• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #ifdef MD_RAND_DEBUG
113 # ifndef NDEBUG
114 #   define NDEBUG
115 # endif
116 #endif
117 
118 #include <assert.h>
119 #include <stdio.h>
120 #include <string.h>
121 
122 #include "e_os.h"
123 
124 #include <openssl/rand.h>
125 #include "rand_lcl.h"
126 
127 #include <openssl/crypto.h>
128 #include <openssl/err.h>
129 
130 #ifdef BN_DEBUG
131 # define PREDICT
132 #endif
133 
134 /* #define PREDICT	1 */
135 
136 #define STATE_SIZE	1023
137 static int state_num=0,state_index=0;
138 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
139 static unsigned char md[MD_DIGEST_LENGTH];
140 static long md_count[2]={0,0};
141 static double entropy=0;
142 static int initialized=0;
143 
144 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
145                                            * holds CRYPTO_LOCK_RAND
146                                            * (to prevent double locking) */
147 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
148 static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
149 
150 
151 #ifdef PREDICT
152 int rand_predictable=0;
153 #endif
154 
155 const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
156 
157 static void ssleay_rand_cleanup(void);
158 static void ssleay_rand_seed(const void *buf, int num);
159 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
160 static int ssleay_rand_bytes(unsigned char *buf, int num);
161 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
162 static int ssleay_rand_status(void);
163 
164 RAND_METHOD rand_ssleay_meth={
165 	ssleay_rand_seed,
166 	ssleay_rand_bytes,
167 	ssleay_rand_cleanup,
168 	ssleay_rand_add,
169 	ssleay_rand_pseudo_bytes,
170 	ssleay_rand_status
171 	};
172 
RAND_SSLeay(void)173 RAND_METHOD *RAND_SSLeay(void)
174 	{
175 	return(&rand_ssleay_meth);
176 	}
177 
ssleay_rand_cleanup(void)178 static void ssleay_rand_cleanup(void)
179 	{
180 	OPENSSL_cleanse(state,sizeof(state));
181 	state_num=0;
182 	state_index=0;
183 	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
184 	md_count[0]=0;
185 	md_count[1]=0;
186 	entropy=0;
187 	initialized=0;
188 	}
189 
ssleay_rand_add(const void * buf,int num,double add)190 static void ssleay_rand_add(const void *buf, int num, double add)
191 	{
192 	int i,j,k,st_idx;
193 	long md_c[2];
194 	unsigned char local_md[MD_DIGEST_LENGTH];
195 	EVP_MD_CTX m;
196 	int do_not_lock;
197 
198 	/*
199 	 * (Based on the rand(3) manpage)
200 	 *
201 	 * The input is chopped up into units of 20 bytes (or less for
202 	 * the last block).  Each of these blocks is run through the hash
203 	 * function as follows:  The data passed to the hash function
204 	 * is the current 'md', the same number of bytes from the 'state'
205 	 * (the location determined by in incremented looping index) as
206 	 * the current 'block', the new key data 'block', and 'count'
207 	 * (which is incremented after each use).
208 	 * The result of this is kept in 'md' and also xored into the
209 	 * 'state' at the same locations that were used as input into the
210          * hash function.
211 	 */
212 
213 	/* check if we already have the lock */
214 	if (crypto_lock_rand)
215 		{
216 		CRYPTO_THREADID cur;
217 		CRYPTO_THREADID_current(&cur);
218 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
219 		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
220 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
221 		}
222 	else
223 		do_not_lock = 0;
224 
225 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
226 	st_idx=state_index;
227 
228 	/* use our own copies of the counters so that even
229 	 * if a concurrent thread seeds with exactly the
230 	 * same data and uses the same subarray there's _some_
231 	 * difference */
232 	md_c[0] = md_count[0];
233 	md_c[1] = md_count[1];
234 
235 	memcpy(local_md, md, sizeof md);
236 
237 	/* state_index <= state_num <= STATE_SIZE */
238 	state_index += num;
239 	if (state_index >= STATE_SIZE)
240 		{
241 		state_index%=STATE_SIZE;
242 		state_num=STATE_SIZE;
243 		}
244 	else if (state_num < STATE_SIZE)
245 		{
246 		if (state_index > state_num)
247 			state_num=state_index;
248 		}
249 	/* state_index <= state_num <= STATE_SIZE */
250 
251 	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
252 	 * are what we will use now, but other threads may use them
253 	 * as well */
254 
255 	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
256 
257 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
258 
259 	EVP_MD_CTX_init(&m);
260 	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
261 		{
262 		j=(num-i);
263 		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
264 
265 		MD_Init(&m);
266 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
267 		k=(st_idx+j)-STATE_SIZE;
268 		if (k > 0)
269 			{
270 			MD_Update(&m,&(state[st_idx]),j-k);
271 			MD_Update(&m,&(state[0]),k);
272 			}
273 		else
274 			MD_Update(&m,&(state[st_idx]),j);
275 
276 		/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
277 		MD_Update(&m,buf,j);
278 		/* We know that line may cause programs such as
279 		   purify and valgrind to complain about use of
280 		   uninitialized data.  The problem is not, it's
281 		   with the caller.  Removing that line will make
282 		   sure you get really bad randomness and thereby
283 		   other problems such as very insecure keys. */
284 
285 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
286 		MD_Final(&m,local_md);
287 		md_c[1]++;
288 
289 		buf=(const char *)buf + j;
290 
291 		for (k=0; k<j; k++)
292 			{
293 			/* Parallel threads may interfere with this,
294 			 * but always each byte of the new state is
295 			 * the XOR of some previous value of its
296 			 * and local_md (itermediate values may be lost).
