• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_ARM_CONSTANTS_ARM_H_
29 #define V8_ARM_CONSTANTS_ARM_H_
30 
31 // ARM EABI is required.
32 #if defined(__arm__) && !defined(__ARM_EABI__)
33 #error ARM EABI support is required.
34 #endif
35 
36 // This means that interwork-compatible jump instructions are generated.  We
37 // want to generate them on the simulator too so it makes snapshots that can
38 // be used on real hardware.
39 #if defined(__THUMB_INTERWORK__) || !defined(__arm__)
40 # define USE_THUMB_INTERWORK 1
41 #endif
42 
43 #if defined(__ARM_ARCH_7A__) || \
44     defined(__ARM_ARCH_7R__) || \
45     defined(__ARM_ARCH_7__)
46 # define CAN_USE_ARMV7_INSTRUCTIONS 1
47 #endif
48 
49 #if defined(__ARM_ARCH_6__) ||   \
50     defined(__ARM_ARCH_6J__) ||  \
51     defined(__ARM_ARCH_6K__) ||  \
52     defined(__ARM_ARCH_6Z__) ||  \
53     defined(__ARM_ARCH_6ZK__) || \
54     defined(__ARM_ARCH_6T2__) || \
55     defined(CAN_USE_ARMV7_INSTRUCTIONS)
56 # define CAN_USE_ARMV6_INSTRUCTIONS 1
57 #endif
58 
59 #if defined(__ARM_ARCH_5T__)            || \
60     defined(__ARM_ARCH_5TE__)           || \
61     defined(CAN_USE_ARMV6_INSTRUCTIONS)
62 # define CAN_USE_ARMV5_INSTRUCTIONS 1
63 # define CAN_USE_THUMB_INSTRUCTIONS 1
64 #endif
65 
66 // Simulator should support ARM5 instructions and unaligned access by default.
67 #if !defined(__arm__)
68 # define CAN_USE_ARMV5_INSTRUCTIONS 1
69 # define CAN_USE_THUMB_INSTRUCTIONS 1
70 
71 # ifndef CAN_USE_UNALIGNED_ACCESSES
72 #  define CAN_USE_UNALIGNED_ACCESSES 1
73 # endif
74 
75 #endif
76 
77 #if CAN_USE_UNALIGNED_ACCESSES
78 #define V8_TARGET_CAN_READ_UNALIGNED 1
79 #endif
80 
81 // Using blx may yield better code, so use it when required or when available
82 #if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS)
83 #define USE_BLX 1
84 #endif
85 
86 namespace v8 {
87 namespace internal {
88 
89 // Constant pool marker.
90 static const int kConstantPoolMarkerMask = 0xffe00000;
91 static const int kConstantPoolMarker = 0x0c000000;
92 static const int kConstantPoolLengthMask = 0x001ffff;
93 
94 // Number of registers in normal ARM mode.
95 static const int kNumRegisters = 16;
96 
97 // VFP support.
98 static const int kNumVFPSingleRegisters = 32;
99 static const int kNumVFPDoubleRegisters = 16;
100 static const int kNumVFPRegisters =
101     kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
102 
103 // PC is register 15.
104 static const int kPCRegister = 15;
105 static const int kNoRegister = -1;
106 
107 // -----------------------------------------------------------------------------
108 // Conditions.
109 
110 // Defines constants and accessor classes to assemble, disassemble and
111 // simulate ARM instructions.
112 //
113 // Section references in the code refer to the "ARM Architecture Reference
114 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
115 //
116 // Constants for specific fields are defined in their respective named enums.
117 // General constants are in an anonymous enum in class Instr.
118 
119 // Values for the condition field as defined in section A3.2
120 enum Condition {
121   kNoCondition = -1,
122 
123   eq =  0 << 28,                 // Z set            Equal.
124   ne =  1 << 28,                 // Z clear          Not equal.
125   cs =  2 << 28,                 // C set            Unsigned higher or same.
126   cc =  3 << 28,                 // C clear          Unsigned lower.
127   mi =  4 << 28,                 // N set            Negative.
128   pl =  5 << 28,                 // N clear          Positive or zero.
