// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include // For LONG_MIN, LONG_MAX. #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) #include "bootstrapper.h" #include "codegen.h" #include "debug.h" #include "runtime.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) : Assembler(arg_isolate, buffer, size), generating_stub_(false), allow_stub_calls_(true), has_frame_(false) { if (isolate() != NULL) { code_object_ = Handle(isolate()->heap()->undefined_value(), isolate()); } } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { lw(destination, MemOperand(s6, index << kPointerSizeLog2)); } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index, Condition cond, Register src1, const Operand& src2) { Branch(2, NegateCondition(cond), src1, src2); lw(destination, MemOperand(s6, index << kPointerSizeLog2)); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) { sw(source, MemOperand(s6, index << kPointerSizeLog2)); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index, Condition cond, Register src1, const Operand& src2) { Branch(2, NegateCondition(cond), src1, src2); sw(source, MemOperand(s6, index << kPointerSizeLog2)); } void MacroAssembler::LoadHeapObject(Register result, Handle object) { if (isolate()->heap()->InNewSpace(*object)) { Handle cell = isolate()->factory()->NewJSGlobalPropertyCell(object); li(result, Operand(cell)); lw(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset)); } else { li(result, Operand(object)); } } // Push and pop all registers that can hold pointers. void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of kNumSafepointRegisters values on the // stack, so adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; ASSERT(num_unsaved >= 0); if (num_unsaved > 0) { Subu(sp, sp, Operand(num_unsaved * kPointerSize)); } MultiPush(kSafepointSavedRegisters); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; MultiPop(kSafepointSavedRegisters); if (num_unsaved > 0) { Addu(sp, sp, Operand(num_unsaved * kPointerSize)); } } void MacroAssembler::PushSafepointRegistersAndDoubles() { PushSafepointRegisters(); Subu(sp, sp, Operand(FPURegister::kNumAllocatableRegisters * kDoubleSize)); for (int i = 0; i < FPURegister::kNumAllocatableRegisters; i+=2) { FPURegister reg = FPURegister::FromAllocationIndex(i); sdc1(reg, MemOperand(sp, i * kDoubleSize)); } } void MacroAssembler::PopSafepointRegistersAndDoubles() { for (int i = 0; i < FPURegister::kNumAllocatableRegisters; i+=2) { FPURegister reg = FPURegister::FromAllocationIndex(i); ldc1(reg, MemOperand(sp, i * kDoubleSize)); } Addu(sp, sp, Operand(FPURegister::kNumAllocatableRegisters * kDoubleSize)); PopSafepointRegisters(); } void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst) { sw(src, SafepointRegistersAndDoublesSlot(dst)); } void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { sw(src, SafepointRegisterSlot(dst)); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { lw(dst, SafepointRegisterSlot(src)); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the highest encoding, // which means that lowest encodings are closest to the stack pointer. return kSafepointRegisterStackIndexMap[reg_code]; } MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { UNIMPLEMENTED_MIPS(); // General purpose registers are pushed last on the stack. int doubles_size = FPURegister::kNumAllocatableRegisters * kDoubleSize; int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; return MemOperand(sp, doubles_size + register_offset); } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc, Label* branch) { ASSERT(cc == eq || cc == ne); And(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); Branch(branch, cc, scratch, Operand(ExternalReference::new_space_start(isolate()))); } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { ASSERT(!AreAliased(value, dst, t8, object)); // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. ASSERT(IsAligned(offset, kPointerSize)); Addu(dst, object, Operand(offset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; And(t8, dst, Operand((1 << kPointerSizeLog2) - 1)); Branch(&ok, eq, t8, Operand(zero_reg)); stop("Unaligned cell in write barrier"); bind(&ok); } RecordWrite(object, dst, value, ra_status, save_fp, remembered_set_action, OMIT_SMI_CHECK); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { li(value, Operand(BitCast(kZapValue + 4))); li(dst, Operand(BitCast(kZapValue + 8))); } } // Will clobber 4 registers: object, address, scratch, ip. The // register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite(Register object, Register address, Register value, RAStatus ra_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { ASSERT(!AreAliased(object, address, value, t8)); ASSERT(!AreAliased(object, address, value, t9)); // The compiled code assumes that record write doesn't change the // context register, so we check that none of the clobbered // registers are cp. ASSERT(!address.is(cp) && !value.is(cp)); if (emit_debug_code()) { lw(at, MemOperand(address)); Assert( eq, "Wrong address or value passed to RecordWrite", at, Operand(value)); } Label done; if (smi_check == INLINE_SMI_CHECK) { ASSERT_EQ(0, kSmiTag); JumpIfSmi(value, &done); } CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (ra_status == kRAHasNotBeenSaved) { push(ra); } RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); CallStub(&stub); if (ra_status == kRAHasNotBeenSaved) { pop(ra); } bind(&done); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { li(address, Operand(BitCast(kZapValue + 12))); li(value, Operand(BitCast(kZapValue + 16))); } } void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. Register address, Register scratch, SaveFPRegsMode fp_mode, RememberedSetFinalAction and_then) { Label done; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok); stop("Remembered set pointer is in new space"); bind(&ok); } // Load store buffer top. ExternalReference store_buffer = ExternalReference::store_buffer_top(isolate()); li(t8, Operand(store_buffer)); lw(scratch, MemOperand(t8)); // Store pointer to buffer and increment buffer top. sw(address, MemOperand(scratch)); Addu(scratch, scratch, kPointerSize); // Write back new top of buffer. sw(scratch, MemOperand(t8)); // Call stub on end of buffer. // Check for end of buffer. And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit)); if (and_then == kFallThroughAtEnd) { Branch(&done, eq, t8, Operand(zero_reg)); } else { ASSERT(and_then == kReturnAtEnd); Ret(eq, t8, Operand(zero_reg)); } push(ra); StoreBufferOverflowStub store_buffer_overflow = StoreBufferOverflowStub(fp_mode); CallStub(&store_buffer_overflow); pop(ra); bind(&done); if (and_then == kReturnAtEnd) { Ret(); } } // ----------------------------------------------------------------------------- // Allocation support. void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; ASSERT(!holder_reg.is(scratch)); ASSERT(!holder_reg.is(at)); ASSERT(!scratch.is(at)); // Load current lexical context from the stack frame. lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); // In debug mode, make sure the lexical context is set. #ifdef DEBUG Check(ne, "we should not have an empty lexical context", scratch, Operand(zero_reg)); #endif // Load the global context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; lw(scratch, FieldMemOperand(scratch, offset)); lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check the context is a global context. if (emit_debug_code()) { // TODO(119): Avoid push(holder_reg)/pop(holder_reg). push(holder_reg); // Temporarily save holder on the stack. // Read the first word and compare to the global_context_map. lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); LoadRoot(at, Heap::kGlobalContextMapRootIndex); Check(eq, "JSGlobalObject::global_context should be a global context.", holder_reg, Operand(at)); pop(holder_reg); // Restore holder. } // Check if both contexts are the same. lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); Branch(&same_contexts, eq, scratch, Operand(at)); // Check the context is a global context. if (emit_debug_code()) { // TODO(119): Avoid push(holder_reg)/pop(holder_reg). push(holder_reg); // Temporarily save holder on the stack. mov(holder_reg, at); // Move at to its holding place. LoadRoot(at, Heap::kNullValueRootIndex); Check(ne, "JSGlobalProxy::context() should not be null.", holder_reg, Operand(at)); lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); LoadRoot(at, Heap::kGlobalContextMapRootIndex); Check(eq, "JSGlobalObject::global_context should be a global context.", holder_reg, Operand(at)); // Restore at is not needed. at is reloaded below. pop(holder_reg); // Restore holder. // Restore at to holder's context. lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); } // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; lw(scratch, FieldMemOperand(scratch, token_offset)); lw(at, FieldMemOperand(at, token_offset)); Branch(miss, ne, scratch, Operand(at)); bind(&same_contexts); } void MacroAssembler::GetNumberHash(Register reg0, Register scratch) { // First of all we assign the hash seed to scratch. LoadRoot(scratch, Heap::kHashSeedRootIndex); SmiUntag(scratch); // Xor original key with a seed. xor_(reg0, reg0, scratch); // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); nor(scratch, reg0, zero_reg); sll(at, reg0, 15); addu(reg0, scratch, at); // hash = hash ^ (hash >> 12); srl(at, reg0, 12); xor_(reg0, reg0, at); // hash = hash + (hash << 2); sll(at, reg0, 2); addu(reg0, reg0, at); // hash = hash ^ (hash >> 4); srl(at, reg0, 4); xor_(reg0, reg0, at); // hash = hash * 2057; sll(scratch, reg0, 11); sll(at, reg0, 3); addu(reg0, reg0, at); addu(reg0, reg0, scratch); // hash = hash ^ (hash >> 16); srl(at, reg0, 16); xor_(reg0, reg0, at); } void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements, Register key, Register result, Register reg0, Register reg1, Register reg2) { // Register use: // // elements - holds the slow-case elements of the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // // result - holds the result on exit if the load succeeded. // Allowed to be the same as 'key' or 'result'. // Unchanged on bailout so 'key' or 'result' can be used // in further computation. // // Scratch registers: // // reg0 - holds the untagged key on entry and holds the hash once computed. // // reg1 - Used to hold the capacity mask of the dictionary. // // reg2 - Used for the index into the dictionary. // at - Temporary (avoid MacroAssembler instructions also using 'at'). Label done; GetNumberHash(reg0, reg1); // Compute the capacity mask. lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); sra(reg1, reg1, kSmiTagSize); Subu(reg1, reg1, Operand(1)); // Generate