• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "accessors.h"
31 #include "api.h"
32 #include "execution.h"
33 #include "global-handles.h"
34 #include "ic-inl.h"
35 #include "natives.h"
36 #include "platform.h"
37 #include "runtime.h"
38 #include "serialize.h"
39 #include "stub-cache.h"
40 #include "v8threads.h"
41 #include "bootstrapper.h"
42 
43 namespace v8 {
44 namespace internal {
45 
46 
47 // -----------------------------------------------------------------------------
48 // Coding of external references.
49 
50 // The encoding of an external reference. The type is in the high word.
51 // The id is in the low word.
EncodeExternal(TypeCode type,uint16_t id)52 static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
53   return static_cast<uint32_t>(type) << 16 | id;
54 }
55 
56 
GetInternalPointer(StatsCounter * counter)57 static int* GetInternalPointer(StatsCounter* counter) {
58   // All counters refer to dummy_counter, if deserializing happens without
59   // setting up counters.
60   static int dummy_counter = 0;
61   return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
62 }
63 
64 
65 // ExternalReferenceTable is a helper class that defines the relationship
66 // between external references and their encodings. It is used to build
67 // hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
68 class ExternalReferenceTable {
69  public:
instance(Isolate * isolate)70   static ExternalReferenceTable* instance(Isolate* isolate) {
71     ExternalReferenceTable* external_reference_table =
72         isolate->external_reference_table();
73     if (external_reference_table == NULL) {
74       external_reference_table = new ExternalReferenceTable(isolate);
75       isolate->set_external_reference_table(external_reference_table);
76     }
77     return external_reference_table;
78   }
79 
size() const80   int size() const { return refs_.length(); }
81 
address(int i)82   Address address(int i) { return refs_[i].address; }
83 
code(int i)84   uint32_t code(int i) { return refs_[i].code; }
85 
name(int i)86   const char* name(int i) { return refs_[i].name; }
87 
max_id(int code)88   int max_id(int code) { return max_id_[code]; }
89 
90  private:
ExternalReferenceTable(Isolate * isolate)91   explicit ExternalReferenceTable(Isolate* isolate) : refs_(64) {
92       PopulateTable(isolate);
93   }
~ExternalReferenceTable()94   ~ExternalReferenceTable() { }
95 
96   struct ExternalReferenceEntry {
97     Address address;
98     uint32_t code;
99     const char* name;
100   };
101 
102   void PopulateTable(Isolate* isolate);
103 
104   // For a few types of references, we can get their address from their id.
105   void AddFromId(TypeCode type,
106                  uint16_t id,
107                  const char* name,
108                  Isolate* isolate);
109 
110   // For other types of references, the caller will figure out the address.
111   void Add(Address address, TypeCode type, uint16_t id, const char* name);
112 
113   List<ExternalReferenceEntry> refs_;
114   int max_id_[kTypeCodeCount];
115 };
116 
117 
AddFromId(TypeCode type,uint16_t id,const char * name,Isolate * isolate)118 void ExternalReferenceTable::AddFromId(TypeCode type,
119                                        uint16_t id,
120                                        const char* name,
121                                        Isolate* isolate) {
122   Address address;
123   switch (type) {
124     case C_BUILTIN: {
125       ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
126       address = ref.address();
127       break;
128     }
129     case BUILTIN: {
130       ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
131       address = ref.address();
132       break;
133     }
134     case RUNTIME_FUNCTION: {
135       ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
136       address = ref.address();
137       break;
138     }
139     case IC_UTILITY: {
140       ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
141                             isolate);
142       address = ref.address();
143       break;
144     }
145     default:
146       UNREACHABLE();
147       return;
148   }
149   Add(address, type, id, name);
150 }
151 
152 
Add(Address address,TypeCode type,uint16_t id,const char * name)153 void ExternalReferenceTable::Add(Address address,
154                                  TypeCode type,
155                                  uint16_t id,
156                                  const char* name) {
157   ASSERT_NE(NULL, address);
158   ExternalReferenceEntry entry;
159   entry.address = address;
160   entry.code = EncodeExternal(type, id);
161   entry.name = name;
162   ASSERT_NE(0, entry.code);
163   refs_.Add(entry);
164   if (id > max_id_[type]) max_id_[type] = id;
165 }
166 
167 
PopulateTable(Isolate * isolate)168 void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
169   for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
170     max_id_[type_code] = 0;
171   }
172 
173   // The following populates all of the different type of external references
174   // into the ExternalReferenceTable.
175   //
176   // NOTE: This function was originally 100k of code.  It has since been
177   // rewritten to be mostly table driven, as the callback macro style tends to
178   // very easily cause code bloat.  Please be careful in the future when adding
179   // new references.
180 
181   struct RefTableEntry {
182     TypeCode type;
183     uint16_t id;
184     const char* name;
185   };
186 
187   static const RefTableEntry ref_table[] = {
188   // Builtins
189 #define DEF_ENTRY_C(name, ignored) \
190   { C_BUILTIN, \
191     Builtins::c_##name, \
192     "Builtins::" #name },
193 
194   BUILTIN_LIST_C(DEF_ENTRY_C)
195 #undef DEF_ENTRY_C
196 
197 #define DEF_ENTRY_C(name, ignored) \
198   { BUILTIN, \
199     Builtins::k##name, \
200     "Builtins::" #name },
201 #define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
202 
203   BUILTIN_LIST_C(DEF_ENTRY_C)
204   BUILTIN_LIST_A(DEF_ENTRY_A)
205   BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
206 #undef DEF_ENTRY_C
207 #undef DEF_ENTRY_A
208 
209   // Runtime functions
210 #define RUNTIME_ENTRY(name, nargs, ressize) \
211   { RUNTIME_FUNCTION, \
212     Runtime::k##name, \
213     "Runtime::" #name },
214 
215   RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
216 #undef RUNTIME_ENTRY
217 
218   // IC utilities
219 #define IC_ENTRY(name) \
220   { IC_UTILITY, \
221     IC::k##name, \
222     "IC::" #name },
223 
224   IC_UTIL_LIST(IC_ENTRY)
225 #undef IC_ENTRY
226   };  // end of ref_table[].
227 
228   for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
229     AddFromId(ref_table[i].type,
230               ref_table[i].id,
231               ref_table[i].name,
232               isolate);
233   }
234 
235 #ifdef ENABLE_DEBUGGER_SUPPORT
236   // Debug addresses
237   Add(Debug_Address(Debug::k_after_break_target_address).address(isolate),
238       DEBUG_ADDRESS,
239       Debug::k_after_break_target_address << kDebugIdShift,
240       "Debug::after_break_target_address()");
241   Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate),
242       DEBUG_ADDRESS,
243       Debug::k_debug_break_slot_address << kDebugIdShift,
244       "Debug::debug_break_slot_address()");
245   Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate),
246       DEBUG_ADDRESS,
247       Debug::k_debug_break_return_address << kDebugIdShift,
248       "Debug::debug_break_return_address()");
249   Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate),
250       DEBUG_ADDRESS,
251       Debug::k_restarter_frame_function_pointer << kDebugIdShift,
252       "Debug::restarter_frame_function_pointer_address()");
253 #endif
254 
255   // Stat counters
256   struct StatsRefTableEntry {
257     StatsCounter* (Counters::*counter)();
258     uint16_t id;
259     const char* name;
260   };
261 
262   const StatsRefTableEntry stats_ref_table[] = {
263 #define COUNTER_ENTRY(name, caption) \
264   { &Counters::name,    \
265     Counters::k_##name, \
266     "Counters::" #name },
267 
268   STATS_COUNTER_LIST_1(COUNTER_ENTRY)
269   STATS_COUNTER_LIST_2(COUNTER_ENTRY)
270 #undef COUNTER_ENTRY
271   };  // end of stats_ref_table[].