129   vs =  6 << 28,                 // V set            Overflow.
130   vc =  7 << 28,                 // V clear          No overflow.
131   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
132   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
133   ge = 10 << 28,                 // N == V           Greater or equal.
134   lt = 11 << 28,                 // N != V           Less than.
135   gt = 12 << 28,                 // Z clear, N == V  Greater than.
136   le = 13 << 28,                 // Z set or N != V  Less then or equal
137   al = 14 << 28,                 //                  Always.
138 
139   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
140   kNumberOfConditions = 16,
141 
142   // Aliases.
143   hs = cs,                       // C set            Unsigned higher or same.
144   lo = cc                        // C clear          Unsigned lower.
145 };
146 
147 
NegateCondition(Condition cond)148 inline Condition NegateCondition(Condition cond) {
149   ASSERT(cond != al);
150   return static_cast<Condition>(cond ^ ne);
151 }
152 
153 
154 // Corresponds to transposing the operands of a comparison.
ReverseCondition(Condition cond)155 inline Condition ReverseCondition(Condition cond) {
156   switch (cond) {
157     case lo:
158       return hi;
159     case hi:
160       return lo;
161     case hs:
162       return ls;
163     case ls:
164       return hs;
165     case lt:
166       return gt;
167     case gt:
168       return lt;
169     case ge:
170       return le;
171     case le:
172       return ge;
173     default:
174       return cond;
175   };
176 }
177 
178 
179 // -----------------------------------------------------------------------------
180 // Instructions encoding.
181 
182 // Instr is merely used by the Assembler to distinguish 32bit integers
183 // representing instructions from usual 32 bit values.
184 // Instruction objects are pointers to 32bit values, and provide methods to
185 // access the various ISA fields.
186 typedef int32_t Instr;
187 
188 
189 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
190 // as defined in section A3.4
191 enum Opcode {
192   AND =  0 << 21,  // Logical AND.
193   EOR =  1 << 21,  // Logical Exclusive OR.
194   SUB =  2 << 21,  // Subtract.
195   RSB =  3 << 21,  // Reverse Subtract.
196   ADD =  4 << 21,  // Add.
197   ADC =  5 << 21,  // Add with Carry.
198   SBC =  6 << 21,  // Subtract with Carry.
199   RSC =  7 << 21,  // Reverse Subtract with Carry.
200   TST =  8 << 21,  // Test.
201   TEQ =  9 << 21,  // Test Equivalence.
202   CMP = 10 << 21,  // Compare.
203   CMN = 11 << 21,  // Compare Negated.
204   ORR = 12 << 21,  // Logical (inclusive) OR.
205   MOV = 13 << 21,  // Move.
206   BIC = 14 << 21,  // Bit Clear.
207   MVN = 15 << 21   // Move Not.
208 };
209 
210 
211 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
212 enum MiscInstructionsBits74 {
213   // With bits 22-21 01.
214   BX   =  1 << 4,
215   BXJ  =  2 << 4,
216   BLX  =  3 << 4,
217   BKPT =  7 << 4,
218 
219   // With bits 22-21 11.
220   CLZ  =  1 << 4
221 };
222 
223 
224 // Instruction encoding bits and masks.
225 enum {
226   H   = 1 << 5,   // Halfword (or byte).
227   S6  = 1 << 6,   // Signed (or unsigned).
228   L   = 1 << 20,  // Load (or store).
229   S   = 1 << 20,  // Set condition code (or leave unchanged).
230   W   = 1 << 21,  // Writeback base register (or leave unchanged).
231   A   = 1 << 21,  // Accumulate in multiply instruction (or not).
232   B   = 1 << 22,  // Unsigned byte (or word).
233   N   = 1 << 22,  // Long (or short).
234   U   = 1 << 23,  // Positive (or negative) offset/index.
235   P   = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
236   I   = 1 << 25,  // Immediate shifter operand (or not).
237 
238   B4  = 1 << 4,
239   B5  = 1 << 5,
240   B6  = 1 << 6,
241   B7  = 1 << 7,
242   B8  = 1 << 8,
243   B9  = 1 << 9,
244   B12 = 1 << 12,
245   B16 = 1 << 16,
246   B18 = 1 << 18,
247   B19 = 1 << 19,
248   B20 = 1 << 20,
249   B21 = 1 << 21,
250   B22 = 1 << 22,
251   B23 = 1 << 23,
252   B24 = 1 << 24,
253   B25 = 1 << 25,
254   B26 = 1 << 26,
255   B27 = 1 << 27,
256   B28 = 1 << 28,
257 
258   // Instruction bit masks.
