• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "qemu-common.h"
23 #include "cpu-common.h"
24 
25 /* some important defines:
26  *
27  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28  * memory accesses.
29  *
30  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31  * otherwise little endian.
32  *
33  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34  *
35  * TARGET_WORDS_BIGENDIAN : same for target cpu
36  */
37 
38 #include "softfloat.h"
39 
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
43 
44 #ifdef BSWAP_NEEDED
45 
tswap16(uint16_t s)46 static inline uint16_t tswap16(uint16_t s)
47 {
48     return bswap16(s);
49 }
50 
tswap32(uint32_t s)51 static inline uint32_t tswap32(uint32_t s)
52 {
53     return bswap32(s);
54 }
55 
tswap64(uint64_t s)56 static inline uint64_t tswap64(uint64_t s)
57 {
58     return bswap64(s);
59 }
60 
tswap16s(uint16_t * s)61 static inline void tswap16s(uint16_t *s)
62 {
63     *s = bswap16(*s);
64 }
65 
tswap32s(uint32_t * s)66 static inline void tswap32s(uint32_t *s)
67 {
68     *s = bswap32(*s);
69 }
70 
tswap64s(uint64_t * s)71 static inline void tswap64s(uint64_t *s)
72 {
73     *s = bswap64(*s);
74 }
75 
76 #else
77 
tswap16(uint16_t s)78 static inline uint16_t tswap16(uint16_t s)
79 {
80     return s;
81 }
82 
tswap32(uint32_t s)83 static inline uint32_t tswap32(uint32_t s)
84 {
85     return s;
86 }
87 
tswap64(uint64_t s)88 static inline uint64_t tswap64(uint64_t s)
89 {
90     return s;
91 }
92 
tswap16s(uint16_t * s)93 static inline void tswap16s(uint16_t *s)
94 {
95 }
96 
tswap32s(uint32_t * s)97 static inline void tswap32s(uint32_t *s)
98 {
99 }
100 
tswap64s(uint64_t * s)101 static inline void tswap64s(uint64_t *s)
102 {
103 }
104 
105 #endif
106 
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
116 
117 typedef union {
118     float32 f;
119     uint32_t l;
120 } CPU_FloatU;
121 
122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123    endian ! */
124 typedef union {
125     float64 d;
126 #if defined(HOST_WORDS_BIGENDIAN) \
127     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128     struct {
129         uint32_t upper;
130         uint32_t lower;
131     } l;
132 #else
133     struct {
134         uint32_t lower;
135         uint32_t upper;
136     } l;
137 #endif
138     uint64_t ll;
139 } CPU_DoubleU;
140 
141 #ifdef TARGET_SPARC
142 typedef union {
143     float128 q;
144 #if defined(HOST_WORDS_BIGENDIAN) \
145     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146     struct {
147         uint32_t upmost;
148         uint32_t upper;
149         uint32_t lower;
150         uint32_t lowest;
151     } l;
152     struct {
153         uint64_t upper;
154         uint64_t lower;
155     } ll;
156 #else
157     struct {
158         uint32_t lowest;
159         uint32_t lower;
160         uint32_t upper;
161         uint32_t upmost;
162     } l;
163     struct {
164         uint64_t lower;
165         uint64_t upper;
166     } ll;
167 #endif
168 } CPU_QuadU;
169 #endif
170 
171 /* CPU memory access without any memory or io remapping */
172 
173 /*
174  * the generic syntax for the memory accesses is:
175  *
176  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
177  *
178  * store: st{type}{size}{endian}_{access_type}(ptr, val)
179  *
180  * type is:
181  * (empty): integer access
182  *   f    : float access
183  *
184  * sign is:
185  * (empty): for floats or 32 bit size
186  *   u    : unsigned
187  *   s    : signed
188  *
189  * size is:
