1 // Copyright 2007-2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <signal.h>
29
30 #include "sys/stat.h"
31 #include "v8.h"
32
33 #include "debug.h"
34 #include "ic-inl.h"
35 #include "runtime.h"
36 #include "serialize.h"
37 #include "scopeinfo.h"
38 #include "snapshot.h"
39 #include "cctest.h"
40 #include "spaces.h"
41 #include "objects.h"
42 #include "natives.h"
43 #include "bootstrapper.h"
44
45 using namespace v8::internal;
46
47 static const unsigned kCounters = 256;
48 static int local_counters[kCounters];
49 static const char* local_counter_names[kCounters];
50
51
CounterHash(const char * s)52 static unsigned CounterHash(const char* s) {
53 unsigned hash = 0;
54 while (*++s) {
55 hash |= hash << 5;
56 hash += *s;
57 }
58 return hash;
59 }
60
61
62 // Callback receiver to track counters in test.
counter_function(const char * name)63 static int* counter_function(const char* name) {
64 unsigned hash = CounterHash(name) % kCounters;
65 unsigned original_hash = hash;
66 USE(original_hash);
67 while (true) {
68 if (local_counter_names[hash] == name) {
69 return &local_counters[hash];
70 }
71 if (local_counter_names[hash] == 0) {
72 local_counter_names[hash] = name;
73 return &local_counters[hash];
74 }
75 if (strcmp(local_counter_names[hash], name) == 0) {
76 return &local_counters[hash];
77 }
78 hash = (hash + 1) % kCounters;
79 ASSERT(hash != original_hash); // Hash table has been filled up.
80 }
81 }
82
83
84 template <class T>
AddressOf(T id)85 static Address AddressOf(T id) {
86 return ExternalReference(id, i::Isolate::Current()).address();
87 }
88
89
90 template <class T>
Encode(const ExternalReferenceEncoder & encoder,T id)91 static uint32_t Encode(const ExternalReferenceEncoder& encoder, T id) {
92 return encoder.Encode(AddressOf(id));
93 }
94
95
make_code(TypeCode type,int id)96 static int make_code(TypeCode type, int id) {
97 return static_cast<uint32_t>(type) << kReferenceTypeShift | id;
98 }
99
100
TEST(ExternalReferenceEncoder)101 TEST(ExternalReferenceEncoder) {
102 Isolate* isolate = i::Isolate::Current();
103 isolate->stats_table()->SetCounterFunction(counter_function);
104 v8::V8::Initialize();
105
106 ExternalReferenceEncoder encoder;
107 CHECK_EQ(make_code(BUILTIN, Builtins::kArrayCode),
108 Encode(encoder, Builtins::kArrayCode));
109 CHECK_EQ(make_code(v8::internal::RUNTIME_FUNCTION, Runtime::kAbort),
110 Encode(encoder, Runtime::kAbort));
111 CHECK_EQ(make_code(IC_UTILITY, IC::kLoadCallbackProperty),
112 Encode(encoder, IC_Utility(IC::kLoadCallbackProperty)));
113 ExternalReference keyed_load_function_prototype =
114 ExternalReference(isolate->counters()->keyed_load_function_prototype());
115 CHECK_EQ(make_code(STATS_COUNTER, Counters::k_keyed_load_function_prototype),
116 encoder.Encode(keyed_load_function_prototype.address()));
117 ExternalReference the_hole_value_location =
118 ExternalReference::the_hole_value_location(isolate);
119 CHECK_EQ(make_code(UNCLASSIFIED, 2),
120 encoder.Encode(the_hole_value_location.address()));
121 ExternalReference stack_limit_address =
122 ExternalReference::address_of_stack_limit(isolate);
