NUANCE

The experience speaks for itself™

NUANCE PROFESSIONAL SERVICES | Version 1.0 | December 20, 2007

UAPI User Guide
for SREC RC-1 for Android

NUANCE

UAPI User Guide

Nuance Professional Services

DOCUMENT HISTORY

Date

Revised by

Version

Summary of Changes

12/20/2007

K. Evdokimov
Andy Wyatt

1.0

For delivery with SREC RC-1 for Android.

NUANCE COMMUNICATIONS, INC.

Confidential — Nuance Proprietary Information

Page 2 of 25

Version 1.0
December 20, 2007

UAPI User Guide Nuance Professional Services

TABLE OF CONTENTS

A U o [=1 o (o = PSSR 4
A = L= (=] (=] 0 (ol PSP STR RO 5
R €] (0115 | TR URRPUPPP 6
4 Tables and FIQUIES.........coiiiiiiiiiiiii ittt s s e e e s e e e e e e e e e eeeeeeeannnes 7
4.1 JLIE 1 0 5 PRSP 7
4.2 [0 0 =PRSS 7
I O AV =T 8V (= OO PPTRR PR 8
5.1 L8N I o o 1o [PPSR 8
5.2 SREC Implementation Capabilitieso.eiiiiiiiiee e et 8
5.3 SYSEEM REGUITEIMENTS ... eiieieieie et ettt e et et ee e ettt ee e e bt ee e abeee e seeeeasaeeaeaateeeaambeee e neeeeanneeaeamteeeeasbneeaanneaeannes 9
6 Recognizer: android.Speech.reCognitionooooiiiiiiiiiiiiiiiii e 10

6.1 [[=1 1 (IR Ao T4 o I= T o] o] o= 1 o] o PRSPPIt
6.2 Instantiation Of the RECOGNIZETc.. ettt e ettt e e tte e e enee e e anaee e e aneeas
6.3 Configuration of the Recognizer............c.ccccee....
6.3.1 Configuration State System.............ccccc......
6.3.2 Configuration is Synchronous
6.4 Busy-Idle State System
6.5 Recognizer Events................
6.6 Recognition Results
6.7 Audio Management..............
6.7.1 Microphone
6.7.2 MediaFileReader
6.7.3 MEAIBFTIEWWIILET ...ttt ettt ettt s e e she e e n et e n e e st e e nnneesneesene e e
6.7.4 DOVICESPEAKET ...ttt ettt e ettt e et e ekt e e eate e e e be e e e tee e e enae e e e anneeeeaneeaeeraeaeanas
6.8 Error Handling
6.8.1 Recognizer Errors
6.9 Other Recognizer Functionalitycccceee...
6.9.1 Acoustic Adaptation...........ccccceeeiiieiiiienenne
6.9.2 Recognizer Parameters

AT = = O €1 =11 011 1= 1 £

7.1 o 1u T o o Vo 4140 F= USSP
7.2 Compiling grammarscccocceeeeieeeeeniee e

7.3 Dynamic Grammar modification at runtime
7.4 Additional Grammar Concepts

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 3 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

1 AUDIENCE

This document is intended for application developers writing speech enabled applications using UAPI SREC
recognizer on Android Platform. An understanding of the Java programming language and the core
Java APlIs is assumed.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 4 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

2 REFERENCES

1. SREC User Guide, Version 1.0, December 20, 2007

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 5 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

3 GLOSSARY

UAPI
Unified API
JNI
Java Native Interface
NUANCE COMMUNICATIONS, INC. Version 1.0

Confidential — Nuance Proprietary Information Page 6 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

4 TABLES AND FIGURES

4.1 Tables

Table 1 Minimum SyStEM REQUIFEIMENTSciiiiiiiiiiiee sttt e e ee sttt te e e s e s st eeae e s s st er e e e e e s astbeeeaeeassnstbeaaeeeassnntraeaeeessnnreeeas
Table 2: Asynchronous Grammar Methods and EVENTS...........coiiiiiiiiiie ettt e st seee e sneee e s sraeeeeaneeas

Table 3: Asynchronous Recognizer Methods and Events
Table 4: DynamiC RECOGNIZET PArAMELEIS.uiii ittt ettt ettt ettt e e et e e s ea e e e et beeeanbeeeeaneeeaeanteaeaasaeeeeanneas

