1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifdef ENABLE_GDB_JIT_INTERFACE
29 #include "v8.h"
30 #include "gdb-jit.h"
31
32 #include "bootstrapper.h"
33 #include "compiler.h"
34 #include "global-handles.h"
35 #include "messages.h"
36 #include "natives.h"
37
38 namespace v8 {
39 namespace internal {
40
41 class ELF;
42
43 class Writer BASE_EMBEDDED {
44 public:
Writer(ELF * elf)45 explicit Writer(ELF* elf)
46 : elf_(elf),
47 position_(0),
48 capacity_(1024),
49 buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
50 }
51
~Writer()52 ~Writer() {
53 free(buffer_);
54 }
55
position() const56 uintptr_t position() const {
57 return position_;
58 }
59
60 template<typename T>
61 class Slot {
62 public:
Slot(Writer * w,uintptr_t offset)63 Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
64
operator ->()65 T* operator-> () {
66 return w_->RawSlotAt<T>(offset_);
67 }
68
set(const T & value)69 void set(const T& value) {
70 *w_->RawSlotAt<T>(offset_) = value;
71 }
72
at(int i)73 Slot<T> at(int i) {
74 return Slot<T>(w_, offset_ + sizeof(T) * i);
75 }
76
77 private:
78 Writer* w_;
79 uintptr_t offset_;
80 };
81
82 template<typename T>
Write(const T & val)83 void Write(const T& val) {
84 Ensure(position_ + sizeof(T));
85 *RawSlotAt<T>(position_) = val;
86 position_ += sizeof(T);
87 }
88
89 template<typename T>
SlotAt(uintptr_t offset)90 Slot<T> SlotAt(uintptr_t offset) {
91 Ensure(offset + sizeof(T));
92 return Slot<T>(this, offset);
93 }
94
95 template<typename T>
CreateSlotHere()96 Slot<T> CreateSlotHere() {
97 return CreateSlotsHere<T>(1);
98 }
99
100 template<typename T>
CreateSlotsHere(uint32_t count)101 Slot<T> CreateSlotsHere(uint32_t count) {
102 uintptr_t slot_position = position_;
103 position_ += sizeof(T) * count;
104 Ensure(position_);
105 return SlotAt<T>(slot_position);
106 }
107
Ensure(uintptr_t pos)108 void Ensure(uintptr_t pos) {
109 if (capacity_ < pos) {
110 while (capacity_ < pos) capacity_ *= 2;
111 buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
112 }
113 }
114
elf()115 ELF* elf() { return elf_; }
116
buffer()117 byte* buffer() { return buffer_; }
118
Align(uintptr_t align)119 void Align(uintptr_t align) {
120 uintptr_t delta = position_ % align;
121 if (delta == 0) return;
122 uintptr_t padding = align - delta;
123 Ensure(position_ += padding);
124 ASSERT((position_ % align) == 0);
125 }
126
WriteULEB128(uintptr_t value)127 void WriteULEB128(uintptr_t value) {
128 do {
129 uint8_t byte = value & 0x7F;
130 value >>= 7;
131 if (value != 0) byte |= 0x80;
132 Write<uint8_t>(byte);
133 } while (value != 0);
134 }
135
WriteSLEB128(intptr_t value)136 void WriteSLEB128(intptr_t value) {
137 bool more = true;
138 while (more) {
139 int8_t byte = value & 0x7F;
140 bool byte_sign = byte & 0x40;
141 value >>= 7;
142
143 if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
144 more = false;
145 } else {
146 byte |= 0x80;
147 }
148
149 Write<int8_t>(byte);
150 }
151 }
152
WriteString(const char * str)153 void WriteString(const char* str) {
154 do {
155 Write<char>(*str);
156 } while (*str++);
157 }
158
159 private:
160 template<typename T> friend class Slot;
161
162 template<typename T>
RawSlotAt(uintptr_t offset)163 T* RawSlotAt(uintptr_t offset) {
164 ASSERT(offset < capacity_ && offset + sizeof(T) <= capacity_);
165 return reinterpret_cast<T*>(&buffer_[offset]);
166 }
167
168 ELF* elf_;
169 uintptr_t position_;
170 uintptr_t capacity_;
171 byte* buffer_;
172 };
173
174 class StringTable;
175
176 class ELFSection : public ZoneObject {
177 public:
178 struct Header {
179 uint32_t name;
180 uint32_t type;
181 uintptr_t flags;
182 uintptr_t address;
183 uintptr_t offset;
184 uintptr_t size;
185 uint32_t link;
186 uint32_t info;
187 uintptr_t alignment;
188 uintptr_t entry_size;
189 };
190
191 enum Type {
192 TYPE_NULL = 0,
193 TYPE_PROGBITS = 1,
194 TYPE_SYMTAB = 2,
195 TYPE_STRTAB = 3,
196 TYPE_RELA = 4,
197 TYPE_HASH = 5,
198 TYPE_DYNAMIC = 6,
199 TYPE_NOTE = 7,
200 TYPE_NOBITS = 8,
201 TYPE_REL = 9,
202 TYPE_SHLIB = 10,
203 TYPE_DYNSYM = 11,
204 TYPE_LOPROC = 0x70000000,
205 TYPE_X86_64_UNWIND = 0x70000001,
206 TYPE_HIPROC = 0x7fffffff,
207 TYPE_LOUSER = 0x80000000,
208 TYPE_HIUSER = 0xffffffff
209 };
210
211 enum Flags {
212 FLAG_WRITE = 1,
213 FLAG_ALLOC = 2,
214 FLAG_EXEC = 4
215 };
216
217 enum SpecialIndexes {
218 INDEX_ABSOLUTE = 0xfff1
219 };
220
ELFSection(const char * name,Type type,uintptr_t align)221 ELFSection(const char* name, Type type, uintptr_t align)
222 : name_(name), type_(type), align_(align) { }
223
~ELFSection()224 virtual ~ELFSection() { }
225
226 void PopulateHeader(Writer::Slot<Header> header, StringTable* strtab);
227
WriteBody(Writer::Slot<Header> header,Writer * w)228 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
229 uintptr_t start = w->position();
230 if (WriteBody(w)) {
231 uintptr_t end = w->position();
232 header->offset = start;
233 header->size = end - start;
234 }
235 }
236
WriteBody(Writer * w)237 virtual bool WriteBody(Writer* w) {
238 return false;
239 }
240
index() const241 uint16_t index() const { return index_; }
set_index(uint16_t index)242 void set_index(uint16_t index) { index_ = index; }
243
244 protected:
PopulateHeader(Writer::Slot<Header> header)245 virtual void PopulateHeader(Writer::Slot<Header> header) {
246 header->flags = 0;
247 header->address = 0;
248 header->offset = 0;
249 header->size = 0;
250 header->link = 0;
251 header->info = 0;
252 header->entry_size = 0;
253 }
254
255
256 private:
257 const char* name_;
258 Type type_;
259 uintptr_t align_;
260 uint16_t index_;
261 };
262
263
264 class FullHeaderELFSection : public ELFSection {
265 public:
FullHeaderELFSection(const char * name,Type type,uintptr_t align,uintptr_t addr,uintptr_t offset,uintptr_t size,uintptr_t flags)266 FullHeaderELFSection(const char* name,
267 Type type,
268 uintptr_t align,
269 uintptr_t addr,
270 uintptr_t offset,
271 uintptr_t size,
272 uintptr_t flags)
273 : ELFSection(name, type, align),
274 addr_(addr),
275 offset_(offset),
276 size_(size),
277 flags_(flags) { }
278
279 protected:
PopulateHeader(Writer::Slot<Header> header)280 virtual void PopulateHeader(Writer::Slot<Header> header) {
281 ELFSection::PopulateHeader(header);
282 header->address = addr_;
283 header->offset = offset_;
284 header->size = size_;
285 header->flags = flags_;
286 }
287
288 private:
289 uintptr_t addr_;
290 uintptr_t offset_;
291 uintptr_t size_;
292 uintptr_t flags_;
293 };
294
295
296 class StringTable : public ELFSection {
297 public:
StringTable(const char * name)298 explicit StringTable(const char* name)
299 : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
300 }
301
Add(const char * str)302 uintptr_t Add(const char* str) {
303 if (*str == '\0') return 0;
304
305 uintptr_t offset = size_;
306 WriteString(str);
307 return offset;
308 }
309
AttachWriter(Writer * w)310 void AttachWriter(Writer* w) {
311 writer_ = w;
312 offset_ = writer_->position();
313
314 // First entry in the string table should be an empty string.