190  *   b: 8 bits
191  *   w: 16 bits
192  *   l: 32 bits
193  *   q: 64 bits
194  *
195  * endian is:
196  * (empty): target cpu endianness or 8 bit access
197  *   r    : reversed target cpu endianness (not implemented yet)
198  *   be   : big endian (not implemented yet)
199  *   le   : little endian (not implemented yet)
200  *
201  * access_type is:
202  *   raw    : host memory access
203  *   user   : user mode access using soft MMU
204  *   kernel : kernel mode access using soft MMU
205  */
ldub_p(const void * ptr)206 static inline int ldub_p(const void *ptr)
207 {
208     return *(uint8_t *)ptr;
209 }
210 
ldsb_p(const void * ptr)211 static inline int ldsb_p(const void *ptr)
212 {
213     return *(int8_t *)ptr;
214 }
215 
stb_p(void * ptr,int v)216 static inline void stb_p(void *ptr, int v)
217 {
218     *(uint8_t *)ptr = v;
219 }
220 
221 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
222    kernel handles unaligned load/stores may give better results, but
223    it is a system wide setting : bad */
224 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
225 
226 /* conservative code for little endian unaligned accesses */
lduw_le_p(const void * ptr)227 static inline int lduw_le_p(const void *ptr)
228 {
229 #ifdef _ARCH_PPC
230     int val;
231     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
232     return val;
233 #else
234     const uint8_t *p = ptr;
235     return p[0] | (p[1] << 8);
236 #endif
237 }
238 
ldsw_le_p(const void * ptr)239 static inline int ldsw_le_p(const void *ptr)
240 {
241 #ifdef _ARCH_PPC
242     int val;
243     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
244     return (int16_t)val;
245 #else
246     const uint8_t *p = ptr;
247     return (int16_t)(p[0] | (p[1] << 8));
248 #endif
249 }
250 
ldl_le_p(const void * ptr)251 static inline int ldl_le_p(const void *ptr)
252 {
253 #ifdef _ARCH_PPC
254     int val;
255     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256     return val;
257 #else
258     const uint8_t *p = ptr;
259     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
260 #endif
261 }
262 
ldq_le_p(const void * ptr)263 static inline uint64_t ldq_le_p(const void *ptr)
264 {
265     const uint8_t *p = ptr;
266     uint32_t v1, v2;
267     v1 = ldl_le_p(p);
268     v2 = ldl_le_p(p + 4);
269     return v1 | ((uint64_t)v2 << 32);
270 }
271 
stw_le_p(void * ptr,int v)272 static inline void stw_le_p(void *ptr, int v)
273 {
274 #ifdef _ARCH_PPC
275     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
276 #else
277     uint8_t *p = ptr;
278     p[0] = v;
279     p[1] = v >> 8;
280 #endif
281 }
282 
stl_le_p(void * ptr,int v)283 static inline void stl_le_p(void *ptr, int v)
284 {
285 #ifdef _ARCH_PPC
286     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
287 #else
288     uint8_t *p = ptr;
289     p[0] = v;
290     p[1] = v >> 8;
291     p[2] = v >> 16;
292     p[3] = v >> 24;
293 #endif
294 }
295 
stq_le_p(void * ptr,uint64_t v)296 static inline void stq_le_p(void *ptr, uint64_t v)
297 {
298     uint8_t *p = ptr;
299     stl_le_p(p, (uint32_t)v);
300     stl_le_p(p + 4, v >> 32);
301 }
302 
303 /* float access */
304 
ldfl_le_p(const void * ptr)305 static inline float32 ldfl_le_p(const void *ptr)
306 {
307     union {
308         float32 f;
309         uint32_t i;
310     } u;
311     u.i = ldl_le_p(ptr);
312     return u.f;
313 }
314 
stfl_le_p(void * ptr,float32 v)315 static inline void stfl_le_p(void *ptr, float32 v)
316 {
317     union {