272 
273   Counters* counters = isolate->counters();
274   for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
275     Add(reinterpret_cast<Address>(GetInternalPointer(
276             (counters->*(stats_ref_table[i].counter))())),
277         STATS_COUNTER,
278         stats_ref_table[i].id,
279         stats_ref_table[i].name);
280   }
281 
282   // Top addresses
283 
284   const char* AddressNames[] = {
285 #define C(name) "Isolate::" #name,
286     ISOLATE_ADDRESS_LIST(C)
287     ISOLATE_ADDRESS_LIST_PROF(C)
288     NULL
289 #undef C
290   };
291 
292   for (uint16_t i = 0; i < Isolate::k_isolate_address_count; ++i) {
293     Add(isolate->get_address_from_id((Isolate::AddressId)i),
294         TOP_ADDRESS, i, AddressNames[i]);
295   }
296 
297   // Accessors
298 #define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
299   Add((Address)&Accessors::name, \
300       ACCESSOR, \
301       Accessors::k##name, \
302       "Accessors::" #name);
303 
304   ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
305 #undef ACCESSOR_DESCRIPTOR_DECLARATION
306 
307   StubCache* stub_cache = isolate->stub_cache();
308 
309   // Stub cache tables
310   Add(stub_cache->key_reference(StubCache::kPrimary).address(),
311       STUB_CACHE_TABLE,
312       1,
313       "StubCache::primary_->key");
314   Add(stub_cache->value_reference(StubCache::kPrimary).address(),
315       STUB_CACHE_TABLE,
316       2,
317       "StubCache::primary_->value");
318   Add(stub_cache->key_reference(StubCache::kSecondary).address(),
319       STUB_CACHE_TABLE,
320       3,
321       "StubCache::secondary_->key");
322   Add(stub_cache->value_reference(StubCache::kSecondary).address(),
323       STUB_CACHE_TABLE,
324       4,
325       "StubCache::secondary_->value");
326 
327   // Runtime entries
328   Add(ExternalReference::perform_gc_function(isolate).address(),
329       RUNTIME_ENTRY,
330       1,
331       "Runtime::PerformGC");
332   Add(ExternalReference::fill_heap_number_with_random_function(
333           isolate).address(),
334       RUNTIME_ENTRY,
335       2,
336       "V8::FillHeapNumberWithRandom");
337   Add(ExternalReference::random_uint32_function(isolate).address(),
338       RUNTIME_ENTRY,
339       3,
340       "V8::Random");
341   Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
342       RUNTIME_ENTRY,
343       4,
344       "HandleScope::DeleteExtensions");
345 
346   // Miscellaneous
347   Add(ExternalReference::the_hole_value_location(isolate).address(),
348       UNCLASSIFIED,
349       2,
350       "Factory::the_hole_value().location()");
351   Add(ExternalReference::roots_address(isolate).address(),
352       UNCLASSIFIED,
353       3,
354       "Heap::roots_address()");
355   Add(ExternalReference::address_of_stack_limit(isolate).address(),
356       UNCLASSIFIED,
357       4,
358       "StackGuard::address_of_jslimit()");
359   Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
360       UNCLASSIFIED,
361       5,
362       "StackGuard::address_of_real_jslimit()");
363 #ifndef V8_INTERPRETED_REGEXP
364   Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
365       UNCLASSIFIED,
366       6,
367       "RegExpStack::limit_address()");
368   Add(ExternalReference::address_of_regexp_stack_memory_address(
369           isolate).address(),
370       UNCLASSIFIED,
371       7,
372       "RegExpStack::memory_address()");
373   Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
374       UNCLASSIFIED,
375       8,
376       "RegExpStack::memory_size()");
377   Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
378       UNCLASSIFIED,
379       9,
380       "OffsetsVector::static_offsets_vector");
381 #endif  // V8_INTERPRETED_REGEXP
382   Add(ExternalReference::new_space_start(isolate).address(),
383       UNCLASSIFIED,
384       10,
385       "Heap::NewSpaceStart()");
386   Add(ExternalReference::new_space_mask(isolate).address(),
387       UNCLASSIFIED,
388       11,
389       "Heap::NewSpaceMask()");
390   Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(),
391       UNCLASSIFIED,
392       12,
393       "Heap::always_allocate_scope_depth()");
394   Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
395       UNCLASSIFIED,
396       13,
397       "Heap::NewSpaceAllocationLimitAddress()");
398   Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
399       UNCLASSIFIED,
400       14,
401       "Heap::NewSpaceAllocationTopAddress()");
402 #ifdef ENABLE_DEBUGGER_SUPPORT
403   Add(ExternalReference::debug_break(isolate).address(),
404       UNCLASSIFIED,
405       15,
406       "Debug::Break()");
407   Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
408       UNCLASSIFIED,
409       16,
410       "Debug::step_in_fp_addr()");
411 #endif
412   Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(),
413       UNCLASSIFIED,
414       17,
415       "add_two_doubles");
416   Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(),
417       UNCLASSIFIED,
418       18,
419       "sub_two_doubles");
420   Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(),
421       UNCLASSIFIED,
422       19,
423       "mul_two_doubles");
424   Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(),
425       UNCLASSIFIED,
426       20,
427       "div_two_doubles");
428   Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(),
429       UNCLASSIFIED,
430       21,
431       "mod_two_doubles");
432   Add(ExternalReference::compare_doubles(isolate).address(),
433       UNCLASSIFIED,
434       22,
435       "compare_doubles");
436 #ifndef V8_INTERPRETED_REGEXP
437   Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
438       UNCLASSIFIED,
439       23,
440       "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
441   Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
442       UNCLASSIFIED,
443       24,
444       "RegExpMacroAssembler*::CheckStackGuardState()");
445   Add(ExternalReference::re_grow_stack(isolate).address(),
446       UNCLASSIFIED,
447       25,
448       "NativeRegExpMacroAssembler::GrowStack()");
449   Add(ExternalReference::re_word_character_map().address(),
450       UNCLASSIFIED,
451       26,
452       "NativeRegExpMacroAssembler::word_character_map");
453 #endif  // V8_INTERPRETED_REGEXP
454   // Keyed lookup cache.