123 CHECK_EQ(make_code(UNCLASSIFIED, 4),
124 encoder.Encode(stack_limit_address.address()));
125 ExternalReference real_stack_limit_address =
126 ExternalReference::address_of_real_stack_limit(isolate);
127 CHECK_EQ(make_code(UNCLASSIFIED, 5),
128 encoder.Encode(real_stack_limit_address.address()));
129 #ifdef ENABLE_DEBUGGER_SUPPORT
130 CHECK_EQ(make_code(UNCLASSIFIED, 15),
131 encoder.Encode(ExternalReference::debug_break(isolate).address()));
132 #endif // ENABLE_DEBUGGER_SUPPORT
133 CHECK_EQ(make_code(UNCLASSIFIED, 10),
134 encoder.Encode(
135 ExternalReference::new_space_start(isolate).address()));
136 CHECK_EQ(make_code(UNCLASSIFIED, 3),
137 encoder.Encode(ExternalReference::roots_address(isolate).address()));
138 }
139
140
TEST(ExternalReferenceDecoder)141 TEST(ExternalReferenceDecoder) {
142 Isolate* isolate = i::Isolate::Current();
143 isolate->stats_table()->SetCounterFunction(counter_function);
144 v8::V8::Initialize();
145
146 ExternalReferenceDecoder decoder;
147 CHECK_EQ(AddressOf(Builtins::kArrayCode),
148 decoder.Decode(make_code(BUILTIN, Builtins::kArrayCode)));
149 CHECK_EQ(AddressOf(Runtime::kAbort),
150 decoder.Decode(make_code(v8::internal::RUNTIME_FUNCTION,
151 Runtime::kAbort)));
152 CHECK_EQ(AddressOf(IC_Utility(IC::kLoadCallbackProperty)),
153 decoder.Decode(make_code(IC_UTILITY, IC::kLoadCallbackProperty)));
154 ExternalReference keyed_load_function =
155 ExternalReference(isolate->counters()->keyed_load_function_prototype());
156 CHECK_EQ(keyed_load_function.address(),
157 decoder.Decode(
158 make_code(STATS_COUNTER,
159 Counters::k_keyed_load_function_prototype)));
160 CHECK_EQ(ExternalReference::the_hole_value_location(isolate).address(),
161 decoder.Decode(make_code(UNCLASSIFIED, 2)));
162 CHECK_EQ(ExternalReference::address_of_stack_limit(isolate).address(),
163 decoder.Decode(make_code(UNCLASSIFIED, 4)));
164 CHECK_EQ(ExternalReference::address_of_real_stack_limit(isolate).address(),
165 decoder.Decode(make_code(UNCLASSIFIED, 5)));
166 #ifdef ENABLE_DEBUGGER_SUPPORT
167 CHECK_EQ(ExternalReference::debug_break(isolate).address(),
168 decoder.Decode(make_code(UNCLASSIFIED, 15)));
169 #endif // ENABLE_DEBUGGER_SUPPORT
170 CHECK_EQ(ExternalReference::new_space_start(isolate).address(),
171 decoder.Decode(make_code(UNCLASSIFIED, 10)));
172 }
173
174
175 class FileByteSink : public SnapshotByteSink {
176 public:
FileByteSink(const char * snapshot_file)177 explicit FileByteSink(const char* snapshot_file) {
178 fp_ = OS::FOpen(snapshot_file, "wb");
179 file_name_ = snapshot_file;
180 if (fp_ == NULL) {
181 PrintF("Unable to write to snapshot file \"%s\"\n", snapshot_file);
182 exit(1);
183 }
184 }
~FileByteSink()185 virtual ~FileByteSink() {
186 if (fp_ != NULL) {
187 fclose(fp_);
188 }
189 }
Put(int byte,const char * description)190 virtual void Put(int byte, const char* description) {
191 if (fp_ != NULL) {
192 fputc(byte, fp_);
193 }
194 }
Position()195 virtual int Position() {
196 return ftell(fp_);
197 }
198 void WriteSpaceUsed(
199 int new_space_used,
200 int pointer_space_used,
201 int data_space_used,
202 int code_space_used,
203 int map_space_used,