315 WriteString("");
316 }
317
DetachWriter()318 void DetachWriter() {
319 writer_ = NULL;
320 }
321
WriteBody(Writer::Slot<Header> header,Writer * w)322 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
323 ASSERT(writer_ == NULL);
324 header->offset = offset_;
325 header->size = size_;
326 }
327
328 private:
WriteString(const char * str)329 void WriteString(const char* str) {
330 uintptr_t written = 0;
331 do {
332 writer_->Write(*str);
333 written++;
334 } while (*str++);
335 size_ += written;
336 }
337
338 Writer* writer_;
339
340 uintptr_t offset_;
341 uintptr_t size_;
342 };
343
344
PopulateHeader(Writer::Slot<ELFSection::Header> header,StringTable * strtab)345 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
346 StringTable* strtab) {
347 header->name = strtab->Add(name_);
348 header->type = type_;
349 header->alignment = align_;
350 PopulateHeader(header);
351 }
352
353
354 class ELF BASE_EMBEDDED {
355 public:
ELF()356 ELF() : sections_(6) {
357 sections_.Add(new ELFSection("", ELFSection::TYPE_NULL, 0));
358 sections_.Add(new StringTable(".shstrtab"));
359 }
360
Write(Writer * w)361 void Write(Writer* w) {
362 WriteHeader(w);
363 WriteSectionTable(w);
364 WriteSections(w);
365 }
366
SectionAt(uint32_t index)367 ELFSection* SectionAt(uint32_t index) {
368 return sections_[index];
369 }
370
AddSection(ELFSection * section)371 uint32_t AddSection(ELFSection* section) {
372 sections_.Add(section);
373 section->set_index(sections_.length() - 1);
374 return sections_.length() - 1;
375 }
376
377 private:
378 struct ELFHeader {
379 uint8_t ident[16];
380 uint16_t type;
381 uint16_t machine;
382 uint32_t version;
383 uintptr_t entry;
384 uintptr_t pht_offset;
385 uintptr_t sht_offset;
386 uint32_t flags;
387 uint16_t header_size;
388 uint16_t pht_entry_size;
389 uint16_t pht_entry_num;
390 uint16_t sht_entry_size;
391 uint16_t sht_entry_num;
392 uint16_t sht_strtab_index;
393 };
394
395
WriteHeader(Writer * w)396 void WriteHeader(Writer* w) {
397 ASSERT(w->position() == 0);
398 Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
399 #if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_ARM)
400 const uint8_t ident[16] =
401 { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
402 #elif defined(V8_TARGET_ARCH_X64)
403 const uint8_t ident[16] =
404 { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0 , 0, 0, 0, 0, 0, 0};
405 #else
406 #error Unsupported target architecture.
407 #endif
408 memcpy(header->ident, ident, 16);
409 header->type = 1;
410 #if defined(V8_TARGET_ARCH_IA32)
411 header->machine = 3;
412 #elif defined(V8_TARGET_ARCH_X64)
413 // Processor identification value for x64 is 62 as defined in
414 // System V ABI, AMD64 Supplement
415 // http://www.x86-64.org/documentation/abi.pdf
416 header->machine = 62;
417 #elif defined(V8_TARGET_ARCH_ARM)
418 // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
419 // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
420 header->machine = 40;
421 #else
422 #error Unsupported target architecture.
423 #endif
424 header->version = 1;
425 header->entry = 0;
426 header->pht_offset = 0;
427 header->sht_offset = sizeof(ELFHeader); // Section table follows header.
428 header->flags = 0;
429 header->header_size = sizeof(ELFHeader);
430 header->pht_entry_size = 0;
431 header->pht_entry_num = 0;
432 header->sht_entry_size = sizeof(ELFSection::Header);
433 header->sht_entry_num = sections_.length();
434 header->sht_strtab_index = 1;
435 }
436
WriteSectionTable(Writer * w)437 void WriteSectionTable(Writer* w) {
438 // Section headers table immediately follows file header.
439 ASSERT(w->position() == sizeof(ELFHeader));
440
441 Writer::Slot<ELFSection::Header> headers =
442 w->CreateSlotsHere<ELFSection::Header>(sections_.length());
443
444 // String table for section table is the first section.
