/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet.objects;
import com.bulletphysics.dynamics.RigidBody;
import com.jme3.bullet.collision.PhysicsCollisionObject;
import com.jme3.bullet.util.Converter;
import com.jme3.export.*;
import com.jme3.math.Quaternion;
import com.jme3.math.Vector3f;
import com.jme3.scene.Spatial;
import java.io.IOException;
/**
* Stores info about one wheel of a PhysicsVehicle
* @author normenhansen
*/
public class VehicleWheel implements Savable {
protected com.bulletphysics.dynamics.vehicle.WheelInfo wheelInfo;
protected boolean frontWheel;
protected Vector3f location = new Vector3f();
protected Vector3f direction = new Vector3f();
protected Vector3f axle = new Vector3f();
protected float suspensionStiffness = 20.0f;
protected float wheelsDampingRelaxation = 2.3f;
protected float wheelsDampingCompression = 4.4f;
protected float frictionSlip = 10.5f;
protected float rollInfluence = 1.0f;
protected float maxSuspensionTravelCm = 500f;
protected float maxSuspensionForce = 6000f;
protected float radius = 0.5f;
protected float restLength = 1f;
protected Vector3f wheelWorldLocation = new Vector3f();
protected Quaternion wheelWorldRotation = new Quaternion();
protected Spatial wheelSpatial;
protected com.jme3.math.Matrix3f tmp_Matrix = new com.jme3.math.Matrix3f();
protected final Quaternion tmp_inverseWorldRotation = new Quaternion();
private boolean applyLocal = false;
public VehicleWheel() {
}
public VehicleWheel(Spatial spat, Vector3f location, Vector3f direction, Vector3f axle,
float restLength, float radius, boolean frontWheel) {
this(location, direction, axle, restLength, radius, frontWheel);
wheelSpatial = spat;
}
public VehicleWheel(Vector3f location, Vector3f direction, Vector3f axle,
float restLength, float radius, boolean frontWheel) {
this.location.set(location);
this.direction.set(direction);
this.axle.set(axle);
this.frontWheel = frontWheel;
this.restLength = restLength;
this.radius = radius;
}
public synchronized void updatePhysicsState() {
Converter.convert(wheelInfo.worldTransform.origin, wheelWorldLocation);
Converter.convert(wheelInfo.worldTransform.basis, tmp_Matrix);
wheelWorldRotation.fromRotationMatrix(tmp_Matrix);
}
public synchronized void applyWheelTransform() {
if (wheelSpatial == null) {
return;
}
Quaternion localRotationQuat = wheelSpatial.getLocalRotation();
Vector3f localLocation = wheelSpatial.getLocalTranslation();
if (!applyLocal && wheelSpatial.getParent() != null) {
localLocation.set(wheelWorldLocation).subtractLocal(wheelSpatial.getParent().getWorldTranslation());
localLocation.divideLocal(wheelSpatial.getParent().getWorldScale());
tmp_inverseWorldRotation.set(wheelSpatial.getParent().getWorldRotation()).inverseLocal().multLocal(localLocation);
localRotationQuat.set(wheelWorldRotation);
tmp_inverseWorldRotation.set(wheelSpatial.getParent().getWorldRotation()).inverseLocal().mult(localRotationQuat, localRotationQuat);
wheelSpatial.setLocalTranslation(localLocation);
wheelSpatial.setLocalRotation(localRotationQuat);
} else {
wheelSpatial.setLocalTranslation(wheelWorldLocation);
wheelSpatial.setLocalRotation(wheelWorldRotation);
}
}
public com.bulletphysics.dynamics.vehicle.WheelInfo getWheelInfo() {
return wheelInfo;
}
public void setWheelInfo(com.bulletphysics.dynamics.vehicle.WheelInfo wheelInfo) {
this.wheelInfo = wheelInfo;
applyInfo();
}
public boolean isFrontWheel() {
return frontWheel;
}
public void setFrontWheel(boolean frontWheel) {
this.frontWheel = frontWheel;
applyInfo();
}
public Vector3f getLocation() {
return location;
}
public Vector3f getDirection() {
return direction;
}
public Vector3f getAxle() {
return axle;
}
public float getSuspensionStiffness() {
return suspensionStiffness;
}
/**
* the stiffness constant for the suspension. 10.0 - Offroad buggy, 50.0 - Sports car, 200.0 - F1 Car
* @param suspensionStiffness
*/
public void setSuspensionStiffness(float suspensionStiffness) {
this.suspensionStiffness = suspensionStiffness;
applyInfo();
}
public float getWheelsDampingRelaxation() {
return wheelsDampingRelaxation;
}
/**
* the damping coefficient for when the suspension is expanding.