455   Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
456       UNCLASSIFIED,
457       27,
458       "KeyedLookupCache::keys()");
459   Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
460       UNCLASSIFIED,
461       28,
462       "KeyedLookupCache::field_offsets()");
463   Add(ExternalReference::transcendental_cache_array_address(isolate).address(),
464       UNCLASSIFIED,
465       29,
466       "TranscendentalCache::caches()");
467   Add(ExternalReference::handle_scope_next_address().address(),
468       UNCLASSIFIED,
469       30,
470       "HandleScope::next");
471   Add(ExternalReference::handle_scope_limit_address().address(),
472       UNCLASSIFIED,
473       31,
474       "HandleScope::limit");
475   Add(ExternalReference::handle_scope_level_address().address(),
476       UNCLASSIFIED,
477       32,
478       "HandleScope::level");
479   Add(ExternalReference::new_deoptimizer_function(isolate).address(),
480       UNCLASSIFIED,
481       33,
482       "Deoptimizer::New()");
483   Add(ExternalReference::compute_output_frames_function(isolate).address(),
484       UNCLASSIFIED,
485       34,
486       "Deoptimizer::ComputeOutputFrames()");
487   Add(ExternalReference::address_of_min_int().address(),
488       UNCLASSIFIED,
489       35,
490       "LDoubleConstant::min_int");
491   Add(ExternalReference::address_of_one_half().address(),
492       UNCLASSIFIED,
493       36,
494       "LDoubleConstant::one_half");
495   Add(ExternalReference::isolate_address().address(),
496       UNCLASSIFIED,
497       37,
498       "isolate");
499   Add(ExternalReference::address_of_minus_zero().address(),
500       UNCLASSIFIED,
501       38,
502       "LDoubleConstant::minus_zero");
503   Add(ExternalReference::address_of_negative_infinity().address(),
504       UNCLASSIFIED,
505       39,
506       "LDoubleConstant::negative_infinity");
507   Add(ExternalReference::power_double_double_function(isolate).address(),
508       UNCLASSIFIED,
509       40,
510       "power_double_double_function");
511   Add(ExternalReference::power_double_int_function(isolate).address(),
512       UNCLASSIFIED,
513       41,
514       "power_double_int_function");
515   Add(ExternalReference::arguments_marker_location(isolate).address(),
516       UNCLASSIFIED,
517       42,
518       "Factory::arguments_marker().location()");
519 }
520 
521 
ExternalReferenceEncoder()522 ExternalReferenceEncoder::ExternalReferenceEncoder()
523     : encodings_(Match),
524       isolate_(Isolate::Current()) {
525   ExternalReferenceTable* external_references =
526       ExternalReferenceTable::instance(isolate_);
527   for (int i = 0; i < external_references->size(); ++i) {
528     Put(external_references->address(i), i);
529   }
530 }
531 
532 
Encode(Address key) const533 uint32_t ExternalReferenceEncoder::Encode(Address key) const {
534   int index = IndexOf(key);
535   ASSERT(key == NULL || index >= 0);
536   return index >=0 ?
537          ExternalReferenceTable::instance(isolate_)->code(index) : 0;
538 }
539 
540 
NameOfAddress(Address key) const541 const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
542   int index = IndexOf(key);
543   return index >= 0 ?
544       ExternalReferenceTable::instance(isolate_)->name(index) : NULL;
545 }
546 
547 
IndexOf(Address key) const548 int ExternalReferenceEncoder::IndexOf(Address key) const {
549   if (key == NULL) return -1;
550   HashMap::Entry* entry =
551       const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
552   return entry == NULL
553       ? -1
554       : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
555 }
556 
557 
Put(Address key,int index)558 void ExternalReferenceEncoder::Put(Address key, int index) {
559   HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
560   entry->value = reinterpret_cast<void*>(index);
561 }
562 
563 
ExternalReferenceDecoder()564 ExternalReferenceDecoder::ExternalReferenceDecoder()
565     : encodings_(NewArray<Address*>(kTypeCodeCount)),
566       isolate_(Isolate::Current()) {
567   ExternalReferenceTable* external_references =
568       ExternalReferenceTable::instance(isolate_);
569   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
570     int max = external_references->max_id(type) + 1;
571     encodings_[type] = NewArray<Address>(max + 1);
572   }
573   for (int i = 0; i < external_references->size(); ++i) {
574     Put(external_references->code(i), external_references->address(i));
575   }
576 }
577 
578 
~ExternalReferenceDecoder()579 ExternalReferenceDecoder::~ExternalReferenceDecoder() {
580   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
581     DeleteArray(encodings_[type]);
582   }
583   DeleteArray(encodings_);
584 }
585 
586 
587 bool Serializer::serialization_enabled_ = false;
588 bool Serializer::too_late_to_enable_now_ = false;
589 
590 
Deserializer(SnapshotByteSource * source)591 Deserializer::Deserializer(SnapshotByteSource* source)
592     : isolate_(NULL),
593       source_(source),
594       external_reference_decoder_(NULL) {
595 }
596 
597 
598 // This routine both allocates a new object, and also keeps
599 // track of where objects have been allocated so that we can
600 // fix back references when deserializing.
Allocate(int space_index,Space * space,int size)601 Address Deserializer::Allocate(int space_index, Space* space, int size) {
602   Address address;
603   if (!SpaceIsLarge(space_index)) {
604     ASSERT(!SpaceIsPaged(space_index) ||
605            size <= Page::kPageSize - Page::kObjectStartOffset);
606     MaybeObject* maybe_new_allocation;
607     if (space_index == NEW_SPACE) {
608       maybe_new_allocation =
609           reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
610     } else {
611       maybe_new_allocation =
612           reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
613     }
614     Object* new_allocation = maybe_new_allocation->ToObjectUnchecked();
615     HeapObject* new_object = HeapObject::cast(new_allocation);
616     address = new_object->address();
617     high_water_[space_index] = address + size;
618   } else {
619     ASSERT(SpaceIsLarge(space_index));
620     LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
621     Object* new_allocation;
622     if (space_index == kLargeData) {
623       new_allocation = lo_space->AllocateRaw(size)->ToObjectUnchecked();
624     } else if (space_index == kLargeFixedArray) {
625       new_allocation =
626           lo_space->AllocateRawFixedArray(size)->ToObjectUnchecked();
627     } else {
628       ASSERT_EQ(kLargeCode, space_index);
629       new_allocation = lo_space->AllocateRawCode(size)->ToObjectUnchecked();
630     }
631     HeapObject* new_object = HeapObject::cast(new_allocation);
632     // Record all large objects in the same space.
633     address = new_object->address();
634     pages_[LO_SPACE].Add(address);
635   }
636   last_object_address_ = address;
637   return address;
638 }
639 
640 
641 // This returns the address of an object that has been described in the
642 // snapshot as being offset bytes back in a particular space.
GetAddressFromEnd(int space)643 HeapObject* Deserializer::GetAddressFromEnd(int space) {
644   int offset = source_->GetInt();
645   ASSERT(!SpaceIsLarge(space));
646   offset <<= kObjectAlignmentBits;
647   return HeapObject::FromAddress(high_water_[space] - offset);
648 }
649 
650 
651 // This returns the address of an object that has been described in the
652 // snapshot as being offset bytes into a particular space.
GetAddressFromStart(int space)653 HeapObject* Deserializer::GetAddressFromStart(int space) {
654   int offset = source_->GetInt();
655   if (SpaceIsLarge(space)) {
656     // Large spaces have one object per 'page'.
657     return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
658   }
659   offset <<= kObjectAlignmentBits;
660   if (space == NEW_SPACE) {
661     // New space has only one space - numbered 0.
662     return HeapObject::FromAddress(pages_[space][0] + offset);
663   }
664   ASSERT(SpaceIsPaged(space));
665   int page_of_pointee = offset >> kPageSizeBits;
666   Address object_address = pages_[space][page_of_pointee] +
667                            (offset & Page::kPageAlignmentMask);
668   return HeapObject::FromAddress(object_address);
669 }
670 
671 
Deserialize()672 void Deserializer::Deserialize() {
673   isolate_ = Isolate::Current();
674   // Don't GC while deserializing - just expand the heap.
675   AlwaysAllocateScope always_allocate;
676   // Don't use the free lists while deserializing.
677   LinearAllocationScope allocate_linearly;
678   // No active threads.
679   ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
680   // No active handles.
681   ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty());
682   // Make sure the entire partial snapshot cache is traversed, filling it with
683   // valid object pointers.