259   kCondMask   = 15 << 28,
260   kALUMask    = 0x6f << 21,
261   kRdMask     = 15 << 12,  // In str instruction.
262   kCoprocessorMask = 15 << 8,
263   kOpCodeMask = 15 << 21,  // In data-processing instructions.
264   kImm24Mask  = (1 << 24) - 1,
265   kOff12Mask  = (1 << 12) - 1
266 };
267 
268 
269 // -----------------------------------------------------------------------------
270 // Addressing modes and instruction variants.
271 
272 // Condition code updating mode.
273 enum SBit {
274   SetCC   = 1 << 20,  // Set condition code.
275   LeaveCC = 0 << 20   // Leave condition code unchanged.
276 };
277 
278 
279 // Status register selection.
280 enum SRegister {
281   CPSR = 0 << 22,
282   SPSR = 1 << 22
283 };
284 
285 
286 // Shifter types for Data-processing operands as defined in section A5.1.2.
287 enum ShiftOp {
288   LSL = 0 << 5,   // Logical shift left.
289   LSR = 1 << 5,   // Logical shift right.
290   ASR = 2 << 5,   // Arithmetic shift right.
291   ROR = 3 << 5,   // Rotate right.
292 
293   // RRX is encoded as ROR with shift_imm == 0.
294   // Use a special code to make the distinction. The RRX ShiftOp is only used
295   // as an argument, and will never actually be encoded. The Assembler will
296   // detect it and emit the correct ROR shift operand with shift_imm == 0.
297   RRX = -1,
298   kNumberOfShifts = 4
299 };
300 
301 
302 // Status register fields.
303 enum SRegisterField {
304   CPSR_c = CPSR | 1 << 16,
305   CPSR_x = CPSR | 1 << 17,
306   CPSR_s = CPSR | 1 << 18,
307   CPSR_f = CPSR | 1 << 19,
308   SPSR_c = SPSR | 1 << 16,
309   SPSR_x = SPSR | 1 << 17,
310   SPSR_s = SPSR | 1 << 18,
311   SPSR_f = SPSR | 1 << 19
312 };
313 
314 // Status register field mask (or'ed SRegisterField enum values).
315 typedef uint32_t SRegisterFieldMask;
316 
317 
318 // Memory operand addressing mode.
319 enum AddrMode {
320   // Bit encoding P U W.
321   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
322   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
323   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
324   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
325   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
326   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
327 };
328 
329 
330 // Load/store multiple addressing mode.
331 enum BlockAddrMode {
332   // Bit encoding P U W .
333   da           = (0|0|0) << 21,  // Decrement after.
334   ia           = (0|4|0) << 21,  // Increment after.
335   db           = (8|0|0) << 21,  // Decrement before.
336   ib           = (8|4|0) << 21,  // Increment before.
337   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
338   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
339   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
340   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
341 
342   // Alias modes for comparison when writeback does not matter.
343   da_x         = (0|0|0) << 21,  // Decrement after.
344   ia_x         = (0|4|0) << 21,  // Increment after.
345   db_x         = (8|0|0) << 21,  // Decrement before.
346   ib_x         = (8|4|0) << 21,  // Increment before.
347 
348   kBlockAddrModeMask = (8|4|1) << 21
349 };
350 
351 
352 // Coprocessor load/store operand size.
353 enum LFlag {
354   Long  = 1 << 22,  // Long load/store coprocessor.
355   Short = 0 << 22   // Short load/store coprocessor.
356 };
357 
358 
359 // -----------------------------------------------------------------------------
360 // Supervisor Call (svc) specific support.
361 
362 // Special Software Interrupt codes when used in the presence of the ARM
363 // simulator.