4.2 Figures

Figure 1: Recognizer Configuration StAte SYSEMoiiiiiii ittt ettt e et ee e et e e sate e e e stbe e e e aneeaeaseeasanneeaeanne 15
Figure 2: IDLE and BUSY RECOGNIZETN STALES........ccuuviiiieeiiiiiiieie e s ei ittt e e s s s siitteeae e s assstteeeaeessstabeeeeeessasssbeeaaeeansssebeeaaesanns 17
Figure 3: MICrOPNONE SEAE SYSIEM . ..iiiiiiciiiiiiie e e ittt e e ee e e s e ettt e e e e e sttt eeeeesassaebeeeaeeaaasabbeeaeesaaastbeeeaesaasnsebeeaeenanns 19
NUANCE COMMUNICATIONS, INC. Version 1.0

Confidential — Nuance Proprietary Information Page 7 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

5 OVERVIEW

The Unified API (UAPI) is a common interface by which mobile applications may access device-resident and network-
resident media resources. The UAPI has been designed to allow applications to access both in a transparent manner
and to adjust usage as network connectivity warrants.

The term “unified” in “Unified API” refers to the unification of embedded and network speech technologies under the
same API.

This document introduces the UAPI interface to SREC embedded speech recognition engine on Android Platform.
The UAPI is implemented in the andr oi d. speech. recogni ti on Java API package.

The UAPI User Guide is a programmer’s guide to developing speech applications using the
andr oi d. speech. recogni ti on package on Android Platform. A comprehensive API reference (javadoc) for
andr oi d. speech. recogni ti on is available.

In this guide the terms UAPI, SREC and Recognizer are used interchangeably.

5.1 UAPI highlights
e Java API
e Multithreaded
e Asynchronous
e Platform independent
e Implementation independent
e Language independent

e Unified interface for network and embedded (local) recognizers.

5.2 SREC Implementation capabilities

e SREC is a continuous speech recognizer. This means that the speaker doesn’t have to pause between the
words when giving complex commands.

e SREC is a speaker independent recognizer.
e SREC is a phoneme-based recognizer. This allows any word to be recognized without previous training.

Despite its phoneme-based nature, SREC also uses some whole word models to maximize accuracy for
specific categories of words such as digits.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 8 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

e SREC is a constrained speech (grammar based) recognizer

e SREC supports dynamic word addition to the grammar. Online Grapheme-to-Phoneme is supported. This
allows the application to add new words to the grammar and perform the conversion from standard
orthography to the appropriate phonetic dictionary.

e SREC supports voice enrollment. SREC can learn new words “on the fly” from a given speaker. This means
that one SREC-based application can train online, store and later recognize user specific words (also known
as voice tags or speaker-dependent words). Training requires only one utterance of the user word (more
than one is possible).

e SREC supports a simple semantic interpretation language that allows grammar developers to associate
grammar-specific orthographies and/or synonyms to application actions.

e US English language support only (in this release)
e Push-to-talk (no support for echo cancellation)

e Prompting (Speaker interface) not supported

e End point detection

e Native implementation (INI)

5.3 System Requirements

The application and recognition engine will reside on the Android platform, whose minimum specifications are
detailed in the table below:

Platform Name Google development platform “sooner”

TI OMAP, Qualcomm or similar with ARM9 or
Processor model ARM11 core.
Processor clock 190 MHz minimum
RAM Minimum: 32 MB SDRAM, 32 MB Flash
Audio Input 16 bit, PCM format, 8 kHz

Google Open Handset Distribution, now known as

Operating System “Android”, based on Linux OS and Java 2 SE.

Debugger Tools part of Ubuntu Linux 6.06 and Mac OS X.

C Compiler Tools part of Ubuntu Linux 6.06 and Mac OS X.

Table 1 Minimum System Requirements

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 9 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

6 RECOGNIZER: android.speech.recognition

The j avax. speech. recogni ti on package defines the EnbeddedRecogni zer interface and well as a set of
supporting classes and interfaces.

The functionality of the Unified APl is grouped into 5 modules:
e EnbeddedRecogni zer

e M crophone

e Devi ceSpeaker

e Medi aFi | eReader

e MediaFileWiter

A typical application would only use a Recognizer and a Microphone. The other modules are available for
convenience and testability.