684   isolate_->set_serialize_partial_snapshot_cache_length(
685       Isolate::kPartialSnapshotCacheCapacity);
686   ASSERT_EQ(NULL, external_reference_decoder_);
687   external_reference_decoder_ = new ExternalReferenceDecoder();
688   isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
689   isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
690 
691   isolate_->heap()->set_global_contexts_list(
692       isolate_->heap()->undefined_value());
693 }
694 
695 
DeserializePartial(Object ** root)696 void Deserializer::DeserializePartial(Object** root) {
697   isolate_ = Isolate::Current();
698   // Don't GC while deserializing - just expand the heap.
699   AlwaysAllocateScope always_allocate;
700   // Don't use the free lists while deserializing.
701   LinearAllocationScope allocate_linearly;
702   if (external_reference_decoder_ == NULL) {
703     external_reference_decoder_ = new ExternalReferenceDecoder();
704   }
705   VisitPointer(root);
706 }
707 
708 
~Deserializer()709 Deserializer::~Deserializer() {
710   ASSERT(source_->AtEOF());
711   if (external_reference_decoder_) {
712     delete external_reference_decoder_;
713     external_reference_decoder_ = NULL;
714   }
715 }
716 
717 
718 // This is called on the roots.  It is the driver of the deserialization
719 // process.  It is also called on the body of each function.
VisitPointers(Object ** start,Object ** end)720 void Deserializer::VisitPointers(Object** start, Object** end) {
721   // The space must be new space.  Any other space would cause ReadChunk to try
722   // to update the remembered using NULL as the address.
723   ReadChunk(start, end, NEW_SPACE, NULL);
724 }
725 
726 
727 // This routine writes the new object into the pointer provided and then
728 // returns true if the new object was in young space and false otherwise.
729 // The reason for this strange interface is that otherwise the object is
730 // written very late, which means the ByteArray map is not set up by the
731 // time we need to use it to mark the space at the end of a page free (by
732 // making it into a byte array).
ReadObject(int space_number,Space * space,Object ** write_back)733 void Deserializer::ReadObject(int space_number,
734                               Space* space,
735                               Object** write_back) {
736   int size = source_->GetInt() << kObjectAlignmentBits;
737   Address address = Allocate(space_number, space, size);
738   *write_back = HeapObject::FromAddress(address);
739   Object** current = reinterpret_cast<Object**>(address);
740   Object** limit = current + (size >> kPointerSizeLog2);
741   if (FLAG_log_snapshot_positions) {
742     LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
743   }
744   ReadChunk(current, limit, space_number, address);
745 #ifdef DEBUG
746   bool is_codespace = (space == HEAP->code_space()) ||
747       ((space == HEAP->lo_space()) && (space_number == kLargeCode));
748   ASSERT(HeapObject::FromAddress(address)->IsCode() == is_codespace);
749 #endif
750 }
751 
752 
753 // This macro is always used with a constant argument so it should all fold
754 // away to almost nothing in the generated code.  It might be nicer to do this
755 // with the ternary operator but there are type issues with that.
756 #define ASSIGN_DEST_SPACE(space_number)                                        \
757   Space* dest_space;                                                           \
758   if (space_number == NEW_SPACE) {                                             \
759     dest_space = isolate->heap()->new_space();                                \
760   } else if (space_number == OLD_POINTER_SPACE) {                              \
761     dest_space = isolate->heap()->old_pointer_space();                         \
762   } else if (space_number == OLD_DATA_SPACE) {                                 \
763     dest_space = isolate->heap()->old_data_space();                            \
764   } else if (space_number == CODE_SPACE) {                                     \
765     dest_space = isolate->heap()->code_space();                                \
766   } else if (space_number == MAP_SPACE) {                                      \
767     dest_space = isolate->heap()->map_space();                                 \
768   } else if (space_number == CELL_SPACE) {                                     \
769     dest_space = isolate->heap()->cell_space();                                \
770   } else {                                                                     \
771     ASSERT(space_number >= LO_SPACE);                                          \
772     dest_space = isolate->heap()->lo_space();                                  \
773   }
774 
775 
776 static const int kUnknownOffsetFromStart = -1;
777 
778 
ReadChunk(Object ** current,Object ** limit,int source_space,Address address)779 void Deserializer::ReadChunk(Object** current,
780                              Object** limit,
781                              int source_space,
782                              Address address) {
783   Isolate* const isolate = isolate_;
784   while (current < limit) {
785     int data = source_->Get();
786     switch (data) {
787 #define CASE_STATEMENT(where, how, within, space_number)                       \
788       case where + how + within + space_number:                                \
789       ASSERT((where & ~kPointedToMask) == 0);                                  \
790       ASSERT((how & ~kHowToCodeMask) == 0);                                    \
791       ASSERT((within & ~kWhereToPointMask) == 0);                              \
792       ASSERT((space_number & ~kSpaceMask) == 0);
793 
794 #define CASE_BODY(where, how, within, space_number_if_any, offset_from_start)  \
795       {                                                                        \
796         bool emit_write_barrier = false;                                       \
797         bool current_was_incremented = false;                                  \
798         int space_number =  space_number_if_any == kAnyOldSpace ?              \
799                             (data & kSpaceMask) : space_number_if_any;         \
800         if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
801           ASSIGN_DEST_SPACE(space_number)                                      \
802           ReadObject(space_number, dest_space, current);                       \
803           emit_write_barrier =                                                 \
804             (space_number == NEW_SPACE && source_space != NEW_SPACE);          \
805         } else {                                                               \
806           Object* new_object = NULL;  /* May not be a real Object pointer. */  \
807           if (where == kNewObject) {                                           \
808             ASSIGN_DEST_SPACE(space_number)                                    \
809             ReadObject(space_number, dest_space, &new_object);                 \
810           } else if (where == kRootArray) {                                    \
811             int root_id = source_->GetInt();                                   \
812             new_object = isolate->heap()->roots_address()[root_id];            \
813           } else if (where == kPartialSnapshotCache) {                         \
814             int cache_index = source_->GetInt();                               \
815             new_object = isolate->serialize_partial_snapshot_cache()           \
816                 [cache_index];                                                 \
817           } else if (where == kExternalReference) {                            \
818             int reference_id = source_->GetInt();                              \
819             Address address = external_reference_decoder_->                    \
820                 Decode(reference_id);                                          \
821             new_object = reinterpret_cast<Object*>(address);                   \
822           } else if (where == kBackref) {                                      \
823             emit_write_barrier =                                               \
824               (space_number == NEW_SPACE && source_space != NEW_SPACE);        \
825             new_object = GetAddressFromEnd(data & kSpaceMask);                 \
826           } else {                                                             \
827             ASSERT(where == kFromStart);                                       \
828             if (offset_from_start == kUnknownOffsetFromStart) {                \
829               emit_write_barrier =                                             \
830                 (space_number == NEW_SPACE && source_space != NEW_SPACE);      \
831               new_object = GetAddressFromStart(data & kSpaceMask);             \
832             } else {                                                           \
833               Address object_address = pages_[space_number][0] +               \
834                   (offset_from_start << kObjectAlignmentBits);                 \
835               new_object = HeapObject::FromAddress(object_address);            \
836             }                                                                  \
837           }                                                                    \
838           if (within == kFirstInstruction) {                                   \
839             Code* new_code_object = reinterpret_cast<Code*>(new_object);       \
840             new_object = reinterpret_cast<Object*>(                            \
841                 new_code_object->instruction_start());                         \
842           }                                                                    \
843           if (how == kFromCode) {                                              \
844             Address location_of_branch_data =                                  \
845                 reinterpret_cast<Address>(current);                            \
846             Assembler::set_target_at(location_of_branch_data,                  \
847                                      reinterpret_cast<Address>(new_object));   \
848             if (within == kFirstInstruction) {                                 \
849               location_of_branch_data += Assembler::kCallTargetSize;           \
850               current = reinterpret_cast<Object**>(location_of_branch_data);   \
851               current_was_incremented = true;                                  \
852             }                                                                  \
853           } else {                                                             \
854             *current = new_object;                                             \
855           }                                                                    \
856         }                                                                      \
857         if (emit_write_barrier) {                                              \
858           isolate->heap()->RecordWrite(address, static_cast<int>(              \
859               reinterpret_cast<Address>(current) - address));                  \
860         }                                                                      \
861         if (!current_was_incremented) {                                        \
862           current++;   /* Increment current if it wasn't done above. */        \
863         }                                                                      \
864         break;                                                                 \
865       }                                                                        \
866 
867 // This generates a case and a body for each space.  The large object spaces are
868 // very rare in snapshots so they are grouped in one body.