318         float32 f;
319         uint32_t i;
320     } u;
321     u.f = v;
322     stl_le_p(ptr, u.i);
323 }
324 
ldfq_le_p(const void * ptr)325 static inline float64 ldfq_le_p(const void *ptr)
326 {
327     CPU_DoubleU u;
328     u.l.lower = ldl_le_p(ptr);
329     u.l.upper = ldl_le_p(ptr + 4);
330     return u.d;
331 }
332 
stfq_le_p(void * ptr,float64 v)333 static inline void stfq_le_p(void *ptr, float64 v)
334 {
335     CPU_DoubleU u;
336     u.d = v;
337     stl_le_p(ptr, u.l.lower);
338     stl_le_p(ptr + 4, u.l.upper);
339 }
340 
341 #else
342 
lduw_le_p(const void * ptr)343 static inline int lduw_le_p(const void *ptr)
344 {
345     return *(uint16_t *)ptr;
346 }
347 
ldsw_le_p(const void * ptr)348 static inline int ldsw_le_p(const void *ptr)
349 {
350     return *(int16_t *)ptr;
351 }
352 
ldl_le_p(const void * ptr)353 static inline int ldl_le_p(const void *ptr)
354 {
355     return *(uint32_t *)ptr;
356 }
357 
ldq_le_p(const void * ptr)358 static inline uint64_t ldq_le_p(const void *ptr)
359 {
360     return *(uint64_t *)ptr;
361 }
362 
stw_le_p(void * ptr,int v)363 static inline void stw_le_p(void *ptr, int v)
364 {
365     *(uint16_t *)ptr = v;
366 }
367 
stl_le_p(void * ptr,int v)368 static inline void stl_le_p(void *ptr, int v)
369 {
370     *(uint32_t *)ptr = v;
371 }
372 
stq_le_p(void * ptr,uint64_t v)373 static inline void stq_le_p(void *ptr, uint64_t v)
374 {
375     *(uint64_t *)ptr = v;
376 }
377 
378 /* float access */
379 
ldfl_le_p(const void * ptr)380 static inline float32 ldfl_le_p(const void *ptr)
381 {
382     return *(float32 *)ptr;
383 }
384 
ldfq_le_p(const void * ptr)385 static inline float64 ldfq_le_p(const void *ptr)
386 {
387     return *(float64 *)ptr;
388 }
389 
stfl_le_p(void * ptr,float32 v)390 static inline void stfl_le_p(void *ptr, float32 v)
391 {
392     *(float32 *)ptr = v;
393 }
394 
stfq_le_p(void * ptr,float64 v)395 static inline void stfq_le_p(void *ptr, float64 v)
396 {
397     *(float64 *)ptr = v;
398 }
399 #endif
400 
401 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
402 
lduw_be_p(const void * ptr)403 static inline int lduw_be_p(const void *ptr)
404 {
405 #if defined(__i386__)
406     int val;
407     asm volatile ("movzwl %1, %0\n"
408                   "xchgb %b0, %h0\n"
409                   : "=q" (val)
410                   : "m" (*(uint16_t *)ptr));
411     return val;
412 #else
413     const uint8_t *b = ptr;
414     return ((b[0] << 8) | b[1]);
415 #endif
416 }
417 
ldsw_be_p(const void * ptr)418 static inline int ldsw_be_p(const void *ptr)
419 {
420 #if defined(__i386__)
421     int val;
422     asm volatile ("movzwl %1, %0\n"
423                   "xchgb %b0, %h0\n"
424                   : "=q" (val)
425                   : "m" (*(uint16_t *)ptr));
426     return (int16_t)val;
427 #else
428     const uint8_t *b = ptr;
429     return (int16_t)((b[0] << 8) | b[1]);
430 #endif
431 }
432 
ldl_be_p(const void * ptr)433 static inline int ldl_be_p(const void *ptr)
434 {
435 #if defined(__i386__) || defined(__x86_64__)
436     int val;
437     asm volatile ("movl %1, %0\n"
438                   "bswap %0\n"
439                   : "=r" (val)
440                   : "m" (*(uint32_t *)ptr));
441     return val;
442 #else
443     const uint8_t *b = ptr;
444     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
445 #endif
446 }
447 
ldq_be_p(const void * ptr)448 static inline uint64_t ldq_be_p(const void *ptr)
449 {
450     uint32_t a,b;
451     a = ldl_be_p(ptr);