This section begins with a simple code example, and then reviews the capabilities of the UAPI in more detail through
the following sub-sections.

6.1 Hello World application

The following example shows a simple application that uses SREC recognizer. In this example, we define a grammar
that allows a user to say either “yes” or “no”. The grammar is defined using the W3C Speech Recognition Grammar
Specification Version 1 grammar format. This format is documented by the W3C grammar specification at
http://www.w3.org/TR/grammar-spec. Please see “UAPI User Guide” for specific details on SREC grammar format.

<?xm version="1.0" encodi ng="1 SO 8859-1" ?>
<grammar version="1.0" xnl:|ang="en-US"' node="voi ce" root="_bool ean">

<rul e id="_bool ean" scope="public">
<one- of >
<i tempyes <tag>MEANI NG='1'</tag></iten>
<itenpno <tag>MEANI NG=' 0' </tag></itenr
<item> <ruleref uri="#ROOT"/> </itenm>
</ one- of >
</rul e>

<rul e id="ROOT" scope="public">
<item>_ ROOT__</itenr
</rul e>

</ gr ammar >

The following code shows how to obtain a recognizer, create and load the grammar, and then to process microphone
based speech using the grammar. After the applications processes the audio input, it performs some cleanup and
exits.

2
* HelloWrld.java
/ K o e o e e e e e e e e e e e m e e e e m e e e e m e — - - *
NUANCE COMMUNICATIONS, INC. Version 1.0

Confidential — Nuance Proprietary Information Page 10 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

Hel | oWor | d. j ava
Copyri ght 2007 Nuance Communci ations, |nc.

Li censed under the Apache License, Version 2.0 (the 'License');
you may not use this file except in conpliance with the License.

You may obtain a copy of the License at
http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software

di stributed under the License is distributed on an 'AS | S' BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

EE I I I I S S T I N R B S
L I I S R N N I

package androi d. speech. recogniti on. exanpl es;
i mport java.util.Hashtabl e;

i mport androi d. speech. recogni ti on. EnbeddedRecogni zer;
i mport androi d. speech. recogni tion. Abstract Recogni zer Li st ener;
i mport androi d. speech. recogni ti on. Recogni zer Li st ener;

i mport androi d. speech. recogni ti on. SrecG ammar ;

i mport androi d. speech. recogni ti on. @CConfi gurati on;

i mport androi d. speech. recogni ti on. SrecG anmar Li st ener ;

i mport androi d. speech. recogni ti on. Abstract SrecG ammar Li st ener;
i mport androi d. speech. recogni ti on. Granmar Li st ener;

i mport androi d. speech. recogni ti on. M crophone;

i mport androi d. speech. recogni ti on. Audi oSour ce;
i mport androi d. speech. recogni ti on. Audi oSt r eam
i mport androi d. speech. recogni ti on. Codec;

i nport androi d. speech. recogni ti on. NBest Recogni ti onResul t;
i mport androi d. speech. recogni tion. NBest Recogniti onResult.Entry;

/**
* Hello World application for UAPI Users Guide.
*

* @aut hor kman
*/

public class Hell owrl d extends Abstract Recogni zerLi stener
i mpl enent s Recogni zer Li st ener

{
static final String ESRSDK =

(System getenv("ESRSDK") != null) ? System getenv("ESRSDK")
"/ systeniusr/srec";

EnbeddedRecogni zer rec;
SrecG anmar gr anmar ;

bool ean bDone = fal se;

public static void main(String[] args)

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 11 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 12 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

{
}
@verride

public void onLoaded()
{

Systemout.println("Error during grammar load: " + e.toString());

System out . println("grammar | oaded");

Systemout.println("setting up mcrophone for 16bit 11KHz");
M crophone m ¢ = M crophone. get |l nstance();

m c. set Codec(Codec. PCM 16BI T_11K) ;

Audi oSt r eam audi oSt ream = mi c. cr eat eAudi o() ;

mc.start();

Systemout. println("Please say \"yes\" or \"no\"");

rec. recogni ze(audi oSt ream granmar) ;

private class Hel | oWor| dG ammar Confi g i npl enents G2CGConfi gurati on
{

SrecG ammar Li st ener grammar Li st ener = new Hel | oWor | dGr ammar Li st ener () ;

publ i c G ammarLi stener getListener()