297 			 * Alway using locking could hurt performance more
298 			 * than necessary given that conflicts occur only
299 			 * when the total seeding is longer than the random
300 			 * state. */
301 			state[st_idx++]^=local_md[k];
302 			if (st_idx >= STATE_SIZE)
303 				st_idx=0;
304 			}
305 		}
306 	EVP_MD_CTX_cleanup(&m);
307 
308 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
309 	/* Don't just copy back local_md into md -- this could mean that
310 	 * other thread's seeding remains without effect (except for
311 	 * the incremented counter).  By XORing it we keep at least as
312 	 * much entropy as fits into md. */
313 	for (k = 0; k < (int)sizeof(md); k++)
314 		{
315 		md[k] ^= local_md[k];
316 		}
317 	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
318 	    entropy += add;
319 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
320 
321 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
322 	assert(md_c[1] == md_count[1]);
323 #endif
324 	}
325 
ssleay_rand_seed(const void * buf,int num)326 static void ssleay_rand_seed(const void *buf, int num)
327 	{
328 	ssleay_rand_add(buf, num, (double)num);
329 	}
330 
ssleay_rand_bytes(unsigned char * buf,int num)331 static int ssleay_rand_bytes(unsigned char *buf, int num)
332 	{
333 	static volatile int stirred_pool = 0;
334 	int i,j,k,st_num,st_idx;
335 	int num_ceil;
336 	int ok;
337 	long md_c[2];
338 	unsigned char local_md[MD_DIGEST_LENGTH];
339 	EVP_MD_CTX m;
340 #ifndef GETPID_IS_MEANINGLESS
341 	pid_t curr_pid = getpid();
342 #endif
343 	int do_stir_pool = 0;
344 
345 #ifdef PREDICT
346 	if (rand_predictable)
347 		{
348 		static unsigned char val=0;
349 
350 		for (i=0; i<num; i++)
351 			buf[i]=val++;
352 		return(1);
353 		}
354 #endif
355 
356 	if (num <= 0)
357 		return 1;
358 
359 	EVP_MD_CTX_init(&m);
360 	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
361 	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
362 
363 	/*
364 	 * (Based on the rand(3) manpage:)
365 	 *
366 	 * For each group of 10 bytes (or less), we do the following:
367 	 *
368 	 * Input into the hash function the local 'md' (which is initialized from
369 	 * the global 'md' before any bytes are generated), the bytes that are to
370 	 * be overwritten by the random bytes, and bytes from the 'state'
371 	 * (incrementing looping index). From this digest output (which is kept
372 	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
373 	 * bottom 10 bytes are xored into the 'state'.
374 	 *
375 	 * Finally, after we have finished 'num' random bytes for the
376 	 * caller, 'count' (which is incremented) and the local and global 'md'
377 	 * are fed into the hash function and the results are kept in the
378 	 * global 'md'.
379 	 */
380 
381 	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
382 
383 	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
384 	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
385 	CRYPTO_THREADID_current(&locking_threadid);
386 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
387 	crypto_lock_rand = 1;
388 
389 	if (!initialized)
390 		{
391 		RAND_poll();
392 		initialized = 1;
393 		}
394 
395 	if (!stirred_pool)
396 		do_stir_pool = 1;
397 
398 	ok = (entropy >= ENTROPY_NEEDED);
399 	if (!ok)
400 		{
401 		/* If the PRNG state is not yet unpredictable, then seeing
402 		 * the PRNG output may help attackers to determine the new
403 		 * state; thus we have to decrease the entropy estimate.
404 		 * Once we've had enough initial seeding we don't bother to
405 		 * adjust the entropy count, though, because we're not ambitious
406 		 * to provide *information-theoretic* randomness.
407 		 *
408 		 * NOTE: This approach fails if the program forks before
409 		 * we have enough entropy. Entropy should be collected
410 		 * in a separate input pool and be transferred to the
411 		 * output pool only when the entropy limit has been reached.
