1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "api.h"
32 #include "execution.h"
33 #include "global-handles.h"
34 #include "ic-inl.h"
35 #include "natives.h"
36 #include "platform.h"
37 #include "runtime.h"
38 #include "serialize.h"
39 #include "stub-cache.h"
40 #include "v8threads.h"
41 #include "bootstrapper.h"
42
43 namespace v8 {
44 namespace internal {
45
46
47 // -----------------------------------------------------------------------------
48 // Coding of external references.
49
50 // The encoding of an external reference. The type is in the high word.
51 // The id is in the low word.
EncodeExternal(TypeCode type,uint16_t id)52 static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
53 return static_cast<uint32_t>(type) << 16 | id;
54 }
55
56
GetInternalPointer(StatsCounter * counter)57 static int* GetInternalPointer(StatsCounter* counter) {
58 // All counters refer to dummy_counter, if deserializing happens without
59 // setting up counters.
60 static int dummy_counter = 0;
61 return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
62 }
63
64
65 // ExternalReferenceTable is a helper class that defines the relationship
66 // between external references and their encodings. It is used to build
67 // hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
68 class ExternalReferenceTable {
69 public:
instance(Isolate * isolate)70 static ExternalReferenceTable* instance(Isolate* isolate) {
71 ExternalReferenceTable* external_reference_table =
72 isolate->external_reference_table();
73 if (external_reference_table == NULL) {
74 external_reference_table = new ExternalReferenceTable(isolate);
75 isolate->set_external_reference_table(external_reference_table);
76 }
77 return external_reference_table;
78 }
79
size() const80 int size() const { return refs_.length(); }
81
address(int i)82 Address address(int i) { return refs_[i].address; }
83
code(int i)84 uint32_t code(int i) { return refs_[i].code; }
85
name(int i)86 const char* name(int i) { return refs_[i].name; }
87
max_id(int code)88 int max_id(int code) { return max_id_[code]; }
89
90 private:
ExternalReferenceTable(Isolate * isolate)91 explicit ExternalReferenceTable(Isolate* isolate) : refs_(64) {
92 PopulateTable(isolate);
93 }
~ExternalReferenceTable()94 ~ExternalReferenceTable() { }
95
96 struct ExternalReferenceEntry {
97 Address address;
98 uint32_t code;
99 const char* name;
100 };
101
102 void PopulateTable(Isolate* isolate);
103
104 // For a few types of references, we can get their address from their id.
105 void AddFromId(TypeCode type,
106 uint16_t id,
107 const char* name,
108 Isolate* isolate);
109
110 // For other types of references, the caller will figure out the address.
111 void Add(Address address, TypeCode type, uint16_t id, const char* name);
112
113 List<ExternalReferenceEntry> refs_;
114 int max_id_[kTypeCodeCount];
115 };
116
117
AddFromId(TypeCode type,uint16_t id,const char * name,Isolate * isolate)118 void ExternalReferenceTable::AddFromId(TypeCode type,
119 uint16_t id,
120 const char* name,
121 Isolate* isolate) {
122 Address address;
123 switch (type) {
124 case C_BUILTIN: {
125 ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
126 address = ref.address();
127 break;
128 }
129 case BUILTIN: {
130 ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
131 address = ref.address();
132 break;
133 }
134 case RUNTIME_FUNCTION: {
135 ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
136 address = ref.address();
137 break;
138 }
139 case IC_UTILITY: {
140 ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
141 isolate);
142 address = ref.address();
143 break;
144 }
145 default:
146 UNREACHABLE();
147 return;
148 }
149 Add(address, type, id, name);
150 }
151
152
Add(Address address,TypeCode type,uint16_t id,const char * name)153 void ExternalReferenceTable::Add(Address address,
154 TypeCode type,
155 uint16_t id,
156 const char* name) {
157 ASSERT_NE(NULL, address);
158 ExternalReferenceEntry entry;
159 entry.address = address;
160 entry.code = EncodeExternal(type, id);
161 entry.name = name;
162 ASSERT_NE(0, entry.code);
163 refs_.Add(entry);
164 if (id > max_id_[type]) max_id_[type] = id;
165 }
166
167
PopulateTable(Isolate * isolate)168 void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
169 for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
170 max_id_[type_code] = 0;
171 }
172
173 // The following populates all of the different type of external references
174 // into the ExternalReferenceTable.
175 //
176 // NOTE: This function was originally 100k of code. It has since been
177 // rewritten to be mostly table driven, as the callback macro style tends to
178 // very easily cause code bloat. Please be careful in the future when adding
179 // new references.
180
181 struct RefTableEntry {
182 TypeCode type;
183 uint16_t id;
184 const char* name;
185 };
186
187 static const RefTableEntry ref_table[] = {
188 // Builtins
189 #define DEF_ENTRY_C(name, ignored) \
190 { C_BUILTIN, \
191 Builtins::c_##name, \
192 "Builtins::" #name },
193
194 BUILTIN_LIST_C(DEF_ENTRY_C)
195 #undef DEF_ENTRY_C
196
197 #define DEF_ENTRY_C(name, ignored) \
198 { BUILTIN, \
199 Builtins::k##name, \
200 "Builtins::" #name },
201 #define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
202
203 BUILTIN_LIST_C(DEF_ENTRY_C)
204 BUILTIN_LIST_A(DEF_ENTRY_A)
205 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
206 #undef DEF_ENTRY_C
207 #undef DEF_ENTRY_A
208
209 // Runtime functions
210 #define RUNTIME_ENTRY(name, nargs, ressize) \
211 { RUNTIME_FUNCTION, \
212 Runtime::k##name, \
213 "Runtime::" #name },
214
215 RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
216 #undef RUNTIME_ENTRY
217
218 // IC utilities
219 #define IC_ENTRY(name) \
220 { IC_UTILITY, \
221 IC::k##name, \
222 "IC::" #name },
223
224 IC_UTIL_LIST(IC_ENTRY)
225 #undef IC_ENTRY
226 }; // end of ref_table[].
227
228 for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
229 AddFromId(ref_table[i].type,
230 ref_table[i].id,
231 ref_table[i].name,
232 isolate);
233 }
234
235 #ifdef ENABLE_DEBUGGER_SUPPORT
236 // Debug addresses
237 Add(Debug_Address(Debug::k_after_break_target_address).address(isolate),
238 DEBUG_ADDRESS,
239 Debug::k_after_break_target_address << kDebugIdShift,
240 "Debug::after_break_target_address()");
241 Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate),
242 DEBUG_ADDRESS,
243 Debug::k_debug_break_slot_address << kDebugIdShift,
244 "Debug::debug_break_slot_address()");
245 Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate),
246 DEBUG_ADDRESS,
247 Debug::k_debug_break_return_address << kDebugIdShift,
248 "Debug::debug_break_return_address()");
249 Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate),
250 DEBUG_ADDRESS,
251 Debug::k_restarter_frame_function_pointer << kDebugIdShift,
252 "Debug::restarter_frame_function_pointer_address()");
253 #endif
254
255 // Stat counters
256 struct StatsRefTableEntry {
257 StatsCounter* (Counters::*counter)();
258 uint16_t id;
259 const char* name;
260 };
261
262 const StatsRefTableEntry stats_ref_table[] = {
263 #define COUNTER_ENTRY(name, caption) \
264 { &Counters::name, \
265 Counters::k_##name, \
266 "Counters::" #name },
267
268 STATS_COUNTER_LIST_1(COUNTER_ENTRY)
269 STATS_COUNTER_LIST_2(COUNTER_ENTRY)
270 #undef COUNTER_ENTRY
271 }; // end of stats_ref_table[].