an unrolled loop that performs a few probes before giving up. static const int kProbes = 4; for (int i = 0; i < kProbes; i++) { // Use reg2 for index calculations and keep the hash intact in reg0. mov(reg2, reg0); // Compute the masked index: (hash + i + i * i) & mask. if (i > 0) { Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i))); } and_(reg2, reg2, reg1); // Scale the index by multiplying by the element size. ASSERT(SeededNumberDictionary::kEntrySize == 3); sll(at, reg2, 1); // 2x. addu(reg2, reg2, at); // reg2 = reg2 * 3. // Check if the key is identical to the name. sll(at, reg2, kPointerSizeLog2); addu(reg2, elements, at); lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset)); if (i != kProbes - 1) { Branch(&done, eq, key, Operand(at)); } else { Branch(miss, ne, key, Operand(at)); } } bind(&done); // Check that the value is a normal property. // reg2: elements + (index * kPointerSize). const int kDetailsOffset = SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; lw(reg1, FieldMemOperand(reg2, kDetailsOffset)); And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); Branch(miss, ne, at, Operand(zero_reg)); // Get the value at the masked, scaled index and return. const int kValueOffset = SeededNumberDictionary::kElementsStartOffset + kPointerSize; lw(result, FieldMemOperand(reg2, kValueOffset)); } // --------------------------------------------------------------------------- // Instruction macros. void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { addu(rd, rs, rt.rm()); } else { if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { addiu(rd, rs, rt.imm32_); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); addu(rd, rs, at); } } } void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { subu(rd, rs, rt.rm()); } else { if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm). } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); subu(rd, rs, at); } } } void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant == kLoongson) { mult(rs, rt.rm()); mflo(rd); } else { mul(rd, rs, rt.rm()); } } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); if (kArchVariant == kLoongson) { mult(rs, at); mflo(rd); } else { mul(rd, rs, at); } } } void MacroAssembler::Mult(Register rs, const Operand& rt) { if (rt.is_reg()) { mult(rs, rt.rm()); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); mult(rs, at); } } void MacroAssembler::Multu(Register rs, const Operand& rt) { if (rt.is_reg()) { multu(rs, rt.rm()); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); multu(rs, at); } } void MacroAssembler::Div(Register rs, const Operand& rt) { if (rt.is_reg()) { div(rs, rt.rm()); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); div(rs, at); } } void MacroAssembler::Divu(Register rs, const Operand& rt) { if (rt.is_reg()) { divu(rs, rt.rm()); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); divu(rs, at); } } void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { and_(rd, rs, rt.rm()); } else { if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { andi(rd, rs, rt.imm32_); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); and_(rd, rs, at); } } } void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { or_(rd, rs, rt.rm()); } else { if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { ori(rd, rs, rt.imm32_); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); or_(rd, rs, at); } } } void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { xor_(rd, rs, rt.rm()); } else { if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { xori(rd, rs, rt.imm32_); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); xor_(rd, rs, at); } } } void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { nor(rd, rs, rt.rm()); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); nor(rd, rs, at); } } void MacroAssembler::Neg(Register rs, const Operand& rt) { ASSERT(rt.is_reg()); ASSERT(!at.is(rs)); ASSERT(!at.is(rt.rm())); li(at, -1); xor_(rs, rt.rm(), at); } void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { slt(rd, rs, rt.rm()); } else { if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { slti(rd, rs, rt.imm32_); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); slt(rd, rs, at); } } } void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { sltu(rd, rs, rt.rm()); } else { if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { sltiu(rd, rs, rt.imm32_); } else { // li handles the relocation. ASSERT(!rs.is(at)); li(at, rt); sltu(rd, rs, at); } } } void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) { if (kArchVariant == kMips32r2) { if (rt.is_reg()) { rotrv(rd, rs, rt.rm()); } else { rotr(rd, rs, rt.imm32_); } } else { if (rt.is_reg()) { subu(at, zero_reg, rt.rm()); sllv(at, rs, at); srlv(rd, rs, rt.rm()); or_(rd, rd, at); } else { if (rt.imm32_ == 0) { srl(rd, rs, 0); } else { srl(at, rs, rt.imm32_); sll(rd, rs, (0x20 - rt.imm32_) & 0x1f); or_(rd, rd, at); } } } } //------------Pseudo-instructions------------- void MacroAssembler::li(Register rd, Operand j, LiFlags mode) { ASSERT(!j.is_reg()); BlockTrampolinePoolScope block_trampoline_pool(this); if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) { // Normal load of an immediate value which does not need Relocation Info. if (is_int16(j.imm32_)) { addiu(rd, zero_reg, j.imm32_); } else if (!(j.imm32_ & kHiMask)) { ori(rd, zero_reg, j.imm32_); } else if (!(j.imm32_ & kImm16Mask)) { lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); } else { lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); ori(rd, rd, (j.imm32_ & kImm16Mask)); } } else { if (MustUseReg(j.rmode_)) { RecordRelocInfo(j.rmode_, j.imm32_); } // We always need the same number of instructions as we may need to patch // this code to load another value which may need 2 instructions to load. lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); ori(rd, rd, (j.imm32_ & kImm16Mask)); } } void MacroAssembler::MultiPush(RegList regs) { int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kPointerSize; Subu(sp, sp, Operand(stack_offset)); for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kPointerSize; sw(ToRegister(i), MemOperand(sp, stack_offset)); } } } void MacroAssembler::MultiPushReversed(RegList regs) { int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kPointerSize; Subu(sp, sp, Operand(stack_offset)); for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { stack_offset -= kPointerSize; sw(ToRegister(i), MemOperand(sp, stack_offset)); } } } void MacroAssembler::MultiPop(RegList regs) { int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { lw(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } addiu(sp, sp, stack_offset); } void MacroAssembler::MultiPopReversed(RegList regs) { int16_t stack_offset = 0; for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { lw(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } addiu(sp, sp, stack_offset); } void MacroAssembler::MultiPushFPU(RegList regs) { CpuFeatures::Scope scope(FPU); int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kDoubleSize; Subu(sp, sp, Operand(stack_offset)); for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kDoubleSize; sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); } } } void MacroAssembler::MultiPushReversedFPU(RegList regs) { CpuFeatures::Scope scope(FPU); int16_t num_to_push = NumberOfBitsSet(regs); int16_t stack_offset = num_to_push * kDoubleSize; Subu(sp, sp, Operand(stack_offset)); for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { stack_offset -= kDoubleSize; sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); } } } void MacroAssembler::MultiPopFPU(RegList regs) { CpuFeatures::Scope scope(FPU); int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); stack_offset += kDoubleSize; } } addiu(sp, sp, stack_offset); } void MacroAssembler::MultiPopReversedFPU(RegList regs) { CpuFeatures::Scope scope(FPU); int16_t stack_offset = 0; for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); stack_offset += kDoubleSize; } } addiu(sp, sp, stack_offset); } void MacroAssembler::FlushICache(Register address, unsigned instructions) { RegList saved_regs = kJSCallerSaved | ra.bit(); MultiPush(saved_regs); AllowExternalCallThatCantCauseGC scope(this); // Save to a0 in case address == t0. Move(a0, address); PrepareCallCFunction(2, t0); li(a1, instructions * kInstrSize); CallCFunction(ExternalReference::flush_icache_function(isolate()), 2); MultiPop(saved_regs); } void MacroAssembler::Ext(Register rt, Register rs, uint16_t pos, uint16_t size) { ASSERT(pos < 32); ASSERT(pos + size < 33); if (kArchVariant == kMips32r2) { ext_(rt, rs, pos, size); } else { // Move rs to rt and shift it left then right to get the // desired bitfield on the right side and zeroes on the left. int shift_left = 32 - (pos + size); sll(rt, rs, shift_left); // Acts as a move if shift_left == 0. int shift_right = 32 - size; if (shift_right > 0) { srl(rt, rt, shift_right); } } } void MacroAssembler::Ins(Register rt, Register rs, uint16_t pos, uint16_t size) { ASSERT(pos < 32); ASSERT(pos + size <= 32); ASSERT(size != 0); if (kArchVariant == kMips32r2) { ins_(rt, rs, pos, size); } else { ASSERT(!rt.is(t8) && !rs.is(t8)); Subu(at, zero_reg, Operand(1)); srl(at, at, 32 - size); and_(t8, rs, at); sll(t8, t8, pos); sll(at, at, pos); nor(at, at, zero_reg); and_(at, rt, at); or_(rt, t8, at); } } void MacroAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch) { // Move the data from fs to t8. mfc1(t8, fs); Cvt_d_uw(fd, t8, scratch); } void MacroAssembler::Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch) { // Convert rs to a FP value in fd (and fd + 1). // We do this by converting rs minus the MSB to avoid sign conversion, // then adding 2^31 to the result (if needed). ASSERT(!fd.is(scratch)); ASSERT(!rs.is(t9)); ASSERT(!rs.is(at)); // Save rs's MSB to t9. Ext(t9, rs, 31, 1); // Remove rs's MSB. Ext(at, rs, 0, 31); // Move the result to fd. mtc1(at, fd); // Convert fd to a real FP value. cvt_d_w(fd, fd); Label conversion_done; // If rs's MSB was 0, it's done. // Otherwise we need to add that to the FP register. Branch(&conversion_done, eq, t9, Operand(zero_reg)); // Load 2^31 into f20 as its float representation. li(at, 0x41E00000); mtc1(at, FPURegister::from_code(scratch.code() + 1)); mtc1(zero_reg, scratch); // Add it to fd. add_d(fd, fd, scratch); bind(&conversion_done); } void MacroAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch) { Trunc_uw_d(fs, t8, scratch); mtc1(t8, fd); } void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) { if (kArchVariant == kLoongson && fd.is(fs)) { mfc1(t8, FPURegister::from_code(fs.code() + 1)); trunc_w_d(fd, fs); mtc1(t8, FPURegister::from_code(fs.code() + 