412 		 */
413 		entropy -= num;
414 		if (entropy < 0)
415 			entropy = 0;
416 		}
417 
418 	if (do_stir_pool)
419 		{
420 		/* In the output function only half of 'md' remains secret,
421 		 * so we better make sure that the required entropy gets
422 		 * 'evenly distributed' through 'state', our randomness pool.
423 		 * The input function (ssleay_rand_add) chains all of 'md',
424 		 * which makes it more suitable for this purpose.
425 		 */
426 
427 		int n = STATE_SIZE; /* so that the complete pool gets accessed */
428 		while (n > 0)
429 			{
430 #if MD_DIGEST_LENGTH > 20
431 # error "Please adjust DUMMY_SEED."
432 #endif
433 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
434 			/* Note that the seed does not matter, it's just that
435 			 * ssleay_rand_add expects to have something to hash. */
436 			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
437 			n -= MD_DIGEST_LENGTH;
438 			}
439 		if (ok)
440 			stirred_pool = 1;
441 		}
442 
443 	st_idx=state_index;
444 	st_num=state_num;
445 	md_c[0] = md_count[0];
446 	md_c[1] = md_count[1];
447 	memcpy(local_md, md, sizeof md);
448 
449 	state_index+=num_ceil;
450 	if (state_index > state_num)
451 		state_index %= state_num;
452 
453 	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
454 	 * are now ours (but other threads may use them too) */
455 
456 	md_count[0] += 1;
457 
458 	/* before unlocking, we must clear 'crypto_lock_rand' */
459 	crypto_lock_rand = 0;
460 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
461 
462 	while (num > 0)
463 		{
464 		/* num_ceil -= MD_DIGEST_LENGTH/2 */
465 		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
466 		num-=j;
467 		MD_Init(&m);
468 #ifndef GETPID_IS_MEANINGLESS
469 		if (curr_pid) /* just in the first iteration to save time */
470 			{
471 			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
472 			curr_pid = 0;
473 			}
474 #endif
475 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
476 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
477 
478 #ifndef PURIFY /* purify complains */
479 		/* The following line uses the supplied buffer as a small
480 		 * source of entropy: since this buffer is often uninitialised
481 		 * it may cause programs such as purify or valgrind to
482 		 * complain. So for those builds it is not used: the removal
483 		 * of such a small source of entropy has negligible impact on
484 		 * security.
485 		 */
486 		MD_Update(&m,buf,j);
487 #endif
488 
489 		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
490 		if (k > 0)
491 			{
492 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
493 			MD_Update(&m,&(state[0]),k);
494 			}
495 		else
496 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
497 		MD_Final(&m,local_md);
498 
499 		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
500 			{
501 			state[st_idx++]^=local_md[i]; /* may compete with other threads */
502 			if (st_idx >= st_num)
503 				st_idx=0;
504 			if (i < j)
505 				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
506 			}
507 		}
508 
509 	MD_Init(&m);
510 	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
511 	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
512 	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
513 	MD_Update(&m,md,MD_DIGEST_LENGTH);
514 	MD_Final(&m,md);
515 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
516 
517 	EVP_MD_CTX_cleanup(&m);
518 	if (ok)
519 		return(1);
520 	else
521 		{
522 		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
523 		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
524 			"http://www.openssl.org/support/faq.html");
525 		return(0);
526 		}
527 	}
528 
529 /* pseudo-random bytes that are guaranteed to be unique but not
530    unpredictable */
ssleay_rand_pseudo_bytes(unsigned char * buf,int num)531 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
532 	{
533 	int ret;
534 	unsigned long err;
535 
536 	ret = RAND_bytes(buf, num);
537 	if (ret == 0)
538 		{
539 		err = ERR_peek_error();
540 		if (ERR_GET_LIB(err) == ERR_LIB_RAND &&
541 		    ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED)
542 			ERR_clear_error();
543 		}
544 	return (ret);
545 	}
546 
ssleay_rand_status(void)547 static int ssleay_rand_status(void)
548 	{
549 	CRYPTO_THREADID cur;
550 	int ret;
551 	int do_not_lock;
552 
553 	CRYPTO_THREADID_current(&cur);
554 	/* check if we already have the lock
555 	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
556 	if (crypto_lock_rand)
557 		{
558 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
559 		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
560 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
561 		}
562 	else
563 		do_not_lock = 0;
564 
565 	if (!do_not_lock)
566 		{
567 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
568 
569 		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
570 		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
571 		CRYPTO_THREADID_cpy(&locking_threadid, &cur);
572 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
573 		crypto_lock_rand = 1;
574 		}
575 
576 	if (!initialized)
577 		{
578 		RAND_poll();
579 		initialized = 1;
580 		}
581 
582 	ret = entropy >= ENTROPY_NEEDED;
583 
584 	if (!do_not_lock)
585 		{
586 		/* before unlocking, we must clear 'crypto_lock_rand' */
587 		crypto_lock_rand = 0;
588 
589 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
590 		}
591 
592 	return ret;
593 	}
594