445 StringTable* strtab = static_cast<StringTable*>(SectionAt(1));
446 strtab->AttachWriter(w);
447 for (int i = 0, length = sections_.length();
448 i < length;
449 i++) {
450 sections_[i]->PopulateHeader(headers.at(i), strtab);
451 }
452 strtab->DetachWriter();
453 }
454
SectionHeaderPosition(uint32_t section_index)455 int SectionHeaderPosition(uint32_t section_index) {
456 return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
457 }
458
WriteSections(Writer * w)459 void WriteSections(Writer* w) {
460 Writer::Slot<ELFSection::Header> headers =
461 w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
462
463 for (int i = 0, length = sections_.length();
464 i < length;
465 i++) {
466 sections_[i]->WriteBody(headers.at(i), w);
467 }
468 }
469
470 ZoneList<ELFSection*> sections_;
471 };
472
473
474 class ELFSymbol BASE_EMBEDDED {
475 public:
476 enum Type {
477 TYPE_NOTYPE = 0,
478 TYPE_OBJECT = 1,
479 TYPE_FUNC = 2,
480 TYPE_SECTION = 3,
481 TYPE_FILE = 4,
482 TYPE_LOPROC = 13,
483 TYPE_HIPROC = 15
484 };
485
486 enum Binding {
487 BIND_LOCAL = 0,
488 BIND_GLOBAL = 1,
489 BIND_WEAK = 2,
490 BIND_LOPROC = 13,
491 BIND_HIPROC = 15
492 };
493
ELFSymbol(const char * name,uintptr_t value,uintptr_t size,Binding binding,Type type,uint16_t section)494 ELFSymbol(const char* name,
495 uintptr_t value,
496 uintptr_t size,
497 Binding binding,
498 Type type,
499 uint16_t section)
500 : name(name),
501 value(value),
502 size(size),
503 info((binding << 4) | type),
504 other(0),
505 section(section) {
506 }
507
binding() const508 Binding binding() const {
509 return static_cast<Binding>(info >> 4);
510 }
511 #if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_ARM)
512 struct SerializedLayout {
SerializedLayoutv8::internal::BASE_EMBEDDED::SerializedLayout513 SerializedLayout(uint32_t name,
514 uintptr_t value,
515 uintptr_t size,
516 Binding binding,
517 Type type,
518 uint16_t section)
519 : name(name),
520 value(value),
521 size(size),
522 info((binding << 4) | type),
523 other(0),
524 section(section) {
525 }
526
527 uint32_t name;
528 uintptr_t value;
529 uintptr_t size;
530 uint8_t info;
531 uint8_t other;
532 uint16_t section;
533 };
534 #elif defined(V8_TARGET_ARCH_X64)
535 struct SerializedLayout {
SerializedLayoutv8::internal::BASE_EMBEDDED::SerializedLayout536 SerializedLayout(uint32_t name,
537 uintptr_t value,
538 uintptr_t size,
539 Binding binding,
540 Type type,
541 uint16_t section)
542 : name(name),
543 info((binding << 4) | type),
544 other(0),
545 section(section),
546 value(value),
547 size(size) {
548 }
549
550 uint32_t name;
551 uint8_t info;
552 uint8_t other;
553 uint16_t section;
554 uintptr_t value;
555 uintptr_t size;
556 };
557 #endif
558
Write(Writer::Slot<SerializedLayout> s,StringTable * t)559 void Write(Writer::Slot<SerializedLayout> s, StringTable* t) {
560 // Convert symbol names from strings to indexes in the string table.
561 s->name = t->Add(name);
562 s->value = value;
563 s->size = size;
564 s->info = info;
565 s->other = other;
566 s->section = section;
567 }
568
569 private:
570 const char* name;
571 uintptr_t value;
572 uintptr_t size;
573 uint8_t info;
574 uint8_t other;
575 uint16_t section;
576 };
577
578
579 class ELFSymbolTable : public ELFSection {
580 public:
ELFSymbolTable(const char * name)581 explicit ELFSymbolTable(const char* name)
582 : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
583 locals_(1),
584 globals_(1) {
585 }
586
WriteBody(Writer::Slot<Header> header,Writer * w)587 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
588 w->Align(header->alignment);
589 int total_symbols = locals_.length() + globals_.length() + 1;
590 header->offset = w->position();
591
592 Writer::Slot<ELFSymbol::SerializedLayout> symbols =
593 w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
594
595 header->size = w->position() - header->offset;
596
597 // String table for this symbol table should follow it in the section table.
598 StringTable* strtab =
599 static_cast<StringTable*>(w->elf()->SectionAt(index() + 1));
600 strtab->AttachWriter(w);
601 symbols.at(0).set(ELFSymbol::SerializedLayout(0,
602 0,
603 0,
604 ELFSymbol::BIND_LOCAL,
605 ELFSymbol::TYPE_NOTYPE,
606 0));
607 WriteSymbolsList(&locals_, symbols.at(1), strtab);
608 WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
609 strtab->DetachWriter();
610 }
611
Add(const ELFSymbol & symbol)612 void Add(const ELFSymbol& symbol) {
613 if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
614 locals_.Add(symbol);
615 } else {
616 globals_.Add(symbol);
617 }
618 }
619
620 protected:
PopulateHeader(Writer::Slot<Header> header)621 virtual void PopulateHeader(Writer::Slot<Header> header) {
622 ELFSection::PopulateHeader(header);
623 // We are assuming that string table will follow symbol table.