204 int cell_space_used,
205 int large_space_used);
206
207 private:
208 FILE* fp_;
209 const char* file_name_;
210 };
211
212
WriteSpaceUsed(int new_space_used,int pointer_space_used,int data_space_used,int code_space_used,int map_space_used,int cell_space_used,int large_space_used)213 void FileByteSink::WriteSpaceUsed(
214 int new_space_used,
215 int pointer_space_used,
216 int data_space_used,
217 int code_space_used,
218 int map_space_used,
219 int cell_space_used,
220 int large_space_used) {
221 int file_name_length = StrLength(file_name_) + 10;
222 Vector<char> name = Vector<char>::New(file_name_length + 1);
223 OS::SNPrintF(name, "%s.size", file_name_);
224 FILE* fp = OS::FOpen(name.start(), "w");
225 name.Dispose();
226 fprintf(fp, "new %d\n", new_space_used);
227 fprintf(fp, "pointer %d\n", pointer_space_used);
228 fprintf(fp, "data %d\n", data_space_used);
229 fprintf(fp, "code %d\n", code_space_used);
230 fprintf(fp, "map %d\n", map_space_used);
231 fprintf(fp, "cell %d\n", cell_space_used);
232 fprintf(fp, "large %d\n", large_space_used);
233 fclose(fp);
234 }
235
236
WriteToFile(const char * snapshot_file)237 static bool WriteToFile(const char* snapshot_file) {
238 FileByteSink file(snapshot_file);
239 StartupSerializer ser(&file);
240 ser.Serialize();
241 return true;
242 }
243
244
Serialize()245 static void Serialize() {
246 // We have to create one context. One reason for this is so that the builtins
247 // can be loaded from v8natives.js and their addresses can be processed. This
248 // will clear the pending fixups array, which would otherwise contain GC roots
249 // that would confuse the serialization/deserialization process.
250 v8::Persistent<v8::Context> env = v8::Context::New();
251 env.Dispose();
252 WriteToFile(FLAG_testing_serialization_file);
253 }
254
255
256 // Test that the whole heap can be serialized.
TEST(Serialize)257 TEST(Serialize) {
258 Serializer::Enable();
259 v8::V8::Initialize();
260 Serialize();
261 }
262
263
264 // Test that heap serialization is non-destructive.
TEST(SerializeTwice)265 TEST(SerializeTwice) {
266 Serializer::Enable();
267 v8::V8::Initialize();
268 Serialize();
269 Serialize();
270 }
271
272
273 //----------------------------------------------------------------------------
274 // Tests that the heap can be deserialized.
275
Deserialize()276 static void Deserialize() {
277 CHECK(Snapshot::Initialize(FLAG_testing_serialization_file));
278 }
279
280
SanityCheck()281 static void SanityCheck() {
282 v8::HandleScope scope;
283 #ifdef DEBUG
284 HEAP->Verify();
285 #endif
286 CHECK(Isolate::Current()->global()->IsJSObject());
287 CHECK(Isolate::Current()->global_context()->IsContext());
288 CHECK(HEAP->symbol_table()->IsSymbolTable());
289 CHECK(!FACTORY->LookupAsciiSymbol("Empty")->IsFailure());
290 }
291
292
DEPENDENT_TEST(Deserialize,Serialize)293 DEPENDENT_TEST(Deserialize, Serialize) {
294 // The serialize-deserialize tests only work if the VM is built without
295 // serialization. That doesn't matter. We don't need to be able to
296 // serialize a snapshot in a VM that is booted from a snapshot.
