• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifdef ENABLE_GDB_JIT_INTERFACE
29 #include "v8.h"
30 #include "gdb-jit.h"
31 
32 #include "bootstrapper.h"
33 #include "compiler.h"
34 #include "global-handles.h"
35 #include "messages.h"
36 #include "natives.h"
37 
38 namespace v8 {
39 namespace internal {
40 
41 class ELF;
42 
43 class Writer BASE_EMBEDDED {
44  public:
Writer(ELF * elf)45   explicit Writer(ELF* elf)
46       : elf_(elf),
47         position_(0),
48         capacity_(1024),
49         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
50   }
51 
~Writer()52   ~Writer() {
53     free(buffer_);
54   }
55 
position() const56   uintptr_t position() const {
57     return position_;
58   }
59 
60   template<typename T>
61   class Slot {
62    public:
Slot(Writer * w,uintptr_t offset)63     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
64 
operator ->()65     T* operator-> () {
66       return w_->RawSlotAt<T>(offset_);
67     }
68 
set(const T & value)69     void set(const T& value) {
70       *w_->RawSlotAt<T>(offset_) = value;
71     }
72 
at(int i)73     Slot<T> at(int i) {
74       return Slot<T>(w_, offset_ + sizeof(T) * i);
75     }
76 
77    private:
78     Writer* w_;
79     uintptr_t offset_;
80   };
81 
82   template<typename T>
Write(const T & val)83   void Write(const T& val) {
84     Ensure(position_ + sizeof(T));
85     *RawSlotAt<T>(position_) = val;
86     position_ += sizeof(T);
87   }
88 
89   template<typename T>
SlotAt(uintptr_t offset)90   Slot<T> SlotAt(uintptr_t offset) {
91     Ensure(offset + sizeof(T));
92     return Slot<T>(this, offset);
93   }
94 
95   template<typename T>
CreateSlotHere()96   Slot<T> CreateSlotHere() {
97     return CreateSlotsHere<T>(1);
98   }
99 
100   template<typename T>
CreateSlotsHere(uint32_t count)101   Slot<T> CreateSlotsHere(uint32_t count) {
102     uintptr_t slot_position = position_;
103     position_ += sizeof(T) * count;
104     Ensure(position_);
105     return SlotAt<T>(slot_position);
106   }
107 
Ensure(uintptr_t pos)108   void Ensure(uintptr_t pos) {
109     if (capacity_ < pos) {
110       while (capacity_ < pos) capacity_ *= 2;
111       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
112     }
113   }
114 
elf()115   ELF* elf() { return elf_; }
116 
buffer()117   byte* buffer() { return buffer_; }
118 
Align(uintptr_t align)119   void Align(uintptr_t align) {
120     uintptr_t delta = position_ % align;
121     if (delta == 0) return;
122     uintptr_t padding = align - delta;
123     Ensure(position_ += padding);
124     ASSERT((position_ % align) == 0);
125   }
126 
WriteULEB128(uintptr_t value)127   void WriteULEB128(uintptr_t value) {
128     do {
129       uint8_t byte = value & 0x7F;
130       value >>= 7;
131       if (value != 0) byte |= 0x80;
132       Write<uint8_t>(byte);
133     } while (value != 0);
134   }
135 
WriteSLEB128(intptr_t value)136   void WriteSLEB128(intptr_t value) {
137     bool more = true;
138     while (more) {
139       int8_t byte = value & 0x7F;
140       bool byte_sign = byte & 0x40;
141       value >>= 7;
142 
143       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
144         more = false;
145       } else {
146         byte |= 0x80;
147       }
148 
149       Write<int8_t>(byte);
150     }
151   }
152 
WriteString(const char * str)153   void WriteString(const char* str) {
154     do {
155       Write<char>(*str);
156     } while (*str++);
157   }
158 
159  private:
160   template<typename T> friend class Slot;
161 
162   template<typename T>
RawSlotAt(uintptr_t offset)163   T* RawSlotAt(uintptr_t offset) {
164     ASSERT(offset < capacity_ && offset + sizeof(T) <= capacity_);
165     return reinterpret_cast<T*>(&buffer_[offset]);
166   }
167 
168   ELF* elf_;
169   uintptr_t position_;
170   uintptr_t capacity_;
171   byte* buffer_;
172 };
173 
174 class StringTable;
175 
176 class ELFSection : public ZoneObject {
177  public:
178   struct Header {
179     uint32_t name;
180     uint32_t type;
181     uintptr_t flags;
182     uintptr_t address;
183     uintptr_t offset;
184     uintptr_t size;
185     uint32_t link;
186     uint32_t info;
187     uintptr_t alignment;
188     uintptr_t entry_size;
189   };
190 
191   enum Type {
192     TYPE_NULL = 0,
193     TYPE_PROGBITS = 1,
194     TYPE_SYMTAB = 2,
195     TYPE_STRTAB = 3,
196     TYPE_RELA = 4,
197     TYPE_HASH = 5,
198     TYPE_DYNAMIC = 6,
199     TYPE_NOTE = 7,
200     TYPE_NOBITS = 8,
201     TYPE_REL = 9,
202     TYPE_SHLIB = 10,
203     TYPE_DYNSYM = 11,
204     TYPE_LOPROC = 0x70000000,
205     TYPE_X86_64_UNWIND = 0x70000001,
206     TYPE_HIPROC = 0x7fffffff,
207     TYPE_LOUSER = 0x80000000,
208     TYPE_HIUSER = 0xffffffff
209   };
210 
211   enum Flags {
212     FLAG_WRITE = 1,
213     FLAG_ALLOC = 2,
214     FLAG_EXEC = 4
215   };
216 
217   enum SpecialIndexes {
218     INDEX_ABSOLUTE = 0xfff1
219   };
220 
ELFSection(const char * name,Type type,uintptr_t align)221   ELFSection(const char* name, Type type, uintptr_t align)
222       : name_(name), type_(type), align_(align) { }
223 
~ELFSection()224   virtual ~ELFSection() { }
225 
226   void PopulateHeader(Writer::Slot<Header> header, StringTable* strtab);
227 
WriteBody(Writer::Slot<Header> header,Writer * w)228   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
229     uintptr_t start = w->position();
230     if (WriteBody(w)) {
231       uintptr_t end = w->position();
232       header->offset = start;
233       header->size = end - start;
234     }
235   }
236 
WriteBody(Writer * w)237   virtual bool WriteBody(Writer* w) {
238     return false;
239   }
240 
index() const241   uint16_t index() const { return index_; }
set_index(uint16_t index)242   void set_index(uint16_t index) { index_ = index; }
243 
244  protected:
PopulateHeader(Writer::Slot<Header> header)245   virtual void PopulateHeader(Writer::Slot<Header> header) {
246     header->flags = 0;
247     header->address = 0;
248     header->offset = 0;
249     header->size = 0;
250     header->link = 0;
251     header->info = 0;
