/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright( C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages //(including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort(including negligence or otherwise) arising in any way out of // the use of this software, even ifadvised of the possibility of such damage. // //M*/ #include "_ml.h" /* CvEM: * params.nclusters - number of clusters to cluster samples to. * means - calculated by the EM algorithm set of gaussians' means. * log_weight_div_det - auxilary vector that k-th component is equal to (-2)*ln(weights_k/det(Sigma_k)^0.5), where is the weight, is the covariation matrice of k-th cluster. * inv_eigen_values - set of 1*dims matrices, [k] contains inversed eigen values of covariation matrice of the k-th cluster. In the case of == COV_MAT_DIAGONAL, inv_eigen_values[k] = Sigma_k^(-1). * covs_rotate_mats - used only if cov_mat_type == COV_MAT_GENERIC, in all the other cases it is NULL. [k] is the orthogonal matrice, obtained by the SVD-decomposition of Sigma_k. Both and fields are used for representation of covariation matrices and simplifying EM calculations. For fixed k denote u = covs_rotate_mats[k], v = inv_eigen_values[k], w = v^(-1); if == COV_MAT_GENERIC, then Sigma_k = u w u', else Sigma_k = w. Symbol ' means transposition. */ CvEM::CvEM() { means = weights = probs = inv_eigen_values = log_weight_div_det = 0; covs = cov_rotate_mats = 0; } CvEM::CvEM( const CvMat* samples, const CvMat* sample_idx, CvEMParams params, CvMat* labels ) { means = weights = probs = inv_eigen_values = log_weight_div_det = 0; covs = cov_rotate_mats = 0; // just invoke the train() method train(samples, sample_idx, params, labels); } CvEM::~CvEM() { clear(); } void CvEM::clear() { int i; cvReleaseMat( &means ); cvReleaseMat( &weights ); cvReleaseMat( &probs ); cvReleaseMat( &inv_eigen_values ); cvReleaseMat( &log_weight_div_det ); if( covs || cov_rotate_mats ) { for( i = 0; i < params.nclusters; i++ ) { if( covs ) cvReleaseMat( &covs[i] ); if( cov_rotate_mats ) cvReleaseMat( &cov_rotate_mats[i] ); } cvFree( &covs ); cvFree( &cov_rotate_mats ); } } void CvEM::set_params( const CvEMParams& _params, const CvVectors& train_data ) { CV_FUNCNAME( "CvEM::set_params" ); __BEGIN__; int k; params = _params; params.term_crit = cvCheckTermCriteria( params.term_crit, 1e-6, 10000 ); if( params.cov_mat_type != COV_MAT_SPHERICAL && params.cov_mat_type != COV_MAT_DIAGONAL && params.cov_mat_type != COV_MAT_GENERIC ) CV_ERROR( CV_StsBadArg, "Unknown covariation matrix type" ); switch( params.start_step ) { case START_M_STEP: if( !params.probs ) CV_ERROR( CV_StsNullPtr, "Probabilities must be specified when EM algorithm starts with M-step" ); break; case START_E_STEP: if( !params.means ) CV_ERROR( CV_StsNullPtr, "Mean's must be specified when EM algorithm starts with E-step" ); break; case START_AUTO_STEP: break; default: CV_ERROR( CV_StsBadArg, "Unknown start_step" ); } if( params.nclusters < 1 ) CV_ERROR( CV_StsOutOfRange, "The number of clusters (mixtures) should be > 0" ); if( params.probs ) { const CvMat* p = params.weights; if( !CV_IS_MAT(p) || CV_MAT_TYPE(p->type) != CV_32FC1 && CV_MAT_TYPE(p->type) != CV_64FC1 || p->rows != train_data.count || p->cols != params.nclusters ) CV_ERROR( CV_StsBadArg, "The array of probabilities must be a valid " "floating-point matrix (CvMat) of 'nsamples' x 'nclusters' size" ); } if( params.means ) { const CvMat* m = params.means; if( !CV_IS_MAT(m) || CV_MAT_TYPE(m->type) != CV_32FC1 && CV_MAT_TYPE(m->type) != CV_64FC1 || m->rows != params.nclusters || m->cols != train_data.dims ) CV_ERROR( CV_StsBadArg, "The array of mean's must be a valid " "floating-point matrix (CvMat) of 'nsamples' x 'dims' size" ); } if( params.weights ) { const CvMat* w = params.weights; if( !CV_IS_MAT(w) || CV_MAT_TYPE(w->type) != CV_32FC1 && CV_MAT_TYPE(w->type) != CV_64FC1 || w->rows != 1 && w->cols != 1 || w->rows + w->cols - 1 != params.nclusters ) CV_ERROR( CV_StsBadArg, "The array of weights must be a valid " "1d floating-point vector (CvMat) of 'nclusters' elements" ); } if( params.covs ) for( k = 0; k < params.nclusters; k++ ) { const CvMat* cov = params.covs[k]; if( !CV_IS_MAT(cov) || CV_MAT_TYPE(cov->type) != CV_32FC1 && CV_MAT_TYPE(cov->type) != CV_64FC1 || cov->rows != cov->cols || cov->cols != train_data.dims ) CV_ERROR( CV_StsBadArg, "Each of covariation matrices must be a valid square " "floating-point matrix (CvMat) of 'dims' x 'dims'" ); } __END__; } /****************************************************************************************/ float CvEM::predict( const CvMat* _sample, CvMat* _probs ) const { float* sample_data = 0; void* buffer = 0; int allocated_buffer = 0; int cls = 0; CV_FUNCNAME( "CvEM::predict" ); __BEGIN__; int i, k, dims; int nclusters; int cov_mat_type = params.cov_mat_type; double opt = FLT_MAX; size_t size; CvMat diff, expo; dims = means->cols; nclusters = params.nclusters; CV_CALL( cvPreparePredictData( _sample, dims, 0, params.nclusters, _probs, &sample_data )); // allocate memory and initializing headers for calculating size = sizeof(double) * (nclusters + dims); if( size <= CV_MAX_LOCAL_SIZE ) buffer = cvStackAlloc( size ); else { CV_CALL( buffer = cvAlloc( size )); allocated_buffer = 1; } expo = cvMat( 1, nclusters, CV_64FC1, buffer ); diff = cvMat( 1, dims, CV_64FC1, (double*)buffer + nclusters ); // calculate the probabilities for( k = 0; k < nclusters; k++ ) { const double* mean_k = (const double*)(means->data.ptr + means->step*k); const double* w = (const double*)(inv_eigen_values->data.ptr + inv_eigen_values->step*k); double cur = log_weight_div_det->data.db[k]; CvMat* u = cov_rotate_mats[k]; // cov = u w u' --> cov^(-1) = u w^(-1) u' if( cov_mat_type == COV_MAT_SPHERICAL ) { double w0 = w[0]; for( i = 0; i < dims; i++ ) { double val = sample_data[i] - mean_k[i]; cur += val*val*w0; } } else { for( i = 0; i < dims; i++ ) diff.data.db[i] = sample_data[i] - mean_k[i]; if( cov_mat_type == COV_MAT_GENERIC ) cvGEMM( &diff, u, 1, 0, 0, &diff, CV_GEMM_B_T ); for( i = 0; i < dims; i++ ) { double val = diff.data.db[i]; cur += val*val*w[i]; } } expo.data.db[k] = cur; if( cur < opt ) { cls = k; opt = cur; } /* probability = (2*pi)^(-dims/2)*exp( -0.5 * cur ) */ } if( _probs ) { CV_CALL( cvConvertScale( &expo, &expo, -0.5 )); CV_CALL( cvExp( &expo, &expo )); if( _probs->cols == 1 ) CV_CALL( cvReshape( &expo, &expo, 0, nclusters )); CV_CALL( cvConvertScale( &expo, _probs, 1./cvSum( &expo ).val[0] )); } __END__; if( sample_data != _sample->data.fl ) cvFree( &sample_data ); if( allocated_buffer ) cvFree( &buffer ); return (float)cls; } bool CvEM::train( const CvMat* _samples, const CvMat* _sample_idx, CvEMParams _params, CvMat* labels ) { bool result = false; CvVectors train_data; CvMat* sample_idx = 0; train_data.data.fl = 0; train_data.count = 0; CV_FUNCNAME("cvEM"); __BEGIN__; int i, nsamples, nclusters, dims; clear(); CV_CALL( cvPrepareTrainData( "cvEM", _samples, CV_ROW_SAMPLE, 0, CV_VAR_CATEGORICAL, 0, _sample_idx, false, (const float***)&train_data.data.fl, &train_data.count, &train_data.dims, &train_data.dims, 0, 0, 0, &sample_idx )); CV_CALL( set_params( _params, train_data )); nsamples = train_data.count; nclusters = params.nclusters; dims = train_data.dims; if( labels && (!CV_IS_MAT(labels) || CV_MAT_TYPE(labels->type) != CV_32SC1 || labels->cols != 1 && labels->rows != 1 || labels->cols + labels->rows - 1 != nsamples )) CV_ERROR( CV_StsBadArg, "labels array (when passed) must be a valid 1d integer vector of elements" ); if( nsamples <= nclusters ) CV_ERROR( CV_StsOutOfRange, "The number of samples should be greater than the number of clusters" ); CV_CALL( log_weight_div_det = cvCreateMat( 1, nclusters, CV_64FC1 )); CV_CALL( probs = cvCreateMat( nsamples, nclusters, CV_64FC1 )); CV_CALL( means = cvCreateMat( nclusters, dims, CV_64FC1 )); CV_CALL( weights = cvCreateMat( 1, nclusters, CV_64FC1 )); CV_CALL( inv_eigen_values = cvCreateMat( nclusters, params.cov_mat_type == COV_MAT_SPHERICAL ? 1 : dims, CV_64FC1 )); CV_CALL( covs = (CvMat**)cvAlloc( nclusters * sizeof(*covs) )); CV_CALL( cov_rotate_mats = (CvMat**)cvAlloc( nclusters * sizeof(cov_rotate_mats[0]) )); for( i = 0; i < nclusters; i++ ) { CV_CALL( covs[i] = cvCreateMat( dims, dims, CV_64FC1 )); CV_CALL( cov_rotate_mats[i] = cvCreateMat( dims, dims, CV_64FC1 )); cvZero( cov_rotate_mats[i] ); } init_em( train_data ); log_likelihood = run_em( train_data ); if( log_likelihood <= -DBL_MAX/10000. ) EXIT; if( labels ) { if( nclusters == 1 ) cvZero( labels ); else { CvMat sample = cvMat( 1, dims, CV_32F ); CvMat prob = cvMat( 1, nclusters, CV_64F ); int lstep = CV_IS_MAT_CONT(labels->type) ? 1 : labels->step/sizeof(int); for( i = 0; i < nsamples; i++ ) { int idx = sample_idx ? sample_idx->data.i[i] : i; sample.data.ptr = _samples->data.ptr + _samples->step*idx; prob.data.ptr = probs->data.ptr + probs->step*i; labels->data.i[i*lstep] = cvRound(predict(&sample, &prob)); } } } result = true; __END__; if( sample_idx != _sample_idx ) cvReleaseMat( &sample_idx ); cvFree( &train_data.data.ptr ); return result; } void CvEM::init_em( const CvVectors& train_data ) { CvMat *w = 0, *u = 0, *tcov = 0; CV_FUNCNAME( "CvEM::init_em" ); __BEGIN__; double maxval = 0; int i, force_symm_plus = 0; int nclusters = params.nclusters, nsamples = train_data.count, dims = train_data.dims; if( params.start_step == START_AUTO_STEP || nclusters == 1 || nclusters == nsamples ) init_auto( train_data ); else if( params.start_step == START_M_STEP ) { for( i = 0; i < nsamples; i++ ) { CvMat prob; cvGetRow( params.probs, &prob, i ); cvMaxS( &prob, 0., &prob ); cvMinMaxLoc( &prob, 0, &maxval ); if( maxval < FLT_EPSILON ) cvSet( &prob, cvScalar(1./nclusters) ); else cvNormalize( &prob, &prob, 