{
}

public Object grammar ToMeani ng(String semanti cMeani ng,
Hasht abl e<String, String> paraneters)
{

}
}

return granmmarLi stener;

return semanti cMeani ng;

/* Recogni zer Li st ener overrides */

@verride

public void onRecognitionFail ure(Recogni zerLi st ener. Fai | ureReason reason)

{

Systemout. println("recognition failed:

+ reason.toString());

}

@verride

public void onRecognitionSuccess(NBest RecognitionResult result)
{

int nunResults = result.getSize();
System out. printl n("RECOGNI TI ON SUCCESS: got " + nunResults + " results.");

NBest Recogni ti onResul t. Entry entry;

for (int i =0; i < nunResults; i++)
{
entry = result.getEntry(i);
Systemout.println("result " + (i +1) +": '" + entry.getLiteral Meaning() +
" ll);
}
}
NUANCE COMMUNICATIONS, INC. Version 1.0

Confidential — Nuance Proprietary Information Page 13 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

@verride
public void onStopped()
{

System out . printl n("done recogni zi ng");
M crophone. get I nst ance() . stop();
synchroni zed (this) {

bDone = true;
noti fyAll();

This example illustrates the basic steps which UAPI interface should be used:

e Instantiate the Recognizer: EnbeddedRr cogni zer. get | nst ance() is used to obtain an instance of the
Recognizer.

e Configure Recognizer: conf i gure() callis used to configure recognizer.

e Create and load grammars: EnbeddedRecongi zer. cr eat eG ammar () and SrecG ammar . | oad() are
used to create the grammar object and load the grammar from file.

e Attach the recognizer listener to the recognizer
e Create Audi oSt r eamand start Audi oSour ce
e Start recognition

e Listen for and process results

e Stop Audi oSour ce

e Cleanup

6.2 Instantiation of the Recognizer

EmbeddedRecognizer instantiation follows the singleton design pattern. There is only one instance of
EmbeddedRecognizer per application process. This single instance of the recognizer is obtained via a call to
EnbeddedRecogni zer. get | nst ance() .

6.3 Configuration of the Recognizer

Before the recognizer is used to process speech it needs to be configured using
EnbeddedRecogni zer . confi gur e() method:

public abstract void configure(java.lang.String config)
throws java.lang. || egal Argunent Excepti on,

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 14 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

java. i o. Fi | eNot FoundExcepti on,
java.io. | CExcepti on,

j ava. | ang. Unsat i sfi edLi nkError,

j ava. | ang. Cl assNot FoundExcepti on

EnbeddedRecogni zer configuration is the process during which the system resources necessary for operation of
the recognizer are obtained. EmbeddedRecogni zer is not automatically configured at the system start-up time
because it requires a substantial CPU and memory resources. Also the process of configuration is a relatively slow
procedure, when compared to typical recognizer response times.

6.3.1 Configuration State System

The behavior of an EnbeddedRecogni zer with respect to configuration can be described by the state system in
Figure 1. Each state defines a particular mode of operation of an EnbeddedRecogni zer . The

EnbeddedRecogni zer behaves differently depending on its current state. UAPI does not provide for an explicit way
to query or modify the state of EnbeddedRecogni zer . The EnbeddedRecogni zer state system detailed below is
meant as an aid to application developer, to illustrate applicability and behavior of different methods as different
times.

In some cases applications can monitor the EnbeddedRecogni zer state through the event/listener system, e.g. by

using EnbeddedRecognzi er Li st ener. onSt opped() . However, there are no events associated with the
completion of the confi gur e() operation.

New Engine

) CONFIGURING
configure ()

UNCONFIGURED :) CONFIGURED

configure ()

RECONFIGURING

Figure 1: Recognizer Configuration State System

Each block represents a state of the EnbeddedRecogni zer . The EnbeddedRecogni zer is always in one of the
four specified states. There are no events issued as the recognizer transitions between these states. The current
configuration state of the recognizer cannot be queried.

The normal operational state of the EnbeddedRecogni zer is CONFI GURED. While in the CONFI GURED state, the
EnbeddedRecogni zer will be either BUSY or | DLE. The BUSY-I DLE state subsystem of the recognizer’'s
CONFI GURED state is described in section 6.4.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 15 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

It is important to note that once the recognizer is configured, it cannot return to the UNCONFI GURED state. There is no
way for the application developer to cause the recognizer to free the resources obtained during the initial
configuration process.