252     header->entry_size = 0;
253   }
254 
255 
256  private:
257   const char* name_;
258   Type type_;
259   uintptr_t align_;
260   uint16_t index_;
261 };
262 
263 
264 class FullHeaderELFSection : public ELFSection {
265  public:
FullHeaderELFSection(const char * name,Type type,uintptr_t align,uintptr_t addr,uintptr_t offset,uintptr_t size,uintptr_t flags)266   FullHeaderELFSection(const char* name,
267                        Type type,
268                        uintptr_t align,
269                        uintptr_t addr,
270                        uintptr_t offset,
271                        uintptr_t size,
272                        uintptr_t flags)
273       : ELFSection(name, type, align),
274         addr_(addr),
275         offset_(offset),
276         size_(size),
277         flags_(flags) { }
278 
279  protected:
PopulateHeader(Writer::Slot<Header> header)280   virtual void PopulateHeader(Writer::Slot<Header> header) {
281     ELFSection::PopulateHeader(header);
282     header->address = addr_;
283     header->offset = offset_;
284     header->size = size_;
285     header->flags = flags_;
286   }
287 
288  private:
289   uintptr_t addr_;
290   uintptr_t offset_;
291   uintptr_t size_;
292   uintptr_t flags_;
293 };
294 
295 
296 class StringTable : public ELFSection {
297  public:
StringTable(const char * name)298   explicit StringTable(const char* name)
299       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
300   }
301 
Add(const char * str)302   uintptr_t Add(const char* str) {
303     if (*str == '\0') return 0;
304 
305     uintptr_t offset = size_;
306     WriteString(str);
307     return offset;
308   }
309 
AttachWriter(Writer * w)310   void AttachWriter(Writer* w) {
311     writer_ = w;
312     offset_ = writer_->position();
313 
314     // First entry in the string table should be an empty string.
315     WriteString("");
316   }
317 
DetachWriter()318   void DetachWriter() {
319     writer_ = NULL;
320   }
321 
WriteBody(Writer::Slot<Header> header,Writer * w)322   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
323     ASSERT(writer_ == NULL);
324     header->offset = offset_;
325     header->size = size_;
326   }
327 
328  private:
WriteString(const char * str)329   void WriteString(const char* str) {
330     uintptr_t written = 0;
331     do {
332       writer_->Write(*str);
333       written++;
334     } while (*str++);
335     size_ += written;
336   }
337 
338   Writer* writer_;
339 
340   uintptr_t offset_;
341   uintptr_t size_;
342 };
343 
344 
PopulateHeader(Writer::Slot<ELFSection::Header> header,StringTable * strtab)345 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
346                                 StringTable* strtab) {
347   header->name = strtab->Add(name_);
348   header->type = type_;
349   header->alignment = align_;
350   PopulateHeader(header);
351 }
352 
353 
354 class ELF BASE_EMBEDDED {
355  public:
ELF()356   ELF() : sections_(6) {
357     sections_.Add(new ELFSection("", ELFSection::TYPE_NULL, 0));
358     sections_.Add(new StringTable(".shstrtab"));
359   }
360 
Write(Writer * w)361   void Write(Writer* w) {
362     WriteHeader(w);
363     WriteSectionTable(w);
364     WriteSections(w);
365   }
366 
SectionAt(uint32_t index)367   ELFSection* SectionAt(uint32_t index) {
368     return sections_[index];
369   }
370 
AddSection(ELFSection * section)371   uint32_t AddSection(ELFSection* section) {
372     sections_.Add(section);
373     section->set_index(sections_.length() - 1);
374     return sections_.length() - 1;
375   }
376 
377  private:
378   struct ELFHeader {
379     uint8_t ident[16];
380     uint16_t type;
381     uint16_t machine;
382     uint32_t version;
383     uintptr_t entry;
384     uintptr_t pht_offset;
385     uintptr_t sht_offset;
386     uint32_t flags;
387     uint16_t header_size;
388     uint16_t pht_entry_size;
389     uint16_t pht_entry_num;
390     uint16_t sht_entry_size;
391     uint16_t sht_entry_num;
392     uint16_t sht_strtab_index;
393   };
394 
395 
WriteHeader(Writer * w)396   void WriteHeader(Writer* w) {
397     ASSERT(w->position() == 0);
398     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
399 #if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_ARM)
400     const uint8_t ident[16] =
401         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
402 #elif defined(V8_TARGET_ARCH_X64)
403     const uint8_t ident[16] =
404         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0 , 0, 0, 0, 0, 0, 0};
405 #else
406 #error Unsupported target architecture.
407 #endif
408     memcpy(header->ident, ident, 16);
409     header->type = 1;
410 #if defined(V8_TARGET_ARCH_IA32)
411     header->machine = 3;
412 #elif defined(V8_TARGET_ARCH_X64)
413     // Processor identification value for x64 is 62 as defined in
414     //    System V ABI, AMD64 Supplement
415     //    http://www.x86-64.org/documentation/abi.pdf
416     header->machine = 62;
417 #elif defined(V8_TARGET_ARCH_ARM)
418     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
419     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
420     header->machine = 40;
421 #else
422 #error Unsupported target architecture.
423 #endif
424     header->version = 1;
425     header->entry = 0;
426     header->pht_offset = 0;
427     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
428     header->flags = 0;
429     header->header_size = sizeof(ELFHeader);
430     header->pht_entry_size = 0;
431     header->pht_entry_num = 0;
432     header->sht_entry_size = sizeof(ELFSection::Header);
433     header->sht_entry_num = sections_.length();
434     header->sht_strtab_index = 1;
435   }
436 
WriteSectionTable(Writer * w)437   void WriteSectionTable(Writer* w) {
438     // Section headers table immediately follows file header.
439     ASSERT(w->position() == sizeof(ELFHeader));
440 
441     Writer::Slot<ELFSection::Header> headers =
442         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
443 
444     // String table for section table is the first section.
