• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This is a fast-and-accurate implementation of inverse Discrete Cosine
19 * Transform (IDCT) for ARMv6+. It also performs dequantization of the input
20 * coefficients just like other methods.
21 *
22 * This implementation is based on the scaled 1-D DCT algorithm proposed by
23 * Arai, Agui, and Nakajima. The following code is based on the figure 4-8
24 * on page 52 of the JPEG textbook by Pennebaker and Mitchell. Coefficients
25 * are (almost) directly mapped into registers.
26 *
27 * The accuracy is achieved by using SMULWy and SMLAWy instructions. Both
28 * multiply 32 bits by 16 bits and store the top 32 bits of the result. It
29 * makes 32-bit fixed-point arithmetic possible without overflow. That is
30 * why jpeg_idct_ifast(), which is written in C, cannot be improved.
31 *
32 * More tricks are used to gain more speed. First of all, we use as many
33 * registers as possible. ARM processor has 16 registers including sp (r13)
34 * and pc (r15), so only 14 registers can be used without limitations. In
35 * general, we let r0 to r7 hold the coefficients; r10 and r11 hold four
36 * 16-bit constants; r12 and r14 hold two of the four arguments; and r8 hold
37 * intermediate value. In the second pass, r9 is the loop counter. In the
38 * first pass, r8 to r11 are used to hold quantization values, so the loop
39 * counter is held by sp. Yes, the stack pointer. Since it must be aligned
40 * to 4-byte boundary all the time, we align it to 32-byte boundary and use
41 * bit 3 to bit 5. As the result, we actually use 14.1 registers. :-)
42 *
43 * Second, we rearrange quantization values to access them sequentially. The
44 * table is first transposed, and the new columns are placed in the order of
45 * 7, 5, 1, 3, 0, 2, 4, 6. Thus we can use LDMDB to load four values at a
46 * time. Rearranging coefficients also helps, but that requires to change a
47 * dozen of files, which seems not worth it. In addition, we choose to scale
48 * up quantization values by 13 bits, so the coefficients are scaled up by
49 * 16 bits after both passes. Then we can pack and saturate them two at a
50 * time using PKHTB and USAT16 instructions.
51 *
52 * Third, we reorder the instructions to avoid bubbles in the pipeline. This
53 * is done by hand accroding to the cycle timings and the interlock behavior
54 * described in the technical reference manual of ARM1136JF-S. We also take
55 * advantage of dual issue processors by interleaving instructions with
56 * dependencies. It has been benchmarked on four devices and all the results
57 * showed distinguishable improvements. Note that PLD instructions actually
58 * slow things down, so they are removed at the last minute. In the future,
59 * this might be futher improved using a system profiler.
60 */
61
62#ifdef __arm__
63#include <machine/cpu-features.h>
64#endif
65
66#if __ARM_ARCH__ >= 6
67
68// void armv6_idct(short *coefs, int *quans, unsigned char *rows, int col)
69    .arm
70    .text
71    .align
72    .global armv6_idct
73    .func   armv6_idct
74
75armv6_idct:
76    // Push everything except sp (r13) and pc (r15).
77    stmdb   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
78
79    // r12 = quans, r14 = coefs.
80    sub     r4, sp, #236
81    bic     sp, r4, #31
82    add     r5, sp, #224
83    add     r12, r1, #256
84    stm     r5, {r2, r3, r4}
85    add     r14, r0, #16
86
87pass1_head:
88    // Load quantization values. (q[0, 2, 4, 6])
89    ldmdb   r12!, {r8, r9, r10, r11}
90
91    // Load coefficients. (c[4, 1, 2, 3, 0, 5, 6, 7])
92    ldrsh   r4, [r14, #-2] !
93    ldrsh   r1, [r14, #16]
94    ldrsh   r2, [r14, #32]
95    ldrsh   r3, [r14, #48]
96    ldrsh   r0, [r14, #64]
97    ldrsh   r5, [r14, #80]
98    ldrsh   r6, [r14, #96]
99    ldrsh   r7, [r14, #112]
100
101    // r4 = q[0] * c[0];
102    mul     r4, r8, r4
103
104    // Check if ACs are all zero.
105    cmp     r0, #0
106    orreqs  r8, r1, r2
107    orreqs  r8, r3, r5
108    orreqs  r8, r6, r7
109    beq     pass1_zero
110
111    // Step 1: Dequantizations.