869 #define ONE_PER_SPACE(where, how, within)                                      \
870   CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
871   CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart)            \
872   CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
873   CASE_BODY(where, how, within, OLD_DATA_SPACE, kUnknownOffsetFromStart)       \
874   CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
875   CASE_BODY(where, how, within, OLD_POINTER_SPACE, kUnknownOffsetFromStart)    \
876   CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
877   CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart)           \
878   CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
879   CASE_BODY(where, how, within, CELL_SPACE, kUnknownOffsetFromStart)           \
880   CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
881   CASE_BODY(where, how, within, MAP_SPACE, kUnknownOffsetFromStart)            \
882   CASE_STATEMENT(where, how, within, kLargeData)                               \
883   CASE_STATEMENT(where, how, within, kLargeCode)                               \
884   CASE_STATEMENT(where, how, within, kLargeFixedArray)                         \
885   CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
886 
887 // This generates a case and a body for the new space (which has to do extra
888 // write barrier handling) and handles the other spaces with 8 fall-through
889 // cases and one body.
890 #define ALL_SPACES(where, how, within)                                         \
891   CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
892   CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart)            \
893   CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
894   CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
895   CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
896   CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
897   CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
898   CASE_STATEMENT(where, how, within, kLargeData)                               \
899   CASE_STATEMENT(where, how, within, kLargeCode)                               \
900   CASE_STATEMENT(where, how, within, kLargeFixedArray)                         \
901   CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
902 
903 #define ONE_PER_CODE_SPACE(where, how, within)                                 \
904   CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
905   CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart)           \
906   CASE_STATEMENT(where, how, within, kLargeCode)                               \
907   CASE_BODY(where, how, within, kLargeCode, kUnknownOffsetFromStart)
908 
909 #define EMIT_COMMON_REFERENCE_PATTERNS(pseudo_space_number,                    \
910                                        space_number,                           \
911                                        offset_from_start)                      \
912   CASE_STATEMENT(kFromStart, kPlain, kStartOfObject, pseudo_space_number)      \
913   CASE_BODY(kFromStart, kPlain, kStartOfObject, space_number, offset_from_start)
914 
915       // We generate 15 cases and bodies that process special tags that combine
916       // the raw data tag and the length into one byte.
917 #define RAW_CASE(index, size)                                      \
918       case kRawData + index: {                                     \
919         byte* raw_data_out = reinterpret_cast<byte*>(current);     \
920         source_->CopyRaw(raw_data_out, size);                      \
921         current = reinterpret_cast<Object**>(raw_data_out + size); \
922         break;                                                     \
923       }
924       COMMON_RAW_LENGTHS(RAW_CASE)
925 #undef RAW_CASE
926 
927       // Deserialize a chunk of raw data that doesn't have one of the popular
928       // lengths.
929       case kRawData: {
930         int size = source_->GetInt();
931         byte* raw_data_out = reinterpret_cast<byte*>(current);
932         source_->CopyRaw(raw_data_out, size);
933         current = reinterpret_cast<Object**>(raw_data_out + size);
934         break;
935       }
936 
937       // Deserialize a new object and write a pointer to it to the current
938       // object.
939       ONE_PER_SPACE(kNewObject, kPlain, kStartOfObject)
940       // Support for direct instruction pointers in functions
941       ONE_PER_CODE_SPACE(kNewObject, kPlain, kFirstInstruction)
942       // Deserialize a new code object and write a pointer to its first
943       // instruction to the current code object.
944       ONE_PER_SPACE(kNewObject, kFromCode, kFirstInstruction)
945       // Find a recently deserialized object using its offset from the current
946       // allocation point and write a pointer to it to the current object.
947       ALL_SPACES(kBackref, kPlain, kStartOfObject)
948       // Find a recently deserialized code object using its offset from the
949       // current allocation point and write a pointer to its first instruction
950       // to the current code object or the instruction pointer in a function
951       // object.
952       ALL_SPACES(kBackref, kFromCode, kFirstInstruction)
953       ALL_SPACES(kBackref, kPlain, kFirstInstruction)
954       // Find an already deserialized object using its offset from the start
955       // and write a pointer to it to the current object.
956       ALL_SPACES(kFromStart, kPlain, kStartOfObject)
957       ALL_SPACES(kFromStart, kPlain, kFirstInstruction)
958       // Find an already deserialized code object using its offset from the
959       // start and write a pointer to its first instruction to the current code
960       // object.
961       ALL_SPACES(kFromStart, kFromCode, kFirstInstruction)
962       // Find an already deserialized object at one of the predetermined popular
963       // offsets from the start and write a pointer to it in the current object.
964       COMMON_REFERENCE_PATTERNS(EMIT_COMMON_REFERENCE_PATTERNS)
965       // Find an object in the roots array and write a pointer to it to the
966       // current object.
967       CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
968       CASE_BODY(kRootArray, kPlain, kStartOfObject, 0, kUnknownOffsetFromStart)
969       // Find an object in the partial snapshots cache and write a pointer to it
970       // to the current object.
971       CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
972       CASE_BODY(kPartialSnapshotCache,
973                 kPlain,
974                 kStartOfObject,
975                 0,
976                 kUnknownOffsetFromStart)
977       // Find an code entry in the partial snapshots cache and
978       // write a pointer to it to the current object.
979       CASE_STATEMENT(kPartialSnapshotCache, kPlain, kFirstInstruction, 0)
980       CASE_BODY(kPartialSnapshotCache,
981                 kPlain,
982                 kFirstInstruction,
983                 0,
984                 kUnknownOffsetFromStart)
985       // Find an external reference and write a pointer to it to the current
986       // object.
987       CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
988       CASE_BODY(kExternalReference,
989                 kPlain,
990                 kStartOfObject,
991                 0,
992                 kUnknownOffsetFromStart)
993       // Find an external reference and write a pointer to it in the current
994       // code object.