445     StringTable* strtab = static_cast<StringTable*>(SectionAt(1));
446     strtab->AttachWriter(w);
447     for (int i = 0, length = sections_.length();
448          i < length;
449          i++) {
450       sections_[i]->PopulateHeader(headers.at(i), strtab);
451     }
452     strtab->DetachWriter();
453   }
454 
SectionHeaderPosition(uint32_t section_index)455   int SectionHeaderPosition(uint32_t section_index) {
456     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
457   }
458 
WriteSections(Writer * w)459   void WriteSections(Writer* w) {
460     Writer::Slot<ELFSection::Header> headers =
461         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
462 
463     for (int i = 0, length = sections_.length();
464          i < length;
465          i++) {
466       sections_[i]->WriteBody(headers.at(i), w);
467     }
468   }
469 
470   ZoneList<ELFSection*> sections_;
471 };
472 
473 
474 class ELFSymbol BASE_EMBEDDED {
475  public:
476   enum Type {
477     TYPE_NOTYPE = 0,
478     TYPE_OBJECT = 1,
479     TYPE_FUNC = 2,
480     TYPE_SECTION = 3,
481     TYPE_FILE = 4,
482     TYPE_LOPROC = 13,
483     TYPE_HIPROC = 15
484   };
485 
486   enum Binding {
487     BIND_LOCAL = 0,
488     BIND_GLOBAL = 1,
489     BIND_WEAK = 2,
490     BIND_LOPROC = 13,
491     BIND_HIPROC = 15
492   };
493 
ELFSymbol(const char * name,uintptr_t value,uintptr_t size,Binding binding,Type type,uint16_t section)494   ELFSymbol(const char* name,
495             uintptr_t value,
496             uintptr_t size,
497             Binding binding,
498             Type type,
499             uint16_t section)
500       : name(name),
501         value(value),
502         size(size),
503         info((binding << 4) | type),
504         other(0),
505         section(section) {
506   }
507 
binding() const508   Binding binding() const {
509     return static_cast<Binding>(info >> 4);
510   }
511 #if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_ARM)
512   struct SerializedLayout {
SerializedLayoutv8::internal::BASE_EMBEDDED::SerializedLayout513     SerializedLayout(uint32_t name,
514                      uintptr_t value,
515                      uintptr_t size,
516                      Binding binding,
517                      Type type,
518                      uint16_t section)
519         : name(name),
520           value(value),
521           size(size),
522           info((binding << 4) | type),
523           other(0),
524           section(section) {
525     }
526 
527     uint32_t name;
528     uintptr_t value;
529     uintptr_t size;
530     uint8_t info;
531     uint8_t other;
532     uint16_t section;
533   };
534 #elif defined(V8_TARGET_ARCH_X64)
535   struct SerializedLayout {
SerializedLayoutv8::internal::BASE_EMBEDDED::SerializedLayout536     SerializedLayout(uint32_t name,
537                      uintptr_t value,
538                      uintptr_t size,
539                      Binding binding,
540                      Type type,
541                      uint16_t section)
542         : name(name),
543           info((binding << 4) | type),
544           other(0),
545           section(section),
546           value(value),
547           size(size) {
548     }
549 
550     uint32_t name;
551     uint8_t info;
552     uint8_t other;
553     uint16_t section;
554     uintptr_t value;
555     uintptr_t size;
556   };
557 #endif
558 
Write(Writer::Slot<SerializedLayout> s,StringTable * t)559   void Write(Writer::Slot<SerializedLayout> s, StringTable* t) {
560     // Convert symbol names from strings to indexes in the string table.
561     s->name = t->Add(name);
562     s->value = value;
563     s->size = size;
564     s->info = info;
565     s->other = other;
566     s->section = section;
567   }
568 
569  private:
570   const char* name;
571   uintptr_t value;
572   uintptr_t size;
573   uint8_t info;
574   uint8_t other;
575   uint16_t section;
576 };
577 
578 
579 class ELFSymbolTable : public ELFSection {
580  public:
ELFSymbolTable(const char * name)581   explicit ELFSymbolTable(const char* name)
582       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
583         locals_(1),
584         globals_(1) {
585   }
586 
WriteBody(Writer::Slot<Header> header,Writer * w)587   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
588     w->Align(header->alignment);
589     int total_symbols = locals_.length() + globals_.length() + 1;
590     header->offset = w->position();
591 
592     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
593         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
594 
595     header->size = w->position() - header->offset;
596 
597     // String table for this symbol table should follow it in the section table.
598     StringTable* strtab =
599         static_cast<StringTable*>(w->elf()->SectionAt(index() + 1));
600     strtab->AttachWriter(w);
601     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
602                                                   0,
603                                                   0,
604                                                   ELFSymbol::BIND_LOCAL,
605                                                   ELFSymbol::TYPE_NOTYPE,
606                                                   0));
607     WriteSymbolsList(&locals_, symbols.at(1), strtab);
608     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
609     strtab->DetachWriter();
610   }
611 
Add(const ELFSymbol & symbol)612   void Add(const ELFSymbol& symbol) {
613     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
614       locals_.Add(symbol);
615     } else {
616       globals_.Add(symbol);
617     }
618   }
619 
620  protected:
PopulateHeader(Writer::Slot<Header> header)621   virtual void PopulateHeader(Writer::Slot<Header> header) {
622     ELFSection::PopulateHeader(header);
623     // We are assuming that string table will follow symbol table.