624 header->link = index() + 1;
625 header->info = locals_.length() + 1;
626 header->entry_size = sizeof(ELFSymbol::SerializedLayout);
627 }
628
629 private:
WriteSymbolsList(const ZoneList<ELFSymbol> * src,Writer::Slot<ELFSymbol::SerializedLayout> dst,StringTable * strtab)630 void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
631 Writer::Slot<ELFSymbol::SerializedLayout> dst,
632 StringTable* strtab) {
633 for (int i = 0, len = src->length();
634 i < len;
635 i++) {
636 src->at(i).Write(dst.at(i), strtab);
637 }
638 }
639
640 ZoneList<ELFSymbol> locals_;
641 ZoneList<ELFSymbol> globals_;
642 };
643
644
645 class CodeDescription BASE_EMBEDDED {
646 public:
647
648 #ifdef V8_TARGET_ARCH_X64
649 enum StackState {
650 POST_RBP_PUSH,
651 POST_RBP_SET,
652 POST_RBP_POP,
653 STACK_STATE_MAX
654 };
655 #endif
656
CodeDescription(const char * name,Code * code,Handle<Script> script,GDBJITLineInfo * lineinfo,GDBJITInterface::CodeTag tag)657 CodeDescription(const char* name,
658 Code* code,
659 Handle<Script> script,
660 GDBJITLineInfo* lineinfo,
661 GDBJITInterface::CodeTag tag)
662 : name_(name),
663 code_(code),
664 script_(script),
665 lineinfo_(lineinfo),
666 tag_(tag) {
667 }
668
name() const669 const char* name() const {
670 return name_;
671 }
672
lineinfo() const673 GDBJITLineInfo* lineinfo() const {
674 return lineinfo_;
675 }
676
tag() const677 GDBJITInterface::CodeTag tag() const {
678 return tag_;
679 }
680
CodeStart() const681 uintptr_t CodeStart() const {
682 return reinterpret_cast<uintptr_t>(code_->instruction_start());
683 }
684
CodeEnd() const685 uintptr_t CodeEnd() const {
686 return reinterpret_cast<uintptr_t>(code_->instruction_end());
687 }
688
CodeSize() const689 uintptr_t CodeSize() const {
690 return CodeEnd() - CodeStart();
691 }
692
IsLineInfoAvailable()693 bool IsLineInfoAvailable() {
694 return !script_.is_null() &&
695 script_->source()->IsString() &&
696 script_->HasValidSource() &&
697 script_->name()->IsString() &&
698 lineinfo_ != NULL;
699 }
700
701 #ifdef V8_TARGET_ARCH_X64
GetStackStateStartAddress(StackState state) const702 uintptr_t GetStackStateStartAddress(StackState state) const {
703 ASSERT(state < STACK_STATE_MAX);
704 return stack_state_start_addresses_[state];
705 }
706
SetStackStateStartAddress(StackState state,uintptr_t addr)707 void SetStackStateStartAddress(StackState state, uintptr_t addr) {
708 ASSERT(state < STACK_STATE_MAX);
709 stack_state_start_addresses_[state] = addr;
710 }
711 #endif
712
GetFilename()713 SmartPointer<char> GetFilename() {
714 return String::cast(script_->name())->ToCString();
715 }
716
GetScriptLineNumber(int pos)717 int GetScriptLineNumber(int pos) {
718 return GetScriptLineNumberSafe(script_, pos) + 1;
719 }
720
721
722 private:
723 const char* name_;
724 Code* code_;
725 Handle<Script> script_;
726 GDBJITLineInfo* lineinfo_;
727 GDBJITInterface::CodeTag tag_;
728 #ifdef V8_TARGET_ARCH_X64
729 uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
730 #endif
731 };
732
733
CreateSymbolsTable(CodeDescription * desc,ELF * elf,int text_section_index)734 static void CreateSymbolsTable(CodeDescription* desc,
735 ELF* elf,
736 int text_section_index) {
737 ELFSymbolTable* symtab = new ELFSymbolTable(".symtab");
738 StringTable* strtab = new StringTable(".strtab");
739
740 // Symbol table should be followed by the linked string table.
741 elf->AddSection(symtab);
742 elf->AddSection(strtab);
743
744 symtab->Add(ELFSymbol("V8 Code",
745 0,
746 0,
747 ELFSymbol::BIND_LOCAL,
748 ELFSymbol::TYPE_FILE,
749 ELFSection::INDEX_ABSOLUTE));
750
751 symtab->Add(ELFSymbol(desc->name(),
752 0,
753 desc->CodeSize(),
754 ELFSymbol::BIND_GLOBAL,
755 ELFSymbol::TYPE_FUNC,
756 text_section_index));
757 }
758
759
760 class DebugInfoSection : public ELFSection {
761 public:
DebugInfoSection(CodeDescription * desc)762 explicit DebugInfoSection(CodeDescription* desc)
763 : ELFSection(".debug_info", TYPE_PROGBITS, 1), desc_(desc) { }
764
WriteBody(Writer * w)765 bool WriteBody(Writer* w) {
766 Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
767 uintptr_t start = w->position();
768 w->Write<uint16_t>(2); // DWARF version.
769 w->Write<uint32_t>(0); // Abbreviation table offset.
770 w->Write<uint8_t>(sizeof(intptr_t));
771
772 w->WriteULEB128(1); // Abbreviation code.
773 w->WriteString(*desc_->GetFilename());
774 w->Write<intptr_t>(desc_->CodeStart());
775 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
776 w->Write<uint32_t>(0);
777 size.set(static_cast<uint32_t>(w->position() - start));
778 return true;
779 }
780
781 private:
782 CodeDescription* desc_;
783 };
784
785
786 class DebugAbbrevSection : public ELFSection {
787 public:
DebugAbbrevSection()788 DebugAbbrevSection() : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1) { }
789
790 // DWARF2 standard, figure 14.
791 enum DWARF2Tags {
792 DW_TAG_COMPILE_UNIT = 0x11
793 };
794
795 // DWARF2 standard, figure 16.
796 enum DWARF2ChildrenDetermination {
797 DW_CHILDREN_NO = 0,
798 DW_CHILDREN_YES = 1
799 };
800
801 // DWARF standard, figure 17.
802 enum DWARF2Attribute {
803 DW_AT_NAME = 0x3,
804 DW_AT_STMT_LIST = 0x10,
805 DW_AT_LOW_PC = 0x11,
806 DW_AT_HIGH_PC = 0x12
807 };
808
809 // DWARF2 standard, figure 19.
810 enum DWARF2AttributeForm {
811 DW_FORM_ADDR = 0x1,
812 DW_FORM_STRING = 0x8,
813 DW_FORM_DATA4 = 0x6
814 };
815
WriteBody(Writer * w)816 bool WriteBody(Writer* w) {
817 w->WriteULEB128(1);
818 w->WriteULEB128(DW_TAG_COMPILE_UNIT);
819 w->Write<uint8_t>(DW_CHILDREN_NO);
820 w->WriteULEB128(DW_AT_NAME);
821 w->WriteULEB128(DW_FORM_STRING);
822 w->WriteULEB128(DW_AT_LOW_PC);
823 w->WriteULEB128(DW_FORM_ADDR);
824 w->WriteULEB128(DW_AT_HIGH_PC);
825 w->WriteULEB128(DW_FORM_ADDR);
826 w->WriteULEB128(DW_AT_STMT_LIST);
827 w->WriteULEB128(DW_FORM_DATA4);
828 w->WriteULEB128(0);
829 w->WriteULEB128(0);
830 w->WriteULEB128(0);
831 return true;
832 }
833 };
834
835
836 class DebugLineSection : public ELFSection {
837 public:
DebugLineSection(CodeDescription * desc)838 explicit DebugLineSection(CodeDescription* desc)
839 : ELFSection(".debug_line", TYPE_PROGBITS, 1),
840 desc_(desc) { }
841
842 // DWARF2 standard, figure 34.
843 enum DWARF2Opcodes {
844 DW_LNS_COPY = 1,
845 DW_LNS_ADVANCE_PC = 2,
846 DW_LNS_ADVANCE_LINE = 3,
847 DW_LNS_SET_FILE = 4,
848 DW_LNS_SET_COLUMN = 5,
849 DW_LNS_NEGATE_STMT = 6
850 };
851
852 // DWARF2 standard, figure 35.
853 enum DWARF2ExtendedOpcode {
854 DW_LNE_END_SEQUENCE = 1,
855 DW_LNE_SET_ADDRESS = 2,
856 DW_LNE_DEFINE_FILE = 3
857 };
858
WriteBody(Writer * w)859 bool WriteBody(Writer* w) {
860 // Write prologue.