272
273 Counters* counters = isolate->counters();
274 for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
275 Add(reinterpret_cast<Address>(GetInternalPointer(
276 (counters->*(stats_ref_table[i].counter))())),
277 STATS_COUNTER,
278 stats_ref_table[i].id,
279 stats_ref_table[i].name);
280 }
281
282 // Top addresses
283
284 const char* AddressNames[] = {
285 #define C(name) "Isolate::" #name,
286 ISOLATE_ADDRESS_LIST(C)
287 ISOLATE_ADDRESS_LIST_PROF(C)
288 NULL
289 #undef C
290 };
291
292 for (uint16_t i = 0; i < Isolate::k_isolate_address_count; ++i) {
293 Add(isolate->get_address_from_id((Isolate::AddressId)i),
294 TOP_ADDRESS, i, AddressNames[i]);
295 }
296
297 // Accessors
298 #define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
299 Add((Address)&Accessors::name, \
300 ACCESSOR, \
301 Accessors::k##name, \
302 "Accessors::" #name);
303
304 ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
305 #undef ACCESSOR_DESCRIPTOR_DECLARATION
306
307 StubCache* stub_cache = isolate->stub_cache();
308
309 // Stub cache tables
310 Add(stub_cache->key_reference(StubCache::kPrimary).address(),
311 STUB_CACHE_TABLE,
312 1,
313 "StubCache::primary_->key");
314 Add(stub_cache->value_reference(StubCache::kPrimary).address(),
315 STUB_CACHE_TABLE,
316 2,
317 "StubCache::primary_->value");
318 Add(stub_cache->key_reference(StubCache::kSecondary).address(),
319 STUB_CACHE_TABLE,
320 3,
321 "StubCache::secondary_->key");
322 Add(stub_cache->value_reference(StubCache::kSecondary).address(),
323 STUB_CACHE_TABLE,
324 4,
325 "StubCache::secondary_->value");
326
327 // Runtime entries
328 Add(ExternalReference::perform_gc_function(isolate).address(),
329 RUNTIME_ENTRY,
330 1,
331 "Runtime::PerformGC");
332 Add(ExternalReference::fill_heap_number_with_random_function(
333 isolate).address(),
334 RUNTIME_ENTRY,
335 2,
336 "V8::FillHeapNumberWithRandom");
337 Add(ExternalReference::random_uint32_function(isolate).address(),
338 RUNTIME_ENTRY,
339 3,
340 "V8::Random");
341 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
342 RUNTIME_ENTRY,
343 4,
344 "HandleScope::DeleteExtensions");
345
346 // Miscellaneous
347 Add(ExternalReference::the_hole_value_location(isolate).address(),
348 UNCLASSIFIED,
349 2,
350 "Factory::the_hole_value().location()");
351 Add(ExternalReference::roots_address(isolate).address(),
352 UNCLASSIFIED,
353 3,
354 "Heap::roots_address()");
355 Add(ExternalReference::address_of_stack_limit(isolate).address(),
356 UNCLASSIFIED,
357 4,
358 "StackGuard::address_of_jslimit()");
359 Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
360 UNCLASSIFIED,
361 5,
362 "StackGuard::address_of_real_jslimit()");
363 #ifndef V8_INTERPRETED_REGEXP
364 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
365 UNCLASSIFIED,
366 6,
367 "RegExpStack::limit_address()");
368 Add(ExternalReference::address_of_regexp_stack_memory_address(
369 isolate).address(),
370 UNCLASSIFIED,
371 7,
372 "RegExpStack::memory_address()");
373 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
374 UNCLASSIFIED,
375 8,
376 "RegExpStack::memory_size()");
377 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
378 UNCLASSIFIED,
379 9,
380 "OffsetsVector::static_offsets_vector");
381 #endif // V8_INTERPRETED_REGEXP
382 Add(ExternalReference::new_space_start(isolate).address(),
383 UNCLASSIFIED,
384 10,
385 "Heap::NewSpaceStart()");
386 Add(ExternalReference::new_space_mask(isolate).address(),
387 UNCLASSIFIED,
388 11,
389 "Heap::NewSpaceMask()");
390 Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(),
391 UNCLASSIFIED,
392 12,
393 "Heap::always_allocate_scope_depth()");
394 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
395 UNCLASSIFIED,
396 13,
397 "Heap::NewSpaceAllocationLimitAddress()");
398 Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
399 UNCLASSIFIED,
400 14,
401 "Heap::NewSpaceAllocationTopAddress()");
402 #ifdef ENABLE_DEBUGGER_SUPPORT
403 Add(ExternalReference::debug_break(isolate).address(),
404 UNCLASSIFIED,
405 15,
406 "Debug::Break()");
407 Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
408 UNCLASSIFIED,
409 16,
410 "Debug::step_in_fp_addr()");
411 #endif
412 Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(),
413 UNCLASSIFIED,
414 17,
415 "add_two_doubles");
416 Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(),
417 UNCLASSIFIED,
418 18,
419 "sub_two_doubles");
420 Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(),
421 UNCLASSIFIED,
422 19,
423 "mul_two_doubles");
424 Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(),
425 UNCLASSIFIED,
426 20,
427 "div_two_doubles");
428 Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(),
429 UNCLASSIFIED,
430 21,
431 "mod_two_doubles");
432 Add(ExternalReference::compare_doubles(isolate).address(),
433 UNCLASSIFIED,
434 22,
435 "compare_doubles");
436 #ifndef V8_INTERPRETED_REGEXP
437 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
438 UNCLASSIFIED,
439 23,
440 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
441 Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
442 UNCLASSIFIED,
443 24,
444 "RegExpMacroAssembler*::CheckStackGuardState()");
445 Add(ExternalReference::re_grow_stack(isolate).address(),
446 UNCLASSIFIED,
447 25,
448 "NativeRegExpMacroAssembler::GrowStack()");
449 Add(ExternalReference::re_word_character_map().address(),
450 UNCLASSIFIED,
451 26,
452 "NativeRegExpMacroAssembler::word_character_map");
453 #endif // V8_INTERPRETED_REGEXP
454 // Keyed lookup cache.