624     header->link = index() + 1;
625     header->info = locals_.length() + 1;
626     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
627   }
628 
629  private:
WriteSymbolsList(const ZoneList<ELFSymbol> * src,Writer::Slot<ELFSymbol::SerializedLayout> dst,StringTable * strtab)630   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
631                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
632                         StringTable* strtab) {
633     for (int i = 0, len = src->length();
634          i < len;
635          i++) {
636       src->at(i).Write(dst.at(i), strtab);
637     }
638   }
639 
640   ZoneList<ELFSymbol> locals_;
641   ZoneList<ELFSymbol> globals_;
642 };
643 
644 
645 class CodeDescription BASE_EMBEDDED {
646  public:
647 
648 #ifdef V8_TARGET_ARCH_X64
649   enum StackState {
650     POST_RBP_PUSH,
651     POST_RBP_SET,
652     POST_RBP_POP,
653     STACK_STATE_MAX
654   };
655 #endif
656 
CodeDescription(const char * name,Code * code,Handle<Script> script,GDBJITLineInfo * lineinfo,GDBJITInterface::CodeTag tag)657   CodeDescription(const char* name,
658                   Code* code,
659                   Handle<Script> script,
660                   GDBJITLineInfo* lineinfo,
661                   GDBJITInterface::CodeTag tag)
662       : name_(name),
663         code_(code),
664         script_(script),
665         lineinfo_(lineinfo),
666         tag_(tag) {
667   }
668 
name() const669   const char* name() const {
670     return name_;
671   }
672 
lineinfo() const673   GDBJITLineInfo* lineinfo() const {
674     return lineinfo_;
675   }
676 
tag() const677   GDBJITInterface::CodeTag tag() const {
678     return tag_;
679   }
680 
CodeStart() const681   uintptr_t CodeStart() const {
682     return reinterpret_cast<uintptr_t>(code_->instruction_start());
683   }
684 
CodeEnd() const685   uintptr_t CodeEnd() const {
686     return reinterpret_cast<uintptr_t>(code_->instruction_end());
687   }
688 
CodeSize() const689   uintptr_t CodeSize() const {
690     return CodeEnd() - CodeStart();
691   }
692 
IsLineInfoAvailable()693   bool IsLineInfoAvailable() {
694     return !script_.is_null() &&
695         script_->source()->IsString() &&
696         script_->HasValidSource() &&
697         script_->name()->IsString() &&
698         lineinfo_ != NULL;
699   }
700 
701 #ifdef V8_TARGET_ARCH_X64
GetStackStateStartAddress(StackState state) const702   uintptr_t GetStackStateStartAddress(StackState state) const {
703     ASSERT(state < STACK_STATE_MAX);
704     return stack_state_start_addresses_[state];
705   }
706 
SetStackStateStartAddress(StackState state,uintptr_t addr)707   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
708     ASSERT(state < STACK_STATE_MAX);
709     stack_state_start_addresses_[state] = addr;
710   }
711 #endif
712 
GetFilename()713   SmartPointer<char> GetFilename() {
714     return String::cast(script_->name())->ToCString();
715   }
716 
GetScriptLineNumber(int pos)717   int GetScriptLineNumber(int pos) {
718     return GetScriptLineNumberSafe(script_, pos) + 1;
719   }
720 
721 
722  private:
723   const char* name_;
724   Code* code_;
725   Handle<Script> script_;
726   GDBJITLineInfo* lineinfo_;
727   GDBJITInterface::CodeTag tag_;
728 #ifdef V8_TARGET_ARCH_X64
729   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
730 #endif
731 };
732 
733 
CreateSymbolsTable(CodeDescription * desc,ELF * elf,int text_section_index)734 static void CreateSymbolsTable(CodeDescription* desc,
735                                ELF* elf,
736                                int text_section_index) {
737   ELFSymbolTable* symtab = new ELFSymbolTable(".symtab");
738   StringTable* strtab = new StringTable(".strtab");
739 
740   // Symbol table should be followed by the linked string table.
741   elf->AddSection(symtab);
742   elf->AddSection(strtab);
743 
744   symtab->Add(ELFSymbol("V8 Code",
745                         0,
746                         0,
747                         ELFSymbol::BIND_LOCAL,
748                         ELFSymbol::TYPE_FILE,
749                         ELFSection::INDEX_ABSOLUTE));
750 
751   symtab->Add(ELFSymbol(desc->name(),
752                         0,
753                         desc->CodeSize(),
754                         ELFSymbol::BIND_GLOBAL,
755                         ELFSymbol::TYPE_FUNC,
756                         text_section_index));
757 }
758 
759 
760 class DebugInfoSection : public ELFSection {
761  public:
DebugInfoSection(CodeDescription * desc)762   explicit DebugInfoSection(CodeDescription* desc)
763       : ELFSection(".debug_info", TYPE_PROGBITS, 1), desc_(desc) { }
764 
WriteBody(Writer * w)765   bool WriteBody(Writer* w) {
766     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
767     uintptr_t start = w->position();
768     w->Write<uint16_t>(2);  // DWARF version.
769     w->Write<uint32_t>(0);  // Abbreviation table offset.
770     w->Write<uint8_t>(sizeof(intptr_t));
771 
772     w->WriteULEB128(1);  // Abbreviation code.
773     w->WriteString(*desc_->GetFilename());
774     w->Write<intptr_t>(desc_->CodeStart());
775     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
776     w->Write<uint32_t>(0);
777     size.set(static_cast<uint32_t>(w->position() - start));
778     return true;
779   }
780 
781  private:
782   CodeDescription* desc_;
783 };
784 
785 
786 class DebugAbbrevSection : public ELFSection {
787  public:
DebugAbbrevSection()788   DebugAbbrevSection() : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1) { }
789 
790   // DWARF2 standard, figure 14.
791   enum DWARF2Tags {
792     DW_TAG_COMPILE_UNIT = 0x11
793   };
794 
795   // DWARF2 standard, figure 16.
796   enum DWARF2ChildrenDetermination {
797     DW_CHILDREN_NO = 0,
798     DW_CHILDREN_YES = 1
799   };
800 
801   // DWARF standard, figure 17.
802   enum DWARF2Attribute {
803     DW_AT_NAME = 0x3,
804     DW_AT_STMT_LIST = 0x10,
805     DW_AT_LOW_PC = 0x11,
806     DW_AT_HIGH_PC = 0x12
807   };
808 
809   // DWARF2 standard, figure 19.
810   enum DWARF2AttributeForm {
811     DW_FORM_ADDR = 0x1,
812     DW_FORM_STRING = 0x8,
813     DW_FORM_DATA4 = 0x6
814   };
815 
WriteBody(Writer * w)816   bool WriteBody(Writer* w) {
817     w->WriteULEB128(1);
818     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
819     w->Write<uint8_t>(DW_CHILDREN_NO);
820     w->WriteULEB128(DW_AT_NAME);
821     w->WriteULEB128(DW_FORM_STRING);
822     w->WriteULEB128(DW_AT_LOW_PC);
823     w->WriteULEB128(DW_FORM_ADDR);
824     w->WriteULEB128(DW_AT_HIGH_PC);
825     w->WriteULEB128(DW_FORM_ADDR);
826     w->WriteULEB128(DW_AT_STMT_LIST);
827     w->WriteULEB128(DW_FORM_DATA4);
828     w->WriteULEB128(0);
829     w->WriteULEB128(0);
830     w->WriteULEB128(0);
831     return true;
832   }
833 };
834 
835 
836 class DebugLineSection : public ELFSection {
837  public:
DebugLineSection(CodeDescription * desc)838   explicit DebugLineSection(CodeDescription* desc)
839       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
840         desc_(desc) { }
841 
842   // DWARF2 standard, figure 34.
843   enum DWARF2Opcodes {
844     DW_LNS_COPY = 1,
845     DW_LNS_ADVANCE_PC = 2,
846     DW_LNS_ADVANCE_LINE = 3,
847     DW_LNS_SET_FILE = 4,
848     DW_LNS_SET_COLUMN = 5,
849     DW_LNS_NEGATE_STMT = 6
850   };
851 
852   // DWARF2 standard, figure 35.
853   enum DWARF2ExtendedOpcode {
854     DW_LNE_END_SEQUENCE = 1,
855     DW_LNE_SET_ADDRESS = 2,
856     DW_LNE_DEFINE_FILE = 3
857   };
858 
WriteBody(Writer * w)859   bool WriteBody(Writer* w) {
860     // Write prologue.