The recognizer can be reconfigured. The reconfiguration resets all recognizer state, parameters to the defaults
specified by the conf i g parameter of conf i gur e() method, which transitions the recognizer into the
RECONFGURI NG state. If no errors occur during reconfiguring, the recognizer then returns to the CONFI GURED state,
just as it had after being configured initially.

The reconfiguration process invalidates any grammars that have been created. The grammar objects created in the
context of the previous configurations should not be used in the context of the new configuration. The old grammar
objects should be dereferenced and the new grammar object should be created in the context of the current
recognizer configuration. Any operations on invalid (old) grammar object will fail.

6.3.2 Configuration is Synchronous

Unlike most of the andr oi d. speech. recogni ti on APl methods, the confi gure() method is synchronous
(blocking). For advanced applications, it is often desirable to start up the configuration of a recognizer in a
background thread while other parts of the application are being initialized. For GUI applications, it is often necessary
to process user interface related events concurrently with configuration of the recognizer. This can be achieved by
calling the conf i gur e() method in a separate thread. The following code shows an example of this using an inner
class implementation of the Runnabl e interface, as in the following example.

new Thr ead(new Runnabl e() {
public void run() {

try {
..configure()

catch (Exception e) {
e.printStackTrace();
}

}

}).start();

/1 Do other stuff while allocation takes place

}}.Nowwait until configuration is conpleted
I

Aconfigure() call during CONFI GURI NG or RECONFI GURI NG states will block until the
previ ous configuration is conpleted and then run nornally.

A configure() call will fail with if the recognizer is not in the | DLE state.

6.4 Busy-ldle State System

An EnbeddedRecogni zer in CONFI GURED state has BUSY and | DLE sub-states. Once an
EnbeddedRecogni zer reaches CONFI GURED state, it also enters the | DLE state.

The | DLE/BUSY state indicates whether the recognizer is busy performing a tack such as processing input audio or
performing a grammar related operation.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 16 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

Figure 2 shows the BUSY-I DLE state sub-system of an EnbeddedRecogni zer.

4)

CONFIGURED

A

IDLE { BUSY
-

Figure 2: IDLE and BUSY Recognizer states

The following methods represent the requests to the recognizer and cause the transition from IDLE to BUSY state:
EnbeddedRecogni zer. reset Acousti cSt at e

EnbeddedRecogni zer . recogni ze

EnbeddedRecognzi er. get Par anet er s

EnbeddedRecogni zer . set Par anet er s

SrecG ammar . addl t enli st

SrecG ammar . conpi | eAl | Sl ot sve

SrecG ammar.resetAll Slots

SrecGr ammar . save

SrecG ammar . | oad

SrecG ammar . unl oad

The EnbeddedRecogni zer interface does not provide any explicit methods to test or monitor the | DLE/BUSY state
directly. Instead, the application developer should monitor recognizer and grammar related events to determine when
the current operation is completed and the recognizer returns to the IDLE state.

The implicit | DLE/BUSY state sub-system determines how the recognizer and grammar operations are handled.

Calling the methods from the above list while the recognizer is in the BUSY state is illegal. The UAPI contact does not
guarantee the behaviour or the order of execution of the methods listed above if called while the recognizer is in the
BUSY state. Application developer must wait for the current asynchronous operation to complete and the recognizer
enter the | DLE state before invoking the next call on the recognizer.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 17 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

One exception to the rule above is the EnbeddedRecogni zer . st op() method which is intended to be called while
the recognizer is in the BUSY state.

6.5 Recognizer Events

During recognition process the recognizer generates several events. The typical sequence of events during
recognition is as follows:

e onStarted — indicates the start of the recognition. This is the first event during the recognition. It is always
issued.

e onBegi nni ngxf Speech — begin of speech detected. Issued only if the recognizer detects the beginning
of speech. May not occur.

e onEndOf Speech — end of speech detected. Issued only if the recognizer detects the end of speech in the
input audio stream. May not occur.

e onRecognitionSuccess or onRecognitionFailure — one and only one of these is guaranteed to
occur.

e onStopped — indicated the end of the recognition. This is the last event during the recognition sequence
of events. It is guaranteed to occur.