455 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
456 UNCLASSIFIED,
457 27,
458 "KeyedLookupCache::keys()");
459 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
460 UNCLASSIFIED,
461 28,
462 "KeyedLookupCache::field_offsets()");
463 Add(ExternalReference::transcendental_cache_array_address(isolate).address(),
464 UNCLASSIFIED,
465 29,
466 "TranscendentalCache::caches()");
467 Add(ExternalReference::handle_scope_next_address().address(),
468 UNCLASSIFIED,
469 30,
470 "HandleScope::next");
471 Add(ExternalReference::handle_scope_limit_address().address(),
472 UNCLASSIFIED,
473 31,
474 "HandleScope::limit");
475 Add(ExternalReference::handle_scope_level_address().address(),
476 UNCLASSIFIED,
477 32,
478 "HandleScope::level");
479 Add(ExternalReference::new_deoptimizer_function(isolate).address(),
480 UNCLASSIFIED,
481 33,
482 "Deoptimizer::New()");
483 Add(ExternalReference::compute_output_frames_function(isolate).address(),
484 UNCLASSIFIED,
485 34,
486 "Deoptimizer::ComputeOutputFrames()");
487 Add(ExternalReference::address_of_min_int().address(),
488 UNCLASSIFIED,
489 35,
490 "LDoubleConstant::min_int");
491 Add(ExternalReference::address_of_one_half().address(),
492 UNCLASSIFIED,
493 36,
494 "LDoubleConstant::one_half");
495 Add(ExternalReference::isolate_address().address(),
496 UNCLASSIFIED,
497 37,
498 "isolate");
499 Add(ExternalReference::address_of_minus_zero().address(),
500 UNCLASSIFIED,
501 38,
502 "LDoubleConstant::minus_zero");
503 Add(ExternalReference::address_of_negative_infinity().address(),
504 UNCLASSIFIED,
505 39,
506 "LDoubleConstant::negative_infinity");
507 Add(ExternalReference::power_double_double_function(isolate).address(),
508 UNCLASSIFIED,
509 40,
510 "power_double_double_function");
511 Add(ExternalReference::power_double_int_function(isolate).address(),
512 UNCLASSIFIED,
513 41,
514 "power_double_int_function");
515 Add(ExternalReference::arguments_marker_location(isolate).address(),
516 UNCLASSIFIED,
517 42,
518 "Factory::arguments_marker().location()");
519 }
520
521
ExternalReferenceEncoder()522 ExternalReferenceEncoder::ExternalReferenceEncoder()
523 : encodings_(Match),
524 isolate_(Isolate::Current()) {
525 ExternalReferenceTable* external_references =
526 ExternalReferenceTable::instance(isolate_);
527 for (int i = 0; i < external_references->size(); ++i) {
528 Put(external_references->address(i), i);
529 }
530 }
531
532
Encode(Address key) const533 uint32_t ExternalReferenceEncoder::Encode(Address key) const {
534 int index = IndexOf(key);
535 ASSERT(key == NULL || index >= 0);
536 return index >=0 ?
537 ExternalReferenceTable::instance(isolate_)->code(index) : 0;
538 }
539
540
NameOfAddress(Address key) const541 const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
542 int index = IndexOf(key);
543 return index >= 0 ?
544 ExternalReferenceTable::instance(isolate_)->name(index) : NULL;
545 }
546
547
IndexOf(Address key) const548 int ExternalReferenceEncoder::IndexOf(Address key) const {
549 if (key == NULL) return -1;
550 HashMap::Entry* entry =
551 const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
552 return entry == NULL
553 ? -1
554 : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
555 }
556
557
Put(Address key,int index)558 void ExternalReferenceEncoder::Put(Address key, int index) {
559 HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
560 entry->value = reinterpret_cast<void*>(index);
561 }
562
563
ExternalReferenceDecoder()564 ExternalReferenceDecoder::ExternalReferenceDecoder()
565 : encodings_(NewArray<Address*>(kTypeCodeCount)),
566 isolate_(Isolate::Current()) {
567 ExternalReferenceTable* external_references =
568 ExternalReferenceTable::instance(isolate_);
569 for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
570 int max = external_references->max_id(type) + 1;
571 encodings_[type] = NewArray<Address>(max + 1);
572 }
573 for (int i = 0; i < external_references->size(); ++i) {
574 Put(external_references->code(i), external_references->address(i));
575 }
576 }
577
578
~ExternalReferenceDecoder()579 ExternalReferenceDecoder::~ExternalReferenceDecoder() {
580 for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
581 DeleteArray(encodings_[type]);
582 }
583 DeleteArray(encodings_);
584 }
585
586
587 bool Serializer::serialization_enabled_ = false;
588 bool Serializer::too_late_to_enable_now_ = false;
589
590
Deserializer(SnapshotByteSource * source)591 Deserializer::Deserializer(SnapshotByteSource* source)
592 : isolate_(NULL),
593 source_(source),
594 external_reference_decoder_(NULL) {
595 }
596
597
598 // This routine both allocates a new object, and also keeps
599 // track of where objects have been allocated so that we can
600 // fix back references when deserializing.
Allocate(int space_index,Space * space,int size)601 Address Deserializer::Allocate(int space_index, Space* space, int size) {
602 Address address;
603 if (!SpaceIsLarge(space_index)) {
604 ASSERT(!SpaceIsPaged(space_index) ||
605 size <= Page::kPageSize - Page::kObjectStartOffset);
606 MaybeObject* maybe_new_allocation;
607 if (space_index == NEW_SPACE) {
608 maybe_new_allocation =
609 reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
610 } else {
611 maybe_new_allocation =
612 reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
613 }
614 Object* new_allocation = maybe_new_allocation->ToObjectUnchecked();
615 HeapObject* new_object = HeapObject::cast(new_allocation);
616 address = new_object->address();
617 high_water_[space_index] = address + size;
618 } else {
619 ASSERT(SpaceIsLarge(space_index));
620 LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
621 Object* new_allocation;
622 if (space_index == kLargeData) {
623 new_allocation = lo_space->AllocateRaw(size)->ToObjectUnchecked();
624 } else if (space_index == kLargeFixedArray) {
625 new_allocation =
626 lo_space->AllocateRawFixedArray(size)->ToObjectUnchecked();
627 } else {
628 ASSERT_EQ(kLargeCode, space_index);
629 new_allocation = lo_space->AllocateRawCode(size)->ToObjectUnchecked();
630 }
631 HeapObject* new_object = HeapObject::cast(new_allocation);
632 // Record all large objects in the same space.
633 address = new_object->address();
634 pages_[LO_SPACE].Add(address);
635 }
636 last_object_address_ = address;
637 return address;
638 }
639
640
641 // This returns the address of an object that has been described in the
642 // snapshot as being offset bytes back in a particular space.
GetAddressFromEnd(int space)643 HeapObject* Deserializer::GetAddressFromEnd(int space) {
644 int offset = source_->GetInt();
645 ASSERT(!SpaceIsLarge(space));
646 offset <<= kObjectAlignmentBits;
647 return HeapObject::FromAddress(high_water_[space] - offset);
648 }
649
650
651 // This returns the address of an object that has been described in the
652 // snapshot as being offset bytes into a particular space.
GetAddressFromStart(int space)653 HeapObject* Deserializer::GetAddressFromStart(int space) {
654 int offset = source_->GetInt();
655 if (SpaceIsLarge(space)) {
656 // Large spaces have one object per 'page'.
657 return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
658 }
659 offset <<= kObjectAlignmentBits;
660 if (space == NEW_SPACE) {
661 // New space has only one space - numbered 0.
662 return HeapObject::FromAddress(pages_[space][0] + offset);
663 }
664 ASSERT(SpaceIsPaged(space));
665 int page_of_pointee = offset >> kPageSizeBits;
666 Address object_address = pages_[space][page_of_pointee] +
667 (offset & Page::kPageAlignmentMask);
668 return HeapObject::FromAddress(object_address);
669 }
670
671
Deserialize()672 void Deserializer::Deserialize() {
673 isolate_ = Isolate::Current();
674 // Don't GC while deserializing - just expand the heap.
675 AlwaysAllocateScope always_allocate;
676 // Don't use the free lists while deserializing.
677 LinearAllocationScope allocate_linearly;
678 // No active threads.
679 ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
680 // No active handles.