364 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
365 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
366 enum SoftwareInterruptCodes {
367   // transition to C code
368   kCallRtRedirected= 0x10,
369   // break point
370   kBreakpoint= 0x20,
371   // stop
372   kStopCode = 1 << 23
373 };
374 static const uint32_t kStopCodeMask = kStopCode - 1;
375 static const uint32_t kMaxStopCode = kStopCode - 1;
376 static const int32_t  kDefaultStopCode = -1;
377 
378 
379 // Type of VFP register. Determines register encoding.
380 enum VFPRegPrecision {
381   kSinglePrecision = 0,
382   kDoublePrecision = 1
383 };
384 
385 
386 // VFP FPSCR constants.
387 enum VFPConversionMode {
388   kFPSCRRounding = 0,
389   kDefaultRoundToZero = 1
390 };
391 
392 // This mask does not include the "inexact" or "input denormal" cumulative
393 // exceptions flags, because we usually don't want to check for it.
394 static const uint32_t kVFPExceptionMask = 0xf;
395 static const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
396 static const uint32_t kVFPOverflowExceptionBit = 1 << 2;
397 static const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
398 static const uint32_t kVFPInexactExceptionBit = 1 << 4;
399 static const uint32_t kVFPFlushToZeroMask = 1 << 24;
400 
401 static const uint32_t kVFPNConditionFlagBit = 1 << 31;
402 static const uint32_t kVFPZConditionFlagBit = 1 << 30;
403 static const uint32_t kVFPCConditionFlagBit = 1 << 29;
404 static const uint32_t kVFPVConditionFlagBit = 1 << 28;
405 
406 
407 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
408 enum VFPRoundingMode {
409   RN = 0 << 22,   // Round to Nearest.
410   RP = 1 << 22,   // Round towards Plus Infinity.
411   RM = 2 << 22,   // Round towards Minus Infinity.
412   RZ = 3 << 22,   // Round towards zero.
413 
414   // Aliases.
415   kRoundToNearest = RN,
416   kRoundToPlusInf = RP,
417   kRoundToMinusInf = RM,
418   kRoundToZero = RZ
419 };
420 
421 static const uint32_t kVFPRoundingModeMask = 3 << 22;
422 
423 enum CheckForInexactConversion {
424   kCheckForInexactConversion,
425   kDontCheckForInexactConversion
426 };
427 
428 // -----------------------------------------------------------------------------
429 // Hints.
430 
431 // Branch hints are not used on the ARM.  They are defined so that they can
432 // appear in shared function signatures, but will be ignored in ARM
433 // implementations.
434 enum Hint { no_hint };
435 
436 // Hints are not used on the arm.  Negating is trivial.
NegateHint(Hint ignored)437 inline Hint NegateHint(Hint ignored) { return no_hint; }
438 
439 
440 // -----------------------------------------------------------------------------
441 // Specific instructions, constants, and masks.
442 // These constants are declared in assembler-arm.cc, as they use named registers
443 // and other constants.
444 
445 
446 // add(sp, sp, 4) instruction (aka Pop())
447 extern const Instr kPopInstruction;
448 
449 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
450 // register r is not encoded.
451 extern const Instr kPushRegPattern;
452 
453 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
454 // register r is not encoded.
455 extern const Instr kPopRegPattern;
456 
457 // mov lr, pc
458 extern const Instr kMovLrPc;
459 // ldr rd, [pc, #offset]
460 extern const Instr kLdrPCMask;
461 extern const Instr kLdrPCPattern;
462 // blxcc rm
463 extern const Instr kBlxRegMask;
464 
465 extern const Instr kBlxRegPattern;
466 
467 extern const Instr kMovMvnMask;
468 extern const Instr kMovMvnPattern;
469 extern const Instr kMovMvnFlip;
470 extern const Instr kMovLeaveCCMask;
471 extern const Instr kMovLeaveCCPattern;
472 extern const Instr kMovwMask;
473 extern const Instr kMovwPattern;
474 extern const Instr kMovwLeaveCCFlip;
475 extern const Instr kCmpCmnMask;
476 extern const Instr kCmpCmnPattern;
477 extern const Instr kCmpCmnFlip;
478 extern const Instr kAddSubFlip;
479 extern const Instr kAndBicFlip;
480 
481 // A mask for the Rd register for push, pop, ldr, str instructions.