452     b = ldl_be_p((uint8_t *)ptr + 4);
453     return (((uint64_t)a<<32)|b);
454 }
455 
stw_be_p(void * ptr,int v)456 static inline void stw_be_p(void *ptr, int v)
457 {
458 #if defined(__i386__)
459     asm volatile ("xchgb %b0, %h0\n"
460                   "movw %w0, %1\n"
461                   : "=q" (v)
462                   : "m" (*(uint16_t *)ptr), "0" (v));
463 #else
464     uint8_t *d = (uint8_t *) ptr;
465     d[0] = v >> 8;
466     d[1] = v;
467 #endif
468 }
469 
stl_be_p(void * ptr,int v)470 static inline void stl_be_p(void *ptr, int v)
471 {
472 #if defined(__i386__) || defined(__x86_64__)
473     asm volatile ("bswap %0\n"
474                   "movl %0, %1\n"
475                   : "=r" (v)
476                   : "m" (*(uint32_t *)ptr), "0" (v));
477 #else
478     uint8_t *d = (uint8_t *) ptr;
479     d[0] = v >> 24;
480     d[1] = v >> 16;
481     d[2] = v >> 8;
482     d[3] = v;
483 #endif
484 }
485 
stq_be_p(void * ptr,uint64_t v)486 static inline void stq_be_p(void *ptr, uint64_t v)
487 {
488     stl_be_p(ptr, v >> 32);
489     stl_be_p((uint8_t *)ptr + 4, v);
490 }
491 
492 /* float access */
493 
ldfl_be_p(const void * ptr)494 static inline float32 ldfl_be_p(const void *ptr)
495 {
496     union {
497         float32 f;
498         uint32_t i;
499     } u;
500     u.i = ldl_be_p(ptr);
501     return u.f;
502 }
503 
stfl_be_p(void * ptr,float32 v)504 static inline void stfl_be_p(void *ptr, float32 v)
505 {
506     union {
507         float32 f;
508         uint32_t i;
509     } u;
510     u.f = v;
511     stl_be_p(ptr, u.i);
512 }
513 
ldfq_be_p(const void * ptr)514 static inline float64 ldfq_be_p(const void *ptr)
515 {
516     CPU_DoubleU u;
517     u.l.upper = ldl_be_p(ptr);
518     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
519     return u.d;
520 }
521 
stfq_be_p(void * ptr,float64 v)522 static inline void stfq_be_p(void *ptr, float64 v)
523 {
524     CPU_DoubleU u;
525     u.d = v;
526     stl_be_p(ptr, u.l.upper);
527     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
528 }
529 
530 #else
531 
lduw_be_p(const void * ptr)532 static inline int lduw_be_p(const void *ptr)
533 {
534     return *(uint16_t *)ptr;
535 }
536 
ldsw_be_p(const void * ptr)537 static inline int ldsw_be_p(const void *ptr)
538 {
539     return *(int16_t *)ptr;
540 }
541 
ldl_be_p(const void * ptr)542 static inline int ldl_be_p(const void *ptr)
543 {
544     return *(uint32_t *)ptr;
545 }
546 
ldq_be_p(const void * ptr)547 static inline uint64_t ldq_be_p(const void *ptr)
548 {
549     return *(uint64_t *)ptr;
550 }
551 
stw_be_p(void * ptr,int v)552 static inline void stw_be_p(void *ptr, int v)
553 {
554     *(uint16_t *)ptr = v;
555 }
556 
stl_be_p(void * ptr,int v)557 static inline void stl_be_p(void *ptr, int v)
558 {
559     *(uint32_t *)ptr = v;
560 }
561 
stq_be_p(void * ptr,uint64_t v)562 static inline void stq_be_p(void *ptr, uint64_t v)
563 {
564     *(uint64_t *)ptr = v;
565 }
566 
567 /* float access */
568 
ldfl_be_p(const void * ptr)569 static inline float32 ldfl_be_p(const void *ptr)
570 {
571     return *(float32 *)ptr;
572 }
573 
ldfq_be_p(const void * ptr)574 static inline float64 ldfq_be_p(const void *ptr)
575 {
576     return *(float64 *)ptr;
577 }
578 
stfl_be_p(void * ptr,float32 v)579 static inline void stfl_be_p(void *ptr, float32 v)
580 {
581     *(float32 *)ptr = v;
582 }
583 
stfq_be_p(void * ptr,float64 v)584 static inline void stfq_be_p(void *ptr, float64 v)
585 {
586     *(float64 *)ptr = v;
587 }
588 