861     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
862     uintptr_t start = w->position();
863 
864     // Used for special opcodes
865     const int8_t line_base = 1;
866     const uint8_t line_range = 7;
867     const int8_t max_line_incr = (line_base + line_range - 1);
868     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
869 
870     w->Write<uint16_t>(2);  // Field version.
871     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
872     uintptr_t prologue_start = w->position();
873     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
874     w->Write<uint8_t>(1);  // Field default_is_stmt.
875     w->Write<int8_t>(line_base);  // Field line_base.
876     w->Write<uint8_t>(line_range);  // Field line_range.
877     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
878     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
879     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
880     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
881     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
882     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
883     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
884     w->Write<uint8_t>(0);  // Empty include_directories sequence.
885     w->WriteString(*desc_->GetFilename());  // File name.
886     w->WriteULEB128(0);  // Current directory.
887     w->WriteULEB128(0);  // Unknown modification time.
888     w->WriteULEB128(0);  // Unknown file size.
889     w->Write<uint8_t>(0);
890     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
891 
892     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
893     w->Write<intptr_t>(desc_->CodeStart());
894     w->Write<uint8_t>(DW_LNS_COPY);
895 
896     intptr_t pc = 0;
897     intptr_t line = 1;
898     bool is_statement = true;
899 
900     List<GDBJITLineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
901     pc_info->Sort(&ComparePCInfo);
902 
903     int pc_info_length = pc_info->length();
904     for (int i = 0; i < pc_info_length; i++) {
905       GDBJITLineInfo::PCInfo* info = &pc_info->at(i);
906       ASSERT(info->pc_ >= pc);
907 
908       // Reduce bloating in the debug line table by removing duplicate line
909       // entries (per DWARF2 standard).
910       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
911       if (new_line == line) {
912         continue;
913       }
914 
915       // Mark statement boundaries.  For a better debugging experience, mark
916       // the last pc address in the function as a statement (e.g. "}"), so that
917       // a user can see the result of the last line executed in the function,
918       // should control reach the end.
919       if ((i+1) == pc_info_length) {
920         if (!is_statement) {
921           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
922         }
923       } else if (is_statement != info->is_statement_) {
924         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
925         is_statement = !is_statement;
926       }
927 
928       // Generate special opcodes, if possible.  This results in more compact
929       // debug line tables.  See the DWARF 2.0 standard to learn more about
930       // special opcodes.
931       uintptr_t pc_diff = info->pc_ - pc;
932       intptr_t line_diff = new_line - line;
933 
934       // Compute special opcode (see DWARF 2.0 standard)
935       intptr_t special_opcode = (line_diff - line_base) +
936                                 (line_range * pc_diff) + opcode_base;
937 
938       // If special_opcode is less than or equal to 255, it can be used as a
939       // special opcode.  If line_diff is larger than the max line increment
940       // allowed for a special opcode, or if line_diff is less than the minimum
941       // line that can be added to the line register (i.e. line_base), then
942       // special_opcode can't be used.
943       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
944           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
945         w->Write<uint8_t>(special_opcode);
946       } else {
947         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
948         w->WriteSLEB128(pc_diff);
949         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
950         w->WriteSLEB128(line_diff);
951         w->Write<uint8_t>(DW_LNS_COPY);
952       }
953 
954       // Increment the pc and line operands.
955       pc += pc_diff;
956       line += line_diff;
957     }
958     // Advance the pc to the end of the routine, since the end sequence opcode
959     // requires this.
960     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
961     w->WriteSLEB128(desc_->CodeSize() - pc);
962     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
963     total_length.set(static_cast<uint32_t>(w->position() - start));
964     return true;
965   }
966 
967  private:
WriteExtendedOpcode(Writer * w,DWARF2ExtendedOpcode op,size_t operands_size)968   void WriteExtendedOpcode(Writer* w,
969                            DWARF2ExtendedOpcode op,
970                            size_t operands_size) {
971     w->Write<uint8_t>(0);
972     w->WriteULEB128(operands_size + 1);
973     w->Write<uint8_t>(op);
974   }
975 
ComparePCInfo(const GDBJITLineInfo::PCInfo * a,const GDBJITLineInfo::PCInfo * b)976   static int ComparePCInfo(const GDBJITLineInfo::PCInfo* a,
977                            const GDBJITLineInfo::PCInfo* b) {
978     if (a->pc_ == b->pc_) {
979       if (a->is_statement_ != b->is_statement_) {
980         return b->is_statement_ ? +1 : -1;
981       }
982       return 0;
983     } else if (a->pc_ > b->pc_) {
984       return +1;
985     } else {
986       return -1;
987     }
988   }
989 
990   CodeDescription* desc_;
991 };
992 
993 
994 #ifdef V8_TARGET_ARCH_X64
995 
996 
997 class UnwindInfoSection : public ELFSection {
998  public:
999   explicit UnwindInfoSection(CodeDescription *desc);
1000   virtual bool WriteBody(Writer *w);
1001 
1002   int WriteCIE(Writer *w);
1003   void WriteFDE(Writer *w, int);
1004 
1005   void WriteFDEStateOnEntry(Writer *w);
1006   void WriteFDEStateAfterRBPPush(Writer *w);
1007   void WriteFDEStateAfterRBPSet(Writer *w);
1008   void WriteFDEStateAfterRBPPop(Writer *w);
1009 
1010   void WriteLength(Writer *w,
1011                    Writer::Slot<uint32_t>* length_slot,
1012                    int initial_position);
1013 
1014  private:
1015   CodeDescription *desc_;
1016 
1017   // DWARF3 Specification, Table 7.23
1018   enum CFIInstructions {
1019     DW_CFA_ADVANCE_LOC = 0x40,
1020     DW_CFA_OFFSET = 0x80,
1021     DW_CFA_RESTORE = 0xC0,
1022     DW_CFA_NOP = 0x00,
1023     DW_CFA_SET_LOC = 0x01,
1024     DW_CFA_ADVANCE_LOC1 = 0x02,
1025     DW_CFA_ADVANCE_LOC2 = 0x03,
1026     DW_CFA_ADVANCE_LOC4 = 0x04,
1027     DW_CFA_OFFSET_EXTENDED = 0x05,
1028     DW_CFA_RESTORE_EXTENDED = 0x06,
1029     DW_CFA_UNDEFINED = 0x07,
1030     DW_CFA_SAME_VALUE = 0x08,
1031     DW_CFA_REGISTER = 0x09,
1032     DW_CFA_REMEMBER_STATE = 0x0A,
1033     DW_CFA_RESTORE_STATE = 0x0B,
1034     DW_CFA_DEF_CFA = 0x0C,
1035     DW_CFA_DEF_CFA_REGISTER = 0x0D,
1036     DW_CFA_DEF_CFA_OFFSET = 0x0E,
1037 
1038     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
1039     DW_CFA_EXPRESSION = 0x10,
1040     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
1041     DW_CFA_DEF_CFA_SF = 0x12,
1042     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
1043     DW_CFA_VAL_OFFSET = 0x14,
1044     DW_CFA_VAL_OFFSET_SF = 0x15,
1045     DW_CFA_VAL_EXPRESSION = 0x16
1046   };
1047 
1048   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
1049   enum RegisterMapping {
1050     // Only the relevant ones have been added to reduce clutter.