482 extern const Instr kLdrRegFpOffsetPattern;
483 
484 extern const Instr kStrRegFpOffsetPattern;
485 
486 extern const Instr kLdrRegFpNegOffsetPattern;
487 
488 extern const Instr kStrRegFpNegOffsetPattern;
489 
490 extern const Instr kLdrStrInstrTypeMask;
491 extern const Instr kLdrStrInstrArgumentMask;
492 extern const Instr kLdrStrOffsetMask;
493 
494 
495 // -----------------------------------------------------------------------------
496 // Instruction abstraction.
497 
498 // The class Instruction enables access to individual fields defined in the ARM
499 // architecture instruction set encoding as described in figure A3-1.
500 // Note that the Assembler uses typedef int32_t Instr.
501 //
502 // Example: Test whether the instruction at ptr does set the condition code
503 // bits.
504 //
505 // bool InstructionSetsConditionCodes(byte* ptr) {
506 //   Instruction* instr = Instruction::At(ptr);
507 //   int type = instr->TypeValue();
508 //   return ((type == 0) || (type == 1)) && instr->HasS();
509 // }
510 //
511 class Instruction {
512  public:
513   enum {
514     kInstrSize = 4,
515     kInstrSizeLog2 = 2,
516     kPCReadOffset = 8
517   };
518 
519   // Helper macro to define static accessors.
520   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
521   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
522     static inline return_type Name(Instr instr) {                              \
523       char* temp = reinterpret_cast<char*>(&instr);                            \
524       return reinterpret_cast<Instruction*>(temp)->Name();                     \
525     }
526 
527   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
528 
529   // Get the raw instruction bits.
InstructionBits()530   inline Instr InstructionBits() const {
531     return *reinterpret_cast<const Instr*>(this);
532   }
533 
534   // Set the raw instruction bits to value.
SetInstructionBits(Instr value)535   inline void SetInstructionBits(Instr value) {
536     *reinterpret_cast<Instr*>(this) = value;
537   }
538 
539   // Read one particular bit out of the instruction bits.
Bit(int nr)540   inline int Bit(int nr) const {
541     return (InstructionBits() >> nr) & 1;
542   }
543 
544   // Read a bit field's value out of the instruction bits.
Bits(int hi,int lo)545   inline int Bits(int hi, int lo) const {
546     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
547   }
548 
549   // Read a bit field out of the instruction bits.
BitField(int hi,int lo)550   inline int BitField(int hi, int lo) const {
551     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
552   }
553 
554   // Static support.
555 
556   // Read one particular bit out of the instruction bits.
Bit(Instr instr,int nr)557   static inline int Bit(Instr instr, int nr) {
558     return (instr >> nr) & 1;
559   }
560 
561   // Read the value of a bit field out of the instruction bits.
Bits(Instr instr,int hi,int lo)562   static inline int Bits(Instr instr, int hi, int lo) {
563     return (instr >> lo) & ((2 << (hi - lo)) - 1);
564   }
565 
566 
567   // Read a bit field out of the instruction bits.
BitField(Instr instr,int hi,int lo)568   static inline int BitField(Instr instr, int hi, int lo) {
569     return instr & (((2 << (hi - lo)) - 1) << lo);
570   }
571 
572 
573   // Accessors for the different named fields used in the ARM encoding.
574   // The naming of these accessor corresponds to figure A3-1.
575   //
576   // Two kind of accessors are declared:
577   // - <Name>Field() will return the raw field, ie the field's bits at their
578   //   original place in the instruction encoding.
579   //   eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002
580   //   ConditionField(instr) will return 0xC0000000.
581   // - <Name>Value() will return the field value, shifted back to bit 0.
582   //   eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002
583   //   ConditionField(instr) will return 0xC.