* See the comments for setWheelsDampingCompression for how to set k.
* @param wheelsDampingRelaxation
*/
public void setWheelsDampingRelaxation(float wheelsDampingRelaxation) {
this.wheelsDampingRelaxation = wheelsDampingRelaxation;
applyInfo();
}
public float getWheelsDampingCompression() {
return wheelsDampingCompression;
}
/**
* the damping coefficient for when the suspension is compressed.
* Set to k * 2.0 * FastMath.sqrt(m_suspensionStiffness) so k is proportional to critical damping.
* k = 0.0 undamped & bouncy, k = 1.0 critical damping
* 0.1 to 0.3 are good values
* @param wheelsDampingCompression
*/
public void setWheelsDampingCompression(float wheelsDampingCompression) {
this.wheelsDampingCompression = wheelsDampingCompression;
applyInfo();
}
public float getFrictionSlip() {
return frictionSlip;
}
/**
* the coefficient of friction between the tyre and the ground.
* Should be about 0.8 for realistic cars, but can increased for better handling.
* Set large (10000.0) for kart racers
* @param frictionSlip
*/
public void setFrictionSlip(float frictionSlip) {
this.frictionSlip = frictionSlip;
applyInfo();
}
public float getRollInfluence() {
return rollInfluence;
}
/**
* reduces the rolling torque applied from the wheels that cause the vehicle to roll over.
* This is a bit of a hack, but it's quite effective. 0.0 = no roll, 1.0 = physical behaviour.
* If m_frictionSlip is too high, you'll need to reduce this to stop the vehicle rolling over.
* You should also try lowering the vehicle's centre of mass
* @param rollInfluence the rollInfluence to set
*/
public void setRollInfluence(float rollInfluence) {
this.rollInfluence = rollInfluence;
applyInfo();
}
public float getMaxSuspensionTravelCm() {
return maxSuspensionTravelCm;
}
/**
* the maximum distance the suspension can be compressed (centimetres)
* @param maxSuspensionTravelCm
*/
public void setMaxSuspensionTravelCm(float maxSuspensionTravelCm) {
this.maxSuspensionTravelCm = maxSuspensionTravelCm;
applyInfo();
}
public float getMaxSuspensionForce() {
return maxSuspensionForce;
}
/**
* The maximum suspension force, raise this above the default 6000 if your suspension cannot
* handle the weight of your vehcile.
* @param maxSuspensionForce
*/
public void setMaxSuspensionForce(float maxSuspensionForce) {
this.maxSuspensionForce = maxSuspensionForce;
applyInfo();
}
private void applyInfo() {
if (wheelInfo == null) {
return;
}
wheelInfo.suspensionStiffness = suspensionStiffness;
wheelInfo.wheelsDampingRelaxation = wheelsDampingRelaxation;
wheelInfo.wheelsDampingCompression = wheelsDampingCompression;
wheelInfo.frictionSlip = frictionSlip;
wheelInfo.rollInfluence = rollInfluence;
wheelInfo.maxSuspensionTravelCm = maxSuspensionTravelCm;
wheelInfo.maxSuspensionForce = maxSuspensionForce;
wheelInfo.wheelsRadius = radius;
wheelInfo.bIsFrontWheel = frontWheel;
wheelInfo.suspensionRestLength1 = restLength;
}
public float getRadius() {
return radius;
}
public void setRadius(float radius) {
this.radius = radius;
applyInfo();
}
public float getRestLength() {
return restLength;
}
public void setRestLength(float restLength) {
this.restLength = restLength;
applyInfo();
}
/**
* returns the object this wheel is in contact with or null if no contact
* @return the PhysicsCollisionObject (PhysicsRigidBody, PhysicsGhostObject)
*/
public PhysicsCollisionObject getGroundObject() {
if (wheelInfo.raycastInfo.groundObject == null) {
return null;
} else if (wheelInfo.raycastInfo.groundObject instanceof RigidBody) {
System.out.println("RigidBody");
return (PhysicsRigidBody) ((RigidBody) wheelInfo.raycastInfo.groundObject).getUserPointer();
} else {
return null;
}
}
/**
* returns the location where the wheel collides with the ground (world space)
*/
public Vector3f getCollisionLocation(Vector3f vec) {
Converter.convert(wheelInfo.raycastInfo.contactPointWS, vec);
return vec;
}
/**
* returns the location where the wheel collides with the ground (world space)
*/
public Vector3f getCollisionLocation() {
return Converter.convert(wheelInfo.raycastInfo.contactPointWS);
}
/**
* returns the normal where the wheel collides with the ground (world space)
*/
public Vector3f getCollisionNormal(Vector3f vec) {
Converter.convert(wheelInfo.raycastInfo.contactNormalWS, vec);
return vec;
}
/**
* returns the normal where the wheel collides with the ground (world space)
*/
public Vector3f getCollisionNormal() {
return Converter.convert(wheelInfo.raycastInfo.contactNormalWS);
}
/**
* returns how much the wheel skids on the ground (for skid sounds/smoke etc.)