861 Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
862 uintptr_t start = w->position();
863
864 // Used for special opcodes
865 const int8_t line_base = 1;
866 const uint8_t line_range = 7;
867 const int8_t max_line_incr = (line_base + line_range - 1);
868 const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
869
870 w->Write<uint16_t>(2); // Field version.
871 Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
872 uintptr_t prologue_start = w->position();
873 w->Write<uint8_t>(1); // Field minimum_instruction_length.
874 w->Write<uint8_t>(1); // Field default_is_stmt.
875 w->Write<int8_t>(line_base); // Field line_base.
876 w->Write<uint8_t>(line_range); // Field line_range.
877 w->Write<uint8_t>(opcode_base); // Field opcode_base.
878 w->Write<uint8_t>(0); // DW_LNS_COPY operands count.
879 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count.
880 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count.
881 w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count.
882 w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count.
883 w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count.
884 w->Write<uint8_t>(0); // Empty include_directories sequence.
885 w->WriteString(*desc_->GetFilename()); // File name.
886 w->WriteULEB128(0); // Current directory.
887 w->WriteULEB128(0); // Unknown modification time.
888 w->WriteULEB128(0); // Unknown file size.
889 w->Write<uint8_t>(0);
890 prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
891
892 WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
893 w->Write<intptr_t>(desc_->CodeStart());
894 w->Write<uint8_t>(DW_LNS_COPY);
895
896 intptr_t pc = 0;
897 intptr_t line = 1;
898 bool is_statement = true;
899
900 List<GDBJITLineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
901 pc_info->Sort(&ComparePCInfo);
902
903 int pc_info_length = pc_info->length();
904 for (int i = 0; i < pc_info_length; i++) {
905 GDBJITLineInfo::PCInfo* info = &pc_info->at(i);
906 ASSERT(info->pc_ >= pc);
907
908 // Reduce bloating in the debug line table by removing duplicate line
909 // entries (per DWARF2 standard).
910 intptr_t new_line = desc_->GetScriptLineNumber(info->pos_);
911 if (new_line == line) {
912 continue;
913 }
914
915 // Mark statement boundaries. For a better debugging experience, mark
916 // the last pc address in the function as a statement (e.g. "}"), so that
917 // a user can see the result of the last line executed in the function,
918 // should control reach the end.
919 if ((i+1) == pc_info_length) {
920 if (!is_statement) {
921 w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
922 }
923 } else if (is_statement != info->is_statement_) {
924 w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
925 is_statement = !is_statement;
926 }
927
928 // Generate special opcodes, if possible. This results in more compact
929 // debug line tables. See the DWARF 2.0 standard to learn more about
930 // special opcodes.
931 uintptr_t pc_diff = info->pc_ - pc;
932 intptr_t line_diff = new_line - line;
933
934 // Compute special opcode (see DWARF 2.0 standard)
935 intptr_t special_opcode = (line_diff - line_base) +
936 (line_range * pc_diff) + opcode_base;
937
938 // If special_opcode is less than or equal to 255, it can be used as a
939 // special opcode. If line_diff is larger than the max line increment
940 // allowed for a special opcode, or if line_diff is less than the minimum
941 // line that can be added to the line register (i.e. line_base), then
942 // special_opcode can't be used.
943 if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
944 (line_diff <= max_line_incr) && (line_diff >= line_base)) {
945 w->Write<uint8_t>(special_opcode);
946 } else {
947 w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
948 w->WriteSLEB128(pc_diff);
949 w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
950 w->WriteSLEB128(line_diff);
951 w->Write<uint8_t>(DW_LNS_COPY);
952 }
953
954 // Increment the pc and line operands.
955 pc += pc_diff;
956 line += line_diff;
957 }
958 // Advance the pc to the end of the routine, since the end sequence opcode
959 // requires this.
960 w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
961 w->WriteSLEB128(desc_->CodeSize() - pc);
962 WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
963 total_length.set(static_cast<uint32_t>(w->position() - start));
964 return true;
965 }
966
967 private:
WriteExtendedOpcode(Writer * w,DWARF2ExtendedOpcode op,size_t operands_size)968 void WriteExtendedOpcode(Writer* w,
969 DWARF2ExtendedOpcode op,
970 size_t operands_size) {
971 w->Write<uint8_t>(0);
972 w->WriteULEB128(operands_size + 1);
973 w->Write<uint8_t>(op);
974 }
975
ComparePCInfo(const GDBJITLineInfo::PCInfo * a,const GDBJITLineInfo::PCInfo * b)976 static int ComparePCInfo(const GDBJITLineInfo::PCInfo* a,
977 const GDBJITLineInfo::PCInfo* b) {
978 if (a->pc_ == b->pc_) {
979 if (a->is_statement_ != b->is_statement_) {
980 return b->is_statement_ ? +1 : -1;
981 }
982 return 0;
983 } else if (a->pc_ > b->pc_) {
984 return +1;
985 } else {
986 return -1;
987 }
988 }
989
990 CodeDescription* desc_;
991 };
992
993
994 #ifdef V8_TARGET_ARCH_X64
995
996
997 class UnwindInfoSection : public ELFSection {
998 public:
999 explicit UnwindInfoSection(CodeDescription *desc);
1000 virtual bool WriteBody(Writer *w);
1001
1002 int WriteCIE(Writer *w);
1003 void WriteFDE(Writer *w, int);
1004
1005 void WriteFDEStateOnEntry(Writer *w);
1006 void WriteFDEStateAfterRBPPush(Writer *w);
1007 void WriteFDEStateAfterRBPSet(Writer *w);
1008 void WriteFDEStateAfterRBPPop(Writer *w);
1009
1010 void WriteLength(Writer *w,
1011 Writer::Slot<uint32_t>* length_slot,
1012 int initial_position);
1013
1014 private:
1015 CodeDescription *desc_;
1016
1017 // DWARF3 Specification, Table 7.23
1018 enum CFIInstructions {
1019 DW_CFA_ADVANCE_LOC = 0x40,
1020 DW_CFA_OFFSET = 0x80,
1021 DW_CFA_RESTORE = 0xC0,
1022 DW_CFA_NOP = 0x00,
1023 DW_CFA_SET_LOC = 0x01,
1024 DW_CFA_ADVANCE_LOC1 = 0x02,
1025 DW_CFA_ADVANCE_LOC2 = 0x03,
1026 DW_CFA_ADVANCE_LOC4 = 0x04,
1027 DW_CFA_OFFSET_EXTENDED = 0x05,
1028 DW_CFA_RESTORE_EXTENDED = 0x06,
1029 DW_CFA_UNDEFINED = 0x07,
1030 DW_CFA_SAME_VALUE = 0x08,
1031 DW_CFA_REGISTER = 0x09,
1032 DW_CFA_REMEMBER_STATE = 0x0A,
1033 DW_CFA_RESTORE_STATE = 0x0B,
1034 DW_CFA_DEF_CFA = 0x0C,
1035 DW_CFA_DEF_CFA_REGISTER = 0x0D,
1036 DW_CFA_DEF_CFA_OFFSET = 0x0E,
1037
1038 DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
1039 DW_CFA_EXPRESSION = 0x10,
1040 DW_CFA_OFFSET_EXTENDED_SF = 0x11,
1041 DW_CFA_DEF_CFA_SF = 0x12,
1042 DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
1043 DW_CFA_VAL_OFFSET = 0x14,
1044 DW_CFA_VAL_OFFSET_SF = 0x15,
1045 DW_CFA_VAL_EXPRESSION = 0x16
1046 };
1047
1048 // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
1049 enum RegisterMapping {
1050 // Only the relevant ones have been added to reduce clutter.