297 if (!Snapshot::IsEnabled()) {
298 v8::HandleScope scope;
299 Deserialize();
300
301 v8::Persistent<v8::Context> env = v8::Context::New();
302 env->Enter();
303
304 SanityCheck();
305 }
306 }
307
308
DEPENDENT_TEST(DeserializeFromSecondSerialization,SerializeTwice)309 DEPENDENT_TEST(DeserializeFromSecondSerialization, SerializeTwice) {
310 if (!Snapshot::IsEnabled()) {
311 v8::HandleScope scope;
312 Deserialize();
313
314 v8::Persistent<v8::Context> env = v8::Context::New();
315 env->Enter();
316
317 SanityCheck();
318 }
319 }
320
321
DEPENDENT_TEST(DeserializeAndRunScript2,Serialize)322 DEPENDENT_TEST(DeserializeAndRunScript2, Serialize) {
323 if (!Snapshot::IsEnabled()) {
324 v8::HandleScope scope;
325 Deserialize();
326
327 v8::Persistent<v8::Context> env = v8::Context::New();
328 env->Enter();
329
330 const char* c_source = "\"1234\".length";
331 v8::Local<v8::String> source = v8::String::New(c_source);
332 v8::Local<v8::Script> script = v8::Script::Compile(source);
333 CHECK_EQ(4, script->Run()->Int32Value());
334 }
335 }
336
337
DEPENDENT_TEST(DeserializeFromSecondSerializationAndRunScript2,SerializeTwice)338 DEPENDENT_TEST(DeserializeFromSecondSerializationAndRunScript2,
339 SerializeTwice) {
340 if (!Snapshot::IsEnabled()) {
341 v8::HandleScope scope;
342 Deserialize();
343
344 v8::Persistent<v8::Context> env = v8::Context::New();
345 env->Enter();
346
347 const char* c_source = "\"1234\".length";
348 v8::Local<v8::String> source = v8::String::New(c_source);
349 v8::Local<v8::Script> script = v8::Script::Compile(source);
350 CHECK_EQ(4, script->Run()->Int32Value());
351 }
352 }
353
354
TEST(PartialSerialization)355 TEST(PartialSerialization) {
356 Serializer::Enable();
357 v8::V8::Initialize();
358
359 v8::Persistent<v8::Context> env = v8::Context::New();
360 ASSERT(!env.IsEmpty());
361 env->Enter();
362 // Make sure all builtin scripts are cached.
363 { HandleScope scope;
364 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
365 Isolate::Current()->bootstrapper()->NativesSourceLookup(i);
366 }
367 }
368 HEAP->CollectAllGarbage(true);
369 HEAP->CollectAllGarbage(true);
370
371 Object* raw_foo;
372 {
373 v8::HandleScope handle_scope;
374 v8::Local<v8::String> foo = v8::String::New("foo");
375 ASSERT(!foo.IsEmpty());
376 raw_foo = *(v8::Utils::OpenHandle(*foo));
377 }
378
379 int file_name_length = StrLength(FLAG_testing_serialization_file) + 10;
380 Vector<char> startup_name = Vector<char>::New(file_name_length + 1);
381 OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file);
382
383 env->Exit();
384 env.Dispose();
385
386 FileByteSink startup_sink(startup_name.start());
387 startup_name.Dispose();
388 StartupSerializer startup_serializer(&startup_sink);
389 startup_serializer.SerializeStrongReferences();
390
391 FileByteSink partial_sink(FLAG_testing_serialization_file);
392 PartialSerializer p_ser(&startup_serializer, &partial_sink);
393 p_ser.Serialize(&raw_foo);
394 startup_serializer.SerializeWeakReferences();
395 partial_sink.WriteSpaceUsed(p_ser.CurrentAllocationAddress(NEW_SPACE),
396 p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE),
397 p_ser.CurrentAllocationAddress(OLD_DATA_SPACE),
398 p_ser.CurrentAllocationAddress(CODE_SPACE),
399 p_ser.CurrentAllocationAddress(MAP_SPACE),
400 p_ser.CurrentAllocationAddress(CELL_SPACE),
401 p_ser.CurrentAllocationAddress(LO_SPACE));
402 }
403
404
ReserveSpaceForPartialSnapshot(const char * file_name)405 static void ReserveSpaceForPartialSnapshot(const char* file_name) {
406 int file_name_length = StrLength(file_name) + 10;
407 Vector<char> name = Vector<char>::New(file_name_length + 1);
408 OS::SNPrintF(name, "%s.size", file_name);
409 FILE* fp = OS::FOpen(name.start(), "r");
410 name.Dispose();
411 int new_size, pointer_size, data_size, code_size, map_size, cell_size;
412 int large_size;
413 #ifdef _MSC_VER
414 // Avoid warning about unsafe fscanf from MSVC.
