• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* qsort.c
2  * (c) 1998 Gareth McCaughan
3  *
4  * This is a drop-in replacement for the C library's |qsort()| routine.
5  *
6  * Features:
7  *   - Median-of-three pivoting (and more)
8  *   - Truncation and final polishing by a single insertion sort
9  *   - Early truncation when no swaps needed in pivoting step
10  *   - Explicit recursion, guaranteed not to overflow
11  *   - A few little wrinkles stolen from the GNU |qsort()|.
12  *   - separate code for non-aligned / aligned / word-size objects
13  *
14  * This code may be reproduced freely provided
15  *   - this file is retained unaltered apart from minor
16  *     changes for portability and efficiency
17  *   - no changes are made to this comment
18  *   - any changes that *are* made are clearly flagged
19  *   - the _ID string below is altered by inserting, after
20  *     the date, the string " altered" followed at your option
21  *     by other material. (Exceptions: you may change the name
22  *     of the exported routine without changing the ID string.
23  *     You may change the values of the macros TRUNC_* and
24  *     PIVOT_THRESHOLD without changing the ID string, provided
25  *     they remain constants with TRUNC_nonaligned, TRUNC_aligned
26  *     and TRUNC_words/WORD_BYTES between 8 and 24, and
27  *     PIVOT_THRESHOLD between 32 and 200.)
28  *
29  * You may use it in anything you like; you may make money
30  * out of it; you may distribute it in object form or as
31  * part of an executable without including source code;
32  * you don't have to credit me. (But it would be nice if
33  * you did.)
34  *
35  * If you find problems with this code, or find ways of
36  * making it significantly faster, please let me know!
37  * My e-mail address, valid as of early 1998 and certainly
38  * OK for at least the next 18 months, is
39  *    gjm11@dpmms.cam.ac.uk
40  * Thanks!
41  *
42  * Gareth McCaughan   Peterhouse   Cambridge   1998
43  */
44 #include "SDL_config.h"
45 
46 /*
47 #include <assert.h>
48 #include <stdlib.h>
49 #include <string.h>
50 */
51 #include "SDL_stdinc.h"
52 
53 #define assert(X)
54 #define malloc	SDL_malloc
55 #define free	SDL_free
56 #define memcpy	SDL_memcpy
57 #define memmove	SDL_memmove
58 #define qsort	SDL_qsort
59 
60 
61 #ifndef HAVE_QSORT
62 
63 static char _ID[]="<qsort.c gjm 1.12 1998-03-19>";
64 
65 /* How many bytes are there per word? (Must be a power of 2,
66  * and must in fact equal sizeof(int).)
67  */
68 #define WORD_BYTES sizeof(int)
69 
70 /* How big does our stack need to be? Answer: one entry per
71  * bit in a |size_t|.
72  */
73 #define STACK_SIZE (8*sizeof(size_t))
74 
75 /* Different situations have slightly different requirements,
76  * and we make life epsilon easier by using different truncation
77  * points for the three different cases.
78  * So far, I have tuned TRUNC_words and guessed that the same
79  * value might work well for the other two cases. Of course
80  * what works well on my machine might work badly on yours.
81  */
82 #define TRUNC_nonaligned	12
83 #define TRUNC_aligned		12
84 #define TRUNC_words		12*WORD_BYTES	/* nb different meaning */
85 
86 /* We use a simple pivoting algorithm for shortish sub-arrays
87  * and a more complicated one for larger ones. The threshold
88  * is PIVOT_THRESHOLD.
89  */
90 #define PIVOT_THRESHOLD 40
91 
92 typedef struct { char * first; char * last; } stack_entry;
93 #define pushLeft {stack[stacktop].first=ffirst;stack[stacktop++].last=last;}
94 #define pushRight {stack[stacktop].first=first;stack[stacktop++].last=llast;}
95 #define doLeft {first=ffirst;llast=last;continue;}
96 #define doRight {ffirst=first;last=llast;continue;}
97 #define pop {if (--stacktop<0) break;\
98   first=ffirst=stack[stacktop].first;\
99   last=llast=stack[stacktop].last;\
100   continue;}
101 
102 /* Some comments on the implementation.
103  * 1. When we finish partitioning the array into "low"
104  *    and "high", we forget entirely about short subarrays,
105  *    because they'll be done later by insertion sort.
106  *    Doing lots of little insertion sorts might be a win
107  *    on large datasets for locality-of-reference reasons,
108  *    but it makes the code much nastier and increases
109  *    bookkeeping overhead.