1051     AMD64_RBP = 6,
1052     AMD64_RSP = 7,
1053     AMD64_RA = 16
1054   };
1055 
1056   enum CFIConstants {
1057     CIE_ID = 0,
1058     CIE_VERSION = 1,
1059     CODE_ALIGN_FACTOR = 1,
1060     DATA_ALIGN_FACTOR = 1,
1061     RETURN_ADDRESS_REGISTER = AMD64_RA
1062   };
1063 };
1064 
1065 
WriteLength(Writer * w,Writer::Slot<uint32_t> * length_slot,int initial_position)1066 void UnwindInfoSection::WriteLength(Writer *w,
1067                                     Writer::Slot<uint32_t>* length_slot,
1068                                     int initial_position) {
1069   uint32_t align = (w->position() - initial_position) % kPointerSize;
1070 
1071   if (align != 0) {
1072     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
1073       w->Write<uint8_t>(DW_CFA_NOP);
1074     }
1075   }
1076 
1077   ASSERT((w->position() - initial_position) % kPointerSize == 0);
1078   length_slot->set(w->position() - initial_position);
1079 }
1080 
1081 
UnwindInfoSection(CodeDescription * desc)1082 UnwindInfoSection::UnwindInfoSection(CodeDescription *desc)
1083     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1), desc_(desc)
1084 { }
1085 
WriteCIE(Writer * w)1086 int UnwindInfoSection::WriteCIE(Writer *w) {
1087   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1088   uint32_t cie_position = w->position();
1089 
1090   // Write out the CIE header. Currently no 'common instructions' are
1091   // emitted onto the CIE; every FDE has its own set of instructions.
1092 
1093   w->Write<uint32_t>(CIE_ID);
1094   w->Write<uint8_t>(CIE_VERSION);
1095   w->Write<uint8_t>(0);  // Null augmentation string.
1096   w->WriteSLEB128(CODE_ALIGN_FACTOR);
1097   w->WriteSLEB128(DATA_ALIGN_FACTOR);
1098   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
1099 
1100   WriteLength(w, &cie_length_slot, cie_position);
1101 
1102   return cie_position;
1103 }
1104 
1105 
WriteFDE(Writer * w,int cie_position)1106 void UnwindInfoSection::WriteFDE(Writer *w, int cie_position) {
1107   // The only FDE for this function. The CFA is the current RBP.
1108   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1109   int fde_position = w->position();
1110   w->Write<int32_t>(fde_position - cie_position + 4);
1111 
1112   w->Write<uintptr_t>(desc_->CodeStart());
1113   w->Write<uintptr_t>(desc_->CodeSize());
1114 
1115   WriteFDEStateOnEntry(w);
1116   WriteFDEStateAfterRBPPush(w);
1117   WriteFDEStateAfterRBPSet(w);
1118   WriteFDEStateAfterRBPPop(w);
1119 
1120   WriteLength(w, &fde_length_slot, fde_position);
1121 }
1122 
1123 
WriteFDEStateOnEntry(Writer * w)1124 void UnwindInfoSection::WriteFDEStateOnEntry(Writer *w) {
1125   // The first state, just after the control has been transferred to the the
1126   // function.
1127 
1128   // RBP for this function will be the value of RSP after pushing the RBP
1129   // for the previous function. The previous RBP has not been pushed yet.
1130   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1131   w->WriteULEB128(AMD64_RSP);
1132   w->WriteSLEB128(-kPointerSize);
1133 
1134   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
1135   // and hence omitted from the next states.
1136   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1137   w->WriteULEB128(AMD64_RA);
1138   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
1139 
1140   // The RBP of the previous function is still in RBP.
1141   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
1142   w->WriteULEB128(AMD64_RBP);
1143 
1144   // Last location described by this entry.
1145   w->Write<uint8_t>(DW_CFA_SET_LOC);
1146   w->Write<uint64_t>(
1147       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
1148 }
1149 
1150 
WriteFDEStateAfterRBPPush(Writer * w)1151 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer *w) {
1152   // The second state, just after RBP has been pushed.
1153 
1154   // RBP / CFA for this function is now the current RSP, so just set the
1155   // offset from the previous rule (from -8) to 0.
1156   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
1157   w->WriteULEB128(0);
1158 
1159   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
1160   // in this and the next state, and hence omitted in the next state.
1161   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1162   w->WriteULEB128(AMD64_RBP);
1163   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1164 
1165   // Last location described by this entry.
1166   w->Write<uint8_t>(DW_CFA_SET_LOC);
1167   w->Write<uint64_t>(
1168       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
1169 }
1170 
1171 
WriteFDEStateAfterRBPSet(Writer * w)1172 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer *w) {
1173   // The third state, after the RBP has been set.
1174 
1175   // The CFA can now directly be set to RBP.
1176   w->Write<uint8_t>(DW_CFA_DEF_CFA);
1177   w->WriteULEB128(AMD64_RBP);
1178   w->WriteULEB128(0);
1179 
1180   // Last location described by this entry.
1181   w->Write<uint8_t>(DW_CFA_SET_LOC);
1182   w->Write<uint64_t>(
1183       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
1184 }
1185 
1186 
WriteFDEStateAfterRBPPop(Writer * w)1187 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer *w) {
1188   // The fourth (final) state. The RBP has been popped (just before issuing a
1189   // return).
1190 
1191   // The CFA can is now calculated in the same way as in the first state.
1192   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1193   w->WriteULEB128(AMD64_RSP);
1194   w->WriteSLEB128(-kPointerSize);
1195 
1196   // The RBP
1197   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1198   w->WriteULEB128(AMD64_RBP);
1199   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1200 
1201   // Last location described by this entry.