415 // Please note that this is only fine if %c and %s are not being used.
416 #define fscanf fscanf_s
417 #endif
418 CHECK_EQ(1, fscanf(fp, "new %d\n", &new_size));
419 CHECK_EQ(1, fscanf(fp, "pointer %d\n", &pointer_size));
420 CHECK_EQ(1, fscanf(fp, "data %d\n", &data_size));
421 CHECK_EQ(1, fscanf(fp, "code %d\n", &code_size));
422 CHECK_EQ(1, fscanf(fp, "map %d\n", &map_size));
423 CHECK_EQ(1, fscanf(fp, "cell %d\n", &cell_size));
424 CHECK_EQ(1, fscanf(fp, "large %d\n", &large_size));
425 #ifdef _MSC_VER
426 #undef fscanf
427 #endif
428 fclose(fp);
429 HEAP->ReserveSpace(new_size,
430 pointer_size,
431 data_size,
432 code_size,
433 map_size,
434 cell_size,
435 large_size);
436 }
437
438
DEPENDENT_TEST(PartialDeserialization,PartialSerialization)439 DEPENDENT_TEST(PartialDeserialization, PartialSerialization) {
440 if (!Snapshot::IsEnabled()) {
441 int file_name_length = StrLength(FLAG_testing_serialization_file) + 10;
442 Vector<char> startup_name = Vector<char>::New(file_name_length + 1);
443 OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file);
444
445 CHECK(Snapshot::Initialize(startup_name.start()));
446 startup_name.Dispose();
447
448 const char* file_name = FLAG_testing_serialization_file;
449 ReserveSpaceForPartialSnapshot(file_name);
450
451 int snapshot_size = 0;
452 byte* snapshot = ReadBytes(file_name, &snapshot_size);
453
454 Object* root;
455 {
456 SnapshotByteSource source(snapshot, snapshot_size);
457 Deserializer deserializer(&source);
458 deserializer.DeserializePartial(&root);
459 CHECK(root->IsString());
460 }
461 v8::HandleScope handle_scope;
462 Handle<Object>root_handle(root);
463
464 Object* root2;
465 {
466 SnapshotByteSource source(snapshot, snapshot_size);
467 Deserializer deserializer(&source);
468 deserializer.DeserializePartial(&root2);
469 CHECK(root2->IsString());
470 CHECK(*root_handle == root2);
471 }
472 }
473 }
474
475
TEST(ContextSerialization)476 TEST(ContextSerialization) {
477 Serializer::Enable();
478 v8::V8::Initialize();
479
480 v8::Persistent<v8::Context> env = v8::Context::New();
481 ASSERT(!env.IsEmpty());
482 env->Enter();
483 // Make sure all builtin scripts are cached.
484 { HandleScope scope;
485 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
486 Isolate::Current()->bootstrapper()->NativesSourceLookup(i);
487 }
488 }
489 // If we don't do this then we end up with a stray root pointing at the
490 // context even after we have disposed of env.