6.6 Recognition Results

Recognition results are provided by the recognizer to an application when the recognizer processes the incoming
speech that matches the current recognition grammar. The recognition results provide an application with information
about what the speaker said. The recognizer may not be correct about what the speaker said every time. Never the
less, this situation of misrecognition is still referred to as recognition success. The situation when the recognizer is
unable to make any guesses as to what the speaker said is called recognition failure. Recognition failure should not
be confused with unexpected API errors, exceptions and failures. Recognition failure is an expected outcome of
speech recognition.

The recognizer notifies an application of the recognition results by the onRecogni ti onSuccess and
onRecogni ti onFai | ur e events issued to the Recogni zer Li st ener.

6.7 Audio Management

The input audio for the recognizer is specified by means of Audi 0Sr eamobjects. Each Audi oSt r eamobject
represents a sequence of audio samples associated with an audio source. The Audi oSt r eaminterface does not
have any public members. The application writer does not manipulate the audio data directly. Audio manipulation is
performed by the underlying implementation.

The audio data originates from Audi oSour ce objects. There are two types of Audi oSour ce objects currently
available: M cr ophone and Medi aFi | eReader . M cr ophone represents the microphone on the Android platform.
The Medi aFi | eReader objects allow application developer to work with audio data stored in files.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 18 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

Each Audi oSt r eamobiject is associated with one and only one Audi oSour ce. There may be multiple
Audi oSt r eamobjects associated with a single Audi oSour ce object.

From the logical perspective, the application developer may view Audi oSt r eamobjects as containers for audio data.

The Audi oSour ce object associated with the Audi oSt r eamobject writes audio data to the Audi oSt r eamobject
and the EnbeddedRecogni zer and Medi aFi | eW it er objects read audio data from the Audi oSt r eam

6.7.1 Microphone

M cr ophone instantiation follows the singleton design pattern. There is only one instance of M cr ophone per
application process. This single instance of the microphone is obtained via a call to M cr ophone. get | nst ance().

The behavior of the M cr ophone can be described by the state system in Figure 3: Microphone State System.

New
Microphone

STARTING

start()

IDLE RECORDING

stop()
STOPPING

Figure 3. Microphone State System

In the | DLE state the M cr ophone does nothing. While in the RECORDI NG state the M cr ophone sends audio data
from the underlying microphone system device into all Audi oSt r eamobjects associated with the M cr ophone.

M cr ophone. st art () method transitions the Microphone from the IDLE state to the STARTI NG state.
M crophone. st op() method transitions the M cr ophone from the RECODRING state to the STOPPI NG state.

When the Microphone completes the | DLE- STARTI NG RECORDI NG state transition, the Microphone issues
onStarted() eventto the associated M cr ophonelLi st ener . The RECORDI NG- STOPPI NG- | DLE state transition
is indicated by the onSt opped() event. Unexpected errors during the state machine traversal are indicated by the
onError () eventsenttothe M crophoneli st ener.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 19 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

6.7.2 MediaFileReader

Medi aFi | er Reader supports reading audio from a file. Speech application developers will typically use this
interface for off-line debugging and testing.

Below is the section from Hel | oWor | d application modified to use audio stored in a file rather than microphone
based audio.

String audi oPat h ESRSDK + "/confi g/ en. us/audi o/ v139/v139_113. nw";
i nt header Length 1024;
Medi aFi | eReader nedi aFi | eReader =
Medi aFi | eReader. cr eat e(audi oPat h, header Length, Codec. PCM 16BI T_11K,
nul l);

I/ make Medi aFi | eReader file | ook nore |ike m crophone
medi aFi | eReader . set Mode(Medi aFi | eReader . Mode. REAL_TI ME) ;
Audi oSt r eam audi oSt r eam = nedi aFi | eReader . cr eat eAudi o() ;
medi aFi | eReader.start();

rec. recogni ze(audi oStream granmar) ;

6.7.3 MediaFileWriter

MediaFileWriter interface allows programmers to save AudioStream audio data into a file. Application developers will
typically use this interface for saving recognized audio input for offline processing and debugging. For more
information please see UAPI Reference on andr oi d. speech. recogni tion. Medi aFil eWiter.