995       CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
996       CASE_BODY(kExternalReference,
997                 kFromCode,
998                 kStartOfObject,
999                 0,
1000                 kUnknownOffsetFromStart)
1001 
1002 #undef CASE_STATEMENT
1003 #undef CASE_BODY
1004 #undef ONE_PER_SPACE
1005 #undef ALL_SPACES
1006 #undef EMIT_COMMON_REFERENCE_PATTERNS
1007 #undef ASSIGN_DEST_SPACE
1008 
1009       case kNewPage: {
1010         int space = source_->Get();
1011         pages_[space].Add(last_object_address_);
1012         if (space == CODE_SPACE) {
1013           CPU::FlushICache(last_object_address_, Page::kPageSize);
1014         }
1015         break;
1016       }
1017 
1018       case kNativesStringResource: {
1019         int index = source_->Get();
1020         Vector<const char> source_vector = Natives::GetScriptSource(index);
1021         NativesExternalStringResource* resource =
1022             new NativesExternalStringResource(
1023                 isolate->bootstrapper(), source_vector.start());
1024         *current++ = reinterpret_cast<Object*>(resource);
1025         break;
1026       }
1027 
1028       case kSynchronize: {
1029         // If we get here then that indicates that you have a mismatch between
1030         // the number of GC roots when serializing and deserializing.
1031         UNREACHABLE();
1032       }
1033 
1034       default:
1035         UNREACHABLE();
1036     }
1037   }
1038   ASSERT_EQ(current, limit);
1039 }
1040 
1041 
PutInt(uintptr_t integer,const char * description)1042 void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
1043   const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
1044   for (int shift = max_shift; shift > 0; shift -= 7) {
1045     if (integer >= static_cast<uintptr_t>(1u) << shift) {
1046       Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart");
1047     }
1048   }
1049   PutSection(static_cast<int>(integer & 0x7f), "IntLastPart");
1050 }
1051 
1052 #ifdef DEBUG
1053 
Synchronize(const char * tag)1054 void Deserializer::Synchronize(const char* tag) {
1055   int data = source_->Get();
1056   // If this assert fails then that indicates that you have a mismatch between
1057   // the number of GC roots when serializing and deserializing.
1058   ASSERT_EQ(kSynchronize, data);
1059   do {
1060     int character = source_->Get();
1061     if (character == 0) break;
1062     if (FLAG_debug_serialization) {
1063       PrintF("%c", character);
1064     }
1065   } while (true);
1066   if (FLAG_debug_serialization) {
1067     PrintF("\n");
1068   }
1069 }
1070 
1071 
Synchronize(const char * tag)1072 void Serializer::Synchronize(const char* tag) {
1073   sink_->Put(kSynchronize, tag);
1074   int character;
1075   do {
1076     character = *tag++;
1077     sink_->PutSection(character, "TagCharacter");
1078   } while (character != 0);
1079 }
1080 
1081 #endif
1082 
Serializer(SnapshotByteSink * sink)1083 Serializer::Serializer(SnapshotByteSink* sink)
1084     : sink_(sink),
1085       current_root_index_(0),
1086       external_reference_encoder_(new ExternalReferenceEncoder),
1087       large_object_total_(0) {
1088   // The serializer is meant to be used only to generate initial heap images
1089   // from a context in which there is only one isolate.
1090   ASSERT(Isolate::Current()->IsDefaultIsolate());
1091   for (int i = 0; i <= LAST_SPACE; i++) {
1092     fullness_[i] = 0;
1093   }
1094 }
1095 
1096 
~Serializer()1097 Serializer::~Serializer() {
1098   delete external_reference_encoder_;
1099 }
1100 
1101 
SerializeStrongReferences()1102 void StartupSerializer::SerializeStrongReferences() {
1103   Isolate* isolate = Isolate::Current();
1104   // No active threads.
1105   CHECK_EQ(NULL, Isolate::Current()->thread_manager()->FirstThreadStateInUse());
1106   // No active or weak handles.
1107   CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1108   CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1109   // We don't support serializing installed extensions.
1110   for (RegisteredExtension* ext = v8::RegisteredExtension::first_extension();
1111        ext != NULL;
1112        ext = ext->next()) {
1113     CHECK_NE(v8::INSTALLED, ext->state());
1114   }
1115   HEAP->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1116 }
1117 
1118 
Serialize(Object ** object)1119 void PartialSerializer::Serialize(Object** object) {
1120   this->VisitPointer(object);
1121   Isolate* isolate = Isolate::Current();
1122 
1123   // After we have done the partial serialization the partial snapshot cache
1124   // will contain some references needed to decode the partial snapshot.  We
1125   // fill it up with undefineds so it has a predictable length so the
1126   // deserialization code doesn't need to know the length.
1127   for (int index = isolate->serialize_partial_snapshot_cache_length();
1128        index < Isolate::kPartialSnapshotCacheCapacity;
1129        index++) {
1130     isolate->serialize_partial_snapshot_cache()[index] =
1131         isolate->heap()->undefined_value();
1132     startup_serializer_->VisitPointer(
1133         &isolate->serialize_partial_snapshot_cache()[index]);
1134   }
1135   isolate->set_serialize_partial_snapshot_cache_length(
1136       Isolate::kPartialSnapshotCacheCapacity);
1137 }
1138 
1139 
VisitPointers(Object ** start,Object ** end)1140 void Serializer::VisitPointers(Object** start, Object** end) {
1141   for (Object** current = start; current < end; current++) {
1142     if ((*current)->IsSmi()) {
1143       sink_->Put(kRawData, "RawData");
1144       sink_->PutInt(kPointerSize, "length");
1145       for (int i = 0; i < kPointerSize; i++) {
1146         sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1147       }
1148     } else {
1149       SerializeObject(*current, kPlain, kStartOfObject);
1150     }
1151   }
1152 }
1153 
1154 
1155 // This ensures that the partial snapshot cache keeps things alive during GC and
1156 // tracks their movement.  When it is called during serialization of the startup
1157 // snapshot the partial snapshot is empty, so nothing happens.  When the partial
1158 // (context) snapshot is created, this array is populated with the pointers that
1159 // the partial snapshot will need. As that happens we emit serialized objects to
1160 // the startup snapshot that correspond to the elements of this cache array.  On
1161 // deserialization we therefore need to visit the cache array.  This fills it up
1162 // with pointers to deserialized objects.
Iterate(ObjectVisitor * visitor)1163 void SerializerDeserializer::Iterate(ObjectVisitor* visitor) {
1164   Isolate* isolate = Isolate::Current();
1165   visitor->VisitPointers(
1166       isolate->serialize_partial_snapshot_cache(),
1167       &isolate->serialize_partial_snapshot_cache()[
1168           isolate->serialize_partial_snapshot_cache_length()]);
1169 }
1170 
1171 
1172 // When deserializing we need to set the size of the snapshot cache.  This means
1173 // the root iteration code (above) will iterate over array elements, writing the
1174 // references to deserialized objects in them.
SetSnapshotCacheSize(int size)1175 void SerializerDeserializer::SetSnapshotCacheSize(int size) {
1176   Isolate::Current()->set_serialize_partial_snapshot_cache_length(size);
1177 }
1178 
1179 
PartialSnapshotCacheIndex(HeapObject * heap_object)1180 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1181   Isolate* isolate = Isolate::Current();
1182 
1183   for (int i = 0;
1184        i < isolate->serialize_partial_snapshot_cache_length();
1185        i++) {
1186     Object* entry = isolate->serialize_partial_snapshot_cache()[i];
1187     if (entry == heap_object) return i;
1188   }
1189 
1190   // We didn't find the object in the cache.  So we add it to the cache and
1191   // then visit the pointer so that it becomes part of the startup snapshot
1192   // and we can refer to it from the partial snapshot.