584 
585 
586   // Generally applicable fields
ConditionValue()587   inline Condition ConditionValue() const {
588     return static_cast<Condition>(Bits(31, 28));
589   }
ConditionField()590   inline Condition ConditionField() const {
591     return static_cast<Condition>(BitField(31, 28));
592   }
593   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
594   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
595 
TypeValue()596   inline int TypeValue() const { return Bits(27, 25); }
597 
RnValue()598   inline int RnValue() const { return Bits(19, 16); }
599   DECLARE_STATIC_ACCESSOR(RnValue);
RdValue()600   inline int RdValue() const { return Bits(15, 12); }
601   DECLARE_STATIC_ACCESSOR(RdValue);
602 
CoprocessorValue()603   inline int CoprocessorValue() const { return Bits(11, 8); }
604   // Support for VFP.
605   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
VnValue()606   inline int VnValue() const { return Bits(19, 16); }
VmValue()607   inline int VmValue() const { return Bits(3, 0); }
VdValue()608   inline int VdValue() const { return Bits(15, 12); }
NValue()609   inline int NValue() const { return Bit(7); }
MValue()610   inline int MValue() const { return Bit(5); }
DValue()611   inline int DValue() const { return Bit(22); }
RtValue()612   inline int RtValue() const { return Bits(15, 12); }
PValue()613   inline int PValue() const { return Bit(24); }
UValue()614   inline int UValue() const { return Bit(23); }
Opc1Value()615   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
Opc2Value()616   inline int Opc2Value() const { return Bits(19, 16); }
Opc3Value()617   inline int Opc3Value() const { return Bits(7, 6); }
SzValue()618   inline int SzValue() const { return Bit(8); }
VLValue()619   inline int VLValue() const { return Bit(20); }
VCValue()620   inline int VCValue() const { return Bit(8); }
VAValue()621   inline int VAValue() const { return Bits(23, 21); }
VBValue()622   inline int VBValue() const { return Bits(6, 5); }
VFPNRegValue(VFPRegPrecision pre)623   inline int VFPNRegValue(VFPRegPrecision pre) {
624     return VFPGlueRegValue(pre, 16, 7);
625   }
VFPMRegValue(VFPRegPrecision pre)626   inline int VFPMRegValue(VFPRegPrecision pre) {
627     return VFPGlueRegValue(pre, 0, 5);
628   }
VFPDRegValue(VFPRegPrecision pre)629   inline int VFPDRegValue(VFPRegPrecision pre) {
630     return VFPGlueRegValue(pre, 12, 22);
631   }
632 
633   // Fields used in Data processing instructions
OpcodeValue()634   inline int OpcodeValue() const {
635     return static_cast<Opcode>(Bits(24, 21));
636   }
OpcodeField()637   inline Opcode OpcodeField() const {
638     return static_cast<Opcode>(BitField(24, 21));
639   }
SValue()640   inline int SValue() const { return Bit(20); }
641     // with register
RmValue()642   inline int RmValue() const { return Bits(3, 0); }
643   DECLARE_STATIC_ACCESSOR(RmValue);
ShiftValue()644   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
ShiftField()645   inline ShiftOp ShiftField() const {
646     return static_cast<ShiftOp>(BitField(6, 5));
647   }
RegShiftValue()648   inline int RegShiftValue() const { return Bit(4); }
RsValue()649   inline int RsValue() const { return Bits(11, 8); }
ShiftAmountValue()650   inline int ShiftAmountValue() const { return Bits(11, 7); }
651     // with immediate
RotateValue()652   inline int RotateValue() const { return Bits(11, 8); }
Immed8Value()653   inline int Immed8Value() const { return Bits(7, 0); }
Immed4Value()654   inline int Immed4Value() const { return Bits(19, 16); }
ImmedMovwMovtValue()655   inline int ImmedMovwMovtValue() const {
656       return Immed4Value() << 12 | Offset12Value(); }
657 
658   // Fields used in Load/Store instructions
PUValue()659   inline int PUValue() const { return Bits(24, 23); }
PUField()660   inline int PUField() const { return BitField(24, 23); }
BValue()661   inline int  BValue() const { return Bit(22); }
WValue()662   inline int  WValue() const { return Bit(21); }
LValue()663   inline int  LValue() const { return Bit(20); }
664     // with register uses same fields as Data processing instructions above
665     // with immediate
Offset12Value()666   inline int Offset12Value() const { return Bits(11, 0); }
667     // multiple
RlistValue()668   inline int RlistValue() const { return Bits(15, 0); }
669     // extra loads and stores
SignValue()670   inline int SignValue() const { return Bit(6); }
HValue()671   inline int HValue() const { return Bit(5); }
ImmedHValue()672   inline int ImmedHValue() const { return Bits(11, 8); }
ImmedLValue()673   inline int ImmedLValue() const { return Bits(3, 0); }
674 
675   // Fields used in Branch instructions
LinkValue()676   inline int LinkValue() const { return Bit(24); }
SImmed24Value()677   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
678 
679   // Fields used in Software interrupt instructions
SvcValue()680   inline SoftwareInterruptCodes SvcValue() const {
681     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
682   }
683 
684   // Test for special encodings of type 0 instructions (extra loads and stores,
685   // as well as multiplications).