681 ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty());
682 // Make sure the entire partial snapshot cache is traversed, filling it with
683 // valid object pointers.
684 isolate_->set_serialize_partial_snapshot_cache_length(
685 Isolate::kPartialSnapshotCacheCapacity);
686 ASSERT_EQ(NULL, external_reference_decoder_);
687 external_reference_decoder_ = new ExternalReferenceDecoder();
688 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
689 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
690
691 isolate_->heap()->set_global_contexts_list(
692 isolate_->heap()->undefined_value());
693 }
694
695
DeserializePartial(Object ** root)696 void Deserializer::DeserializePartial(Object** root) {
697 isolate_ = Isolate::Current();
698 // Don't GC while deserializing - just expand the heap.
699 AlwaysAllocateScope always_allocate;
700 // Don't use the free lists while deserializing.
701 LinearAllocationScope allocate_linearly;
702 if (external_reference_decoder_ == NULL) {
703 external_reference_decoder_ = new ExternalReferenceDecoder();
704 }
705 VisitPointer(root);
706 }
707
708
~Deserializer()709 Deserializer::~Deserializer() {
710 ASSERT(source_->AtEOF());
711 if (external_reference_decoder_) {
712 delete external_reference_decoder_;
713 external_reference_decoder_ = NULL;
714 }
715 }
716
717
718 // This is called on the roots. It is the driver of the deserialization
719 // process. It is also called on the body of each function.
VisitPointers(Object ** start,Object ** end)720 void Deserializer::VisitPointers(Object** start, Object** end) {
721 // The space must be new space. Any other space would cause ReadChunk to try
722 // to update the remembered using NULL as the address.
723 ReadChunk(start, end, NEW_SPACE, NULL);
724 }
725
726
727 // This routine writes the new object into the pointer provided and then
728 // returns true if the new object was in young space and false otherwise.
729 // The reason for this strange interface is that otherwise the object is
730 // written very late, which means the ByteArray map is not set up by the
731 // time we need to use it to mark the space at the end of a page free (by
732 // making it into a byte array).
ReadObject(int space_number,Space * space,Object ** write_back)733 void Deserializer::ReadObject(int space_number,
734 Space* space,
735 Object** write_back) {
736 int size = source_->GetInt() << kObjectAlignmentBits;
737 Address address = Allocate(space_number, space, size);
738 *write_back = HeapObject::FromAddress(address);
739 Object** current = reinterpret_cast<Object**>(address);
740 Object** limit = current + (size >> kPointerSizeLog2);
741 if (FLAG_log_snapshot_positions) {
742 LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
743 }
744 ReadChunk(current, limit, space_number, address);
745 #ifdef DEBUG
746 bool is_codespace = (space == HEAP->code_space()) ||
747 ((space == HEAP->lo_space()) && (space_number == kLargeCode));
748 ASSERT(HeapObject::FromAddress(address)->IsCode() == is_codespace);
749 #endif
750 }
751
752
753 // This macro is always used with a constant argument so it should all fold
754 // away to almost nothing in the generated code. It might be nicer to do this
755 // with the ternary operator but there are type issues with that.
756 #define ASSIGN_DEST_SPACE(space_number) \
757 Space* dest_space; \
758 if (space_number == NEW_SPACE) { \
759 dest_space = isolate->heap()->new_space(); \
760 } else if (space_number == OLD_POINTER_SPACE) { \
761 dest_space = isolate->heap()->old_pointer_space(); \
762 } else if (space_number == OLD_DATA_SPACE) { \
763 dest_space = isolate->heap()->old_data_space(); \
764 } else if (space_number == CODE_SPACE) { \
765 dest_space = isolate->heap()->code_space(); \
766 } else if (space_number == MAP_SPACE) { \
767 dest_space = isolate->heap()->map_space(); \
768 } else if (space_number == CELL_SPACE) { \
769 dest_space = isolate->heap()->cell_space(); \
770 } else { \
771 ASSERT(space_number >= LO_SPACE); \
772 dest_space = isolate->heap()->lo_space(); \
773 }
774
775
776 static const int kUnknownOffsetFromStart = -1;
777
778
ReadChunk(Object ** current,Object ** limit,int source_space,Address address)779 void Deserializer::ReadChunk(Object** current,
780 Object** limit,
781 int source_space,
782 Address address) {
783 Isolate* const isolate = isolate_;
784 while (current < limit) {
785 int data = source_->Get();
786 switch (data) {
787 #define CASE_STATEMENT(where, how, within, space_number) \
788 case where + how + within + space_number: \
789 ASSERT((where & ~kPointedToMask) == 0); \
790 ASSERT((how & ~kHowToCodeMask) == 0); \
791 ASSERT((within & ~kWhereToPointMask) == 0); \
792 ASSERT((space_number & ~kSpaceMask) == 0);
793
794 #define CASE_BODY(where, how, within, space_number_if_any, offset_from_start) \
795 { \
796 bool emit_write_barrier = false; \
797 bool current_was_incremented = false; \
798 int space_number = space_number_if_any == kAnyOldSpace ? \
799 (data & kSpaceMask) : space_number_if_any; \
800 if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
801 ASSIGN_DEST_SPACE(space_number) \
802 ReadObject(space_number, dest_space, current); \
803 emit_write_barrier = \
804 (space_number == NEW_SPACE && source_space != NEW_SPACE); \
805 } else { \
806 Object* new_object = NULL; /* May not be a real Object pointer. */ \
807 if (where == kNewObject) { \
808 ASSIGN_DEST_SPACE(space_number) \
809 ReadObject(space_number, dest_space, &new_object); \
810 } else if (where == kRootArray) { \
811 int root_id = source_->GetInt(); \
812 new_object = isolate->heap()->roots_address()[root_id]; \
813 } else if (where == kPartialSnapshotCache) { \
814 int cache_index = source_->GetInt(); \
815 new_object = isolate->serialize_partial_snapshot_cache() \
816 [cache_index]; \
817 } else if (where == kExternalReference) { \
818 int reference_id = source_->GetInt(); \
819 Address address = external_reference_decoder_-> \
820 Decode(reference_id); \
821 new_object = reinterpret_cast<Object*>(address); \
822 } else if (where == kBackref) { \
823 emit_write_barrier = \
824 (space_number == NEW_SPACE && source_space != NEW_SPACE); \
825 new_object = GetAddressFromEnd(data & kSpaceMask); \
826 } else { \
827 ASSERT(where == kFromStart); \
828 if (offset_from_start == kUnknownOffsetFromStart) { \
829 emit_write_barrier = \
830 (space_number == NEW_SPACE && source_space != NEW_SPACE); \
831 new_object = GetAddressFromStart(data & kSpaceMask); \
832 } else { \
833 Address object_address = pages_[space_number][0] + \
834 (offset_from_start << kObjectAlignmentBits); \
835 new_object = HeapObject::FromAddress(object_address); \
836 } \
837 } \
838 if (within == kFirstInstruction) { \
839 Code* new_code_object = reinterpret_cast<Code*>(new_object); \
840 new_object = reinterpret_cast<Object*>( \
841 new_code_object->instruction_start()); \
842 } \
843 if (how == kFromCode) { \
844 Address location_of_branch_data = \
845 reinterpret_cast<Address>(current); \
846 Assembler::set_target_at(location_of_branch_data, \
847 reinterpret_cast<Address>(new_object)); \
848 if (within == kFirstInstruction) { \
849 location_of_branch_data += Assembler::kCallTargetSize; \
850 current = reinterpret_cast<Object**>(location_of_branch_data); \
851 current_was_incremented = true; \
852 } \
853 } else { \
854 *current = new_object; \
855 } \
856 } \
857 if (emit_write_barrier) { \
858 isolate->heap()->RecordWrite(address, static_cast<int>( \
859 reinterpret_cast<Address>(current) - address)); \
860 } \
861 if (!current_was_incremented) { \
862 current++; /* Increment current if it wasn't done above. */ \
863 } \
864 break; \
865 } \
866
867 // This generates a case and a body for each space. The large object spaces are
868 // very rare in snapshots so they are grouped in one body.