110  * 2. We always save the shorter and get to work on the
111  *    longer. This guarantees that every time we push
112  *    an item onto the stack its size is <= 1/2 of that
113  *    of its parent; so the stack can't need more than
114  *    log_2(max-array-size) entries.
115  * 3. We choose a pivot by looking at the first, last
116  *    and middle elements. We arrange them into order
117  *    because it's easy to do that in conjunction with
118  *    choosing the pivot, and it makes things a little
119  *    easier in the partitioning step. Anyway, the pivot
120  *    is the middle of these three. It's still possible
121  *    to construct datasets where the algorithm takes
122  *    time of order n^2, but it simply never happens in
123  *    practice.
124  * 3' Newsflash: On further investigation I find that
125  *    it's easy to construct datasets where median-of-3
126  *    simply isn't good enough. So on large-ish subarrays
127  *    we do a more sophisticated pivoting: we take three
128  *    sets of 3 elements, find their medians, and then
129  *    take the median of those.
130  * 4. We copy the pivot element to a separate place
131  *    because that way we can always do our comparisons
132  *    directly against a pointer to that separate place,
133  *    and don't have to wonder "did we move the pivot
134  *    element?". This makes the inner loop better.
135  * 5. It's possible to make the pivoting even more
136  *    reliable by looking at more candidates when n
137  *    is larger. (Taking this to its logical conclusion
138  *    results in a variant of quicksort that doesn't
139  *    have that n^2 worst case.) However, the overhead
140  *    from the extra bookkeeping means that it's just
141  *    not worth while.
142  * 6. This is pretty clean and portable code. Here are
143  *    all the potential portability pitfalls and problems
144  *    I know of:
145  *      - In one place (the insertion sort) I construct
146  *        a pointer that points just past the end of the
147  *        supplied array, and assume that (a) it won't
148  *        compare equal to any pointer within the array,
149  *        and (b) it will compare equal to a pointer
150  *        obtained by stepping off the end of the array.
151  *        These might fail on some segmented architectures.
152  *      - I assume that there are 8 bits in a |char| when
153  *        computing the size of stack needed. This would
154  *        fail on machines with 9-bit or 16-bit bytes.
155  *      - I assume that if |((int)base&(sizeof(int)-1))==0|
156  *        and |(size&(sizeof(int)-1))==0| then it's safe to
157  *        get at array elements via |int*|s, and that if
158  *        actually |size==sizeof(int)| as well then it's
159  *        safe to treat the elements as |int|s. This might
160  *        fail on systems that convert pointers to integers
161  *        in non-standard ways.
162  *      - I assume that |8*sizeof(size_t)<=INT_MAX|. This
163  *        would be false on a machine with 8-bit |char|s,
164  *        16-bit |int|s and 4096-bit |size_t|s. :-)
165  */
166 
167 /* The recursion logic is the same in each case: */
168 #define Recurse(Trunc)				\
169       { size_t l=last-ffirst,r=llast-first;	\
170         if (l<Trunc) {				\
171           if (r>=Trunc) doRight			\
172           else pop				\
173         }					\
174         else if (l<=r) { pushLeft; doRight }	\
175         else if (r>=Trunc) { pushRight; doLeft }\
176         else doLeft				\
177       }
178 
179 /* and so is the pivoting logic: */
180 #define Pivot(swapper,sz)			\
181   if ((size_t)(last-first)>PIVOT_THRESHOLD*sz) mid=pivot_big(first,mid,last,sz,compare);\
182   else {	\
183     if (compare(first,mid)<0) {			\
184       if (compare(mid,last)>0) {		\
185         swapper(mid,last);			\
186         if (compare(first,mid)>0) swapper(first,mid);\
187       }						\
188     }						\
189     else {					\
190       if (compare(mid,last)>0) swapper(first,last)\
191       else {					\
192         swapper(first,mid);			\
193         if (compare(mid,last)>0) swapper(mid,last);\
194       }						\
195     }						\
196     first+=sz; last-=sz;			\
197   }
198 
199 #ifdef DEBUG_QSORT
200 #include <stdio.h>
201 #endif
202 
203 /* and so is the partitioning logic: */
204 #define Partition(swapper,sz) {			\
205   int swapped=0;				\
206   do {						\
207     while (compare(first,pivot)<0) first+=sz;	\
208     while (compare(pivot,last)<0) last-=sz;	\
209     if (first<last) {				\
210       swapper(first,last); swapped=1;		\
211       first+=sz; last-=sz; }			\
212     else if (first==last) { first+=sz; last-=sz; break; }\
213   } while (first<=last);			\
214   if (!swapped) pop				\
215 }
216 
217 /* and so is the pre-insertion-sort operation of putting
218  * the smallest element into place as a sentinel.