1., 0, CV_L1 ); } EXIT; // do not preprocess covariation matrices, // as in this case they are initialized at the first iteration of EM } else { CV_ASSERT( params.start_step == START_E_STEP && params.means ); if( params.weights && params.covs ) { cvConvert( params.means, means ); cvReshape( weights, weights, 1, params.weights->rows ); cvConvert( params.weights, weights ); cvReshape( weights, weights, 1, 1 ); cvMaxS( weights, 0., weights ); cvMinMaxLoc( weights, 0, &maxval ); if( maxval < FLT_EPSILON ) cvSet( &weights, cvScalar(1./nclusters) ); cvNormalize( weights, weights, 1., 0, CV_L1 ); for( i = 0; i < nclusters; i++ ) CV_CALL( cvConvert( params.covs[i], covs[i] )); force_symm_plus = 1; } else init_auto( train_data ); } CV_CALL( tcov = cvCreateMat( dims, dims, CV_64FC1 )); CV_CALL( w = cvCreateMat( dims, dims, CV_64FC1 )); if( params.cov_mat_type == COV_MAT_GENERIC ) CV_CALL( u = cvCreateMat( dims, dims, CV_64FC1 )); for( i = 0; i < nclusters; i++ ) { if( force_symm_plus ) { cvTranspose( covs[i], tcov ); cvAddWeighted( covs[i], 0.5, tcov, 0.5, 0, tcov ); } else cvCopy( covs[i], tcov ); cvSVD( tcov, w, u, 0, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); if( params.cov_mat_type == COV_MAT_SPHERICAL ) cvSetIdentity( covs[i], cvScalar(cvTrace(w).val[0]/dims) ); else if( params.cov_mat_type == COV_MAT_DIAGONAL ) cvCopy( w, covs[i] ); else { // generic case: covs[i] = (u')'*max(w,0)*u' cvGEMM( u, w, 1, 0, 0, tcov, CV_GEMM_A_T ); cvGEMM( tcov, u, 1, 0, 0, covs[i], 0 ); } } __END__; cvReleaseMat( &w ); cvReleaseMat( &u ); cvReleaseMat( &tcov ); } void CvEM::init_auto( const CvVectors& train_data ) { CvMat* hdr = 0; const void** vec = 0; CvMat* class_ranges = 0; CvMat* labels = 0; CV_FUNCNAME( "CvEM::init_auto" ); __BEGIN__; int nclusters = params.nclusters, nsamples = train_data.count, dims = train_data.dims; int i, j; if( nclusters == nsamples ) { CvMat src = cvMat( 1, dims, CV_32F ); CvMat dst = cvMat( 1, dims, CV_64F ); for( i = 0; i < nsamples; i++ ) { src.data.ptr = train_data.data.ptr[i]; dst.data.ptr = means->data.ptr + means->step*i; cvConvert( &src, &dst ); cvZero( covs[i] ); cvSetIdentity( cov_rotate_mats[i] ); } cvSetIdentity( probs ); cvSet( weights, cvScalar(1./nclusters) ); } else { int max_count = 0; CV_CALL( class_ranges = cvCreateMat( 1, nclusters+1, CV_32SC1 )); if( nclusters > 1 ) { CV_CALL( labels = cvCreateMat( 1, nsamples, CV_32SC1 )); kmeans( train_data, nclusters, labels, cvTermCriteria( CV_TERMCRIT_ITER, params.means ? 1 : 10, 0.5 ), params.means ); CV_CALL( cvSortSamplesByClasses( (const float**)train_data.data.fl, labels, class_ranges->data.i )); } else { class_ranges->data.i[0] = 0; class_ranges->data.i[1] = nsamples; } for( i = 0; i < nclusters; i++ ) { int left = class_ranges->data.i[i], right = class_ranges->data.i[i+1]; max_count = MAX( max_count, right - left ); } CV_CALL( hdr = (CvMat*)cvAlloc( max_count*sizeof(hdr[0]) )); CV_CALL( vec = (const void**)cvAlloc( max_count*sizeof(vec[0]) )); hdr[0] = cvMat( 1, dims, CV_32F ); for( i = 0; i < max_count; i++ ) { vec[i] = hdr + i; hdr[i] = hdr[0]; } for( i = 0; i < nclusters; i++ ) { int left = class_ranges->data.i[i], right = class_ranges->data.i[i+1]; int cluster_size = right - left; CvMat avg; if( cluster_size <= 0 ) continue; for( j = left; j < right; j++ ) hdr[j - left].data.fl = train_data.data.fl[j]; CV_CALL( cvGetRow( means, &avg, i )); CV_CALL( cvCalcCovarMatrix( vec, cluster_size, covs[i], &avg, CV_COVAR_NORMAL | CV_COVAR_SCALE )); weights->data.db[i] = (double)cluster_size/(double)nsamples; } } __END__; cvReleaseMat( &class_ranges ); cvReleaseMat( &labels ); cvFree( &hdr ); cvFree( &vec ); } void CvEM::kmeans( const CvVectors& train_data, int nclusters, CvMat* labels, CvTermCriteria termcrit, const CvMat* centers0 ) { CvMat* centers = 0; CvMat* old_centers = 0; CvMat* counters = 0; CV_FUNCNAME( "CvEM::kmeans" ); __BEGIN__; CvRNG rng = cvRNG(-1); int i, j, k, nsamples, dims; int iter = 0; double max_dist = DBL_MAX; termcrit = cvCheckTermCriteria( termcrit, 1e-6, 100 ); termcrit.epsilon *= termcrit.epsilon; nsamples = train_data.count; dims = train_data.dims; nclusters = MIN( nclusters, nsamples ); CV_CALL( centers = cvCreateMat( nclusters, dims, CV_64FC1 )); CV_CALL( old_centers = cvCreateMat( nclusters, dims, CV_64FC1 )); CV_CALL( counters = cvCreateMat( 1, nclusters, CV_32SC1 )); cvZero( old_centers ); if( centers0 ) { CV_CALL( cvConvert( centers0, centers )); } else { for( i = 0; i < nsamples; i++ ) labels->data.i[i] = i*nclusters/nsamples; cvRandShuffle( labels, &rng ); } for( ;; ) { CvMat* temp; if( iter > 0 || centers0 ) { for( i = 0; i < nsamples; i++ ) { const float* s = train_data.data.fl[i]; int k_best = 0; double min_dist = DBL_MAX; for( k = 0; k < nclusters; k++ ) { const double* c = (double*)(centers->data.ptr + k*centers->step); double dist = 0; for( j = 0; j <= dims - 4; j += 4 ) { double t0 = c[j] - s[j]; double t1 = c[j+1] - s[j+1]; dist += t0*t0 + t1*t1; t0 = c[j+2] - s[j+2]; t1 = c[j+3] - s[j+3]; dist += t0*t0 + t1*t1; } for( ; j < dims; j++ ) { double t = c[j] - s[j]; dist += t*t; } if( min_dist > dist ) { min_dist = dist; k_best = k; } } labels->data.i[i] = k_best; } } if( ++iter > termcrit.max_iter ) break; CV_SWAP( centers, old_centers, temp ); cvZero( centers ); cvZero( counters ); // update centers for( i = 0; i < nsamples; i++ ) { const float* s = train_data.data.fl[i]; k = labels->data.i[i]; double* c = (double*)(centers->data.ptr + k*centers->step); for( j = 0; j <= dims - 4; j += 4 ) { double t0 = c[j] + s[j]; double t1 = c[j+1] + s[j+1]; c[j] = t0; c[j+1] = t1; t0 = c[j+2] + s[j+2]; t1 = c[j+3] + s[j+3]; c[j+2] = t0; c[j+3] = t1; } for( ; j < dims; j++ ) c[j] += s[j]; counters->data.i[k]++; } if( iter > 1 ) max_dist = 0; for( k = 0; k < nclusters; k++ ) { double* c = (double*)(centers->data.ptr + k*centers->step); if( counters->data.i[k] != 0 ) { double scale = 1./counters->data.i[k]; for( j = 0; j < dims; j++ ) c[j] *= scale; } else { const float* s; for( j = 0; j < 10; j++ ) { i = cvRandInt( &rng ) % nsamples; if( counters->data.i[labels->data.i[i]] > 1 ) break; } s = train_data.data.fl[i]; for( j = 0; j < dims; j++ ) c[j] = s[j]; } if( iter > 1 ) { double dist = 0; const double* c_o = (double*)(old_centers->data.ptr + k*old_centers->step); for( j = 0; j < dims; j++ ) { double t = c[j] - c_o[j]; dist += t*t; } if( max_dist < dist ) max_dist = dist; } } if( max_dist < termcrit.epsilon ) break; } cvZero( counters ); for( i = 0; i < nsamples; i++ ) counters->data.i[labels->data.i[i]]++; // ensure that we do not have empty clusters for( k = 0; k < nclusters; k++ ) if( counters->data.i[k] == 0 ) for(;;) { i = cvRandInt(&rng) % nsamples; j = labels->data.i[i]; if( counters->data.i[j] > 1 ) { labels->data.i[i] = k; counters->data.i[j]--; counters->data.i[k]++; break; } } __END__; cvReleaseMat( ¢ers ); cvReleaseMat( &old_centers ); cvReleaseMat( &counters ); } /****************************************************************************************/ /* log_weight_div_det[k] = -2*log(weights_k) + log(det(Sigma_k))) covs[k] = cov_rotate_mats[k] * cov_eigen_values[k] * (cov_rotate_mats[k])' cov_rotate_mats[k] are orthogonal matrices of eigenvectors and cov_eigen_values[k] are diagonal matrices (represented by 1D vectors) of eigen values. The is the probability of the vector x_i to belong to the k-th cluster: ~ weights_k * exp{ -0.5[ln(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] } We calculate these probabilities here by the equivalent formulae: Denote S_ik = -0.5(log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)) + log(weights_k), M_i = max_k S_ik = S_qi, so that the q-th class is the one where maximum reaches. Then alpha_ik = exp{ S_ik - M_i } / ( 1 + sum_j!=q exp{ S_ji - M_i }) */ double CvEM::run_em( const CvVectors& train_data ) { CvMat* centered_sample = 0; CvMat* covs_item = 0; CvMat* log_det = 0; CvMat* log_weights = 0; CvMat* cov_eigen_values = 0; CvMat* samples = 0; CvMat* sum_probs = 0; log_likelihood = -DBL_MAX; CV_FUNCNAME( "CvEM::run_em" ); __BEGIN__; int nsamples = train_data.count, dims = train_data.dims, nclusters = params.nclusters; double min_variation = FLT_EPSILON; double min_det_value = MAX( DBL_MIN, pow( min_variation, dims )); double likelihood_bias = -CV_LOG2PI * (double)nsamples * (double)dims / 2., _log_likelihood = -DBL_MAX; int start_step = params.start_step; int i, j, k, n; int is_general = 0, is_diagonal = 0, is_spherical = 0; double prev_log_likelihood = -DBL_MAX / 1000., det, d; CvMat whdr, iwhdr, diag, *w, *iw; double* w_data; double* sp_data; if( nclusters == 1 ) { double log_weight; CV_CALL( cvSet( probs, cvScalar(1.)) ); if( params.cov_mat_type == COV_MAT_SPHERICAL ) { d = cvTrace(*covs).val[0]/dims; d = MAX( d, FLT_EPSILON ); inv_eigen_values->data.db[0] = 1./d; log_weight = pow( d, dims*0.5 ); } else { w_data = inv_eigen_values->data.db; if( params.cov_mat_type == COV_MAT_GENERIC ) cvSVD( *covs, inv_eigen_values, *cov_rotate_mats, 0, CV_SVD_U_T ); else cvTranspose( cvGetDiag(*covs, &diag), inv_eigen_values ); cvMaxS( inv_eigen_values, FLT_EPSILON, inv_eigen_values ); for( j = 0, det = 1.; j < dims; j++ ) det *= w_data[j]; log_weight = sqrt(det); cvDiv( 0, inv_eigen_values, inv_eigen_values ); } log_weight_div_det->data.db[0] = -2*log(weights->data.db[0]/log_weight); log_likelihood = DBL_MAX/1000.; EXIT; } if( params.cov_mat_type == COV_MAT_GENERIC ) is_general = 1; else if( params.cov_mat_type == COV_MAT_DIAGONAL ) is_diagonal = 1; else if( params.cov_mat_type == COV_MAT_SPHERICAL ) is_spherical = 1; /* In the case of == COV_MAT_DIAGONAL, the k-th row of cov_eigen_values contains the diagonal elements (variations). In the case of == COV_MAT_SPHERICAL - the 0-ths elements of the vectors cov_eigen_values[k] are