869 #define ONE_PER_SPACE(where, how, within) \
870 CASE_STATEMENT(where, how, within, NEW_SPACE) \
871 CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart) \
872 CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
873 CASE_BODY(where, how, within, OLD_DATA_SPACE, kUnknownOffsetFromStart) \
874 CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
875 CASE_BODY(where, how, within, OLD_POINTER_SPACE, kUnknownOffsetFromStart) \
876 CASE_STATEMENT(where, how, within, CODE_SPACE) \
877 CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart) \
878 CASE_STATEMENT(where, how, within, CELL_SPACE) \
879 CASE_BODY(where, how, within, CELL_SPACE, kUnknownOffsetFromStart) \
880 CASE_STATEMENT(where, how, within, MAP_SPACE) \
881 CASE_BODY(where, how, within, MAP_SPACE, kUnknownOffsetFromStart) \
882 CASE_STATEMENT(where, how, within, kLargeData) \
883 CASE_STATEMENT(where, how, within, kLargeCode) \
884 CASE_STATEMENT(where, how, within, kLargeFixedArray) \
885 CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
886
887 // This generates a case and a body for the new space (which has to do extra
888 // write barrier handling) and handles the other spaces with 8 fall-through
889 // cases and one body.
890 #define ALL_SPACES(where, how, within) \
891 CASE_STATEMENT(where, how, within, NEW_SPACE) \
892 CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart) \
893 CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
894 CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
895 CASE_STATEMENT(where, how, within, CODE_SPACE) \
896 CASE_STATEMENT(where, how, within, CELL_SPACE) \
897 CASE_STATEMENT(where, how, within, MAP_SPACE) \
898 CASE_STATEMENT(where, how, within, kLargeData) \
899 CASE_STATEMENT(where, how, within, kLargeCode) \
900 CASE_STATEMENT(where, how, within, kLargeFixedArray) \
901 CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
902
903 #define ONE_PER_CODE_SPACE(where, how, within) \
904 CASE_STATEMENT(where, how, within, CODE_SPACE) \
905 CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart) \
906 CASE_STATEMENT(where, how, within, kLargeCode) \
907 CASE_BODY(where, how, within, kLargeCode, kUnknownOffsetFromStart)
908
909 #define EMIT_COMMON_REFERENCE_PATTERNS(pseudo_space_number, \
910 space_number, \
911 offset_from_start) \
912 CASE_STATEMENT(kFromStart, kPlain, kStartOfObject, pseudo_space_number) \
913 CASE_BODY(kFromStart, kPlain, kStartOfObject, space_number, offset_from_start)
914
915 // We generate 15 cases and bodies that process special tags that combine
916 // the raw data tag and the length into one byte.
917 #define RAW_CASE(index, size) \
918 case kRawData + index: { \
919 byte* raw_data_out = reinterpret_cast<byte*>(current); \
920 source_->CopyRaw(raw_data_out, size); \
921 current = reinterpret_cast<Object**>(raw_data_out + size); \
922 break; \
923 }
924 COMMON_RAW_LENGTHS(RAW_CASE)
925 #undef RAW_CASE
926
927 // Deserialize a chunk of raw data that doesn't have one of the popular
928 // lengths.
929 case kRawData: {
930 int size = source_->GetInt();
931 byte* raw_data_out = reinterpret_cast<byte*>(current);
932 source_->CopyRaw(raw_data_out, size);
933 current = reinterpret_cast<Object**>(raw_data_out + size);
934 break;
935 }
936
937 // Deserialize a new object and write a pointer to it to the current
938 // object.
939 ONE_PER_SPACE(kNewObject, kPlain, kStartOfObject)
940 // Support for direct instruction pointers in functions
941 ONE_PER_CODE_SPACE(kNewObject, kPlain, kFirstInstruction)
942 // Deserialize a new code object and write a pointer to its first
943 // instruction to the current code object.
944 ONE_PER_SPACE(kNewObject, kFromCode, kFirstInstruction)
945 // Find a recently deserialized object using its offset from the current
946 // allocation point and write a pointer to it to the current object.
947 ALL_SPACES(kBackref, kPlain, kStartOfObject)
948 // Find a recently deserialized code object using its offset from the
949 // current allocation point and write a pointer to its first instruction
950 // to the current code object or the instruction pointer in a function
951 // object.
952 ALL_SPACES(kBackref, kFromCode, kFirstInstruction)
953 ALL_SPACES(kBackref, kPlain, kFirstInstruction)
954 // Find an already deserialized object using its offset from the start
955 // and write a pointer to it to the current object.
956 ALL_SPACES(kFromStart, kPlain, kStartOfObject)
957 ALL_SPACES(kFromStart, kPlain, kFirstInstruction)
958 // Find an already deserialized code object using its offset from the
959 // start and write a pointer to its first instruction to the current code
960 // object.
961 ALL_SPACES(kFromStart, kFromCode, kFirstInstruction)
962 // Find an already deserialized object at one of the predetermined popular
963 // offsets from the start and write a pointer to it in the current object.
964 COMMON_REFERENCE_PATTERNS(EMIT_COMMON_REFERENCE_PATTERNS)
965 // Find an object in the roots array and write a pointer to it to the
966 // current object.
967 CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
968 CASE_BODY(kRootArray, kPlain, kStartOfObject, 0, kUnknownOffsetFromStart)
969 // Find an object in the partial snapshots cache and write a pointer to it
970 // to the current object.
971 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
972 CASE_BODY(kPartialSnapshotCache,
973 kPlain,
974 kStartOfObject,
975 0,
976 kUnknownOffsetFromStart)
977 // Find an code entry in the partial snapshots cache and
978 // write a pointer to it to the current object.
979 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kFirstInstruction, 0)
980 CASE_BODY(kPartialSnapshotCache,
981 kPlain,
982 kFirstInstruction,
983 0,
984 kUnknownOffsetFromStart)
985 // Find an external reference and write a pointer to it to the current
986 // object.
987 CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
988 CASE_BODY(kExternalReference,
989 kPlain,
990 kStartOfObject,
991 0,
992 kUnknownOffsetFromStart)
993 // Find an external reference and write a pointer to it in the current
994 // code object.