219  * Doing this makes the inner loop nicer. I got this
220  * idea from the GNU implementation of qsort().
221  */
222 #define PreInsertion(swapper,limit,sz)		\
223   first=base;					\
224   last=first + (nmemb>limit ? limit : nmemb-1)*sz;\
225   while (last!=base) {				\
226     if (compare(first,last)>0) first=last;	\
227     last-=sz; }					\
228   if (first!=base) swapper(first,(char*)base);
229 
230 /* and so is the insertion sort, in the first two cases: */
231 #define Insertion(swapper)			\
232   last=((char*)base)+nmemb*size;		\
233   for (first=((char*)base)+size;first!=last;first+=size) {	\
234     char *test;					\
235     /* Find the right place for |first|.	\
236      * My apologies for var reuse. */		\
237     for (test=first-size;compare(test,first)>0;test-=size) ;	\
238     test+=size;					\
239     if (test!=first) {				\
240       /* Shift everything in [test,first)	\
241        * up by one, and place |first|		\
242        * where |test| is. */			\
243       memcpy(pivot,first,size);			\
244       memmove(test+size,test,first-test);	\
245       memcpy(test,pivot,size);			\
246     }						\
247   }
248 
249 #define SWAP_nonaligned(a,b) { \
250   register char *aa=(a),*bb=(b); \
251   register size_t sz=size; \
252   do { register char t=*aa; *aa++=*bb; *bb++=t; } while (--sz); }
253 
254 #define SWAP_aligned(a,b) { \
255   register int *aa=(int*)(a),*bb=(int*)(b); \
256   register size_t sz=size; \
257   do { register int t=*aa;*aa++=*bb; *bb++=t; } while (sz-=WORD_BYTES); }
258 
259 #define SWAP_words(a,b) { \
260   register int t=*((int*)a); *((int*)a)=*((int*)b); *((int*)b)=t; }
261 
262 /* ---------------------------------------------------------------------- */
263 
pivot_big(char * first,char * mid,char * last,size_t size,int compare (const void *,const void *))264 static char * pivot_big(char *first, char *mid, char *last, size_t size,
265                         int compare(const void *, const void *)) {
266   size_t d=(((last-first)/size)>>3)*size;
267   char *m1,*m2,*m3;
268   { char *a=first, *b=first+d, *c=first+2*d;
269 #ifdef DEBUG_QSORT
270 fprintf(stderr,"< %d %d %d\n",*(int*)a,*(int*)b,*(int*)c);
271 #endif
272     m1 = compare(a,b)<0 ?
273            (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
274          : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
275   }
276   { char *a=mid-d, *b=mid, *c=mid+d;
277 #ifdef DEBUG_QSORT
278 fprintf(stderr,". %d %d %d\n",*(int*)a,*(int*)b,*(int*)c);
279 #endif
280     m2 = compare(a,b)<0 ?
281            (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
282          : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
283   }
284   { char *a=last-2*d, *b=last-d, *c=last;
285 #ifdef DEBUG_QSORT
286 fprintf(stderr,"> %d %d %d\n",*(int*)a,*(int*)b,*(int*)c);
287 #endif
288     m3 = compare(a,b)<0 ?
289            (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
290          : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
291   }
292 #ifdef DEBUG_QSORT
293 fprintf(stderr,"-> %d %d %d\n",*(int*)m1,*(int*)m2,*(int*)m3);
294 #endif
295   return compare(m1,m2)<0 ?