1)); } else { trunc_w_d(fd, fs); } } void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) { if (kArchVariant == kLoongson && fd.is(fs)) { mfc1(t8, FPURegister::from_code(fs.code() + 1)); round_w_d(fd, fs); mtc1(t8, FPURegister::from_code(fs.code() + 1)); } else { round_w_d(fd, fs); } } void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) { if (kArchVariant == kLoongson && fd.is(fs)) { mfc1(t8, FPURegister::from_code(fs.code() + 1)); floor_w_d(fd, fs); mtc1(t8, FPURegister::from_code(fs.code() + 1)); } else { floor_w_d(fd, fs); } } void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) { if (kArchVariant == kLoongson && fd.is(fs)) { mfc1(t8, FPURegister::from_code(fs.code() + 1)); ceil_w_d(fd, fs); mtc1(t8, FPURegister::from_code(fs.code() + 1)); } else { ceil_w_d(fd, fs); } } void MacroAssembler::Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch) { ASSERT(!fd.is(scratch)); ASSERT(!rs.is(at)); // Load 2^31 into scratch as its float representation. li(at, 0x41E00000); mtc1(at, FPURegister::from_code(scratch.code() + 1)); mtc1(zero_reg, scratch); // Test if scratch > fd. // If fd < 2^31 we can convert it normally. Label simple_convert; BranchF(&simple_convert, NULL, lt, fd, scratch); // First we subtract 2^31 from fd, then trunc it to rs // and add 2^31 to rs. sub_d(scratch, fd, scratch); trunc_w_d(scratch, scratch); mfc1(rs, scratch); Or(rs, rs, 1 << 31); Label done; Branch(&done); // Simple conversion. bind(&simple_convert); trunc_w_d(scratch, fd); mfc1(rs, scratch); bind(&done); } void MacroAssembler::BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd) { if (cc == al) { Branch(bd, target); return; } ASSERT(nan || target); // Check for unordered (NaN) cases. if (nan) { c(UN, D, cmp1, cmp2); bc1t(nan); } if (target) { // Here NaN cases were either handled by this function or are assumed to // have been handled by the caller. // Unsigned conditions are treated as their signed counterpart. switch (cc) { case Uless: case less: c(OLT, D, cmp1, cmp2); bc1t(target); break; case Ugreater: case greater: c(ULE, D, cmp1, cmp2); bc1f(target); break; case Ugreater_equal: case greater_equal: c(ULT, D, cmp1, cmp2); bc1f(target); break; case Uless_equal: case less_equal: c(OLE, D, cmp1, cmp2); bc1t(target); break; case eq: c(EQ, D, cmp1, cmp2); bc1t(target); break; case ne: c(EQ, D, cmp1, cmp2); bc1f(target); break; default: CHECK(0); }; } if (bd == PROTECT) { nop(); } } void MacroAssembler::Move(FPURegister dst, double imm) { ASSERT(CpuFeatures::IsEnabled(FPU)); static const DoubleRepresentation minus_zero(-0.0); static const DoubleRepresentation zero(0.0); DoubleRepresentation value(imm); // Handle special values first. bool force_load = dst.is(kDoubleRegZero); if (value.bits == zero.bits && !force_load) { mov_d(dst, kDoubleRegZero); } else if (value.bits == minus_zero.bits && !force_load) { neg_d(dst, kDoubleRegZero); } else { uint32_t lo, hi; DoubleAsTwoUInt32(imm, &lo, &hi); // Move the low part of the double into the lower of the corresponding FPU // register of FPU register pair. if (lo != 0) { li(at, Operand(lo)); mtc1(at, dst); } else { mtc1(zero_reg, dst); } // Move the high part of the double into the higher of the corresponding FPU // register of FPU register pair. if (hi != 0) { li(at, Operand(hi)); mtc1(at, dst.high()); } else { mtc1(zero_reg, dst.high()); } } } void MacroAssembler::Movz(Register rd, Register rs, Register rt) { if (kArchVariant == kLoongson) { Label done; Branch(&done, ne, rt, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movz(rd, rs, rt); } } void MacroAssembler::Movn(Register rd, Register rs, Register rt) { if (kArchVariant == kLoongson) { Label done; Branch(&done, eq, rt, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movn(rd, rs, rt); } } void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) { if (kArchVariant == kLoongson) { // Tests an FP condition code and then conditionally move rs to rd. // We do not currently use any FPU cc bit other than bit 0. ASSERT(cc == 0); ASSERT(!(rs.is(t8) || rd.is(t8))); Label done; Register scratch = t8; // For testing purposes we need to fetch content of the FCSR register and // than test its cc (floating point condition code) bit (for cc = 0, it is // 24. bit of the FCSR). cfc1(scratch, FCSR); // For the MIPS I, II and III architectures, the contents of scratch is // UNPREDICTABLE for the instruction immediately following CFC1. nop(); srl(scratch, scratch, 16); andi(scratch, scratch, 0x0080); Branch(&done, eq, scratch, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movt(rd, rs, cc); } } void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) { if (kArchVariant == kLoongson) { // Tests an FP condition code and then conditionally move rs to rd. // We do not currently use any FPU cc bit other than bit 0. ASSERT(cc == 0); ASSERT(!(rs.is(t8) || rd.is(t8))); Label done; Register scratch = t8; // For testing purposes we need to fetch content of the FCSR register and // than test its cc (floating point condition code) bit (for cc = 0, it is // 24. bit of the FCSR). cfc1(scratch, FCSR); // For the MIPS I, II and III architectures, the contents of scratch is // UNPREDICTABLE for the instruction immediately following CFC1. nop(); srl(scratch, scratch, 16); andi(scratch, scratch, 0x0080); Branch(&done, ne, scratch, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movf(rd, rs, cc); } } void MacroAssembler::Clz(Register rd, Register rs) { if (kArchVariant == kLoongson) { ASSERT(!(rd.is(t8) || rd.is(t9)) && !(rs.is(t8) || rs.is(t9))); Register mask = t8; Register scratch = t9; Label loop, end; mov(at, rs); mov(rd, zero_reg); lui(mask, 0x8000); bind(&loop); and_(scratch, at, mask); Branch(&end, ne, scratch, Operand(zero_reg)); addiu(rd, rd, 1); Branch(&loop, ne, mask, Operand(zero_reg), USE_DELAY_SLOT); srl(mask, mask, 1); bind(&end); } else { clz(rd, rs); } } // Tries to get a signed int32 out of a double precision floating point heap // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the // 32bits signed integer range. // This method implementation differs from the ARM version for performance // reasons. void MacroAssembler::ConvertToInt32(Register source, Register dest, Register scratch, Register scratch2, FPURegister double_scratch, Label *not_int32) { Label right_exponent, done; // Get exponent word (ENDIAN issues). lw(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); // Get exponent alone in scratch2. And(scratch2, scratch, Operand(HeapNumber::kExponentMask)); // Load dest with zero. We use this either for the final shift or // for the answer. mov(dest, zero_reg); // Check whether the exponent matches a 32 bit signed int that is not a Smi. // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is // the exponent that we are fastest at and also the highest exponent we can // handle here. const uint32_t non_smi_exponent = (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; // If we have a match of the int32-but-not-Smi exponent then skip some logic. Branch(&right_exponent, eq, scratch2, Operand(non_smi_exponent)); // If the exponent is higher than that then go to not_int32 case. This // catches numbers that don't fit in a signed int32, infinities and NaNs. Branch(not_int32, gt, scratch2, Operand(non_smi_exponent)); // We know the exponent is smaller than 30 (biased). If it is less than // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e. // it rounds to zero. const uint32_t zero_exponent = (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; Subu(scratch2, scratch2, Operand(zero_exponent)); // Dest already has a Smi zero. Branch(&done, lt, scratch2, Operand(zero_reg)); if (!CpuFeatures::IsSupported(FPU)) { // We have a shifted exponent between 0 and 30 in scratch2. srl(dest, scratch2, HeapNumber::kExponentShift); // We now have the exponent in dest. Subtract from 30 to get // how much to shift down. li(at, Operand(30)); subu(dest, at, dest); } bind(&right_exponent); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // MIPS FPU instructions implementing double precision to integer // conversion using round to zero. Since the FP value was qualified // above, the resulting integer should be a legal int32. // The original 'Exponent' word is still in scratch. lwc1(double_scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); mtc1(scratch, FPURegister::from_code(double_scratch.code() + 1)); trunc_w_d(double_scratch, double_scratch); mfc1(dest, double_scratch); } else { // On entry, dest has final downshift, scratch has original sign/exp/mant. // Save sign bit in top bit of dest. And(scratch2, scratch, Operand(0x80000000)); Or(dest, dest, Operand(scratch2)); // Put back the implicit 1, just above mantissa field. Or(scratch, scratch, Operand(1 << HeapNumber::kExponentShift)); // Shift up the mantissa bits to take up the space the exponent used to // take. We just orred in the implicit bit so that took care of one and // we want to leave the sign bit 0 so we subtract 2 bits from the shift // distance. But we want to clear the sign-bit so shift one more bit // left, then shift right one bit. const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; sll(scratch, scratch, shift_distance + 1); srl(scratch, scratch, 1); // Get the second half of the double. For some exponents we don't // actually need this because the bits get shifted out again, but // it's probably slower to test than just to do it. lw(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset)); // Extract the top 10 bits, and insert those bottom 10 bits of scratch. // The width of the field here is the same as the shift amount above. const int field_width = shift_distance; Ext(scratch2, scratch2, 32-shift_distance, field_width); Ins(scratch, scratch2, 0, field_width); // Move down according to the exponent. srlv(scratch, scratch, dest); // Prepare the negative version of our integer. subu(scratch2, zero_reg, scratch); // Trick to check sign bit (msb) held in dest, count leading zero. // 0 indicates negative, save negative version with conditional move. Clz(dest, dest); Movz(scratch, scratch2, dest); mov(dest, scratch); } bind(&done); } void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode, FPURegister result, DoubleRegister double_input, Register scratch1, Register except_flag, CheckForInexactConversion check_inexact) { ASSERT(CpuFeatures::IsSupported(FPU)); CpuFeatures::Scope scope(FPU); int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions. if (check_inexact == kDontCheckForInexactConversion) { // Ingore inexact exceptions. except_mask &= ~kFCSRInexactFlagMask; } // Save FCSR. cfc1(scratch1, FCSR); // Disable FPU exceptions. ctc1(zero_reg, FCSR); // Do operation based on rounding mode. switch (rounding_mode) { case kRoundToNearest: Round_w_d(result, double_input); break; case kRoundToZero: Trunc_w_d(result, double_input); break; case kRoundToPlusInf: Ceil_w_d(result, double_input); break; case kRoundToMinusInf: Floor_w_d(result, double_input); break; } // End of switch-statement. // Retrieve FCSR. cfc1(except_flag, FCSR); // Restore FCSR. ctc1(scratch1, FCSR); // Check for fpu exceptions. And(except_flag, except_flag, Operand(except_mask)); } void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result, Register input_high, Register input_low, Register scratch) { Label done, normal_exponent, restore_sign; // Extract the biased exponent in result. Ext(result, input_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Check for Infinity and NaNs, which should return 0. Subu(scratch, result, HeapNumber::kExponentMask); Movz(result, zero_reg, scratch); Branch(&done, eq, scratch, Operand(zero_reg)); // Express exponent as delta to (number of mantissa bits + 31). Subu(result, result, Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); // If the delta is strictly positive, all bits would be shifted away, // which means that we can return 0. Branch(&normal_exponent, le, result, Operand(zero_reg)); mov(result, zero_reg); Branch(&done); bind(&normal_exponent); const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; // Calculate shift. Addu(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits)); // Save the sign. Register sign = result; result = no_reg; And(sign, input_high, Operand(HeapNumber::kSignMask)); // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need // to check for this specific case. Label high_shift_needed, high_shift_done; Branch(&high_shift_needed, lt, scratch, Operand(32)); mov(input_high, zero_reg); Branch(&high_shift_done); bind(&high_shift_needed); // Set the implicit 1 before the mantissa part in input_high. Or(input_high, input_high, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); // Shift the mantissa bits to the correct position. // We don't need to clear non-mantissa bits as they will be shifted away. // If they weren't, it would mean that the answer is in the 32bit range. sllv(input_high, input_high, scratch); bind(&high_shift_done); // Replace the shifted bits with bits from the lower mantissa word. Label pos_shift, shift_done; li(at, 32); subu(scratch, at, scratch); Branch(&pos_shift, ge, scratch, Operand(zero_reg)); // Negate scratch. Subu(scratch, zero_reg, scratch); sllv(input_low, input_low, scratch); Branch(&shift_done); bind(&pos_shift); srlv(input_low, input_low, scratch); bind(&shift_done); Or(input_high, input_high, Operand(input_low)); // Restore sign if necessary. mov(scratch, sign); result = sign; sign = no_reg; Subu(result, zero_reg, input_high); Movz(result, input_high, scratch); bind(&done); } void MacroAssembler::EmitECMATruncate(Register result, FPURegister double_input, FPURegister single_scratch, Register scratch, Register scratch2, Register scratch3) { CpuFeatures::Scope scope(FPU); ASSERT(!scratch2.is(result)); ASSERT(!scratch3.is(result)); ASSERT(!scratch3.is(scratch2)); ASSERT(!scratch.is(result) && !scratch.is(scratch2) && !scratch.is(scratch3)); ASSERT(!single_scratch.is(double_input)); Label done; Label manual; // Clear cumulative exception flags and save the FCSR. cfc1(scratch2, FCSR); ctc1(zero_reg, FCSR); // Try a conversion to a signed integer. trunc_w_d(single_scratch, double_input); mfc1(result, single_scratch); // Retrieve and restore the FCSR. cfc1(scratch, FCSR); ctc1(scratch2, FCSR); // Check for overflow and NaNs. And(scratch, scratch, kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); // If we had no exceptions we are done. Branch(&done, eq, scratch, Operand(zero_reg)); // Load the double value and perform a manual truncation. Register input_high = scratch2; Register input_low = scratch3; Move(input_low, input_high, double_input); EmitOutOfInt32RangeTruncate(result, input_high, input_low, scratch); bind(&done); } void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits) { Ext(dst, src, kSmiTagSize, num_least_bits); } void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src, int num_least_bits) { And(dst, src, Operand((1 << num_least_bits) - 1)); } // Emulated condtional branches do not emit a nop in the branch delay slot. // // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. #define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT( \ (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \ (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg)))) void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { BranchShort(offset, bdslot); } void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BranchShort(offset, cond, rs, rt, bdslot); } void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchShort(L, bdslot); } else { Jr(L, bdslot); } } else { if (is_trampoline_emitted()) { Jr(L, bdslot); } else { BranchShort(L, bdslot); } } } void MacroAssembler::Branch(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchShort(L, cond, rs, rt, bdslot); } else { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jr(L, bdslot); bind(&skip); } } else { if (is_trampoline_emitted()) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jr(L, bdslot); bind(&skip); } else { BranchShort(L, cond, rs, rt, bdslot); } } } void MacroAssembler::Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index, BranchDelaySlot bdslot) { LoadRoot(at, index); Branch(L, cond, rs, Operand(at), bdslot); } void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) { b(offset); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); ASSERT(!rs.is(zero_reg)); Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or // rt. r2 = rt.rm_; switch (cond) { case cc_always: b(offset); break; case eq: beq(rs, r2, offset); break; case ne: bne(rs, r2, offset); break; // Signed comparison. case greater: if (r2.is(zero_reg)) { bgtz(rs, offset); } else { slt(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case greater_equal: if (r2.is(zero_reg)) { bgez(rs, offset); } else { slt(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case less: if (r2.is(zero_reg)) { bltz(rs, offset); } else { slt(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case less_equal: if (r2.is(zero_reg)) { blez(rs, offset); } else { slt(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; // Unsigned comparison. case Ugreater: if (r2.is(zero_reg)) { bgtz(rs, offset); } else { sltu(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (r2.is(zero_reg)) { bgez(rs, offset); } else { sltu(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case Uless: if (r2.is(zero_reg)) { // No code needs to be emitted. return; } else { sltu(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (r2.is(zero_reg)) { b(offset); } else { sltu(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } else { // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. switch (cond) { case cc_always: b(offset); break; case eq: // We don't want any other register but scratch clobbered. ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); beq(rs, r2, offset); break; case ne: // We don't want any other register but scratch clobbered. ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); bne(rs, r2, offset); break; // Signed comparison. case greater: if (rt.imm32_ == 0) { bgtz(rs, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case greater_equal: if (rt.imm32_ == 0) { bgez(rs, offset); } else if (is_int16(rt.imm32_)) { slti(scratch, rs, rt.imm32_); beq(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case less: if (rt.imm32_ == 0) { bltz(rs, offset); } else if (is_int16(rt.imm32_)) { slti(scratch, rs, rt.imm32_); bne(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case less_equal: if (rt.imm32_ == 0) { blez(rs, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; // Unsigned comparison. case Ugreater: if (rt.imm32_ == 0) { bgtz(rs, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (rt.imm32_ == 0) { bgez(rs, offset); } else if (is_int16(rt.imm32_)) { sltiu(scratch, rs, rt.imm32_); beq(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case Uless: if (rt.imm32_ == 0) { // No code needs to be emitted. return; } else if (is_int16(rt.imm32_)) { sltiu(scratch, rs, rt.imm32_); bne(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (rt.imm32_ == 0) { b(offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) { // We use branch_offset as an argument for the branch instructions to be sure // it is called just before generating the branch instruction, as needed. b(shifted_branch_offset(L, false)); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); int32_t offset; Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { r2 = rt.rm_; // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); b(offset); break; case eq: offset = shifted_branch_offset(L, false); beq(rs, r2, offset); break; case ne: offset = shifted_branch_offset(L, false); bne(rs, r2, offset); break; // Signed comparison. case greater: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case greater_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else { slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case less: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bltz(rs, offset); } else { slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case less_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); blez(rs, offset); } else { slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; // Unsigned comparison. case Ugreater: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else { sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case Uless: if (r2.is(zero_reg)) { // No code needs to be emitted. return; } else { sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); b(offset); } else { sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } else { // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); b(offset); break; case eq: ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); offset = shifted_branch_offset(L, false); beq(rs, r2, offset); break; case ne: ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); offset = shifted_branch_offset(L, false); bne(rs, r2, offset); break; // Signed comparison. case greater: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case greater_equal: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else if (is_int16(rt.imm32_)) { slti(scratch, rs, rt.imm32_); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } else { ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case less: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bltz(rs, offset); } else if (is_int16(rt.imm32_)) { slti(scratch, rs, rt.imm32_); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } else { ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case less_equal: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); blez(rs, offset); } else { ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; // Unsigned comparison. case Ugreater: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else if (is_int16(rt.imm32_)) { sltiu(scratch, rs, rt.imm32_); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } else { ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case Uless: if (rt.imm32_ == 0) { // No code needs to be emitted. return; } else if (is_int16(rt.imm32_)) { sltiu(scratch, rs, rt.imm32_); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } else { ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (rt.imm32_ == 0) { offset = shifted_branch_offset(L, false); b(offset); } else { ASSERT(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } // Check that offset could actually hold on an int16_t. ASSERT(is_int16(offset)); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) { BranchAndLinkShort(offset, bdslot); } void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BranchAndLinkShort(offset, cond, rs, rt, bdslot); } void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchAndLinkShort(L, bdslot); } else { Jalr(L, bdslot); } } else { if (is_trampoline_emitted()) { Jalr(L, bdslot); } else { BranchAndLinkShort(L, bdslot); } } } void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchAndLinkShort(L, cond, rs, rt, bdslot); } else { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jalr(L, bdslot); bind(&skip); } } else { if (is_trampoline_emitted()) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jalr(L, bdslot); bind(&skip); } else { BranchAndLinkShort(L, cond, rs, rt, bdslot); } } } // We need to use a bgezal or bltzal, but they can't be used directly with the // slt instructions. We could use sub or add instead but we would miss overflow // cases, so we keep slt and add an intermediate third instruction. void MacroAssembler::BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot) { bal(offset); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { r2 = rt.rm_; } else if (cond != cc_always) { r2 = scratch; li(r2, rt); } switch (cond) { case cc_always: bal(offset); break; case eq: bne(rs, r2, 2); nop(); bal(offset); break; case ne: beq(rs, r2, 2); nop(); bal(offset); break; // Signed comparison. case greater: slt(scratch, r2, rs); addiu(scratch, scratch, -1); bgezal(scratch, offset); break; case greater_equal: slt(scratch, rs, r2); addiu(scratch, scratch, -1); bltzal(scratch, offset); break; case less: slt(scratch, rs, r2); addiu(scratch, scratch, -1); bgezal(scratch, offset); break; case less_equal: slt(scratch, r2, rs); addiu(scratch, scratch, -1); bltzal(scratch, offset); break; // Unsigned comparison. case Ugreater: sltu(scratch, r2, rs); addiu(scratch, scratch, -1); bgezal(scratch, offset); break; case Ugreater_equal: sltu(scratch, rs, r2); addiu(scratch, scratch, -1); bltzal(scratch, offset); break; case Uless: sltu(scratch, rs, r2); addiu(scratch, scratch, -1); bgezal(scratch, offset); break; case Uless_equal: sltu(scratch, r2, rs); addiu(scratch, scratch, -1); bltzal(scratch, offset); break; default: UNREACHABLE(); } // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) { bal(shifted_branch_offset(L, false)); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); int32_t offset; Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { r2 = rt.rm_; } else if (cond != cc_always) { r2 = scratch; li(r2, rt); } switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); bal(offset); break; case eq: bne(rs, r2, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case ne: beq(rs, r2, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; // Signed comparison. case greater: slt(scratch, r2, rs); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bgezal(scratch, offset); break; case greater_equal: slt(scratch, rs, r2); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bltzal(scratch, offset); break; case less: slt(scratch, rs, r2); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bgezal(scratch, offset); break; case less_equal: slt(scratch, r2, rs); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bltzal(scratch, offset); break; // Unsigned comparison. case Ugreater: sltu(scratch, r2, rs); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bgezal(scratch, offset); break; case Ugreater_equal: sltu(scratch, rs, r2); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bltzal(scratch, offset); break; case Uless: sltu(scratch, rs, r2); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bgezal(scratch, offset); break; case Uless_equal: sltu(scratch, r2, rs); addiu(scratch, scratch, -1); offset = shifted_branch_offset(L, false); bltzal(scratch, offset); break; default: UNREACHABLE(); } // Check that offset could actually hold on an int16_t. ASSERT(is_int16(offset)); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::Jump(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); if (cond == cc_always) { jr(target); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jr(target); } // Emit a nop in the branch delay slot if required. if (bd == PROTECT) nop(); } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { Label skip; if (cond != cc_always) { Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt); } // The first instruction of 'li' may be placed in the delay slot. // This is not an issue, t9 is expected to be clobbered anyway. li(t9, Operand(target, rmode)); Jump(t9, al, zero_reg, Operand(zero_reg), bd); bind(&skip); } void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { ASSERT(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast(target), rmode, cond, rs, rt, bd); } void MacroAssembler::Jump(Handle code, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { ASSERT(RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast(code.location()), rmode, cond, rs, rt, bd); } int MacroAssembler::CallSize(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { int size = 0; if (cond == cc_always) { size += 1; } else { size += 3; } if (bd == PROTECT) size += 1; return size * kInstrSize; } // Note: To call gcc-compiled C code on mips, you must call thru t9. void MacroAssembler::Call(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); if (cond == cc_always) { jalr(target); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jalr(target); } // Emit a nop in the branch delay slot if required. if (bd == PROTECT) nop(); ASSERT_EQ(CallSize(target, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { int size = CallSize(t9, cond, rs, rt, bd); return size + 2 * kInstrSize; } void MacroAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); int32_t target_int = reinterpret_cast(target); // Must record previous source positions before the // li() generates a new code target. positions_recorder()->WriteRecordedPositions(); li(t9, Operand(target_int, rmode), CONSTANT_SIZE); Call(t9, cond, rs, rt, bd); ASSERT_EQ(CallSize(target, rmode, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Handle code, RelocInfo::Mode rmode, unsigned ast_id, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { return CallSize(reinterpret_cast
(code.location()), rmode, cond, rs, rt, bd); } void MacroAssembler::Call(Handle code, RelocInfo::Mode rmode, unsigned ast_id, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); ASSERT(RelocInfo::IsCodeTarget(rmode)); if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) { SetRecordedAstId(ast_id); rmode = RelocInfo::CODE_TARGET_WITH_ID; } Call(reinterpret_cast
(code.location()), rmode, cond, rs, rt, bd); ASSERT_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::Ret(Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { Jump(ra, cond, rs, rt, bd); } void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) { BlockTrampolinePoolScope block_trampoline_pool(this); uint32_t imm28; imm28 = jump_address(L); imm28 &= kImm28Mask; { BlockGrowBufferScope block_buf_growth(this); // Buffer growth (and relocation) must be blocked for internal references // until associated instructions are emitted and available to be patched. RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); j(imm28); } // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) { BlockTrampolinePoolScope block_trampoline_pool(this); uint32_t imm32; imm32 = jump_address(L); { BlockGrowBufferScope block_buf_growth(this); // Buffer growth (and relocation) must be blocked for internal references // until associated instructions are emitted and available to be patched. RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); lui(at, (imm32 & kHiMask) >> kLuiShift); ori(at, at, (imm32 & kImm16Mask)); } jr(at); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) { BlockTrampolinePoolScope block_trampoline_pool(this); uint32_t imm32; imm32 = jump_address(L); { BlockGrowBufferScope block_buf_growth(this); // Buffer growth (and relocation) must be blocked for internal references // until associated instructions are emitted and available to be patched. RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); lui(at, (imm32 & kHiMask) >> kLuiShift); ori(at, at, (imm32 & kImm16Mask)); } jalr(at); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void MacroAssembler::DropAndRet(int drop) { Ret(USE_DELAY_SLOT); addiu(sp, sp, drop * kPointerSize); } void MacroAssembler::DropAndRet(int drop, Condition cond, Register r1, const Operand& r2) { // Both Drop and Ret need to be conditional. Label skip; if (cond != cc_always) { Branch(&skip, NegateCondition(cond), r1, r2); } Drop(drop); Ret(); if (cond != cc_always) { bind(&skip); } } void MacroAssembler::Drop(int count, Condition cond, Register reg, const Operand& op) { if (count <= 0) { return; } Label skip; if (cond != al) { Branch(&skip, NegateCondition(cond), reg, op); } addiu(sp, sp, count * kPointerSize); if (cond != al) { bind(&skip); } } void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) { if (scratch.is(no_reg)) { Xor(reg1, reg1, Operand(reg2)); Xor(reg2, reg2, Operand(reg1)); Xor(reg1, reg1, Operand(reg2)); } else { mov(scratch, reg1); mov(reg1, reg2); mov(reg2, scratch); } } void MacroAssembler::Call(Label* target) { BranchAndLink(target); } void MacroAssembler::Push(Handle handle) { li(at, Operand(handle)); push(at); } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::DebugBreak() { PrepareCEntryArgs(0); PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate())); CEntryStub ces(1); ASSERT(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } #endif // ENABLE_DEBUGGER_SUPPORT // --------------------------------------------------------------------------- // Exception handling. void MacroAssembler::PushTryHandler(StackHandler::Kind kind, int handler_index) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // For the JSEntry handler, we must preserve a0-a3 and s0. // t1-t3 are available. We will build up the handler from the bottom by // pushing on the stack. // Set up the code object (t1) and the state (t2) for pushing. unsigned state = StackHandler::IndexField::encode(handler_index) | StackHandler::KindField::encode(kind); li(t1, Operand(CodeObject()), CONSTANT_SIZE); li(t2, Operand(state)); // Push the frame pointer, context, state, and code object. if (kind == StackHandler::JS_ENTRY) { ASSERT_EQ(Smi::FromInt(0), 0); // The second zero_reg indicates no context. // The first zero_reg is the NULL frame pointer. // The operands are reversed to match the order of MultiPush/Pop. Push(zero_reg, zero_reg, t2, t1); } else { MultiPush(t1.bit() | t2.bit() | cp.bit() | fp.bit()); } // Link the current handler as the next handler. li(t2, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); lw(t1, MemOperand(t2)); push(t1); // Set this new handler as the current one. sw(sp, MemOperand(t2)); } void MacroAssembler::PopTryHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(a1); Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); sw(a1, MemOperand(at)); } void MacroAssembler::JumpToHandlerEntry() { // Compute the handler entry address and jump to it. The handler table is // a fixed array of (smi-tagged) code offsets. // v0 = exception, a1 = code object, a2 = state. lw(a3, FieldMemOperand(a1, Code::kHandlerTableOffset)); // Handler table. Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); srl(a2, a2, StackHandler::kKindWidth); // Handler index. sll(a2, a2, kPointerSizeLog2); Addu(a2, a3, a2); lw(a2, MemOperand(a2)); // Smi-tagged offset. Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start. sra(t9, a2, kSmiTagSize); Addu(t9, t9, a1); Jump(t9); // Jump. } void MacroAssembler::Throw(Register value) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // The exception is expected in v0. Move(v0, value); // Drop the stack pointer to the top of the top handler. li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); lw(sp, MemOperand(a3)); // Restore the next handler. pop(a2); sw(a2, MemOperand(a3)); // Get the code object (a1) and state (a2). Restore the context and frame // pointer. MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); // If the handler is a JS frame, restore the context to the frame. // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp // or cp. Label done; Branch(&done, eq, cp, Operand(zero_reg)); sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); bind(&done); JumpToHandlerEntry(); } void MacroAssembler::ThrowUncatchable(Register value) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // The exception is expected in v0. if (!value.is(v0)) { mov(v0, value); } // Drop the stack pointer to the top of the top stack handler. li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); lw(sp, MemOperand(a3)); // Unwind the handlers until the ENTRY handler is found. Label fetch_next, check_kind; jmp(&check_kind); bind(&fetch_next); lw(sp, MemOperand(sp, StackHandlerConstants::kNextOffset)); bind(&check_kind); STATIC_ASSERT(StackHandler::JS_ENTRY == 0); lw(a2, MemOperand(sp, StackHandlerConstants::kStateOffset)); And(a2, a2, Operand(StackHandler::KindField::kMask)); Branch(&fetch_next, ne, a2, Operand(zero_reg)); // Set the top handler address to next handler past the top ENTRY handler. pop(a2); sw(a2, MemOperand(a3)); // Get the code object (a1) and state (a2). Clear the context and frame // pointer (0 was saved in the handler). MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); JumpToHandlerEntry(); } void MacroAssembler::AllocateInNewSpace(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. li(result, 0x7091); li(scratch1, 0x7191); li(scratch2, 0x7291); } jmp(gc_required); return; } ASSERT(!result.is(scratch1)); ASSERT(!result.is(scratch2)); ASSERT(!scratch1.is(scratch2)); ASSERT(!scratch1.is(t9)); ASSERT(!scratch2.is(t9)); ASSERT(!result.is(t9)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } ASSERT_EQ(0, object_size & kObjectAlignmentMask); // Check relative positions of allocation top and limit addresses. // ARM adds additional checks to make sure the ldm instruction can be // used. On MIPS we don't have ldm so we don't need additional checks either. ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); intptr_t top = reinterpret_cast(new_space_allocation_top.address()); intptr_t limit = reinterpret_cast(new_space_allocation_limit.address()); ASSERT((limit - top) == kPointerSize); // Set up allocation top address and object size registers. Register topaddr = scratch1; Register obj_size_reg = scratch2; li(topaddr, Operand(new_space_allocation_top)); li(obj_size_reg, Operand(object_size)); // This code stores a temporary value in t9. if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into t9. lw(result, MemOperand(topaddr)); lw(t9, MemOperand(topaddr, kPointerSize)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. t9 is used // immediately below so this use of t9 does not cause difference with // respect to register content between debug and release mode. lw(t9, MemOperand(topaddr)); Check(eq, "Unexpected allocation top", result, Operand(t9)); } // Load allocation limit into t9. Result already contains allocation top. lw(t9, MemOperand(topaddr, limit - top)); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Addu(scratch2, result, Operand(obj_size_reg)); Branch(gc_required, Ugreater, scratch2, Operand(t9)); sw(scratch2, MemOperand(topaddr)); // Tag object if requested. if ((flags & TAG_OBJECT) != 0) { Addu(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(Register object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. li(result, 0x7091); li(scratch1, 0x7191); li(scratch2, 0x7291); } jmp(gc_required); return; } ASSERT(!result.is(scratch1)); ASSERT(!result.is(scratch2)); ASSERT(!scratch1.is(scratch2)); ASSERT(!object_size.is(t9)); ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); // Check relative positions of allocation top and limit addresses. // ARM adds additional checks to make sure the ldm instruction can be // used. On MIPS we don't have ldm so we don't need additional checks either. ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); intptr_t top = reinterpret_cast(new_space_allocation_top.address()); intptr_t limit = reinterpret_cast(new_space_allocation_limit.address()); ASSERT((limit - top) == kPointerSize); // Set up allocation top address and object size registers. Register topaddr = scratch1; li(topaddr, Operand(new_space_allocation_top)); // This code stores a temporary value in t9. if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into t9. lw(result, MemOperand(topaddr)); lw(t9, MemOperand(topaddr, kPointerSize)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. t9 is used // immediately below so this use of t9 does not cause difference with // respect to register content between debug and release mode. lw(t9, MemOperand(topaddr)); Check(eq, "Unexpected allocation top", result, Operand(t9)); } // Load allocation limit into t9. Result already contains allocation top. lw(t9, MemOperand(topaddr, limit - top)); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Object size may be in words so a shift is // required to get the number of bytes. if ((flags & SIZE_IN_WORDS) != 0) { sll(scratch2, object_size, kPointerSizeLog2); Addu(scratch2, result, scratch2); } else { Addu(scratch2, result, Operand(object_size)); } Branch(gc_required, Ugreater, scratch2, Operand(t9)); // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { And(t9, scratch2, Operand(kObjectAlignmentMask)); Check(eq, "Unaligned allocation in new space", t9, Operand(zero_reg)); } sw(scratch2, MemOperand(topaddr)); // Tag object if requested. if ((flags & TAG_OBJECT) != 0) { Addu(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::UndoAllocationInNewSpace(Register object, Register scratch) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Make sure the object has no tag before resetting top. And(object, object, Operand(~kHeapObjectTagMask)); #ifdef DEBUG // Check that the object un-allocated is below the current top. li(scratch, Operand(new_space_allocation_top)); lw(scratch, MemOperand(scratch)); Check(less, "Undo allocation of non allocated memory", object, Operand(scratch)); #endif // Write the address of the object to un-allocate as the current top. li(scratch, Operand(new_space_allocation_top)); sw(object, MemOperand(scratch)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); sll(scratch1, length, 1); // Length in bytes, not chars. addiu(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); // Allocate two-byte string in new space. AllocateInNewSpace(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string // while observing object alignment. ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); ASSERT(kCharSize == 1); addiu(scratch1, length, kObjectAlignmentMask + SeqAsciiString::kHeaderSize); And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); // Allocate ASCII string in new space. AllocateInNewSpace(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kAsciiStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateAsciiConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsAsciiStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateAsciiSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedAsciiStringMapRootIndex, scratch1, scratch2); } // Allocates a heap number or jumps to the label if the young space is full and // a scavenge is needed. void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* need_gc) { // Allocate an object in the heap for the heap number and tag it as a heap // object. AllocateInNewSpace(HeapNumber::kSize, result, scratch1, scratch2, need_gc, TAG_OBJECT); // Store heap number map in the allocated object. AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); } void MacroAssembler::AllocateHeapNumberWithValue(Register result, FPURegister value, Register scratch1, Register scratch2, Label* gc_required) { LoadRoot(t8, Heap::kHeapNumberMapRootIndex); AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required); sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); } // Copies a fixed number of fields of heap objects from src to dst. void MacroAssembler::CopyFields(Register dst, Register src, RegList temps, int field_count) { ASSERT((temps & dst.bit()) == 0); ASSERT((temps & src.bit()) == 0); // Primitive implementation using only one temporary register. Register tmp = no_reg; // Find a temp register in temps list. for (int