589 #endif
590 
591 /* target CPU memory access functions */
592 #if defined(TARGET_WORDS_BIGENDIAN)
593 #define lduw_p(p) lduw_be_p(p)
594 #define ldsw_p(p) ldsw_be_p(p)
595 #define ldl_p(p) ldl_be_p(p)
596 #define ldq_p(p) ldq_be_p(p)
597 #define ldfl_p(p) ldfl_be_p(p)
598 #define ldfq_p(p) ldfq_be_p(p)
599 #define stw_p(p, v) stw_be_p(p, v)
600 #define stl_p(p, v) stl_be_p(p, v)
601 #define stq_p(p, v) stq_be_p(p, v)
602 #define stfl_p(p, v) stfl_be_p(p, v)
603 #define stfq_p(p, v) stfq_be_p(p, v)
604 #else
605 #define lduw_p(p) lduw_le_p(p)
606 #define ldsw_p(p) ldsw_le_p(p)
607 #define ldl_p(p) ldl_le_p(p)
608 #define ldq_p(p) ldq_le_p(p)
609 #define ldfl_p(p) ldfl_le_p(p)
610 #define ldfq_p(p) ldfq_le_p(p)
611 #define stw_p(p, v) stw_le_p(p, v)
612 #define stl_p(p, v) stl_le_p(p, v)
613 #define stq_p(p, v) stq_le_p(p, v)
614 #define stfl_p(p, v) stfl_le_p(p, v)
615 #define stfq_p(p, v) stfq_le_p(p, v)
616 #endif
617 
618 /* MMU memory access macros */
619 
620 #if defined(CONFIG_USER_ONLY)
621 #include <assert.h>
622 #include "qemu-types.h"
623 
624 /* On some host systems the guest address space is reserved on the host.
625  * This allows the guest address space to be offset to a convenient location.
626  */
627 #if defined(CONFIG_USE_GUEST_BASE)
628 extern unsigned long guest_base;
629 extern int have_guest_base;
630 extern unsigned long reserved_va;
631 #define GUEST_BASE guest_base
632 #define RESERVED_VA reserved_va
633 #else
634 #define GUEST_BASE 0ul
635 #define RESERVED_VA 0ul
636 #endif
637 
638 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
639 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
640 
641 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
642 #define h2g_valid(x) 1
643 #else
644 #define h2g_valid(x) ({ \
645     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
646     __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
647 })
648 #endif
649 
650 #define h2g(x) ({ \
651     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
652     /* Check if given address fits target address space */ \
653     assert(h2g_valid(x)); \
654     (abi_ulong)__ret; \
655 })
656 
657 #define saddr(x) g2h(x)
658 #define laddr(x) g2h(x)
659 
660 #else /* !CONFIG_USER_ONLY */
661 /* NOTE: we use double casts if pointers and target_ulong have
662    different sizes */
663 #define saddr(x) (uint8_t *)(long)(x)
664 #define laddr(x) (uint8_t *)(long)(x)
665 #endif
666 
667 #define ldub_raw(p) ldub_p(laddr((p)))
668 #define ldsb_raw(p) ldsb_p(laddr((p)))
669 #define lduw_raw(p) lduw_p(laddr((p)))
670 #define ldsw_raw(p) ldsw_p(laddr((p)))
671 #define ldl_raw(p) ldl_p(laddr((p)))
672 #define ldq_raw(p) ldq_p(laddr((p)))
673 #define ldfl_raw(p) ldfl_p(laddr((p)))
674 #define ldfq_raw(p) ldfq_p(laddr((p)))
675 #define stb_raw(p, v) stb_p(saddr((p)), v)
676 #define stw_raw(p, v) stw_p(saddr((p)), v)
677 #define stl_raw(p, v) stl_p(saddr((p)), v)
678 #define stq_raw(p, v) stq_p(saddr((p)), v)
679 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
680 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
681 
682 
683 #if defined(CONFIG_USER_ONLY)
684 
685 /* if user mode, no other memory access functions */
686 #define ldub(p) ldub_raw(p)
687 #define ldsb(p) ldsb_raw(p)
688 #define lduw(p) lduw_raw(p)
689 #define ldsw(p) ldsw_raw(p)
690 #define ldl(p) ldl_raw(p)
691 #define ldq(p) ldq_raw(p)
692 #define ldfl(p) ldfl_raw(p)
693 #define ldfq(p) ldfq_raw(p)
694 #define stb(p, v) stb_raw(p, v)
695 #define stw(p, v) stw_raw(p, v)