IsSpecialType0()686   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
687 
688   // Test for miscellaneous instructions encodings of type 0 instructions.
IsMiscType0()689   inline bool IsMiscType0() const { return (Bit(24) == 1)
690                                            && (Bit(23) == 0)
691                                            && (Bit(20) == 0)
692                                            && ((Bit(7) == 0)); }
693 
694   // Test for a stop instruction.
IsStop()695   inline bool IsStop() const {
696     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
697   }
698 
699   // Special accessors that test for existence of a value.
HasS()700   inline bool HasS()    const { return SValue() == 1; }
HasB()701   inline bool HasB()    const { return BValue() == 1; }
HasW()702   inline bool HasW()    const { return WValue() == 1; }
HasL()703   inline bool HasL()    const { return LValue() == 1; }
HasU()704   inline bool HasU()    const { return UValue() == 1; }
HasSign()705   inline bool HasSign() const { return SignValue() == 1; }
HasH()706   inline bool HasH()    const { return HValue() == 1; }
HasLink()707   inline bool HasLink() const { return LinkValue() == 1; }
708 
709   // Decoding the double immediate in the vmov instruction.
710   double DoubleImmedVmov() const;
711 
712   // Instructions are read of out a code stream. The only way to get a
713   // reference to an instruction is to convert a pointer. There is no way
714   // to allocate or create instances of class Instruction.
715   // Use the At(pc) function to create references to Instruction.
At(byte * pc)716   static Instruction* At(byte* pc) {
717     return reinterpret_cast<Instruction*>(pc);
718   }
719 
720 
721  private:
722   // Join split register codes, depending on single or double precision.
723   // four_bit is the position of the least-significant bit of the four
724   // bit specifier. one_bit is the position of the additional single bit
725   // specifier.
VFPGlueRegValue(VFPRegPrecision pre,int four_bit,int one_bit)726   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
727     if (pre == kSinglePrecision) {
728       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
729     }
730     return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
731   }
732 
733   // We need to prevent the creation of instances of class Instruction.
734   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
735 };
736 
737 
738 // Helper functions for converting between register numbers and names.
739 class Registers {
740  public:
741   // Return the name of the register.
742   static const char* Name(int reg);
743 
744   // Lookup the register number for the name provided.
745   static int Number(const char* name);
746 
747   struct RegisterAlias {
748     int reg;
749     const char* name;
750   };
751 
752  private:
753   static const char* names_[kNumRegisters];
754   static const RegisterAlias aliases_[];
755 };
756 
757 // Helper functions for converting between VFP register numbers and names.
758 class VFPRegisters {
759  public:
760   // Return the name of the register.
761   static const char* Name(int reg, bool is_double);
762 
763   // Lookup the register number for the name provided.
764   // Set flag pointed by is_double to true if register
765   // is double-precision.
766   static int Number(const char* name, bool* is_double);
767 
768  private:
769   static const char* names_[kNumVFPRegisters];
770 };
771 
772 
773 } }  // namespace v8::internal
774 
775 #endif  // V8_ARM_CONSTANTS_ARM_H_
776