491 HEAP->CollectAllGarbage(true);
492
493 int file_name_length = StrLength(FLAG_testing_serialization_file) + 10;
494 Vector<char> startup_name = Vector<char>::New(file_name_length + 1);
495 OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file);
496
497 env->Exit();
498
499 Object* raw_context = *(v8::Utils::OpenHandle(*env));
500
501 env.Dispose();
502
503 FileByteSink startup_sink(startup_name.start());
504 startup_name.Dispose();
505 StartupSerializer startup_serializer(&startup_sink);
506 startup_serializer.SerializeStrongReferences();
507
508 FileByteSink partial_sink(FLAG_testing_serialization_file);
509 PartialSerializer p_ser(&startup_serializer, &partial_sink);
510 p_ser.Serialize(&raw_context);
511 startup_serializer.SerializeWeakReferences();
512 partial_sink.WriteSpaceUsed(p_ser.CurrentAllocationAddress(NEW_SPACE),
513 p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE),
514 p_ser.CurrentAllocationAddress(OLD_DATA_SPACE),
515 p_ser.CurrentAllocationAddress(CODE_SPACE),
516 p_ser.CurrentAllocationAddress(MAP_SPACE),
517 p_ser.CurrentAllocationAddress(CELL_SPACE),
518 p_ser.CurrentAllocationAddress(LO_SPACE));
519 }
520
521
DEPENDENT_TEST(ContextDeserialization,ContextSerialization)522 DEPENDENT_TEST(ContextDeserialization, ContextSerialization) {
523 if (!Snapshot::IsEnabled()) {
524 int file_name_length = StrLength(FLAG_testing_serialization_file) + 10;
525 Vector<char> startup_name = Vector<char>::New(file_name_length + 1);
526 OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file);
527
528 CHECK(Snapshot::Initialize(startup_name.start()));
529 startup_name.Dispose();
530
531 const char* file_name = FLAG_testing_serialization_file;
532 ReserveSpaceForPartialSnapshot(file_name);
533
534 int snapshot_size = 0;
535 byte* snapshot = ReadBytes(file_name, &snapshot_size);
536
537 Object* root;
538 {
539 SnapshotByteSource source(snapshot, snapshot_size);
540 Deserializer deserializer(&source);
541 deserializer.DeserializePartial(&root);
542 CHECK(root->IsContext());
543 }
544 v8::HandleScope handle_scope;
545 Handle<Object>root_handle(root);
546
547 Object* root2;
548 {
549 SnapshotByteSource source(snapshot, snapshot_size);
550 Deserializer deserializer(&source);
551 deserializer.DeserializePartial(&root2);
552 CHECK(root2->IsContext());
553 CHECK(*root_handle != root2);
554 }
555 }
556 }
557
558
TEST(LinearAllocation)559 TEST(LinearAllocation) {
560 v8::V8::Initialize();
561 int new_space_max = 512 * KB;
562
563 for (int size = 1000; size < 5 * MB; size += size >> 1) {
564 int new_space_size = (size < new_space_max) ? size : new_space_max;
565 HEAP->ReserveSpace(
566 new_space_size,
567 size, // Old pointer space.
568 size, // Old data space.
569 size, // Code space.
570 size, // Map space.
571 size, // Cell space.
572 size); // Large object space.