i = 0; i < kNumRegisters; i++) { if ((temps & (1 << i)) != 0) { tmp.code_ = i; break; } } ASSERT(!tmp.is(no_reg)); for (int i = 0; i < field_count; i++) { lw(tmp, FieldMemOperand(src, i * kPointerSize)); sw(tmp, FieldMemOperand(dst, i * kPointerSize)); } } void MacroAssembler::CopyBytes(Register src, Register dst, Register length, Register scratch) { Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done; // Align src before copying in word size chunks. bind(&align_loop); Branch(&done, eq, length, Operand(zero_reg)); bind(&align_loop_1); And(scratch, src, kPointerSize - 1); Branch(&word_loop, eq, scratch, Operand(zero_reg)); lbu(scratch, MemOperand(src)); Addu(src, src, 1); sb(scratch, MemOperand(dst)); Addu(dst, dst, 1); Subu(length, length, Operand(1)); Branch(&byte_loop_1, ne, length, Operand(zero_reg)); // Copy bytes in word size chunks. bind(&word_loop); if (emit_debug_code()) { And(scratch, src, kPointerSize - 1); Assert(eq, "Expecting alignment for CopyBytes", scratch, Operand(zero_reg)); } Branch(&byte_loop, lt, length, Operand(kPointerSize)); lw(scratch, MemOperand(src)); Addu(src, src, kPointerSize); // TODO(kalmard) check if this can be optimized to use sw in most cases. // Can't use unaligned access - copy byte by byte. sb(scratch, MemOperand(dst, 0)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 1)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 2)); srl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 3)); Addu(dst, dst, 4); Subu(length, length, Operand(kPointerSize)); Branch(&word_loop); // Copy the last bytes if any left. bind(&byte_loop); Branch(&done, eq, length, Operand(zero_reg)); bind(&byte_loop_1); lbu(scratch, MemOperand(src)); Addu(src, src, 1); sb(scratch, MemOperand(dst)); Addu(dst, dst, 1); Subu(length, length, Operand(1)); Branch(&byte_loop_1, ne, length, Operand(zero_reg)); bind(&done); } void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, Register end_offset, Register filler) { Label loop, entry; Branch(&entry); bind(&loop); sw(filler, MemOperand(start_offset)); Addu(start_offset, start_offset, kPointerSize); bind(&entry); Branch(&loop, lt, start_offset, Operand(end_offset)); } void MacroAssembler::CheckFastElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); STATIC_ASSERT(FAST_ELEMENTS == 1); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastElementValue)); } void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); STATIC_ASSERT(FAST_ELEMENTS == 1); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, ls, scratch, Operand(Map::kMaximumBitField2FastSmiOnlyElementValue)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastElementValue)); } void MacroAssembler::CheckFastSmiOnlyElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastSmiOnlyElementValue)); } void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register receiver_reg, Register elements_reg, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* fail) { Label smi_value, maybe_nan, have_double_value, is_nan, done; Register mantissa_reg = scratch2; Register exponent_reg = scratch3; // Handle smi values specially. JumpIfSmi(value_reg, &smi_value); // Ensure that the object is a heap number CheckMap(value_reg, scratch1, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000 // in the exponent. li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32)); lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1)); lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); bind(&have_double_value); sll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize); Addu(scratch1, scratch1, elements_reg); sw(mantissa_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize)); uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); sw(exponent_reg, FieldMemOperand(scratch1, offset)); jmp(&done); bind(&maybe_nan); // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise // it's an Infinity, and the non-NaN code path applies. Branch(&is_nan, gt, exponent_reg, Operand(scratch1)); lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg)); bind(&is_nan); // Load canonical NaN for storing into the double array. uint64_t nan_int64 = BitCast( FixedDoubleArray::canonical_not_the_hole_nan_as_double()); li(mantissa_reg, Operand(static_cast(nan_int64))); li(exponent_reg, Operand(static_cast(nan_int64 >> 32))); jmp(&have_double_value); bind(&smi_value); Addu(scratch1, elements_reg, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize); Addu(scratch1, scratch1, scratch2); // scratch1 is now effective address of the double element FloatingPointHelper::Destination destination; if (CpuFeatures::IsSupported(FPU)) { destination = FloatingPointHelper::kFPURegisters; } else { destination = FloatingPointHelper::kCoreRegisters; } Register untagged_value = receiver_reg; SmiUntag(untagged_value, value_reg); FloatingPointHelper::ConvertIntToDouble(this, untagged_value, destination, f0, mantissa_reg, exponent_reg, scratch4, f2); if (destination == FloatingPointHelper::kFPURegisters) { CpuFeatures::Scope scope(FPU); sdc1(f0, MemOperand(scratch1, 0)); } else { sw(mantissa_reg, MemOperand(scratch1, 0)); sw(exponent_reg, MemOperand(scratch1, Register::kSizeInBytes)); } bind(&done); } void MacroAssembler::CompareMapAndBranch(Register obj, Register scratch, Handle map, Label* early_success, Condition cond, Label* branch_to, CompareMapMode mode) { lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); Operand right = Operand(map); if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) { Map* transitioned_fast_element_map( map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL)); ASSERT(transitioned_fast_element_map == NULL || map->elements_kind() != FAST_ELEMENTS); if (transitioned_fast_element_map != NULL) { Branch(early_success, eq, scratch, right); right = Operand(Handle(transitioned_fast_element_map)); } Map* transitioned_double_map( map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL)); ASSERT(transitioned_double_map == NULL || map->elements_kind() == FAST_SMI_ONLY_ELEMENTS); if (transitioned_double_map != NULL) { Branch(early_success, eq, scratch, right); right = Operand(Handle(transitioned_double_map)); } } Branch(branch_to, cond, scratch, right); } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle map, Label* fail, SmiCheckType smi_check_type, CompareMapMode mode) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Label success; CompareMapAndBranch(obj, scratch, map, &success, ne, fail, mode); bind(&success); } void MacroAssembler::DispatchMap(Register obj, Register scratch, Handle map, Handle success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map)); bind(&fail); } void MacroAssembler::CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); LoadRoot(at, index); Branch(fail, ne, scratch, Operand(at)); } void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) { CpuFeatures::Scope scope(FPU); if (IsMipsSoftFloatABI) { Move(dst, v0, v1); } else { Move(dst, f0); // Reg f0 is o32 ABI FP return value. } } void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) { CpuFeatures::Scope scope(FPU); if (!IsMipsSoftFloatABI) { Move(f12, dreg); } else { Move(a0, a1, dreg); } } void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1, DoubleRegister dreg2) { CpuFeatures::Scope scope(FPU); if (!IsMipsSoftFloatABI) { if (dreg2.is(f12)) { ASSERT(!dreg1.is(f14)); Move(f14, dreg2); Move(f12, dreg1); } else { Move(f12, dreg1); Move(f14, dreg2); } } else { Move(a0, a1, dreg1); Move(a2, a3, dreg2); } } void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg, Register reg) { CpuFeatures::Scope scope(FPU); if (!IsMipsSoftFloatABI) { Move(f12, dreg); Move(a2, reg); } else { Move(a2, reg); Move(a0, a1, dreg); } } void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) { // This macro takes the dst register to make the code more readable // at the call sites. However, the dst register has to be t1 to // follow the calling convention which requires the call type to be // in t1. ASSERT(dst.is(t1)); if (call_kind == CALL_AS_FUNCTION) { li(dst, Operand(Smi::FromInt(1))); } else { li(dst, Operand(Smi::FromInt(0))); } } // ----------------------------------------------------------------------------- // JavaScript invokes. void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_reg, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // a0: actual arguments count // a1: function (passed through to callee) // a2: expected arguments count // a3: callee code entry // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. ASSERT(actual.is_immediate() || actual.reg().is(a0)); ASSERT(expected.is_immediate() || expected.reg().is(a2)); ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3)); if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { li(a0, Operand(actual.immediate())); const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; li(a2, Operand(expected.immediate())); } } } else if (actual.is_immediate()) { Branch(®ular_invoke, eq, expected.reg(), Operand(actual.immediate())); li(a0, Operand(actual.immediate())); } else { Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); } if (!definitely_matches) { if (!code_constant.is_null()) { li(a3, Operand(code_constant)); addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); } Handle adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); SetCallKind(t1, call_kind); Call(adaptor); call_wrapper.AfterCall(); if (!