6.7.4 DeviceSpeaker

DeviceSpeaker is an interface for audio output. It can be used to implement audio prompts during speech recognition
application. See UAPI reference on andr oi d. speech. recogni ti on. Devi ceSpeaker for more details. This
interface is not implemented on Android Platform with this release.

6.8 Error Handling

This section describes how the errors from UAPI methods are reported to the applciation. The terms error and failure
in this section refer to the unexpected errors (exceptions) arising from execution of various methods of UAPI. These
API function errors and failures should not be confused with the recognition failures which are also sometimes
referred to as recognition errors. The recognition failure (or recognition error) is an expected outcome of speech
recognition process.

UAPI features both synchronous and asynchronous functionality. Synchronous methods of UAPI follow a typical Java
design pattern under which a method either succeeds or throws an exception.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 20 of 25 December 20, 2007

UAPI User Guide

Nuance Professional Services

6.8.1 Recognizer Errors

The outcomes of asynchronous grammar operation are indicated by events delivered to the Gr ammar Li st ener
specified by the G- ammar Conf i gur at i on. The table below summarizes the asynchronous grammar operations and

the corresponding asynchronous outcomes.

Grammar method

success

failure

addl t enli st onAddl t emnli st onAddl t enli st Fai l ure
conpil eAl'l Slots onConpil eAll Sl ots onError

resetAll Slots onReset Al l Sl ots onError

save onSaved onEr or

| oad onLoaded onError

unl oad onUnl oaded onError

Table 2: Asynchronous Grammar Methods and Events

The outcomes of asynchronous recognizer operations are indicated by events delivered to the
Recogni zer Li st ener specified by the EmbeddedRecognizer.setListener(...) method. The table below summarizes

the asynchronous recognizer operations and the corresponding asynchronous outcomes.

Recognizer method

success

failure

reset AcousticState

onAcoust i cSt at eReset

onError

get Paraneters

onPar amet er sGet

onPar anet er sGet Err or

set Paraneters

onPar anet er sSet

onPar anet er sSet Er r or

recogni ze onSt opped onError

Table 3: Asynchronous Recognizer Methods and Events

6.9 Other Recognizer Functionality

6.9.1 Acoustic Adaptation

The recognizer may adapt to the speaker and speaker environment in order to improve recognition accuracy. This
adaptation process relies on the recognizer preserving some amount of acoustic state information between the
recognitions.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 21 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

In order to achieve the best accuracy, the application developer should clear the accumulated acoustic state
information when the speaker or the speaker environment is known to have changed.

It is also important to explicitly control recognizer adaptation during automated accuracy tests in order to obtain
consistent accuracy results.

The acoustic state information is cleared during configuration or reconfiguration process as the recognizer transitions
through the CONFI GURI NG or RECONFI GURI NG states.

The application developer can control the acoustic state information of the recognizer by calling

EnbeddedRecogni zer . reset Acousti cSt at e() method. Upon successful completion of the call, the recognizer
acoustic state information is reset and the recognizer is returned to the same state acoustic adaptation state it was in
right after it entered CONFI GURED state but before any calls to r ecogni ze(..) .

The EnbeddedRecogni zer. reset Acousti cSt at e() is an asynchronous (nhon-blocking) method. A successful

completion is indicated via Recogni zer Li st ener . onAcoust i cSt at eReset () event. An error is indicated by
Recogni zer Li st ener. onError(..) event.

6.9.2 Recognizer Parameters

The recognizer parameters that can be changed dynamically are listed in Table 4. For a complete list of recognizer
parameters, please refer to the SREC User Guide.

Parameter Name Description Typical | Min Max

Values

CREC. Front end. swi cns. cm Channel normalization values in

string form. These values have no
logical value to the application. They
should normally only be set after
having been get previously.

SREC. Recogni zer . utterance_ti meout maximum number of frames to wait 400
for declaring start of speech (ms)

CREC. Frontend. sanpl erate Sample rate of the audio data 8000, 8000 22050
(samples per second); this is an 11025,

indication on the input audio such that | 16000,
audio can be a frequency higher than | 22050
the minimum required by the acoustic
model (high_cut), in such a case
some high frequency content is
ignored

CREC. Recogni zer . terni nal _ti meout Default end of utterance timeout 20

when the search is at the end of the
grammar (Number of 20ms frames,
ie see do_skip_even_frames).