1193   int length = isolate->serialize_partial_snapshot_cache_length();
1194   CHECK(length < Isolate::kPartialSnapshotCacheCapacity);
1195   isolate->serialize_partial_snapshot_cache()[length] = heap_object;
1196   startup_serializer_->VisitPointer(
1197       &isolate->serialize_partial_snapshot_cache()[length]);
1198   // We don't recurse from the startup snapshot generator into the partial
1199   // snapshot generator.
1200   ASSERT(length == isolate->serialize_partial_snapshot_cache_length());
1201   isolate->set_serialize_partial_snapshot_cache_length(length + 1);
1202   return length;
1203 }
1204 
1205 
RootIndex(HeapObject * heap_object)1206 int PartialSerializer::RootIndex(HeapObject* heap_object) {
1207   for (int i = 0; i < Heap::kRootListLength; i++) {
1208     Object* root = HEAP->roots_address()[i];
1209     if (root == heap_object) return i;
1210   }
1211   return kInvalidRootIndex;
1212 }
1213 
1214 
1215 // Encode the location of an already deserialized object in order to write its
1216 // location into a later object.  We can encode the location as an offset from
1217 // the start of the deserialized objects or as an offset backwards from the
1218 // current allocation pointer.
SerializeReferenceToPreviousObject(int space,int address,HowToCode how_to_code,WhereToPoint where_to_point)1219 void Serializer::SerializeReferenceToPreviousObject(
1220     int space,
1221     int address,
1222     HowToCode how_to_code,
1223     WhereToPoint where_to_point) {
1224   int offset = CurrentAllocationAddress(space) - address;
1225   bool from_start = true;
1226   if (SpaceIsPaged(space)) {
1227     // For paged space it is simple to encode back from current allocation if
1228     // the object is on the same page as the current allocation pointer.
1229     if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
1230         (address >> kPageSizeBits)) {
1231       from_start = false;
1232       address = offset;
1233     }
1234   } else if (space == NEW_SPACE) {
1235     // For new space it is always simple to encode back from current allocation.
1236     if (offset < address) {
1237       from_start = false;
1238       address = offset;
1239     }
1240   }
1241   // If we are actually dealing with real offsets (and not a numbering of
1242   // all objects) then we should shift out the bits that are always 0.
1243   if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
1244   if (from_start) {
1245 #define COMMON_REFS_CASE(pseudo_space, actual_space, offset)                   \
1246     if (space == actual_space && address == offset &&                          \
1247         how_to_code == kPlain && where_to_point == kStartOfObject) {           \
1248       sink_->Put(kFromStart + how_to_code + where_to_point +                   \
1249                  pseudo_space, "RefSer");                                      \
1250     } else  /* NOLINT */
1251     COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
1252 #undef COMMON_REFS_CASE
1253     {  /* NOLINT */
1254       sink_->Put(kFromStart + how_to_code + where_to_point + space, "RefSer");
1255       sink_->PutInt(address, "address");
1256     }
1257   } else {
1258     sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
1259     sink_->PutInt(address, "address");
1260   }
1261 }
1262 
1263 
SerializeObject(Object * o,HowToCode how_to_code,WhereToPoint where_to_point)1264 void StartupSerializer::SerializeObject(
1265     Object* o,
1266     HowToCode how_to_code,
1267     WhereToPoint where_to_point) {
1268   CHECK(o->IsHeapObject());
1269   HeapObject* heap_object = HeapObject::cast(o);
1270 
1271   if (address_mapper_.IsMapped(heap_object)) {
1272     int space = SpaceOfAlreadySerializedObject(heap_object);
1273     int address = address_mapper_.MappedTo(heap_object);
1274     SerializeReferenceToPreviousObject(space,
1275                                        address,
1276                                        how_to_code,
1277                                        where_to_point);
1278   } else {
1279     // Object has not yet been serialized.  Serialize it here.
1280     ObjectSerializer object_serializer(this,
1281                                        heap_object,
1282                                        sink_,
1283                                        how_to_code,
1284                                        where_to_point);
1285     object_serializer.Serialize();
1286   }
1287 }
1288 
1289 
SerializeWeakReferences()1290 void StartupSerializer::SerializeWeakReferences() {
1291   for (int i = Isolate::Current()->serialize_partial_snapshot_cache_length();
1292        i < Isolate::kPartialSnapshotCacheCapacity;
1293        i++) {
1294     sink_->Put(kRootArray + kPlain + kStartOfObject, "RootSerialization");
1295     sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index");
1296   }
1297   HEAP->IterateWeakRoots(this, VISIT_ALL);
1298 }
1299 
1300 
SerializeObject(Object * o,HowToCode how_to_code,WhereToPoint where_to_point)1301 void PartialSerializer::SerializeObject(
1302     Object* o,
1303     HowToCode how_to_code,
1304     WhereToPoint where_to_point) {
1305   CHECK(o->IsHeapObject());
1306   HeapObject* heap_object = HeapObject::cast(o);
1307 
1308   int root_index;
1309   if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) {
1310     sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1311     sink_->PutInt(root_index, "root_index");
1312     return;
1313   }
1314 
1315   if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1316     int cache_index = PartialSnapshotCacheIndex(heap_object);
1317     sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1318                "PartialSnapshotCache");
1319     sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1320     return;
1321   }
1322 
1323   // Pointers from the partial snapshot to the objects in the startup snapshot
1324   // should go through the root array or through the partial snapshot cache.
1325   // If this is not the case you may have to add something to the root array.
1326   ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1327   // All the symbols that the partial snapshot needs should be either in the
1328   // root table or in the partial snapshot cache.
1329   ASSERT(!heap_object->IsSymbol());
1330 
1331   if (address_mapper_.IsMapped(heap_object)) {
1332     int space = SpaceOfAlreadySerializedObject(heap_object);
1333     int address = address_mapper_.MappedTo(heap_object);
1334     SerializeReferenceToPreviousObject(space,
1335                                        address,
1336                                        how_to_code,
1337                                        where_to_point);
1338   } else {
1339     // Object has not yet been serialized.  Serialize it here.
1340     ObjectSerializer serializer(this,
1341                                 heap_object,
1342                                 sink_,
1343                                 how_to_code,
1344                                 where_to_point);
1345     serializer.Serialize();
1346   }
1347 }
1348 
1349 
Serialize()1350 void Serializer::ObjectSerializer::Serialize() {
1351   int space = Serializer::SpaceOfObject(object_);
1352   int size = object_->Size();
1353 
1354   sink_->Put(kNewObject + reference_representation_ + space,
1355              "ObjectSerialization");
1356   sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1357 
1358   LOG(i::Isolate::Current(),
1359       SnapshotPositionEvent(object_->address(), sink_->Position()));
1360 
1361   // Mark this object as already serialized.
1362   bool start_new_page;
1363   int offset = serializer_->Allocate(space, size, &start_new_page);
1364   serializer_->address_mapper()->AddMapping(object_, offset);
1365   if (start_new_page) {
1366     sink_->Put(kNewPage, "NewPage");
1367     sink_->PutSection(space, "NewPageSpace");
1368   }
1369 
1370   // Serialize the map (first word of the object).
1371   serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject);
1372 
1373   // Serialize the rest of the object.