1051 AMD64_RBP = 6,
1052 AMD64_RSP = 7,
1053 AMD64_RA = 16
1054 };
1055
1056 enum CFIConstants {
1057 CIE_ID = 0,
1058 CIE_VERSION = 1,
1059 CODE_ALIGN_FACTOR = 1,
1060 DATA_ALIGN_FACTOR = 1,
1061 RETURN_ADDRESS_REGISTER = AMD64_RA
1062 };
1063 };
1064
1065
WriteLength(Writer * w,Writer::Slot<uint32_t> * length_slot,int initial_position)1066 void UnwindInfoSection::WriteLength(Writer *w,
1067 Writer::Slot<uint32_t>* length_slot,
1068 int initial_position) {
1069 uint32_t align = (w->position() - initial_position) % kPointerSize;
1070
1071 if (align != 0) {
1072 for (uint32_t i = 0; i < (kPointerSize - align); i++) {
1073 w->Write<uint8_t>(DW_CFA_NOP);
1074 }
1075 }
1076
1077 ASSERT((w->position() - initial_position) % kPointerSize == 0);
1078 length_slot->set(w->position() - initial_position);
1079 }
1080
1081
UnwindInfoSection(CodeDescription * desc)1082 UnwindInfoSection::UnwindInfoSection(CodeDescription *desc)
1083 : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1), desc_(desc)
1084 { }
1085
WriteCIE(Writer * w)1086 int UnwindInfoSection::WriteCIE(Writer *w) {
1087 Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1088 uint32_t cie_position = w->position();
1089
1090 // Write out the CIE header. Currently no 'common instructions' are
1091 // emitted onto the CIE; every FDE has its own set of instructions.
1092
1093 w->Write<uint32_t>(CIE_ID);
1094 w->Write<uint8_t>(CIE_VERSION);
1095 w->Write<uint8_t>(0); // Null augmentation string.
1096 w->WriteSLEB128(CODE_ALIGN_FACTOR);
1097 w->WriteSLEB128(DATA_ALIGN_FACTOR);
1098 w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
1099
1100 WriteLength(w, &cie_length_slot, cie_position);
1101
1102 return cie_position;
1103 }
1104
1105
WriteFDE(Writer * w,int cie_position)1106 void UnwindInfoSection::WriteFDE(Writer *w, int cie_position) {
1107 // The only FDE for this function. The CFA is the current RBP.
1108 Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1109 int fde_position = w->position();
1110 w->Write<int32_t>(fde_position - cie_position + 4);
1111
1112 w->Write<uintptr_t>(desc_->CodeStart());
1113 w->Write<uintptr_t>(desc_->CodeSize());
1114
1115 WriteFDEStateOnEntry(w);
1116 WriteFDEStateAfterRBPPush(w);
1117 WriteFDEStateAfterRBPSet(w);
1118 WriteFDEStateAfterRBPPop(w);
1119
1120 WriteLength(w, &fde_length_slot, fde_position);
1121 }
1122
1123
WriteFDEStateOnEntry(Writer * w)1124 void UnwindInfoSection::WriteFDEStateOnEntry(Writer *w) {
1125 // The first state, just after the control has been transferred to the the
1126 // function.
1127
1128 // RBP for this function will be the value of RSP after pushing the RBP
1129 // for the previous function. The previous RBP has not been pushed yet.
1130 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1131 w->WriteULEB128(AMD64_RSP);
1132 w->WriteSLEB128(-kPointerSize);
1133
1134 // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
1135 // and hence omitted from the next states.
1136 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1137 w->WriteULEB128(AMD64_RA);
1138 w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
1139
1140 // The RBP of the previous function is still in RBP.
1141 w->Write<uint8_t>(DW_CFA_SAME_VALUE);
1142 w->WriteULEB128(AMD64_RBP);
1143
1144 // Last location described by this entry.
1145 w->Write<uint8_t>(DW_CFA_SET_LOC);
1146 w->Write<uint64_t>(
1147 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
1148 }
1149
1150
WriteFDEStateAfterRBPPush(Writer * w)1151 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer *w) {
1152 // The second state, just after RBP has been pushed.
1153
1154 // RBP / CFA for this function is now the current RSP, so just set the
1155 // offset from the previous rule (from -8) to 0.
1156 w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
1157 w->WriteULEB128(0);
1158
1159 // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
1160 // in this and the next state, and hence omitted in the next state.
1161 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1162 w->WriteULEB128(AMD64_RBP);
1163 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1164
1165 // Last location described by this entry.
1166 w->Write<uint8_t>(DW_CFA_SET_LOC);
1167 w->Write<uint64_t>(
1168 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
1169 }
1170
1171
WriteFDEStateAfterRBPSet(Writer * w)1172 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer *w) {
1173 // The third state, after the RBP has been set.
1174
1175 // The CFA can now directly be set to RBP.
1176 w->Write<uint8_t>(DW_CFA_DEF_CFA);
1177 w->WriteULEB128(AMD64_RBP);
1178 w->WriteULEB128(0);
1179
1180 // Last location described by this entry.
1181 w->Write<uint8_t>(DW_CFA_SET_LOC);
1182 w->Write<uint64_t>(
1183 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
1184 }
1185
1186
WriteFDEStateAfterRBPPop(Writer * w)1187 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer *w) {
1188 // The fourth (final) state. The RBP has been popped (just before issuing a
1189 // return).
1190
1191 // The CFA can is now calculated in the same way as in the first state.
1192 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1193 w->WriteULEB128(AMD64_RSP);
1194 w->WriteSLEB128(-kPointerSize);
1195
1196 // The RBP
1197 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1198 w->WriteULEB128(AMD64_RBP);
1199 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1200
1201 // Last location described by this entry.