696 #define stl(p, v) stl_raw(p, v)
697 #define stq(p, v) stq_raw(p, v)
698 #define stfl(p, v) stfl_raw(p, v)
699 #define stfq(p, v) stfq_raw(p, v)
700 
701 #define ldub_code(p) ldub_raw(p)
702 #define ldsb_code(p) ldsb_raw(p)
703 #define lduw_code(p) lduw_raw(p)
704 #define ldsw_code(p) ldsw_raw(p)
705 #define ldl_code(p) ldl_raw(p)
706 #define ldq_code(p) ldq_raw(p)
707 
708 #define ldub_kernel(p) ldub_raw(p)
709 #define ldsb_kernel(p) ldsb_raw(p)
710 #define lduw_kernel(p) lduw_raw(p)
711 #define ldsw_kernel(p) ldsw_raw(p)
712 #define ldl_kernel(p) ldl_raw(p)
713 #define ldq_kernel(p) ldq_raw(p)
714 #define ldfl_kernel(p) ldfl_raw(p)
715 #define ldfq_kernel(p) ldfq_raw(p)
716 #define stb_kernel(p, v) stb_raw(p, v)
717 #define stw_kernel(p, v) stw_raw(p, v)
718 #define stl_kernel(p, v) stl_raw(p, v)
719 #define stq_kernel(p, v) stq_raw(p, v)
720 #define stfl_kernel(p, v) stfl_raw(p, v)
721 #define stfq_kernel(p, vt) stfq_raw(p, v)
722 
723 #endif /* defined(CONFIG_USER_ONLY) */
724 
725 /* page related stuff */
726 
727 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
728 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
729 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
730 
731 /* ??? These should be the larger of unsigned long and target_ulong.  */
732 extern unsigned long qemu_real_host_page_size;
733 extern unsigned long qemu_host_page_bits;
734 extern unsigned long qemu_host_page_size;
735 extern unsigned long qemu_host_page_mask;
736 
737 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
738 
739 /* same as PROT_xxx */
740 #define PAGE_READ      0x0001
741 #define PAGE_WRITE     0x0002
742 #define PAGE_EXEC      0x0004
743 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
744 #define PAGE_VALID     0x0008
745 /* original state of the write flag (used when tracking self-modifying
746    code */
747 #define PAGE_WRITE_ORG 0x0010
748 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
749 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
750 #define PAGE_RESERVED  0x0020
751 #endif
752 
753 #if defined(CONFIG_USER_ONLY)
754 void page_dump(FILE *f);
755 
756 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
757                                       abi_ulong, unsigned long);
758 int walk_memory_regions(void *, walk_memory_regions_fn);
759 
760 int page_get_flags(target_ulong address);
761 void page_set_flags(target_ulong start, target_ulong end, int flags);
762 int page_check_range(target_ulong start, target_ulong len, int flags);
763 #endif
764 
765 CPUState *cpu_copy(CPUState *env);
766 CPUState *qemu_get_cpu(int cpu);
767 
768 #define CPU_DUMP_CODE 0x00010000
769 
770 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
771                     int flags);
772 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
773                           int flags);
774 
775 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
776     GCC_FMT_ATTR(2, 3);
777 extern CPUState *first_cpu;
778 extern CPUState *cpu_single_env;
779 
780 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
781 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
782 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
783 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
784 #define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
785 #define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
786 #define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
787 
788 /* Flags for use in ENV->INTERRUPT_PENDING.