573 LinearAllocationScope linear_allocation_scope;
574 const int kSmallFixedArrayLength = 4;
575 const int kSmallFixedArraySize =
576 FixedArray::kHeaderSize + kSmallFixedArrayLength * kPointerSize;
577 const int kSmallStringLength = 16;
578 const int kSmallStringSize =
579 (SeqAsciiString::kHeaderSize + kSmallStringLength +
580 kObjectAlignmentMask) & ~kObjectAlignmentMask;
581 const int kMapSize = Map::kSize;
582
583 Object* new_last = NULL;
584 for (int i = 0;
585 i + kSmallFixedArraySize <= new_space_size;
586 i += kSmallFixedArraySize) {
587 Object* obj =
588 HEAP->AllocateFixedArray(kSmallFixedArrayLength)->ToObjectChecked();
589 if (new_last != NULL) {
590 CHECK(reinterpret_cast<char*>(obj) ==
591 reinterpret_cast<char*>(new_last) + kSmallFixedArraySize);
592 }
593 new_last = obj;
594 }
595
596 Object* pointer_last = NULL;
597 for (int i = 0;
598 i + kSmallFixedArraySize <= size;
599 i += kSmallFixedArraySize) {
600 Object* obj = HEAP->AllocateFixedArray(kSmallFixedArrayLength,
601 TENURED)->ToObjectChecked();
602 int old_page_fullness = i % Page::kPageSize;
603 int page_fullness = (i + kSmallFixedArraySize) % Page::kPageSize;
604 if (page_fullness < old_page_fullness ||
605 page_fullness > Page::kObjectAreaSize) {
606 i = RoundUp(i, Page::kPageSize);
607 pointer_last = NULL;
608 }
609 if (pointer_last != NULL) {
610 CHECK(reinterpret_cast<char*>(obj) ==
611 reinterpret_cast<char*>(pointer_last) + kSmallFixedArraySize);
612 }
613 pointer_last = obj;
614 }
615
616 Object* data_last = NULL;
617 for (int i = 0; i + kSmallStringSize <= size; i += kSmallStringSize) {
618 Object* obj = HEAP->AllocateRawAsciiString(kSmallStringLength,
619 TENURED)->ToObjectChecked();
620 int old_page_fullness = i % Page::kPageSize;
621 int page_fullness = (i + kSmallStringSize) % Page::kPageSize;
622 if (page_fullness < old_page_fullness ||
623 page_fullness > Page::kObjectAreaSize) {
624 i = RoundUp(i, Page::kPageSize);
625 data_last = NULL;
626 }
627 if (data_last != NULL) {
628 CHECK(reinterpret_cast<char*>(obj) ==
629 reinterpret_cast<char*>(data_last) + kSmallStringSize);
630 }
631 data_last = obj;
632 }
633
634 Object* map_last = NULL;
635 for (int i = 0; i + kMapSize <= size; i += kMapSize) {
636 Object* obj = HEAP->AllocateMap(JS_OBJECT_TYPE,
637 42 * kPointerSize)->ToObjectChecked();
638 int old_page_fullness = i % Page::kPageSize;
639 int page_fullness = (i + kMapSize) % Page::kPageSize;
640 if (page_fullness < old_page_fullness ||
641 page_fullness > Page::kObjectAreaSize) {
642 i = RoundUp(i, Page::kPageSize);
643 map_last = NULL;
644 }
645 if (map_last != NULL) {
646 CHECK(reinterpret_cast<char*>(obj) ==
647 reinterpret_cast<char*>(map_last) + kMapSize);
648 }
649 map_last = obj;
650 }
651
652 if (size > Page::kObjectAreaSize) {
653 // Support for reserving space in large object space is not there yet,
654 // but using an always-allocate scope is fine for now.
655 AlwaysAllocateScope always;
656 int large_object_array_length =
657 (size - FixedArray::kHeaderSize) / kPointerSize;
658 Object* obj = HEAP->AllocateFixedArray(large_object_array_length,
659 TENURED)->ToObjectChecked();
660 CHECK(!obj->IsFailure());
661 }
662 }
663 }
664
665
TEST(TestThatAlwaysSucceeds)666 TEST(TestThatAlwaysSucceeds) {
667 }
668
669
TEST(TestThatAlwaysFails)670 TEST(TestThatAlwaysFails) {
671 bool ArtificialFailure = false;
672 CHECK(ArtificialFailure);
673 }
674
675
DEPENDENT_TEST(DependentTestThatAlwaysFails,TestThatAlwaysSucceeds)676 DEPENDENT_TEST(DependentTestThatAlwaysFails, TestThatAlwaysSucceeds) {
677 bool ArtificialFailure2 = false;
678 CHECK(ArtificialFailure2);
679 }
680