995 CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
996 CASE_BODY(kExternalReference,
997 kFromCode,
998 kStartOfObject,
999 0,
1000 kUnknownOffsetFromStart)
1001
1002 #undef CASE_STATEMENT
1003 #undef CASE_BODY
1004 #undef ONE_PER_SPACE
1005 #undef ALL_SPACES
1006 #undef EMIT_COMMON_REFERENCE_PATTERNS
1007 #undef ASSIGN_DEST_SPACE
1008
1009 case kNewPage: {
1010 int space = source_->Get();
1011 pages_[space].Add(last_object_address_);
1012 if (space == CODE_SPACE) {
1013 CPU::FlushICache(last_object_address_, Page::kPageSize);
1014 }
1015 break;
1016 }
1017
1018 case kNativesStringResource: {
1019 int index = source_->Get();
1020 Vector<const char> source_vector = Natives::GetScriptSource(index);
1021 NativesExternalStringResource* resource =
1022 new NativesExternalStringResource(
1023 isolate->bootstrapper(), source_vector.start());
1024 *current++ = reinterpret_cast<Object*>(resource);
1025 break;
1026 }
1027
1028 case kSynchronize: {
1029 // If we get here then that indicates that you have a mismatch between
1030 // the number of GC roots when serializing and deserializing.
1031 UNREACHABLE();
1032 }
1033
1034 default:
1035 UNREACHABLE();
1036 }
1037 }
1038 ASSERT_EQ(current, limit);
1039 }
1040
1041
PutInt(uintptr_t integer,const char * description)1042 void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
1043 const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
1044 for (int shift = max_shift; shift > 0; shift -= 7) {
1045 if (integer >= static_cast<uintptr_t>(1u) << shift) {
1046 Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart");
1047 }
1048 }
1049 PutSection(static_cast<int>(integer & 0x7f), "IntLastPart");
1050 }
1051
1052 #ifdef DEBUG
1053
Synchronize(const char * tag)1054 void Deserializer::Synchronize(const char* tag) {
1055 int data = source_->Get();
1056 // If this assert fails then that indicates that you have a mismatch between
1057 // the number of GC roots when serializing and deserializing.
1058 ASSERT_EQ(kSynchronize, data);
1059 do {
1060 int character = source_->Get();
1061 if (character == 0) break;
1062 if (FLAG_debug_serialization) {
1063 PrintF("%c", character);
1064 }
1065 } while (true);
1066 if (FLAG_debug_serialization) {
1067 PrintF("\n");
1068 }
1069 }
1070
1071
Synchronize(const char * tag)1072 void Serializer::Synchronize(const char* tag) {
1073 sink_->Put(kSynchronize, tag);
1074 int character;
1075 do {
1076 character = *tag++;
1077 sink_->PutSection(character, "TagCharacter");
1078 } while (character != 0);
1079 }
1080
1081 #endif
1082
Serializer(SnapshotByteSink * sink)1083 Serializer::Serializer(SnapshotByteSink* sink)
1084 : sink_(sink),
1085 current_root_index_(0),
1086 external_reference_encoder_(new ExternalReferenceEncoder),
1087 large_object_total_(0) {
1088 // The serializer is meant to be used only to generate initial heap images
1089 // from a context in which there is only one isolate.
1090 ASSERT(Isolate::Current()->IsDefaultIsolate());
1091 for (int i = 0; i <= LAST_SPACE; i++) {
1092 fullness_[i] = 0;
1093 }
1094 }
1095
1096
~Serializer()1097 Serializer::~Serializer() {
1098 delete external_reference_encoder_;
1099 }
1100
1101
SerializeStrongReferences()1102 void StartupSerializer::SerializeStrongReferences() {
1103 Isolate* isolate = Isolate::Current();
1104 // No active threads.
1105 CHECK_EQ(NULL, Isolate::Current()->thread_manager()->FirstThreadStateInUse());
1106 // No active or weak handles.
1107 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1108 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1109 // We don't support serializing installed extensions.
1110 for (RegisteredExtension* ext = v8::RegisteredExtension::first_extension();
1111 ext != NULL;
1112 ext = ext->next()) {
1113 CHECK_NE(v8::INSTALLED, ext->state());
1114 }
1115 HEAP->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1116 }
1117
1118
Serialize(Object ** object)1119 void PartialSerializer::Serialize(Object** object) {
1120 this->VisitPointer(object);
1121 Isolate* isolate = Isolate::Current();
1122
1123 // After we have done the partial serialization the partial snapshot cache
1124 // will contain some references needed to decode the partial snapshot. We
1125 // fill it up with undefineds so it has a predictable length so the
1126 // deserialization code doesn't need to know the length.
1127 for (int index = isolate->serialize_partial_snapshot_cache_length();
1128 index < Isolate::kPartialSnapshotCacheCapacity;
1129 index++) {
1130 isolate->serialize_partial_snapshot_cache()[index] =
1131 isolate->heap()->undefined_value();
1132 startup_serializer_->VisitPointer(
1133 &isolate->serialize_partial_snapshot_cache()[index]);
1134 }
1135 isolate->set_serialize_partial_snapshot_cache_length(
1136 Isolate::kPartialSnapshotCacheCapacity);
1137 }
1138
1139
VisitPointers(Object ** start,Object ** end)1140 void Serializer::VisitPointers(Object** start, Object** end) {
1141 for (Object** current = start; current < end; current++) {
1142 if ((*current)->IsSmi()) {
1143 sink_->Put(kRawData, "RawData");
1144 sink_->PutInt(kPointerSize, "length");
1145 for (int i = 0; i < kPointerSize; i++) {
1146 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1147 }
1148 } else {
1149 SerializeObject(*current, kPlain, kStartOfObject);
1150 }
1151 }
1152 }
1153
1154
1155 // This ensures that the partial snapshot cache keeps things alive during GC and
1156 // tracks their movement. When it is called during serialization of the startup
1157 // snapshot the partial snapshot is empty, so nothing happens. When the partial
1158 // (context) snapshot is created, this array is populated with the pointers that
1159 // the partial snapshot will need. As that happens we emit serialized objects to
1160 // the startup snapshot that correspond to the elements of this cache array. On
1161 // deserialization we therefore need to visit the cache array. This fills it up
1162 // with pointers to deserialized objects.
Iterate(ObjectVisitor * visitor)1163 void SerializerDeserializer::Iterate(ObjectVisitor* visitor) {
1164 Isolate* isolate = Isolate::Current();
1165 visitor->VisitPointers(
1166 isolate->serialize_partial_snapshot_cache(),
1167 &isolate->serialize_partial_snapshot_cache()[
1168 isolate->serialize_partial_snapshot_cache_length()]);
1169 }
1170
1171
1172 // When deserializing we need to set the size of the snapshot cache. This means
1173 // the root iteration code (above) will iterate over array elements, writing the
1174 // references to deserialized objects in them.
SetSnapshotCacheSize(int size)1175 void SerializerDeserializer::SetSnapshotCacheSize(int size) {
1176 Isolate::Current()->set_serialize_partial_snapshot_cache_length(size);
1177 }
1178
1179
PartialSnapshotCacheIndex(HeapObject * heap_object)1180 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1181 Isolate* isolate = Isolate::Current();
1182
1183 for (int i = 0;
1184 i < isolate->serialize_partial_snapshot_cache_length();
1185 i++) {
1186 Object* entry = isolate->serialize_partial_snapshot_cache()[i];
1187 if (entry == heap_object) return i;
1188 }
1189
1190 // We didn't find the object in the cache. So we add it to the cache and
1191 // then visit the pointer so that it becomes part of the startup snapshot
1192 // and we can refer to it from the partial snapshot.