789 
790    The numbers assigned here are non-sequential in order to preserve
791    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
792    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
793    the vmstate dump.  */
794 
795 /* External hardware interrupt pending.  This is typically used for
796    interrupts from devices.  */
797 #define CPU_INTERRUPT_HARD        0x0002
798 
799 /* Exit the current TB.  This is typically used when some system-level device
800    makes some change to the memory mapping.  E.g. the a20 line change.  */
801 #define CPU_INTERRUPT_EXITTB      0x0004
802 
803 /* Halt the CPU.  */
804 #define CPU_INTERRUPT_HALT        0x0020
805 
806 /* Debug event pending.  */
807 #define CPU_INTERRUPT_DEBUG       0x0080
808 
809 /* Several target-specific external hardware interrupts.  Each target/cpu.h
810    should define proper names based on these defines.  */
811 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
812 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
813 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
814 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
815 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
816 
817 /* Several target-specific internal interrupts.  These differ from the
818    preceeding target-specific interrupts in that they are intended to
819    originate from within the cpu itself, typically in response to some
820    instruction being executed.  These, therefore, are not masked while
821    single-stepping within the debugger.  */
822 #define CPU_INTERRUPT_TGT_INT_0   0x0100
823 #define CPU_INTERRUPT_TGT_INT_1   0x0400
824 #define CPU_INTERRUPT_TGT_INT_2   0x0800
825 
826 /* First unused bit: 0x2000.  */
827 
828 /* The set of all bits that should be masked when single-stepping.  */
829 #define CPU_INTERRUPT_SSTEP_MASK \
830     (CPU_INTERRUPT_HARD          \
831      | CPU_INTERRUPT_TGT_EXT_0   \
832      | CPU_INTERRUPT_TGT_EXT_1   \
833      | CPU_INTERRUPT_TGT_EXT_2   \
834      | CPU_INTERRUPT_TGT_EXT_3   \
835      | CPU_INTERRUPT_TGT_EXT_4)
836 
837 void cpu_interrupt(CPUState *s, int mask);
838 void cpu_reset_interrupt(CPUState *env, int mask);
839 
840 void cpu_exit(CPUState *s);
841 
842 int qemu_cpu_has_work(CPUState *env);
843 
844 /* Breakpoint/watchpoint flags */
845 #define BP_MEM_READ           0x01
846 #define BP_MEM_WRITE          0x02
847 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
848 #define BP_STOP_BEFORE_ACCESS 0x04
849 #define BP_WATCHPOINT_HIT     0x08
850 #define BP_GDB                0x10
851 #define BP_CPU                0x20
852 
853 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
854                           CPUBreakpoint **breakpoint);
855 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
856 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
857 void cpu_breakpoint_remove_all(CPUState *env, int mask);
858 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
859                           int flags, CPUWatchpoint **watchpoint);
860 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
861                           target_ulong len, int flags);
862 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
863 void cpu_watchpoint_remove_all(CPUState *env, int mask);
864 
865 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
866 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
867 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
868 
869 void cpu_single_step(CPUState *env, int enabled);
870 void cpu_reset(CPUState *s);
871 int cpu_is_stopped(CPUState *env);
872 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
873 
874 #define CPU_LOG_TB_OUT_ASM (1 << 0)
875 #define CPU_LOG_TB_IN_ASM  (1 << 1)
876 #define CPU_LOG_TB_OP      (1 << 2)
877 #define CPU_LOG_TB_OP_OPT  (1 << 3)
878 #define CPU_LOG_INT        (1 << 4)
879 #define CPU_LOG_EXEC       (1 << 5)
880 #define CPU_LOG_PCALL      (1 << 6)
881 #define CPU_LOG_IOPORT     (1 << 7)
882 #define CPU_LOG_TB_CPU     (1 << 8)
883 #define CPU_LOG_RESET      (1 << 9)
884 
885 /* define log items */
886 typedef struct CPULogItem {
887     int mask;
888     const char *name;
889     const char *help;
890 } CPULogItem;
891 
892 extern const CPULogItem cpu_log_items[];
893 
894 void cpu_set_log(int log_flags);
895 void cpu_set_log_filename(const char *filename);
896 int cpu_str_to_log_mask(const char *str);
897 
898 /* IO ports API */
899 #include "ioport.h"
900 
901 /* Return the physical page corresponding to a virtual one. Use it
902    only for debugging because no protection checks are done. Return -1
903    if no page found. */
904 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
905 
906 /* memory API */
907 
908 extern int phys_ram_fd;
909 extern ram_addr_t ram_size;
910 
911 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