1202 w->Write<uint8_t>(DW_CFA_SET_LOC);
1203 w->Write<uint64_t>(desc_->CodeEnd());
1204 }
1205
1206
WriteBody(Writer * w)1207 bool UnwindInfoSection::WriteBody(Writer *w) {
1208 uint32_t cie_position = WriteCIE(w);
1209 WriteFDE(w, cie_position);
1210 return true;
1211 }
1212
1213
1214 #endif // V8_TARGET_ARCH_X64
1215
1216
CreateDWARFSections(CodeDescription * desc,ELF * elf)1217 static void CreateDWARFSections(CodeDescription* desc, ELF* elf) {
1218 if (desc->IsLineInfoAvailable()) {
1219 elf->AddSection(new DebugInfoSection(desc));
1220 elf->AddSection(new DebugAbbrevSection);
1221 elf->AddSection(new DebugLineSection(desc));
1222 }
1223 #ifdef V8_TARGET_ARCH_X64
1224 elf->AddSection(new UnwindInfoSection(desc));
1225 #endif
1226 }
1227
1228
1229 // -------------------------------------------------------------------
1230 // Binary GDB JIT Interface as described in
1231 // http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
1232 extern "C" {
1233 typedef enum {
1234 JIT_NOACTION = 0,
1235 JIT_REGISTER_FN,
1236 JIT_UNREGISTER_FN
1237 } JITAction;
1238
1239 struct JITCodeEntry {
1240 JITCodeEntry* next_;
1241 JITCodeEntry* prev_;
1242 Address symfile_addr_;
1243 uint64_t symfile_size_;
1244 };
1245
1246 struct JITDescriptor {
1247 uint32_t version_;
1248 uint32_t action_flag_;
1249 JITCodeEntry *relevant_entry_;
1250 JITCodeEntry *first_entry_;
1251 };
1252
1253 // GDB will place breakpoint into this function.
1254 // To prevent GCC from inlining or removing it we place noinline attribute
1255 // and inline assembler statement inside.
__jit_debug_register_code()1256 void __attribute__((noinline)) __jit_debug_register_code() {
1257 __asm__("");
1258 }
1259
1260 // GDB will inspect contents of this descriptor.
1261 // Static initialization is necessary to prevent GDB from seeing
1262 // uninitialized descriptor.
1263 JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1264 }
1265
1266
CreateCodeEntry(Address symfile_addr,uintptr_t symfile_size)1267 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
1268 uintptr_t symfile_size) {
1269 JITCodeEntry* entry = static_cast<JITCodeEntry*>(
1270 malloc(sizeof(JITCodeEntry) + symfile_size));
1271
1272 entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
1273 entry->symfile_size_ = symfile_size;
1274 memcpy(entry->symfile_addr_, symfile_addr, symfile_size);
1275
1276 entry->prev_ = entry->next_ = NULL;
1277
1278 return entry;
1279 }
1280
1281
DestroyCodeEntry(JITCodeEntry * entry)1282 static void DestroyCodeEntry(JITCodeEntry* entry) {
1283 free(entry);
1284 }
1285
1286
RegisterCodeEntry(JITCodeEntry * entry)1287 static void RegisterCodeEntry(JITCodeEntry* entry) {
1288 #if defined(DEBUG) && !defined(WIN32)
1289 static int file_num = 0;
1290 if (FLAG_gdbjit_dump) {
1291 static const int kMaxFileNameSize = 64;
1292 static const char* kElfFilePrefix = "/tmp/elfdump";
1293 static const char* kObjFileExt = ".o";
1294 char file_name[64];
1295
1296 OS::SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "%s%d%s",
1297 kElfFilePrefix, file_num++, kObjFileExt);
1298 WriteBytes(file_name, entry->symfile_addr_, entry->symfile_size_);
1299 }
1300 #endif
1301
1302 entry->next_ = __jit_debug_descriptor.first_entry_;
1303 if (entry->next_ != NULL) entry->next_->prev_ = entry;
1304 __jit_debug_descriptor.first_entry_ =
1305 __jit_debug_descriptor.relevant_entry_ = entry;
1306
1307 __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
1308 __jit_debug_register_code();
1309 }
1310
1311
UnregisterCodeEntry(JITCodeEntry * entry)1312 static void UnregisterCodeEntry(JITCodeEntry* entry) {
1313 if (entry->prev_ != NULL) {
1314 entry->prev_->next_ = entry->next_;
1315 } else {
1316 __jit_debug_descriptor.first_entry_ = entry->next_;
1317 }
1318
1319 if (entry->next_ != NULL) {
1320 entry->next_->prev_ = entry->prev_;
1321 }
1322
1323 __jit_debug_descriptor.relevant_entry_ = entry;
1324 __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
1325 __jit_debug_register_code();
1326 }
1327
1328
CreateELFObject(CodeDescription * desc)1329 static JITCodeEntry* CreateELFObject(CodeDescription* desc) {
1330 ZoneScope zone_scope(DELETE_ON_EXIT);
1331
1332 ELF elf;
1333 Writer w(&elf);
1334
1335 int text_section_index = elf.AddSection(
1336 new FullHeaderELFSection(".text",
1337 ELFSection::TYPE_NOBITS,
1338 kCodeAlignment,
1339 desc->CodeStart(),
1340 0,
1341 desc->CodeSize(),
1342 ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1343
1344 CreateSymbolsTable(desc, &elf, text_section_index);
1345
1346 CreateDWARFSections(desc, &elf);
1347
1348 elf.Write(&w);
1349
1350 return CreateCodeEntry(w.buffer(), w.position());
1351 }
1352
1353
SameCodeObjects(void * key1,void * key2)1354 static bool SameCodeObjects(void* key1, void* key2) {
1355 return key1 == key2;
1356 }
1357
1358
GetEntries()1359 static HashMap* GetEntries() {
1360 static HashMap* entries = NULL;
1361 if (entries == NULL) {
1362 entries = new HashMap(&SameCodeObjects);
1363 }
1364 return entries;
1365 }
1366
1367
HashForCodeObject(Code * code)1368 static uint32_t HashForCodeObject(Code* code) {
1369 static const uintptr_t kGoldenRatio = 2654435761u;
1370 uintptr_t hash = reinterpret_cast<uintptr_t>(code->address());
1371 return static_cast<uint32_t>((hash >> kCodeAlignmentBits) * kGoldenRatio);
1372 }
1373
1374
1375 static const intptr_t kLineInfoTag = 0x1;
1376
1377
IsLineInfoTagged(void * ptr)1378 static bool IsLineInfoTagged(void* ptr) {
1379 return 0 != (reinterpret_cast<intptr_t>(ptr) & kLineInfoTag);
1380 }
1381
1382
TagLineInfo(GDBJITLineInfo * ptr)1383 static void* TagLineInfo(GDBJITLineInfo* ptr) {
1384 return reinterpret_cast<void*>(
1385 reinterpret_cast<intptr_t>(ptr) | kLineInfoTag);
1386 }
1387
1388
UntagLineInfo(void * ptr)1389 static GDBJITLineInfo* UntagLineInfo(void* ptr) {
1390 return reinterpret_cast<GDBJITLineInfo*>(
1391 reinterpret_cast<intptr_t>(ptr) & ~kLineInfoTag);
1392 }
1393
1394
AddCode(Handle<String> name,Handle<Script> script,Handle<Code> code)1395 void GDBJITInterface::AddCode(Handle<String> name,
1396 Handle<Script> script,
1397 Handle<Code> code) {
1398 if (!FLAG_gdbjit) return;
1399
1400 // Force initialization of line_ends array.