CREC. Recogni zer . optional _term nal _timeout End of utterance timeout when the 40

search is optionally at the end of the
grammar, eg. after any digit in an
unconstrained digit recognition
(Number of 20ms frames, ie see
do_skip_even_frames).

CREC. Recogni zer. non_t erm nal _ti neout End of utterance timeout for words 200

that do not occur at the end of the
utterance. (Number of 20ms frames,

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 22 of 25 December 20, 2007

UAPI User Guide

Nuance Professional Services

ie see do_skip_even_frames).

CREC. Recogni zer . eou_t hreshol d Score delta, by which this search 150
state needs to be best before starting
to count frames for timeouts below.

enabl eGet Vvef orm Used only during voice enroliment “0”
process. “1”

If set to “1” before the recognition, the
voicetag produced during the
recognition will also contain the audio
data produced during the recognition
process.

The user can retrieve the audio data
with the

Voi cet agl t em get Audi o()
function or it can be saved to a file at
the same time the voicetag item is
saved using the
Voicetagltem.save(...) function.

The audio is in PCM format and is
start-pointed and end-pointed.

Table 4: Dynamic Recognizer Parameters

The parameters summarized above can be manipulated during runtime via

EnbeddedRecogni zer . set Par anet er s() and EnbeddedRecogni zer. get Parametres().

NUANCE COMMUNICATIONS, INC.
Confidential — Nuance Proprietary Information

Page 23 of 25

Version 1.0
December 20, 2007

UAPI User Guide Nuance Professional Services

7 SREC GRAMMARS

7.1 Editing grammars

SREC grammars are defined in the W3C XML format and possibly extended at run-time through dynamic word
addition and for a different tag interpretation language. For details of the grammar formalism, developers should
refer the to W3C grammar specification at http://www.w3.org/TR/grammar-spec, with the following exceptions:

= support for <item repeat="$N" ... $N can any number
= support for <item repeat="$N-" ... $N can any number
= support for <item repeat="$N-$M" ... but $M>$N

The important parameters that are looked for in the grammar are near the top of the file:

<?xm version="1.0" encodi ng="1S08859- 1" ?>
<grammar xnl:|ang="en-US" version="1.0" node="speech" root="nyRoot">

xml:lang ... indicates the language of the grammar, the specified language will trigger use of the right dictionaries
and acoustic models to compile the grammar. The engine supports an extensive but limited set of languages.
Language encoding conventions are detailed in the Phonology chapter.

encoding ... for European language in which accents must be used, the use of ISO Latin-1 encoding is supported

7.2 Compiling grammars

Grammars must always be compiled off-line on desktop Linux. The command line instructions are as follows:

(1) % grxm conpile -par /devicelextlibs/srec/config/en.us/baseline.par -grxm
test.grxm
(2) % nake_g2g —base test —out test.g2g

In Step 1, we create AT&T text format fsms (http://www.research.att.com/~fsmtools/fsm/man4/fsm.5.html). The
required files are:
e .map ... the list of words
.PCLG.txt ... the finite-state transducer to be used for the search
.Grev2.det.txt ... the transducer to be used for nbest processing
.P.txt ... the semantic interpretation graph
.script ... the semantic interpretation scripts
These text files should not be edited; they are dumped for diagnostic purposes only.

In Step 2, we package these 5 files into a single binary format file to be used on the target platform.

7.3 Dynamic Grammar modification at runtime

The SREC recognizer supports the ability for an application to modify grammars at runtime. There are two ways to
modify the grammars as runtime: dynamic word addition and voice enrolment.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 24 of 25 December 20, 2007

UAPI User Guide Nuance Professional Services

SREC supports dynamic word addition to the grammar. Online Grapheme-to-Phoneme is supported. This allows the
application to add new words to the grammar and perform the conversion from standard orthography to the
appropriate phonetic dictionary.

SREC supports voice enrollment. SREC can learn new words “on the fly” from a given speaker. This means that one
SREC-based application can train online, store and later recognize user specific words (also known as voice tags or
speaker-dependent words). Training requires only one utterance of the user word (more than one is possible).

7.4 Additional Grammar Concepts

For additional information regarding grammars, please refer to the SREC User Guide.

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential — Nuance Proprietary Information Page 25 of 25 December 20, 2007

