   PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
1855                                                THREAD_SUSPEND_RESUME |
1856                                                THREAD_QUERY_INFORMATION,
1857                                                false,
1858                                                GetCurrentThreadId())) {}
1859 
~PlatformData()1860   ~PlatformData() {
1861     if (profiled_thread_ != NULL) {
1862       CloseHandle(profiled_thread_);
1863       profiled_thread_ = NULL;
1864     }
1865   }
1866 
profiled_thread()1867   HANDLE profiled_thread() { return profiled_thread_; }
1868 
1869  private:
1870   HANDLE profiled_thread_;
1871 };
1872 
1873 
1874 class SamplerThread : public Thread {
1875  public:
SamplerThread(int interval)1876   explicit SamplerThread(int interval)
1877       : Thread(NULL, "SamplerThread"),
1878         interval_(interval) {}
1879 
AddActiveSampler(Sampler * sampler)1880   static void AddActiveSampler(Sampler* sampler) {
1881     ScopedLock lock(mutex_);
1882     SamplerRegistry::AddActiveSampler(sampler);
1883     if (instance_ == NULL) {
1884       instance_ = new SamplerThread(sampler->interval());
1885       instance_->Start();
1886     } else {
1887       ASSERT(instance_->interval_ == sampler->interval());
1888     }
1889   }
1890 
RemoveActiveSampler(Sampler * sampler)1891   static void RemoveActiveSampler(Sampler* sampler) {
1892     ScopedLock lock(mutex_);
1893     SamplerRegistry::RemoveActiveSampler(sampler);
1894     if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
1895       RuntimeProfiler::WakeUpRuntimeProfilerThreadBeforeShutdown();
1896       instance_->Join();
1897       delete instance_;
1898       instance_ = NULL;
1899     }
1900   }
1901 
1902   // Implement Thread::Run().
Run()1903   virtual void Run() {
1904     SamplerRegistry::State state;
1905     while ((state = SamplerRegistry::GetState()) !=
1906            SamplerRegistry::HAS_NO_SAMPLERS) {
1907       bool cpu_profiling_enabled =
1908           (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
1909       bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
1910       // When CPU profiling is enabled both JavaScript and C++ code is
1911       // profiled. We must not suspend.
1912       if (!cpu_profiling_enabled) {
1913         if (rate_limiter_.SuspendIfNecessary()) continue;
1914       }
1915       if (cpu_profiling_enabled) {
1916         if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
1917           return;
1918         }
1919       }
1920       if (runtime_profiler_enabled) {
1921         if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
1922           return;
1923         }
1924       }
1925       OS::Sleep(interval_);
1926     }
1927   }
1928 
DoCpuProfile(Sampler * sampler,void * raw_sampler_thread)1929   static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
1930     if (!sampler->isolate()->IsInitialized()) return;
1931     if (!sampler->IsProfiling()) return;
1932     SamplerThread* sampler_thread =
1933         reinterpret_cast<SamplerThread*>(raw_sampler_thread);
1934     sampler_thread->SampleContext(sampler);
1935   }
1936 
DoRuntimeProfile(Sampler * sampler,void * ignored)1937   static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
1938     if (!sampler->isolate()->IsInitialized()) return;
1939     sampler->isolate()->runtime_profiler()->NotifyTick();
1940   }
1941 
SampleContext(Sampler * sampler)1942   void SampleContext(Sampler* sampler) {
1943     HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
1944     if (profiled_thread == NULL) return;
1945 
1946     // Context used for sampling the register state of the profiled thread.
1947     CONTEXT context;
1948     memset(&context, 0, sizeof(context));
1949 
1950     TickSample sample_obj;
1951     TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
1952     if (sample == NULL) sample = &sample_obj;
1953 
1954     static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
1955     if (SuspendThread(profiled_thread) == kSuspendFailed) return;
1956     sample->state = sampler->isolate()->current_vm_state();
1957 
1958     context.ContextFlags = CONTEXT_FULL;
1959     if (GetThreadContext(profiled_thread, &context) != 0) {
1960 #if V8_HOST_ARCH_X64
1961       sample->pc = reinterpret_cast<Address>(context.Rip);
1962       sample->sp = reinterpret_cast<Address>(context.Rsp);
1963       sample->fp = reinterpret_cast<Address>(context.Rbp);
1964 #else
1965       sample->pc = reinterpret_cast<Address>(context.Eip);
1966       sample->sp = reinterpret_cast<Address>(context.Esp);
1967       sample->fp = reinterpret_cast<Address>(context.Ebp);
1968 #endif
1969       sampler->SampleStack(sample);
1970       sampler->Tick(sample);
1971     }
1972     ResumeThread(profiled_thread);
1973   }
1974 
1975   const int interval_;
1976   RuntimeProfilerRateLimiter rate_limiter_;
1977 
1978   // Protects the process wide state below.
1979   static Mutex* mutex_;
1980   static SamplerThread* instance_;
1981 
1982   DISALLOW_COPY_AND_ASSIGN(SamplerThread);
1983 };
1984 
1985 
1986 Mutex* SamplerThread::mutex_ = OS::CreateMutex();
1987 SamplerThread* SamplerThread::instance_ = NULL;
1988 
1989 
Sampler(Isolate * isolate,int interval)1990 Sampler::Sampler(Isolate* isolate, int interval)
1991     : isolate_(isolate),
1992       interval_(interval),
1993       profiling_(false),
1994       active_(false),
1995       samples_taken_(0) {
1996   data_ = new PlatformData;
1997 }
1998 
1999 
~Sampler()2000 Sampler::~Sampler() {
2001   ASSERT(!IsActive());
2002   delete data_;
2003 }
2004 
2005 
Start()2006 void Sampler::Start() {
2007   ASSERT(!IsActive());
2008   SetActive(true);
2009   SamplerThread::AddActiveSampler(this);
2010 }
2011 
2012 
Stop()2013 void Sampler::Stop() {
2014   ASSERT(IsActive());
2015   SamplerThread::RemoveActiveSampler(this);
2016   SetActive(false);
2017 }
2018 
2019 #endif  // ENABLE_LOGGING_AND_PROFILING
2020 
2021 } }  // namespace v8::internal
2022