1401 GetScriptLineNumber(script, 0);
1402
1403 if (!name.is_null()) {
1404 SmartPointer<char> name_cstring = name->ToCString(DISALLOW_NULLS);
1405 AddCode(*name_cstring, *code, GDBJITInterface::FUNCTION, *script);
1406 } else {
1407 AddCode("", *code, GDBJITInterface::FUNCTION, *script);
1408 }
1409 }
1410
AddUnwindInfo(CodeDescription * desc)1411 static void AddUnwindInfo(CodeDescription *desc) {
1412 #ifdef V8_TARGET_ARCH_X64
1413 if (desc->tag() == GDBJITInterface::FUNCTION) {
1414 // To avoid propagating unwinding information through
1415 // compilation pipeline we use an approximation.
1416 // For most use cases this should not affect usability.
1417 static const int kFramePointerPushOffset = 1;
1418 static const int kFramePointerSetOffset = 4;
1419 static const int kFramePointerPopOffset = -3;
1420
1421 uintptr_t frame_pointer_push_address =
1422 desc->CodeStart() + kFramePointerPushOffset;
1423
1424 uintptr_t frame_pointer_set_address =
1425 desc->CodeStart() + kFramePointerSetOffset;
1426
1427 uintptr_t frame_pointer_pop_address =
1428 desc->CodeEnd() + kFramePointerPopOffset;
1429
1430 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
1431 frame_pointer_push_address);
1432 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
1433 frame_pointer_set_address);
1434 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
1435 frame_pointer_pop_address);
1436 } else {
1437 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
1438 desc->CodeStart());
1439 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
1440 desc->CodeStart());
1441 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
1442 desc->CodeEnd());
1443 }
1444 #endif // V8_TARGET_ARCH_X64
1445 }
1446
1447
1448 Mutex* GDBJITInterface::mutex_ = OS::CreateMutex();
1449
1450
AddCode(const char * name,Code * code,GDBJITInterface::CodeTag tag,Script * script)1451 void GDBJITInterface::AddCode(const char* name,
1452 Code* code,
1453 GDBJITInterface::CodeTag tag,
1454 Script* script) {
1455 if (!FLAG_gdbjit) return;
1456
1457 ScopedLock lock(mutex_);
1458 AssertNoAllocation no_gc;
1459
1460 HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
1461 if (e->value != NULL && !IsLineInfoTagged(e->value)) return;
1462
1463 GDBJITLineInfo* lineinfo = UntagLineInfo(e->value);
1464 CodeDescription code_desc(name,
1465 code,
1466 script != NULL ? Handle<Script>(script)
1467 : Handle<Script>(),
1468 lineinfo,
1469 tag);
1470
1471 if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
1472 delete lineinfo;
1473 GetEntries()->Remove(code, HashForCodeObject(code));
1474 return;
1475 }
1476
1477 AddUnwindInfo(&code_desc);
1478 JITCodeEntry* entry = CreateELFObject(&code_desc);
1479 ASSERT(!IsLineInfoTagged(entry));
1480
1481 delete lineinfo;
1482 e->value = entry;
1483
1484 RegisterCodeEntry(entry);
1485 }
1486
1487
AddCode(GDBJITInterface::CodeTag tag,const char * name,Code * code)1488 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
1489 const char* name,
1490 Code* code) {
1491 if (!FLAG_gdbjit) return;
1492
1493 EmbeddedVector<char, 256> buffer;
1494 StringBuilder builder(buffer.start(), buffer.length());
1495
1496 builder.AddString(Tag2String(tag));
1497 if ((name != NULL) && (*name != '\0')) {
1498 builder.AddString(": ");
1499 builder.AddString(name);
1500 } else {
1501 builder.AddFormatted(": code object %p", static_cast<void*>(code));
1502 }
1503
1504 AddCode(builder.Finalize(), code, tag);
1505 }
1506
1507
AddCode(GDBJITInterface::CodeTag tag,String * name,Code * code)1508 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
1509 String* name,
1510 Code* code) {
1511 if (!FLAG_gdbjit) return;
1512 AddCode(tag, name != NULL ? *name->ToCString(DISALLOW_NULLS) : NULL, code);
1513 }
1514
1515
AddCode(GDBJITInterface::CodeTag tag,Code * code)1516 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag, Code* code) {
1517 if (!FLAG_gdbjit) return;
1518
1519 AddCode(tag, "", code);
1520 }
1521
1522
RemoveCode(Code * code)1523 void GDBJITInterface::RemoveCode(Code* code) {
1524 if (!FLAG_gdbjit) return;
1525
1526 ScopedLock lock(mutex_);
1527 HashMap::Entry* e = GetEntries()->Lookup(code,
1528 HashForCodeObject(code),
1529 false);
1530 if (e == NULL) return;
1531
1532 if (IsLineInfoTagged(e->value)) {
1533 delete UntagLineInfo(e->value);
1534 } else {
1535 JITCodeEntry* entry = static_cast<JITCodeEntry*>(e->value);
1536 UnregisterCodeEntry(entry);
1537 DestroyCodeEntry(entry);
1538 }
1539 e->value = NULL;
1540 GetEntries()->Remove(code, HashForCodeObject(code));
1541 }
1542
1543
RegisterDetailedLineInfo(Code * code,GDBJITLineInfo * line_info)1544 void GDBJITInterface::RegisterDetailedLineInfo(Code* code,
1545 GDBJITLineInfo* line_info) {
1546 ScopedLock lock(mutex_);
1547 ASSERT(!IsLineInfoTagged(line_info));
1548 HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
1549 ASSERT(e->value == NULL);
1550 e->value = TagLineInfo(line_info);
1551 }
1552
1553
1554 } } // namespace v8::internal
1555 #endif
1556