1202   w->Write<uint8_t>(DW_CFA_SET_LOC);
1203   w->Write<uint64_t>(desc_->CodeEnd());
1204 }
1205 
1206 
WriteBody(Writer * w)1207 bool UnwindInfoSection::WriteBody(Writer *w) {
1208   uint32_t cie_position = WriteCIE(w);
1209   WriteFDE(w, cie_position);
1210   return true;
1211 }
1212 
1213 
1214 #endif  // V8_TARGET_ARCH_X64
1215 
1216 
CreateDWARFSections(CodeDescription * desc,ELF * elf)1217 static void CreateDWARFSections(CodeDescription* desc, ELF* elf) {
1218   if (desc->IsLineInfoAvailable()) {
1219     elf->AddSection(new DebugInfoSection(desc));
1220     elf->AddSection(new DebugAbbrevSection);
1221     elf->AddSection(new DebugLineSection(desc));
1222   }
1223 #ifdef V8_TARGET_ARCH_X64
1224   elf->AddSection(new UnwindInfoSection(desc));
1225 #endif
1226 }
1227 
1228 
1229 // -------------------------------------------------------------------
1230 // Binary GDB JIT Interface as described in
1231 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
1232 extern "C" {
1233   typedef enum {
1234     JIT_NOACTION = 0,
1235     JIT_REGISTER_FN,
1236     JIT_UNREGISTER_FN
1237   } JITAction;
1238 
1239   struct JITCodeEntry {
1240     JITCodeEntry* next_;
1241     JITCodeEntry* prev_;
1242     Address symfile_addr_;
1243     uint64_t symfile_size_;
1244   };
1245 
1246   struct JITDescriptor {
1247     uint32_t version_;
1248     uint32_t action_flag_;
1249     JITCodeEntry *relevant_entry_;
1250     JITCodeEntry *first_entry_;
1251   };
1252 
1253   // GDB will place breakpoint into this function.
1254   // To prevent GCC from inlining or removing it we place noinline attribute
1255   // and inline assembler statement inside.
__jit_debug_register_code()1256   void __attribute__((noinline)) __jit_debug_register_code() {
1257     __asm__("");
1258   }
1259 
1260   // GDB will inspect contents of this descriptor.
1261   // Static initialization is necessary to prevent GDB from seeing
1262   // uninitialized descriptor.
1263   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1264 }
1265 
1266 
CreateCodeEntry(Address symfile_addr,uintptr_t symfile_size)1267 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
1268                                      uintptr_t symfile_size) {
1269   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
1270       malloc(sizeof(JITCodeEntry) + symfile_size));
1271 
1272   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
1273   entry->symfile_size_ = symfile_size;
1274   memcpy(entry->symfile_addr_, symfile_addr, symfile_size);
1275 
1276   entry->prev_ = entry->next_ = NULL;
1277 
1278   return entry;
1279 }
1280 
1281 
DestroyCodeEntry(JITCodeEntry * entry)1282 static void DestroyCodeEntry(JITCodeEntry* entry) {
1283   free(entry);
1284 }
1285 
1286 
RegisterCodeEntry(JITCodeEntry * entry)1287 static void RegisterCodeEntry(JITCodeEntry* entry) {
1288 #if defined(DEBUG) && !defined(WIN32)
1289   static int file_num = 0;
1290   if (FLAG_gdbjit_dump) {
1291     static const int kMaxFileNameSize = 64;
1292     static const char* kElfFilePrefix = "/tmp/elfdump";
1293     static const char* kObjFileExt = ".o";
1294     char file_name[64];
1295 
1296     OS::SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "%s%d%s",
1297                  kElfFilePrefix, file_num++, kObjFileExt);
1298     WriteBytes(file_name, entry->symfile_addr_, entry->symfile_size_);
1299   }
1300 #endif
1301 
1302   entry->next_ = __jit_debug_descriptor.first_entry_;
1303   if (entry->next_ != NULL) entry->next_->prev_ = entry;
1304   __jit_debug_descriptor.first_entry_ =
1305       __jit_debug_descriptor.relevant_entry_ = entry;
1306 
1307   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
1308   __jit_debug_register_code();
1309 }
1310 
1311 
UnregisterCodeEntry(JITCodeEntry * entry)1312 static void UnregisterCodeEntry(JITCodeEntry* entry) {
1313   if (entry->prev_ != NULL) {
1314     entry->prev_->next_ = entry->next_;
1315   } else {
1316     __jit_debug_descriptor.first_entry_ = entry->next_;
1317   }
1318 
1319   if (entry->next_ != NULL) {
1320     entry->next_->prev_ = entry->prev_;
1321   }
1322 
1323   __jit_debug_descriptor.relevant_entry_ = entry;
1324   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
1325   __jit_debug_register_code();
1326 }
1327 
1328 
CreateELFObject(CodeDescription * desc)1329 static JITCodeEntry* CreateELFObject(CodeDescription* desc) {
1330   ZoneScope zone_scope(DELETE_ON_EXIT);
1331 
1332   ELF elf;
1333   Writer w(&elf);
1334 
1335   int text_section_index = elf.AddSection(
1336       new FullHeaderELFSection(".text",
1337                                ELFSection::TYPE_NOBITS,
1338                                kCodeAlignment,
1339                                desc->CodeStart(),
1340                                0,
1341                                desc->CodeSize(),
1342                                ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1343 
1344   CreateSymbolsTable(desc, &elf, text_section_index);
1345 
1346   CreateDWARFSections(desc, &elf);
1347 
1348   elf.Write(&w);
1349 
1350   return CreateCodeEntry(w.buffer(), w.position());
1351 }
1352 
1353 
SameCodeObjects(void * key1,void * key2)1354 static bool SameCodeObjects(void* key1, void* key2) {
1355   return key1 == key2;
1356 }
1357 
1358 
GetEntries()1359 static HashMap* GetEntries() {
1360   static HashMap* entries = NULL;
1361   if (entries == NULL) {
1362     entries = new HashMap(&SameCodeObjects);
1363   }
1364   return entries;
1365 }
1366 
1367 
HashForCodeObject(Code * code)1368 static uint32_t HashForCodeObject(Code* code) {
1369   static const uintptr_t kGoldenRatio = 2654435761u;
1370   uintptr_t hash = reinterpret_cast<uintptr_t>(code->address());
1371   return static_cast<uint32_t>((hash >> kCodeAlignmentBits) * kGoldenRatio);
1372 }
1373 
1374 
1375 static const intptr_t kLineInfoTag = 0x1;
1376 
1377 
IsLineInfoTagged(void * ptr)1378 static bool IsLineInfoTagged(void* ptr) {
1379   return 0 != (reinterpret_cast<intptr_t>(ptr) & kLineInfoTag);
1380 }
1381 
1382 
TagLineInfo(GDBJITLineInfo * ptr)1383 static void* TagLineInfo(GDBJITLineInfo* ptr) {
1384   return reinterpret_cast<void*>(
1385       reinterpret_cast<intptr_t>(ptr) | kLineInfoTag);
1386 }
1387 
1388 
UntagLineInfo(void * ptr)1389 static GDBJITLineInfo* UntagLineInfo(void* ptr) {
1390   return reinterpret_cast<GDBJITLineInfo*>(
1391       reinterpret_cast<intptr_t>(ptr) & ~kLineInfoTag);
1392 }
1393 
1394 
AddCode(Handle<String> name,Handle<Script> script,Handle<Code> code)1395 void GDBJITInterface::AddCode(Handle<String> name,
1396                               Handle<Script> script,
1397                               Handle<Code> code) {
1398   if (!FLAG_gdbjit) return;
1399 
1400   // Force initialization of line_ends array.