to be equal to the mean of the variations over all the dimensions. */ CV_CALL( log_det = cvCreateMat( 1, nclusters, CV_64FC1 )); CV_CALL( log_weights = cvCreateMat( 1, nclusters, CV_64FC1 )); CV_CALL( covs_item = cvCreateMat( dims, dims, CV_64FC1 )); CV_CALL( centered_sample = cvCreateMat( 1, dims, CV_64FC1 )); CV_CALL( cov_eigen_values = cvCreateMat( inv_eigen_values->rows, inv_eigen_values->cols, CV_64FC1 )); CV_CALL( samples = cvCreateMat( nsamples, dims, CV_64FC1 )); CV_CALL( sum_probs = cvCreateMat( 1, nclusters, CV_64FC1 )); sp_data = sum_probs->data.db; // copy the training data into double-precision matrix for( i = 0; i < nsamples; i++ ) { const float* src = train_data.data.fl[i]; double* dst = (double*)(samples->data.ptr + samples->step*i); for( j = 0; j < dims; j++ ) dst[j] = src[j]; } if( start_step != START_M_STEP ) { for( k = 0; k < nclusters; k++ ) { if( is_general || is_diagonal ) { w = cvGetRow( cov_eigen_values, &whdr, k ); if( is_general ) cvSVD( covs[k], w, cov_rotate_mats[k], 0, CV_SVD_U_T ); else cvTranspose( cvGetDiag( covs[k], &diag ), w ); w_data = w->data.db; for( j = 0, det = 1.; j < dims; j++ ) det *= w_data[j]; if( det < min_det_value ) { if( start_step == START_AUTO_STEP ) det = min_det_value; else EXIT; } log_det->data.db[k] = det; } else { d = cvTrace(covs[k]).val[0]/(double)dims; if( d < min_variation ) { if( start_step == START_AUTO_STEP ) d = min_variation; else EXIT; } cov_eigen_values->data.db[k] = d; log_det->data.db[k] = d; } } cvLog( log_det, log_det ); if( is_spherical ) cvScale( log_det, log_det, dims ); } for( n = 0; n < params.term_crit.max_iter; n++ ) { if( n > 0 || start_step != START_M_STEP ) { // e-step: compute probs_ik from means_k, covs_k and weights_k. CV_CALL(cvLog( weights, log_weights )); // S_ik = -0.5[log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] + log(weights_k) for( k = 0; k < nclusters; k++ ) { CvMat* u = cov_rotate_mats[k]; const double* mean = (double*)(means->data.ptr + means->step*k); w = cvGetRow( cov_eigen_values, &whdr, k ); iw = cvGetRow( inv_eigen_values, &iwhdr, k ); cvDiv( 0, w, iw ); w_data = (double*)(inv_eigen_values->data.ptr + inv_eigen_values->step*k); for( i = 0; i < nsamples; i++ ) { double *csample = centered_sample->data.db, p = log_det->data.db[k]; const double* sample = (double*)(samples->data.ptr + samples->step*i); double* pp = (double*)(probs->data.ptr + probs->step*i); for( j = 0; j < dims; j++ ) csample[j] = sample[j] - mean[j]; if( is_general ) cvGEMM( centered_sample, u, 1, 0, 0, centered_sample, CV_GEMM_B_T ); for( j = 0; j < dims; j++ ) p += csample[j]*csample[j]*w_data[is_spherical ? 0 : j]; pp[k] = -0.5*p + log_weights->data.db[k]; // S_ik <- S_ik - max_j S_ij if( k == nclusters - 1 ) { double max_val = 0; for( j = 0; j < nclusters; j++ ) max_val = MAX( max_val, pp[j] ); for( j = 0; j < nclusters; j++ ) pp[j] -= max_val; } } } CV_CALL(cvExp( probs, probs )); // exp( S_ik ) cvZero( sum_probs ); // alpha_ik = exp( S_ik ) / sum_j exp( S_ij ), // log_likelihood = sum_i log (sum_j exp(S_ij)) for( i = 0, _log_likelihood = likelihood_bias; i < nsamples; i++ ) { double* pp = (double*)(probs->data.ptr + probs->step*i), sum = 0; for( j = 0; j < nclusters; j++ ) sum += pp[j]; sum = 1./MAX( sum, DBL_EPSILON ); for( j = 0; j < nclusters; j++ ) { double p = pp[j] *= sum; sp_data[j] += p; } _log_likelihood -= log( sum ); } // check termination criteria if( fabs( (_log_likelihood - prev_log_likelihood) / prev_log_likelihood ) < params.term_crit.epsilon ) break; prev_log_likelihood = _log_likelihood; } // m-step: update means_k, covs_k and weights_k from probs_ik cvGEMM( probs, samples, 1, 0, 0, means, CV_GEMM_A_T ); for( k = 0; k < nclusters; k++ ) { double sum = sp_data[k], inv_sum = 1./sum; CvMat* cov = covs[k], _mean, _sample; w = cvGetRow( cov_eigen_values, &whdr, k ); w_data = w->data.db; cvGetRow( means, &_mean, k ); cvGetRow( samples, &_sample, k ); // update weights_k weights->data.db[k] = sum; // update means_k cvScale( &_mean, &_mean, inv_sum ); // compute covs_k cvZero( cov ); cvZero( w ); for( i = 0; i < nsamples; i++ ) { double p = probs->data.db[i*nclusters + k]*inv_sum; _sample.data.db = (double*)(samples->data.ptr + samples->step*i); if( is_general ) { cvMulTransposed( &_sample, covs_item, 1, &_mean ); cvScaleAdd( covs_item, cvRealScalar(p), cov, cov ); } else for( j = 0; j < dims; j++ ) { double val = _sample.data.db[j] - _mean.data.db[j]; w_data[is_spherical ? 0 : j] += p*val*val; } } if( is_spherical ) { d = w_data[0]/(double)dims; d = MAX( d, min_variation ); w->data.db[0] = d; log_det->data.db[k] = d; } else { if( is_general ) cvSVD( cov, w, cov_rotate_mats[k], 0, CV_SVD_U_T ); cvMaxS( w, min_variation, w ); for( j = 0, det = 1.; j < dims; j++ ) det *= w_data[j]; log_det->data.db[k] = det; } } cvConvertScale( weights, weights, 1./(double)nsamples, 0 ); cvMaxS( weights, DBL_MIN, weights ); cvLog( log_det, log_det ); if( is_spherical ) cvScale( log_det, log_det, dims ); } // end of iteration process //log_weight_div_det[k] = -2*log(weights_k/det(Sigma_k))^0.5) = -2*log(weights_k) + log(det(Sigma_k))) if( log_weight_div_det ) { cvScale( log_weights, log_weight_div_det, -2 ); cvAdd( log_weight_div_det, log_det, log_weight_div_det ); } /* Now finalize all the covariation matrices: 1) if == COV_MAT_DIAGONAL we used array of as diagonals. Now w[k] should be copied back to the diagonals of covs[k]; 2) if == COV_MAT_SPHERICAL we used the 0-th element of w[k] as an average variation in each cluster. The value of the 0-th element of w[k] should be copied to the all of the diagonal elements of covs[k]. */ if( is_spherical ) { for( k = 0; k < nclusters; k++ ) cvSetIdentity( covs[k], cvScalar(cov_eigen_values->data.db[k])); } else if( is_diagonal ) { for( k = 0; k < nclusters; k++ ) cvTranspose( cvGetRow( cov_eigen_values, &whdr, k ), cvGetDiag( covs[k], &diag )); } cvDiv( 0, cov_eigen_values, inv_eigen_values ); log_likelihood = _log_likelihood; __END__; cvReleaseMat( &log_det ); cvReleaseMat( &log_weights ); cvReleaseMat( &covs_item ); cvReleaseMat( ¢ered_sample ); cvReleaseMat( &cov_eigen_values ); cvReleaseMat( &samples ); cvReleaseMat( &sum_probs ); return log_likelihood; } int CvEM::get_nclusters() const { return params.nclusters; } const CvMat* CvEM::get_means() const { return means; } const CvMat** CvEM::get_covs() const { return (const CvMat**)covs; } const CvMat* CvEM::get_weights() const { return weights; } const CvMat* CvEM::get_probs() const { return probs; } /* End of file. */