1193 int length = isolate->serialize_partial_snapshot_cache_length();
1194 CHECK(length < Isolate::kPartialSnapshotCacheCapacity);
1195 isolate->serialize_partial_snapshot_cache()[length] = heap_object;
1196 startup_serializer_->VisitPointer(
1197 &isolate->serialize_partial_snapshot_cache()[length]);
1198 // We don't recurse from the startup snapshot generator into the partial
1199 // snapshot generator.
1200 ASSERT(length == isolate->serialize_partial_snapshot_cache_length());
1201 isolate->set_serialize_partial_snapshot_cache_length(length + 1);
1202 return length;
1203 }
1204
1205
RootIndex(HeapObject * heap_object)1206 int PartialSerializer::RootIndex(HeapObject* heap_object) {
1207 for (int i = 0; i < Heap::kRootListLength; i++) {
1208 Object* root = HEAP->roots_address()[i];
1209 if (root == heap_object) return i;
1210 }
1211 return kInvalidRootIndex;
1212 }
1213
1214
1215 // Encode the location of an already deserialized object in order to write its
1216 // location into a later object. We can encode the location as an offset from
1217 // the start of the deserialized objects or as an offset backwards from the
1218 // current allocation pointer.
SerializeReferenceToPreviousObject(int space,int address,HowToCode how_to_code,WhereToPoint where_to_point)1219 void Serializer::SerializeReferenceToPreviousObject(
1220 int space,
1221 int address,
1222 HowToCode how_to_code,
1223 WhereToPoint where_to_point) {
1224 int offset = CurrentAllocationAddress(space) - address;
1225 bool from_start = true;
1226 if (SpaceIsPaged(space)) {
1227 // For paged space it is simple to encode back from current allocation if
1228 // the object is on the same page as the current allocation pointer.
1229 if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
1230 (address >> kPageSizeBits)) {
1231 from_start = false;
1232 address = offset;
1233 }
1234 } else if (space == NEW_SPACE) {
1235 // For new space it is always simple to encode back from current allocation.
1236 if (offset < address) {
1237 from_start = false;
1238 address = offset;
1239 }
1240 }
1241 // If we are actually dealing with real offsets (and not a numbering of
1242 // all objects) then we should shift out the bits that are always 0.
1243 if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
1244 if (from_start) {
1245 #define COMMON_REFS_CASE(pseudo_space, actual_space, offset) \
1246 if (space == actual_space && address == offset && \
1247 how_to_code == kPlain && where_to_point == kStartOfObject) { \
1248 sink_->Put(kFromStart + how_to_code + where_to_point + \
1249 pseudo_space, "RefSer"); \
1250 } else /* NOLINT */
1251 COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
1252 #undef COMMON_REFS_CASE
1253 { /* NOLINT */
1254 sink_->Put(kFromStart + how_to_code + where_to_point + space, "RefSer");
1255 sink_->PutInt(address, "address");
1256 }
1257 } else {
1258 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
1259 sink_->PutInt(address, "address");
1260 }
1261 }
1262
1263
SerializeObject(Object * o,HowToCode how_to_code,WhereToPoint where_to_point)1264 void StartupSerializer::SerializeObject(
1265 Object* o,
1266 HowToCode how_to_code,
1267 WhereToPoint where_to_point) {
1268 CHECK(o->IsHeapObject());
1269 HeapObject* heap_object = HeapObject::cast(o);
1270
1271 if (address_mapper_.IsMapped(heap_object)) {
1272 int space = SpaceOfAlreadySerializedObject(heap_object);
1273 int address = address_mapper_.MappedTo(heap_object);
1274 SerializeReferenceToPreviousObject(space,
1275 address,
1276 how_to_code,
1277 where_to_point);
1278 } else {
1279 // Object has not yet been serialized. Serialize it here.
1280 ObjectSerializer object_serializer(this,
1281 heap_object,
1282 sink_,
1283 how_to_code,
1284 where_to_point);
1285 object_serializer.Serialize();
1286 }
1287 }
1288
1289
SerializeWeakReferences()1290 void StartupSerializer::SerializeWeakReferences() {
1291 for (int i = Isolate::Current()->serialize_partial_snapshot_cache_length();
1292 i < Isolate::kPartialSnapshotCacheCapacity;
1293 i++) {
1294 sink_->Put(kRootArray + kPlain + kStartOfObject, "RootSerialization");
1295 sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index");
1296 }
1297 HEAP->IterateWeakRoots(this, VISIT_ALL);
1298 }
1299
1300
SerializeObject(Object * o,HowToCode how_to_code,WhereToPoint where_to_point)1301 void PartialSerializer::SerializeObject(
1302 Object* o,
1303 HowToCode how_to_code,
1304 WhereToPoint where_to_point) {
1305 CHECK(o->IsHeapObject());
1306 HeapObject* heap_object = HeapObject::cast(o);
1307
1308 int root_index;
1309 if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) {
1310 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1311 sink_->PutInt(root_index, "root_index");
1312 return;
1313 }
1314
1315 if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1316 int cache_index = PartialSnapshotCacheIndex(heap_object);
1317 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1318 "PartialSnapshotCache");
1319 sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1320 return;
1321 }
1322
1323 // Pointers from the partial snapshot to the objects in the startup snapshot
1324 // should go through the root array or through the partial snapshot cache.
1325 // If this is not the case you may have to add something to the root array.
1326 ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1327 // All the symbols that the partial snapshot needs should be either in the
1328 // root table or in the partial snapshot cache.
1329 ASSERT(!heap_object->IsSymbol());
1330
1331 if (address_mapper_.IsMapped(heap_object)) {
1332 int space = SpaceOfAlreadySerializedObject(heap_object);
1333 int address = address_mapper_.MappedTo(heap_object);
1334 SerializeReferenceToPreviousObject(space,
1335 address,
1336 how_to_code,
1337 where_to_point);
1338 } else {
1339 // Object has not yet been serialized. Serialize it here.
1340 ObjectSerializer serializer(this,
1341 heap_object,
1342 sink_,
1343 how_to_code,
1344 where_to_point);
1345 serializer.Serialize();
1346 }
1347 }
1348
1349
Serialize()1350 void Serializer::ObjectSerializer::Serialize() {
1351 int space = Serializer::SpaceOfObject(object_);
1352 int size = object_->Size();
1353
1354 sink_->Put(kNewObject + reference_representation_ + space,
1355 "ObjectSerialization");
1356 sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1357
1358 LOG(i::Isolate::Current(),
1359 SnapshotPositionEvent(object_->address(), sink_->Position()));
1360
1361 // Mark this object as already serialized.
1362 bool start_new_page;
1363 int offset = serializer_->Allocate(space, size, &start_new_page);
1364 serializer_->address_mapper()->AddMapping(object_, offset);
1365 if (start_new_page) {
1366 sink_->Put(kNewPage, "NewPage");
1367 sink_->PutSection(space, "NewPageSpace");
1368 }
1369
1370 // Serialize the map (first word of the object).
1371 serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject);
1372
1373 // Serialize the rest of the object.