296            (compare(m2,m3)<0 ? m2 : (compare(m1,m3)<0 ? m3 : m1))
297          : (compare(m1,m3)<0 ? m1 : (compare(m2,m3)<0 ? m3 : m2));
298 }
299 
300 /* ---------------------------------------------------------------------- */
301 
qsort_nonaligned(void * base,size_t nmemb,size_t size,int (* compare)(const void *,const void *))302 static void qsort_nonaligned(void *base, size_t nmemb, size_t size,
303            int (*compare)(const void *, const void *)) {
304 
305   stack_entry stack[STACK_SIZE];
306   int stacktop=0;
307   char *first,*last;
308   char *pivot=malloc(size);
309   size_t trunc=TRUNC_nonaligned*size;
310   assert(pivot!=0);
311 
312   first=(char*)base; last=first+(nmemb-1)*size;
313 
314   if ((size_t)(last-first)>trunc) {
315     char *ffirst=first, *llast=last;
316     while (1) {
317       /* Select pivot */
318       { char * mid=first+size*((last-first)/size >> 1);
319         Pivot(SWAP_nonaligned,size);
320         memcpy(pivot,mid,size);
321       }
322       /* Partition. */
323       Partition(SWAP_nonaligned,size);
324       /* Prepare to recurse/iterate. */
325       Recurse(trunc)
326     }
327   }
328   PreInsertion(SWAP_nonaligned,TRUNC_nonaligned,size);
329   Insertion(SWAP_nonaligned);
330   free(pivot);
331 }
332 
qsort_aligned(void * base,size_t nmemb,size_t size,int (* compare)(const void *,const void *))333 static void qsort_aligned(void *base, size_t nmemb, size_t size,
334            int (*compare)(const void *, const void *)) {
335 
336   stack_entry stack[STACK_SIZE];
337   int stacktop=0;
338   char *first,*last;
339   char *pivot=malloc(size);
340   size_t trunc=TRUNC_aligned*size;
341   assert(pivot!=0);
342 
343   first=(char*)base; last=first+(nmemb-1)*size;
344 
345   if ((size_t)(last-first)>trunc) {
346     char *ffirst=first,*llast=last;
347     while (1) {
348       /* Select pivot */
349       { char * mid=first+size*((last-first)/size >> 1);
350         Pivot(SWAP_aligned,size);
351         memcpy(pivot,mid,size);
352       }
353       /* Partition. */
354       Partition(SWAP_aligned,size);
355       /* Prepare to recurse/iterate. */
356       Recurse(trunc)
357     }
358   }
359   PreInsertion(SWAP_aligned,TRUNC_aligned,size);
360   Insertion(SWAP_aligned);
361   free(pivot);
362 }
363 
qsort_words(void * base,size_t nmemb,int (* compare)(const void *,const void *))364 static void qsort_words(void *base, size_t nmemb,
365            int (*compare)(const void *, const void *)) {
366 
367   stack_entry stack[STACK_SIZE];
368   int stacktop=0;
369   char *first,*last;
370   char *pivot=malloc(WORD_BYTES);
371   assert(pivot!=0);
372 
373   first=(char*)base; last=first+(nmemb-1)*WORD_BYTES;
374 
375   if (last-first>TRUNC_words) {
376     char *ffirst=first, *llast=last;
377     while (1) {
378 #ifdef DEBUG_QSORT
379 fprintf(stderr,"Doing %d:%d: ",
380         (first-(char*)base)/WORD_BYTES,
381         (last-(char*)base)/WORD_BYTES);
382 #endif
383       /* Select pivot */
384       { char * mid=first+WORD_BYTES*((last-first) / (2*WORD_BYTES));
385         Pivot(SWAP_words,WORD_BYTES);
386         *(int*)pivot=*(int*)mid;
387       }
388 #ifdef DEBUG_QSORT
389 fprintf(stderr,"pivot=%d\n",*(int*)pivot);
390 #endif
391       /* Partition. */
392       Partition(SWAP_words,WORD_BYTES);
393       /* Prepare to recurse/iterate. */
394       Recurse(TRUNC_words)
395     }
396   }
397   PreInsertion(SWAP_words,(TRUNC_words/WORD_BYTES),WORD_BYTES);
398   /* Now do insertion sort. */
399   last=((char*)base)+nmemb*WORD_BYTES;
400   for (first=((char*)base)+WORD_BYTES;first!=last;first+=WORD_BYTES) {
401     /* Find the right place for |first|. My apologies for var reuse */
402     int *pl=(int*)(first-WORD_BYTES),*pr=(int*)first;
403     *(int*)pivot=*(int*)first;
404     for (;compare(pl,pivot)>0;pr=pl,--pl) {
405       *pr=*pl; }
406     if (pr!=(int*)first) *pr=*(int*)pivot;
407   }
408   free(pivot);
409 }
410 
411 /* ---------------------------------------------------------------------- */
412 
qsort(void * base,size_t nmemb,size_t size,int (* compare)(const void *,const void *))413 void qsort(void *base, size_t nmemb, size_t size,
414            int (*compare)(const void *, const void *)) {
415 
416   if (nmemb<=1) return;
417   if (((uintptr_t)base|size)&(WORD_BYTES-1))
418     qsort_nonaligned(base,nmemb,size,compare);
419   else if (size!=WORD_BYTES)
420     qsort_aligned(base,nmemb,size,compare);
421   else
422     qsort_words(base,nmemb,compare);
423 }
424 
425 #endif /* !HAVE_QSORT */
426