* 0.0 = wheels are sliding, 1.0 = wheels have traction.
*/
public float getSkidInfo() {
return wheelInfo.skidInfo;
}
/**
* returns how many degrees the wheel has turned since the last physics
* step.
*/
public float getDeltaRotation() {
return wheelInfo.deltaRotation;
}
@Override
public void read(JmeImporter im) throws IOException {
InputCapsule capsule = im.getCapsule(this);
wheelSpatial = (Spatial) capsule.readSavable("wheelSpatial", null);
frontWheel = capsule.readBoolean("frontWheel", false);
location = (Vector3f) capsule.readSavable("wheelLocation", new Vector3f());
direction = (Vector3f) capsule.readSavable("wheelDirection", new Vector3f());
axle = (Vector3f) capsule.readSavable("wheelAxle", new Vector3f());
suspensionStiffness = capsule.readFloat("suspensionStiffness", 20.0f);
wheelsDampingRelaxation = capsule.readFloat("wheelsDampingRelaxation", 2.3f);
wheelsDampingCompression = capsule.readFloat("wheelsDampingCompression", 4.4f);
frictionSlip = capsule.readFloat("frictionSlip", 10.5f);
rollInfluence = capsule.readFloat("rollInfluence", 1.0f);
maxSuspensionTravelCm = capsule.readFloat("maxSuspensionTravelCm", 500f);
maxSuspensionForce = capsule.readFloat("maxSuspensionForce", 6000f);
radius = capsule.readFloat("wheelRadius", 0.5f);
restLength = capsule.readFloat("restLength", 1f);
}
@Override
public void write(JmeExporter ex) throws IOException {
OutputCapsule capsule = ex.getCapsule(this);
capsule.write(wheelSpatial, "wheelSpatial", null);
capsule.write(frontWheel, "frontWheel", false);
capsule.write(location, "wheelLocation", new Vector3f());
capsule.write(direction, "wheelDirection", new Vector3f());
capsule.write(axle, "wheelAxle", new Vector3f());
capsule.write(suspensionStiffness, "suspensionStiffness", 20.0f);
capsule.write(wheelsDampingRelaxation, "wheelsDampingRelaxation", 2.3f);
capsule.write(wheelsDampingCompression, "wheelsDampingCompression", 4.4f);
capsule.write(frictionSlip, "frictionSlip", 10.5f);
capsule.write(rollInfluence, "rollInfluence", 1.0f);
capsule.write(maxSuspensionTravelCm, "maxSuspensionTravelCm", 500f);
capsule.write(maxSuspensionForce, "maxSuspensionForce", 6000f);
capsule.write(radius, "wheelRadius", 0.5f);
capsule.write(restLength, "restLength", 1f);
}
/**
* @return the wheelSpatial
*/
public Spatial getWheelSpatial() {
return wheelSpatial;
}
/**
* @param wheelSpatial the wheelSpatial to set
*/
public void setWheelSpatial(Spatial wheelSpatial) {
this.wheelSpatial = wheelSpatial;
}
public boolean isApplyLocal() {
return applyLocal;
}
public void setApplyLocal(boolean applyLocal) {
this.applyLocal = applyLocal;
}
}