1374 CHECK_EQ(0, bytes_processed_so_far_);
1375 bytes_processed_so_far_ = kPointerSize;
1376 object_->IterateBody(object_->map()->instance_type(), size, this);
1377 OutputRawData(object_->address() + size);
1378 }
1379
1380
VisitPointers(Object ** start,Object ** end)1381 void Serializer::ObjectSerializer::VisitPointers(Object** start,
1382 Object** end) {
1383 Object** current = start;
1384 while (current < end) {
1385 while (current < end && (*current)->IsSmi()) current++;
1386 if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1387
1388 while (current < end && !(*current)->IsSmi()) {
1389 serializer_->SerializeObject(*current, kPlain, kStartOfObject);
1390 bytes_processed_so_far_ += kPointerSize;
1391 current++;
1392 }
1393 }
1394 }
1395
1396
VisitExternalReferences(Address * start,Address * end)1397 void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
1398 Address* end) {
1399 Address references_start = reinterpret_cast<Address>(start);
1400 OutputRawData(references_start);
1401
1402 for (Address* current = start; current < end; current++) {
1403 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1404 int reference_id = serializer_->EncodeExternalReference(*current);
1405 sink_->PutInt(reference_id, "reference id");
1406 }
1407 bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
1408 }
1409
1410
VisitRuntimeEntry(RelocInfo * rinfo)1411 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1412 Address target_start = rinfo->target_address_address();
1413 OutputRawData(target_start);
1414 Address target = rinfo->target_address();
1415 uint32_t encoding = serializer_->EncodeExternalReference(target);
1416 CHECK(target == NULL ? encoding == 0 : encoding != 0);
1417 int representation;
1418 // Can't use a ternary operator because of gcc.
1419 if (rinfo->IsCodedSpecially()) {
1420 representation = kStartOfObject + kFromCode;
1421 } else {
1422 representation = kStartOfObject + kPlain;
1423 }
1424 sink_->Put(kExternalReference + representation, "ExternalReference");
1425 sink_->PutInt(encoding, "reference id");
1426 bytes_processed_so_far_ += rinfo->target_address_size();
1427 }
1428
1429
VisitCodeTarget(RelocInfo * rinfo)1430 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1431 CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
1432 Address target_start = rinfo->target_address_address();
1433 OutputRawData(target_start);
1434 Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1435 serializer_->SerializeObject(target, kFromCode, kFirstInstruction);
1436 bytes_processed_so_far_ += rinfo->target_address_size();
1437 }
1438
1439
VisitCodeEntry(Address entry_address)1440 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1441 Code* target = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1442 OutputRawData(entry_address);
1443 serializer_->SerializeObject(target, kPlain, kFirstInstruction);
1444 bytes_processed_so_far_ += kPointerSize;
1445 }
1446
1447
VisitGlobalPropertyCell(RelocInfo * rinfo)1448 void Serializer::ObjectSerializer::VisitGlobalPropertyCell(RelocInfo* rinfo) {
1449 // We shouldn't have any global property cell references in code
1450 // objects in the snapshot.
1451 UNREACHABLE();
1452 }
1453
1454
VisitExternalAsciiString(v8::String::ExternalAsciiStringResource ** resource_pointer)1455 void Serializer::ObjectSerializer::VisitExternalAsciiString(
1456 v8::String::ExternalAsciiStringResource** resource_pointer) {
1457 Address references_start = reinterpret_cast<Address>(resource_pointer);
1458 OutputRawData(references_start);
1459 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1460 Object* source = HEAP->natives_source_cache()->get(i);
1461 if (!source->IsUndefined()) {
1462 ExternalAsciiString* string = ExternalAsciiString::cast(source);
1463 typedef v8::String::ExternalAsciiStringResource Resource;
1464 Resource* resource = string->resource();
1465 if (resource == *resource_pointer) {
1466 sink_->Put(kNativesStringResource, "NativesStringResource");
1467 sink_->PutSection(i, "NativesStringResourceEnd");
1468 bytes_processed_so_far_ += sizeof(resource);
1469 return;
1470 }
1471 }
1472 }
1473 // One of the strings in the natives cache should match the resource. We
1474 // can't serialize any other kinds of external strings.
1475 UNREACHABLE();
1476 }
1477
1478
OutputRawData(Address up_to)1479 void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
1480 Address object_start = object_->address();
1481 int up_to_offset = static_cast<int>(up_to - object_start);
1482 int skipped = up_to_offset - bytes_processed_so_far_;
1483 // This assert will fail if the reloc info gives us the target_address_address
1484 // locations in a non-ascending order. Luckily that doesn't happen.
1485 ASSERT(skipped >= 0);
1486 if (skipped != 0) {
1487 Address base = object_start + bytes_processed_so_far_;
1488 #define RAW_CASE(index, length) \
1489 if (skipped == length) { \
1490 sink_->PutSection(kRawData + index, "RawDataFixed"); \
1491 } else /* NOLINT */
1492 COMMON_RAW_LENGTHS(RAW_CASE)
1493 #undef RAW_CASE
1494 { /* NOLINT */
1495 sink_->Put(kRawData, "RawData");
1496 sink_->PutInt(skipped, "length");
1497 }
1498 for (int i = 0; i < skipped; i++) {
1499 unsigned int data = base[i];
1500 sink_->PutSection(data, "Byte");
1501 }
1502 bytes_processed_so_far_ += skipped;
1503 }
1504 }
1505
1506
SpaceOfObject(HeapObject * object)1507 int Serializer::SpaceOfObject(HeapObject* object) {
1508 for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1509 AllocationSpace s = static_cast<AllocationSpace>(i);
1510 if (HEAP->InSpace(object, s)) {
1511 if (i == LO_SPACE) {
1512 if (object->IsCode()) {
1513 return kLargeCode;
1514 } else if (object->IsFixedArray()) {
1515 return kLargeFixedArray;
1516 } else {
1517 return kLargeData;
1518 }
1519 }
1520 return i;
1521 }
1522 }
1523 UNREACHABLE();
1524 return 0;
1525 }
1526
1527
SpaceOfAlreadySerializedObject(HeapObject * object)1528 int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
1529 for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1530 AllocationSpace s = static_cast<AllocationSpace>(i);
1531 if (HEAP->InSpace(object, s)) {
1532 return i;
1533 }
1534 }
1535 UNREACHABLE();
1536 return 0;
1537 }
1538
1539
Allocate(int space,int size,bool * new_page)1540 int Serializer::Allocate(int space, int size, bool* new_page) {
1541 CHECK(space >= 0 && space < kNumberOfSpaces);
1542 if (SpaceIsLarge(space)) {
1543 // In large object space we merely number the objects instead of trying to
1544 // determine some sort of address.
1545 *new_page = true;
1546 large_object_total_ += size;
1547 return fullness_[LO_SPACE]++;
1548 }
1549 *new_page = false;
1550 if (fullness_[space] == 0) {
1551 *new_page = true;
1552 }
1553 if (SpaceIsPaged(space)) {
1554 // Paged spaces are a little special. We encode their addresses as if the
1555 // pages were all contiguous and each page were filled up in the range
1556 // 0 - Page::kObjectAreaSize. In practice the pages may not be contiguous
1557 // and allocation does not start at offset 0 in the page, but this scheme
1558 // means the deserializer can get the page number quickly by shifting the
1559 // serialized address.
1560 CHECK(IsPowerOf2(Page::kPageSize));
1561 int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
1562 CHECK(size <= Page::kObjectAreaSize);
1563 if (used_in_this_page + size > Page::kObjectAreaSize) {
1564 *new_page = true;
1565 fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
1566 }
1567 }
1568 int allocation_address = fullness_[space];
1569 fullness_[space] = allocation_address + size;
1570 return allocation_address;
1571 }
1572
1573
1574 } } // namespace v8::internal
1575