1374   CHECK_EQ(0, bytes_processed_so_far_);
1375   bytes_processed_so_far_ = kPointerSize;
1376   object_->IterateBody(object_->map()->instance_type(), size, this);
1377   OutputRawData(object_->address() + size);
1378 }
1379 
1380 
VisitPointers(Object ** start,Object ** end)1381 void Serializer::ObjectSerializer::VisitPointers(Object** start,
1382                                                  Object** end) {
1383   Object** current = start;
1384   while (current < end) {
1385     while (current < end && (*current)->IsSmi()) current++;
1386     if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1387 
1388     while (current < end && !(*current)->IsSmi()) {
1389       serializer_->SerializeObject(*current, kPlain, kStartOfObject);
1390       bytes_processed_so_far_ += kPointerSize;
1391       current++;
1392     }
1393   }
1394 }
1395 
1396 
VisitExternalReferences(Address * start,Address * end)1397 void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
1398                                                            Address* end) {
1399   Address references_start = reinterpret_cast<Address>(start);
1400   OutputRawData(references_start);
1401 
1402   for (Address* current = start; current < end; current++) {
1403     sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1404     int reference_id = serializer_->EncodeExternalReference(*current);
1405     sink_->PutInt(reference_id, "reference id");
1406   }
1407   bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
1408 }
1409 
1410 
VisitRuntimeEntry(RelocInfo * rinfo)1411 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1412   Address target_start = rinfo->target_address_address();
1413   OutputRawData(target_start);
1414   Address target = rinfo->target_address();
1415   uint32_t encoding = serializer_->EncodeExternalReference(target);
1416   CHECK(target == NULL ? encoding == 0 : encoding != 0);
1417   int representation;
1418   // Can't use a ternary operator because of gcc.
1419   if (rinfo->IsCodedSpecially()) {
1420     representation = kStartOfObject + kFromCode;
1421   } else {
1422     representation = kStartOfObject + kPlain;
1423   }
1424   sink_->Put(kExternalReference + representation, "ExternalReference");
1425   sink_->PutInt(encoding, "reference id");
1426   bytes_processed_so_far_ += rinfo->target_address_size();
1427 }
1428 
1429 
VisitCodeTarget(RelocInfo * rinfo)1430 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1431   CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
1432   Address target_start = rinfo->target_address_address();
1433   OutputRawData(target_start);
1434   Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1435   serializer_->SerializeObject(target, kFromCode, kFirstInstruction);
1436   bytes_processed_so_far_ += rinfo->target_address_size();
1437 }
1438 
1439 
VisitCodeEntry(Address entry_address)1440 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1441   Code* target = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1442   OutputRawData(entry_address);
1443   serializer_->SerializeObject(target, kPlain, kFirstInstruction);
1444   bytes_processed_so_far_ += kPointerSize;
1445 }
1446 
1447 
VisitGlobalPropertyCell(RelocInfo * rinfo)1448 void Serializer::ObjectSerializer::VisitGlobalPropertyCell(RelocInfo* rinfo) {
1449   // We shouldn't have any global property cell references in code
1450   // objects in the snapshot.
1451   UNREACHABLE();
1452 }
1453 
1454 
VisitExternalAsciiString(v8::String::ExternalAsciiStringResource ** resource_pointer)1455 void Serializer::ObjectSerializer::VisitExternalAsciiString(
1456     v8::String::ExternalAsciiStringResource** resource_pointer) {
1457   Address references_start = reinterpret_cast<Address>(resource_pointer);
1458   OutputRawData(references_start);
1459   for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1460     Object* source = HEAP->natives_source_cache()->get(i);
1461     if (!source->IsUndefined()) {
1462       ExternalAsciiString* string = ExternalAsciiString::cast(source);
1463       typedef v8::String::ExternalAsciiStringResource Resource;
1464       Resource* resource = string->resource();
1465       if (resource == *resource_pointer) {
1466         sink_->Put(kNativesStringResource, "NativesStringResource");
1467         sink_->PutSection(i, "NativesStringResourceEnd");
1468         bytes_processed_so_far_ += sizeof(resource);
1469         return;
1470       }
1471     }
1472   }
1473   // One of the strings in the natives cache should match the resource.  We
1474   // can't serialize any other kinds of external strings.
1475   UNREACHABLE();
1476 }
1477 
1478 
OutputRawData(Address up_to)1479 void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
1480   Address object_start = object_->address();
1481   int up_to_offset = static_cast<int>(up_to - object_start);
1482   int skipped = up_to_offset - bytes_processed_so_far_;
1483   // This assert will fail if the reloc info gives us the target_address_address
1484   // locations in a non-ascending order.  Luckily that doesn't happen.
1485   ASSERT(skipped >= 0);
1486   if (skipped != 0) {
1487     Address base = object_start + bytes_processed_so_far_;
1488 #define RAW_CASE(index, length)                                                \
1489     if (skipped == length) {                                                   \
1490       sink_->PutSection(kRawData + index, "RawDataFixed");                     \
1491     } else  /* NOLINT */
1492     COMMON_RAW_LENGTHS(RAW_CASE)
1493 #undef RAW_CASE
1494     {  /* NOLINT */
1495       sink_->Put(kRawData, "RawData");
1496       sink_->PutInt(skipped, "length");
1497     }
1498     for (int i = 0; i < skipped; i++) {
1499       unsigned int data = base[i];
1500       sink_->PutSection(data, "Byte");
1501     }
1502     bytes_processed_so_far_ += skipped;
1503   }
1504 }
1505 
1506 
SpaceOfObject(HeapObject * object)1507 int Serializer::SpaceOfObject(HeapObject* object) {
1508   for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1509     AllocationSpace s = static_cast<AllocationSpace>(i);
1510     if (HEAP->InSpace(object, s)) {
1511       if (i == LO_SPACE) {
1512         if (object->IsCode()) {
1513           return kLargeCode;
1514         } else if (object->IsFixedArray()) {
1515           return kLargeFixedArray;
1516         } else {
1517           return kLargeData;
1518         }
1519       }
1520       return i;
1521     }
1522   }
1523   UNREACHABLE();
1524   return 0;
1525 }
1526 
1527 
SpaceOfAlreadySerializedObject(HeapObject * object)1528 int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
1529   for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1530     AllocationSpace s = static_cast<AllocationSpace>(i);
1531     if (HEAP->InSpace(object, s)) {
1532       return i;
1533     }
1534   }
1535   UNREACHABLE();
1536   return 0;
1537 }
1538 
1539 
Allocate(int space,int size,bool * new_page)1540 int Serializer::Allocate(int space, int size, bool* new_page) {
1541   CHECK(space >= 0 && space < kNumberOfSpaces);
1542   if (SpaceIsLarge(space)) {
1543     // In large object space we merely number the objects instead of trying to
1544     // determine some sort of address.
1545     *new_page = true;
1546     large_object_total_ += size;
1547     return fullness_[LO_SPACE]++;
1548   }
1549   *new_page = false;
1550   if (fullness_[space] == 0) {
1551     *new_page = true;
1552   }
1553   if (SpaceIsPaged(space)) {
1554     // Paged spaces are a little special.  We encode their addresses as if the
1555     // pages were all contiguous and each page were filled up in the range
1556     // 0 - Page::kObjectAreaSize.  In practice the pages may not be contiguous
1557     // and allocation does not start at offset 0 in the page, but this scheme
1558     // means the deserializer can get the page number quickly by shifting the
1559     // serialized address.
1560     CHECK(IsPowerOf2(Page::kPageSize));
1561     int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
1562     CHECK(size <= Page::kObjectAreaSize);
1563     if (used_in_this_page + size > Page::kObjectAreaSize) {
1564       *new_page = true;
1565       fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
1566     }
1567   }
1568   int allocation_address = fullness_[space];
1569   fullness_[space] = allocation_address + size;
1570   return allocation_address;
1571 }
1572 
1573 
1574 } }  // namespace v8::internal
1575