112
113    // r2 = q[2] * c[2];
114    // r0 = q[4] * c[4] + r4;
115    // r6 = q[6] * c[6] + r2;
116    mul     r2, r9, r2
117    mla     r0, r10, r0, r4
118    mla     r6, r11, r6, r2
119
120    // Load quantization values. (q[7, 5, 1, 3])
121    ldmdb   r12!, {r8, r9, r10, r11}
122
123    // r4 = r4 * 2 - r0 = -(r0 - r4 * 2);
124    // r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
125    rsb     r4, r0, r4, lsl #1
126    rsb     r2, r6, r2, lsl #1
127
128    // r7 = q[7] * c[7];
129    // r5 = q[5] * c[5];
130    // r1 = q[1] * c[1] + r7;
131    // r3 = q[3] * c[3] + r5;
132    mul     r7, r8, r7
133    mul     r5, r9, r5
134    mla     r1, r10, r1, r7
135    mla     r3, r11, r3, r5
136
137    // Load constants.
138    ldrd    r10, constants
139
140    // Step 2: Rotations and Butterflies.
141
142    // r7 = r1 - r7 * 2;
143    // r1 = r1 - r3;
144    // r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
145    // r3 = r1 + r3 * 2;
146    // r8 = r5 + r7;
147    sub     r7, r1, r7, lsl #1
148    sub     r1, r1, r3
149    rsb     r5, r3, r5, lsl #1
150    add     r3, r1, r3, lsl #1
151    add     r8, r5, r7
152
153    // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
154    // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
155    // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
156    smlawt  r2, r2, r10, r2
157    smulwb  r8, r8, r10
158    smlawt  r1, r1, r10, r1
159
160    // r0 = r0 + r6;
161    // r2 = r2 - r6;
162    // r6 = r0 - r6 * 2;
163    add     r0, r0, r6
164    sub     r2, r2, r6
165    sub     r6, r0, r6, lsl #1
166
167    // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
168    // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
169    smlawt  r5, r5, r11, r8
170    smlawb  r8, r7, r11, r8
171
172    // r4 = r4 + r2;
173    // r0 = r0 + r3;
174    // r2 = r4 - r2 * 2;
175    add     r4, r4, r2
176    add     r0, r0, r3
177    sub     r2, r4, r2, lsl #1
178
179    // r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
180    // r3 = r0 - r3 * 2;
181    // r1 = r1 - r7;
182    // r4 = r4 + r7;
183    // r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
184    // r7 = r4 - r7 * 2;
185    rsb     r7, r3, r5, lsl #3
186    sub     r3, r0, r3, lsl #1
187    sub     r1, r1, r7
188    add     r4, r4, r7
189    rsb     r5, r1, r8, lsl #3
190    sub     r7, r4, r7, lsl #1
191
192    // r2 = r2 + r1;
193    // r6 = r6 + r5;
194    // r1 = r2 - r1 * 2;
195    // r5 = r6 - r5 * 2;
196    add     r2, r2, r1
197    add     r6, r6, r5
198    sub     r1, r2, r1, lsl #1
199    sub     r5, r6, r5, lsl #1
200
201    // Step 3: Reorder and Save.
202
203    str     r0, [sp, #-4] !
204    str     r4, [sp, #32]
205    str     r2, [sp, #64]
206    str     r6, [sp, #96]
207    str     r5, [sp, #128]
208    str     r1, [sp, #160]
209    str     r7, [sp, #192]
210    str     r3, [sp, #224]
211    b       pass1_tail
212
213    // Precomputed 16-bit constants: 27146, 15137, -21407, -8867.
214    // Put them in the middle since LDRD only accepts offsets from -255 to 255.
215    .align  3
216constants:
217    .word   0x6a0a3b21
218    .word   0xac61dd5d
219
220pass1_zero:
221    str     r4, [sp, #-4] !
222    str     r4, [sp, #32]
223    str     r4, [sp, #64]
224    str     r4, [sp, #96]
225    str     r4, [sp, #128]
226    str     r4, [sp, #160]
227    str     r4, [sp, #192]
228    str     r4, [sp, #224]
229    sub     r12, r12, #16
230
231pass1_tail:
232    ands    r9, sp, #31
233    bne     pass1_head
234
235    // r12 = rows, r14 = col.