1401   GetScriptLineNumber(script, 0);
1402 
1403   if (!name.is_null()) {
1404     SmartPointer<char> name_cstring = name->ToCString(DISALLOW_NULLS);
1405     AddCode(*name_cstring, *code, GDBJITInterface::FUNCTION, *script);
1406   } else {
1407     AddCode("", *code, GDBJITInterface::FUNCTION, *script);
1408   }
1409 }
1410 
AddUnwindInfo(CodeDescription * desc)1411 static void AddUnwindInfo(CodeDescription *desc) {
1412 #ifdef V8_TARGET_ARCH_X64
1413   if (desc->tag() == GDBJITInterface::FUNCTION) {
1414     // To avoid propagating unwinding information through
1415     // compilation pipeline we use an approximation.
1416     // For most use cases this should not affect usability.
1417     static const int kFramePointerPushOffset = 1;
1418     static const int kFramePointerSetOffset = 4;
1419     static const int kFramePointerPopOffset = -3;
1420 
1421     uintptr_t frame_pointer_push_address =
1422         desc->CodeStart() + kFramePointerPushOffset;
1423 
1424     uintptr_t frame_pointer_set_address =
1425         desc->CodeStart() + kFramePointerSetOffset;
1426 
1427     uintptr_t frame_pointer_pop_address =
1428         desc->CodeEnd() + kFramePointerPopOffset;
1429 
1430     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
1431                                     frame_pointer_push_address);
1432     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
1433                                     frame_pointer_set_address);
1434     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
1435                                     frame_pointer_pop_address);
1436   } else {
1437     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
1438                                     desc->CodeStart());
1439     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
1440                                     desc->CodeStart());
1441     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
1442                                     desc->CodeEnd());
1443   }
1444 #endif  // V8_TARGET_ARCH_X64
1445 }
1446 
1447 
1448 Mutex* GDBJITInterface::mutex_ = OS::CreateMutex();
1449 
1450 
AddCode(const char * name,Code * code,GDBJITInterface::CodeTag tag,Script * script)1451 void GDBJITInterface::AddCode(const char* name,
1452                               Code* code,
1453                               GDBJITInterface::CodeTag tag,
1454                               Script* script) {
1455   if (!FLAG_gdbjit) return;
1456 
1457   ScopedLock lock(mutex_);
1458   AssertNoAllocation no_gc;
1459 
1460   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
1461   if (e->value != NULL && !IsLineInfoTagged(e->value)) return;
1462 
1463   GDBJITLineInfo* lineinfo = UntagLineInfo(e->value);
1464   CodeDescription code_desc(name,
1465                             code,
1466                             script != NULL ? Handle<Script>(script)
1467                                            : Handle<Script>(),
1468                             lineinfo,
1469                             tag);
1470 
1471   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
1472     delete lineinfo;
1473     GetEntries()->Remove(code, HashForCodeObject(code));
1474     return;
1475   }
1476 
1477   AddUnwindInfo(&code_desc);
1478   JITCodeEntry* entry = CreateELFObject(&code_desc);
1479   ASSERT(!IsLineInfoTagged(entry));
1480 
1481   delete lineinfo;
1482   e->value = entry;
1483 
1484   RegisterCodeEntry(entry);
1485 }
1486 
1487 
AddCode(GDBJITInterface::CodeTag tag,const char * name,Code * code)1488 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
1489                               const char* name,
1490                               Code* code) {
1491   if (!FLAG_gdbjit) return;
1492 
1493   EmbeddedVector<char, 256> buffer;
1494   StringBuilder builder(buffer.start(), buffer.length());
1495 
1496   builder.AddString(Tag2String(tag));
1497   if ((name != NULL) && (*name != '\0')) {
1498     builder.AddString(": ");
1499     builder.AddString(name);
1500   } else {
1501     builder.AddFormatted(": code object %p", static_cast<void*>(code));
1502   }
1503 
1504   AddCode(builder.Finalize(), code, tag);
1505 }
1506 
1507 
AddCode(GDBJITInterface::CodeTag tag,String * name,Code * code)1508 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
1509                               String* name,
1510                               Code* code) {
1511   if (!FLAG_gdbjit) return;
1512   AddCode(tag, name != NULL ? *name->ToCString(DISALLOW_NULLS) : NULL, code);
1513 }
1514 
1515 
AddCode(GDBJITInterface::CodeTag tag,Code * code)1516 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag, Code* code) {
1517   if (!FLAG_gdbjit) return;
1518 
1519   AddCode(tag, "", code);
1520 }
1521 
1522 
RemoveCode(Code * code)1523 void GDBJITInterface::RemoveCode(Code* code) {
1524   if (!FLAG_gdbjit) return;
1525 
1526   ScopedLock lock(mutex_);
1527   HashMap::Entry* e = GetEntries()->Lookup(code,
1528                                            HashForCodeObject(code),
1529                                            false);
1530   if (e == NULL) return;
1531 
1532   if (IsLineInfoTagged(e->value)) {
1533     delete UntagLineInfo(e->value);
1534   } else {
1535     JITCodeEntry* entry = static_cast<JITCodeEntry*>(e->value);
1536     UnregisterCodeEntry(entry);
1537     DestroyCodeEntry(entry);
1538   }
1539   e->value = NULL;
1540   GetEntries()->Remove(code, HashForCodeObject(code));
1541 }
1542 
1543 
RegisterDetailedLineInfo(Code * code,GDBJITLineInfo * line_info)1544 void GDBJITInterface::RegisterDetailedLineInfo(Code* code,
1545                                                GDBJITLineInfo* line_info) {
1546   ScopedLock lock(mutex_);
1547   ASSERT(!IsLineInfoTagged(line_info));
1548   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
1549   ASSERT(e->value == NULL);
1550   e->value = TagLineInfo(line_info);
1551 }
1552 
1553 
1554 } }  // namespace v8::internal
1555 #endif
1556