912 #define RAM_PREALLOC_MASK   (1 << 0)
913 
914 typedef struct RAMBlock {
915     uint8_t *host;
916     ram_addr_t offset;
917     ram_addr_t length;
918     uint32_t flags;
919     char idstr[256];
920     QLIST_ENTRY(RAMBlock) next;
921 #if defined(__linux__) && !defined(TARGET_S390X)
922     int fd;
923 #endif
924 } RAMBlock;
925 
926 typedef struct RAMList {
927     uint8_t *phys_dirty;
928     QLIST_HEAD(ram, RAMBlock) blocks;
929 } RAMList;
930 extern RAMList ram_list;
931 
932 extern const char *mem_path;
933 extern int mem_prealloc;
934 
935 /* physical memory access */
936 
937 /* MMIO pages are identified by a combination of an IO device index and
938    3 flags.  The ROMD code stores the page ram offset in iotlb entry,
939    so only a limited number of ids are avaiable.  */
940 
941 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
942 
943 /* Flags stored in the low bits of the TLB virtual address.  These are
944    defined so that fast path ram access is all zeros.  */
945 /* Zero if TLB entry is valid.  */
946 #define TLB_INVALID_MASK   (1 << 3)
947 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
948    contain the page physical address.  */
949 #define TLB_NOTDIRTY    (1 << 4)
950 /* Set if TLB entry is an IO callback.  */
951 #define TLB_MMIO        (1 << 5)
952 
953 #define VGA_DIRTY_FLAG       0x01
954 #define CODE_DIRTY_FLAG      0x02
955 #define MIGRATION_DIRTY_FLAG 0x08
956 
957 /* read dirty bit (return 0 or 1) */
cpu_physical_memory_is_dirty(ram_addr_t addr)958 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
959 {
960     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
961 }
962 
cpu_physical_memory_get_dirty_flags(ram_addr_t addr)963 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
964 {
965     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
966 }
967 
cpu_physical_memory_get_dirty(ram_addr_t addr,int dirty_flags)968 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
969                                                 int dirty_flags)
970 {
971     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
972 }
973 
cpu_physical_memory_set_dirty(ram_addr_t addr)974 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
975 {
976     ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
977 }
978 
cpu_physical_memory_set_dirty_flags(ram_addr_t addr,int dirty_flags)979 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
980                                                       int dirty_flags)
981 {
982     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
983 }
984 
cpu_physical_memory_mask_dirty_range(ram_addr_t start,int length,int dirty_flags)985 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
986                                                         int length,
987                                                         int dirty_flags)
988 {
989     int i, mask, len;
990     uint8_t *p;
991 
992     len = length >> TARGET_PAGE_BITS;
993     mask = ~dirty_flags;
994     p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
995     for (i = 0; i < len; i++) {
996         p[i] &= mask;
997     }
998 }
999 
1000 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1001                                      int dirty_flags);
1002 void cpu_tlb_update_dirty(CPUState *env);
1003 
1004 int cpu_physical_memory_set_dirty_tracking(int enable);
1005 
1006 int cpu_physical_memory_get_dirty_tracking(void);
1007 
1008 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1009                                    target_phys_addr_t end_addr);
1010 
1011 void dump_exec_info(FILE *f,
1012                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
1013 
1014 /* Coalesced MMIO regions are areas where write operations can be reordered.
1015  * This usually implies that write operations are side-effect free.  This allows
1016  * batching which can make a major impact on performance when using
1017  * virtualization.
1018  */
1019 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
1020 
1021 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
1022 
1023 void qemu_flush_coalesced_mmio_buffer(void);
1024 
1025 
1026 /* profiling */
1027 #ifdef CONFIG_PROFILER
profile_getclock(void)1028 static inline int64_t profile_getclock(void)
1029 {
1030     return cpu_get_real_ticks();
1031 }
1032 
1033 extern int64_t qemu_time, qemu_time_start;
1034 extern int64_t tlb_flush_time;
1035 extern int64_t dev_time;
1036 #endif
1037 
1038 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1039                         uint8_t *buf, int len, int is_write);
1040 
1041 void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
1042                         uint64_t mcg_status, uint64_t addr, uint64_t misc);
1043 
1044 #endif /* CPU_ALL_H */
1045