236    ldr     r12, [sp, #256]
237    ldr     r14, [sp, #260]
238
239    // Load constants.
240    ldrd    r10, constants
241
242pass2_head:
243    // Load coefficients. (c[0, 1, 2, 3, 4, 5, 6, 7])
244    ldmia   sp!, {r0, r1, r2, r3, r4, r5, r6, r7}
245
246    // r0 = r0 + 0x00808000;
247    add     r0, r0, #0x00800000
248    add     r0, r0, #0x00008000
249
250    // Step 1: Analog to the first pass.
251
252    // r0 = r0 + r4;
253    // r6 = r6 + r2;
254    add     r0, r0, r4
255    add     r6, r6, r2
256
257    // r4 = r0 - r4 * 2;
258    // r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
259    sub     r4, r0, r4, lsl #1
260    rsb     r2, r6, r2, lsl #1
261
262    // r1 = r1 + r7;
263    // r3 = r3 + r5;
264    add     r1, r1, r7
265    add     r3, r3, r5
266
267    // Step 2: Rotations and Butterflies.
268
269    // r7 = r1 - r7 * 2;
270    // r1 = r1 - r3;
271    // r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
272    // r3 = r1 + r3 * 2;
273    // r8 = r5 + r7;
274    sub     r7, r1, r7, lsl #1
275    sub     r1, r1, r3
276    rsb     r5, r3, r5, lsl #1
277    add     r3, r1, r3, lsl #1
278    add     r8, r5, r7
279
280    // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
281    // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
282    // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
283    smlawt  r2, r2, r10, r2
284    smulwb  r8, r8, r10
285    smlawt  r1, r1, r10, r1
286
287    // r0 = r0 + r6;
288    // r2 = r2 - r6;
289    // r6 = r0 - r6 * 2;
290    add     r0, r0, r6
291    sub     r2, r2, r6
292    sub     r6, r0, r6, lsl #1
293
294    // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
295    // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
296    smlawt  r5, r5, r11, r8
297    smlawb  r8, r7, r11, r8
298
299    // r4 = r4 + r2;
300    // r0 = r0 + r3;
301    // r2 = r4 - r2 * 2;
302    add     r4, r4, r2
303    add     r0, r0, r3
304    sub     r2, r4, r2, lsl #1
305
306    // r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
307    // r3 = r0 - r3 * 2;
308    // r1 = r1 - r7;
309    // r4 = r4 + r7;
310    // r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
311    // r7 = r4 - r7 * 2;
312    rsb     r7, r3, r5, lsl #3
313    sub     r3, r0, r3, lsl #1
314    sub     r1, r1, r7
315    add     r4, r4, r7
316    rsb     r5, r1, r8, lsl #3
317    sub     r7, r4, r7, lsl #1
318
319    // r2 = r2 + r1;
320    // r6 = r6 + r5;
321    // r1 = r2 - r1 * 2;
322    // r5 = r6 - r5 * 2;
323    add     r2, r2, r1
324    add     r6, r6, r5
325    sub     r1, r2, r1, lsl #1
326    sub     r5, r6, r5, lsl #1
327
328    // Step 3: Reorder and Save.
329
330    // Load output pointer.
331    ldr     r8, [r12], #4
332
333    // For little endian: r6, r2, r4, r0, r3, r7, r1, r5.
334    pkhtb   r6, r6, r4, asr #16
335    pkhtb   r2, r2, r0, asr #16
336    pkhtb   r3, r3, r1, asr #16
337    pkhtb   r7, r7, r5, asr #16
338    usat16  r6, #8, r6
339    usat16  r2, #8, r2
340    usat16  r3, #8, r3
341    usat16  r7, #8, r7
342    orr     r0, r2, r6, lsl #8
343    orr     r1, r7, r3, lsl #8
344
345#ifdef __ARMEB__
346    // Reverse bytes for big endian.
347    rev     r0, r0
348    rev     r1, r1
349#endif
350
351    // Use STR instead of STRD to support unaligned access.
352    str     r0, [r8, r14] !
353    str     r1, [r8, #4]
354
355pass2_tail:
356    adds    r9, r9, #0x10000000
357    bpl     pass2_head
358
359    ldr     sp, [sp, #8]
360    add     sp, sp, #236
361
362    ldmia   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
363    bx      lr
364    .endfunc
365
366#endif
367