*definitely_mismatches) { Branch(done); } } else { SetCallKind(t1, call_kind); Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, Handle::null(), code, &done, &definitely_mismatches, flag, call_wrapper, call_kind); if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); SetCallKind(t1, call_kind); Call(code); call_wrapper.AfterCall(); } else { ASSERT(flag == JUMP_FUNCTION); SetCallKind(t1, call_kind); Jump(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, code, no_reg, &done, &definitely_mismatches, flag, NullCallWrapper(), call_kind); if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { SetCallKind(t1, call_kind); Call(code, rmode); } else { SetCallKind(t1, call_kind); Jump(code, rmode); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in a1. ASSERT(function.is(a1)); Register expected_reg = a2; Register code_reg = a3; lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); lw(expected_reg, FieldMemOperand(code_reg, SharedFunctionInfo::kFormalParameterCountOffset)); sra(expected_reg, expected_reg, kSmiTagSize); lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); ParameterCount expected(expected_reg); InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind); } void MacroAssembler::InvokeFunction(Handle function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); // Get the function and setup the context. LoadHeapObject(a1, function); lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); ParameterCount expected(function->shared()->formal_parameter_count()); // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); InvokeCode(a3, expected, actual, flag, call_wrapper, call_kind); } void MacroAssembler::IsObjectJSObjectType(Register heap_object, Register map, Register scratch, Label* fail) { lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); IsInstanceJSObjectType(map, scratch, fail); } void MacroAssembler::IsInstanceJSObjectType(Register map, Register scratch, Label* fail) { lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); } void MacroAssembler::IsObjectJSStringType(Register object, Register scratch, Label* fail) { ASSERT(kNotStringTag != 0); lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); And(scratch, scratch, Operand(kIsNotStringMask)); Branch(fail, ne, scratch, Operand(zero_reg)); } // --------------------------------------------------------------------------- // Support functions. void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss, bool miss_on_bound_function) { // Check that the receiver isn't a smi. JumpIfSmi(function, miss); // Check that the function really is a function. Load map into result reg. GetObjectType(function, result, scratch); Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); if (miss_on_bound_function) { lw(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); lw(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); And(scratch, scratch, Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction))); Branch(miss, ne, scratch, Operand(zero_reg)); } // Make sure that the function has an instance prototype. Label non_instance; lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); Branch(&non_instance, ne, scratch, Operand(zero_reg)); // Get the prototype or initial map from the function. lw(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. LoadRoot(t8, Heap::kTheHoleValueRootIndex); Branch(miss, eq, result, Operand(t8)); // If the function does not have an initial map, we're done. Label done; GetObjectType(result, scratch, scratch); Branch(&done, ne, scratch, Operand(MAP_TYPE)); // Get the prototype from the initial map. lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); lw(result, FieldMemOperand(result, Map::kConstructorOffset)); // All done. bind(&done); } void MacroAssembler::GetObjectType(Register object, Register map, Register type_reg) { lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); } // ----------------------------------------------------------------------------- // Runtime calls. void MacroAssembler::CallStub(CodeStub* stub, Condition cond, Register r1, const Operand& r2, BranchDelaySlot bd) { ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET, kNoASTId, cond, r1, r2, bd); } void MacroAssembler::TailCallStub(CodeStub* stub) { ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe()); Jump(stub->GetCode(), RelocInfo::CODE_TARGET); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } void MacroAssembler::CallApiFunctionAndReturn(ExternalReference function, int stack_space) { ExternalReference next_address = ExternalReference::handle_scope_next_address(); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(), next_address); // Allocate HandleScope in callee-save registers. li(s3, Operand(next_address)); lw(s0, MemOperand(s3, kNextOffset)); lw(s1, MemOperand(s3, kLimitOffset)); lw(s2, MemOperand(s3, kLevelOffset)); Addu(s2, s2, Operand(1)); sw(s2, MemOperand(s3, kLevelOffset)); // The O32 ABI requires us to pass a pointer in a0 where the returned struct // (4 bytes) will be placed. This is also built into the Simulator. // Set up the pointer to the returned value (a0). It was allocated in // EnterExitFrame. addiu(a0, fp, ExitFrameConstants::kStackSpaceOffset); // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub; stub.GenerateCall(this, function); // As mentioned above, on MIPS a pointer is returned - we need to dereference // it to get the actual return value (which is also a pointer). lw(v0, MemOperand(v0)); Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; // If result is non-zero, dereference to get the result value // otherwise set it to undefined. Label skip; LoadRoot(a0, Heap::kUndefinedValueRootIndex); Branch(&skip, eq, v0, Operand(zero_reg)); lw(a0, MemOperand(v0)); bind(&skip); mov(v0, a0); // No more valid handles (the result handle was the last one). Restore // previous handle scope. sw(s0, MemOperand(s3, kNextOffset)); if (emit_debug_code()) { lw(a1, MemOperand(s3, kLevelOffset)); Check(eq, "Unexpected level after return from api call", a1, Operand(s2)); } Subu(s2, s2, Operand(1)); sw(s2, MemOperand(s3, kLevelOffset)); lw(at, MemOperand(s3, kLimitOffset)); Branch(&delete_allocated_handles, ne, s1, Operand(at)); // Check if the function scheduled an exception. bind(&leave_exit_frame); LoadRoot(t0, Heap::kTheHoleValueRootIndex); li(at, Operand(ExternalReference::scheduled_exception_address(isolate()))); lw(t1, MemOperand(at)); Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); li(s0, Operand(stack_space)); LeaveExitFrame(false, s0, true); bind(&promote_scheduled_exception); TailCallExternalReference( ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0, 1); // HandleScope limit has changed. Delete allocated extensions. bind(&delete_allocated_handles); sw(s1, MemOperand(s3, kLimitOffset)); mov(s0, v0); mov(a0, v0); PrepareCallCFunction(1, s1); li(a0, Operand(ExternalReference::isolate_address())); CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()), 1); mov(v0, s0); jmp(&leave_exit_frame); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false; return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe(); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { addiu(sp, sp, num_arguments * kPointerSize); } LoadRoot(v0, Heap::kUndefinedValueRootIndex); } void MacroAssembler::IndexFromHash(Register hash, Register index) { // If the hash field contains an array index pick it out. The assert checks // that the constants for the maximum number of digits for an array index // cached in the hash field and the number of bits reserved for it does not // conflict. ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in // the low kHashShift bits. STATIC_ASSERT(kSmiTag == 0); Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits); sll(index, hash, kSmiTagSize); } void MacroAssembler::ObjectToDoubleFPURegister(Register object, FPURegister result, Register scratch1, Register scratch2, Register heap_number_map, Label* not_number, ObjectToDoubleFlags flags) { Label done; if ((flags & OBJECT_NOT_SMI) == 0) { Label not_smi; JumpIfNotSmi(object, ¬_smi); // Remove smi tag and convert to double. sra(scratch1, object, kSmiTagSize); mtc1(scratch1, result); cvt_d_w(result, result); Branch(&done); bind(¬_smi); } // Check for heap number and load double value from it. lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); Branch(not_number, ne, scratch1, Operand(heap_number_map)); if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { // If exponent is all ones the number is either a NaN or +/-Infinity. Register exponent = scratch1; Register mask_reg = scratch2; lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); li(mask_reg, HeapNumber::kExponentMask); And(exponent, exponent, mask_reg); Branch(not_number, eq, exponent, Operand(mask_reg)); } ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); bind(&done); } void MacroAssembler::SmiToDoubleFPURegister(Register smi, FPURegister value, Register scratch1) { sra(scratch1, smi, kSmiTagSize); mtc1(scratch1, value); cvt_d_w(value, value); } void MacroAssembler::AdduAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch) { ASSERT(!dst.is(overflow_dst)); ASSERT(!dst.is(scratch)); ASSERT(!overflow_dst.is(scratch)); ASSERT(!overflow_dst.is(left)); ASSERT(!overflow_dst.is(right)); if (left.is(right) && dst.is(left)) { ASSERT(!dst.is(t9)); ASSERT(!scratch.is(t9)); ASSERT(!left.is(t9)); ASSERT(!right.is(t9)); ASSERT(!overflow_dst.is(t9)); mov(t9, right); right = t9; } if (dst.is(left)) { mov(scratch, left); // Preserve left. addu(dst, left, right); // Left is overwritten. xor_(scratch, dst, scratch); // Original left. xor_(overflow_dst, dst, right); and_(overflow_dst, overflow_dst, scratch); } else if (dst.is(right)) { mov(scratch, right); // Preserve right. addu(dst, left, right); // Right is overwritten. xor_(scratch, dst, scratch); // Original right. xor_(overflow_dst, dst, left); and_(overflow_dst, overflow_dst, scratch); } else { addu(dst, left, right); xor_(overflow_dst, dst, left); xor_(scratch, dst, right); and_(overflow_dst, scratch, overflow_dst); } } void MacroAssembler::SubuAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch) { ASSERT(!dst.is(overflow_dst)); ASSERT(!dst.is(scratch)); ASSERT(!overflow_dst.is(scratch)); ASSERT(!overflow_dst.is(left)); ASSERT(!overflow_dst.is(right)); ASSERT(!scratch.is(left)); ASSERT(!scratch.is(right)); // This happens with some crankshaft code. Since Subu works fine if // left == right, let's not make that restriction here. if (left.is(right)) { mov(dst, zero_reg); mov(overflow_dst, zero_reg); return; } if (dst.is(left)) { mov(scratch, left); // Preserve left. subu(dst, left, right); // Left is overwritten. xor_(overflow_dst, dst, scratch); // scratch is original left. xor_(scratch, scratch, right); // scratch is original left. and_(overflow_dst, scratch, overflow_dst); } else if (dst.is(right)) { mov(scratch, right); // Preserve right. subu(dst, left, right); // Right is overwritten. xor_(overflow_dst, dst, left); xor_(scratch, left, scratch); // Original right. and_(overflow_dst, scratch, overflow_dst); } else { subu(dst, left, right); xor_(overflow_dst, dst, left); xor_(scratch, left, right); and_(overflow_dst, scratch, overflow_dst); } } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments) { // All parameters are on the stack. v0 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. PrepareCEntryArgs(num_arguments); PrepareCEntryFunction(ExternalReference(f, isolate())); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { const Runtime::Function* function = Runtime::FunctionForId(id); PrepareCEntryArgs(function->nargs); PrepareCEntryFunction(ExternalReference(function, isolate())); CEntryStub stub(1, kSaveFPRegs); CallStub(&stub); } void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { CallRuntime(Runtime::FunctionForId(fid), num_arguments); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments, BranchDelaySlot bd) { PrepareCEntryArgs(num_arguments); PrepareCEntryFunction(ext); CEntryStub stub(1); CallStub(&stub, al, zero_reg, Operand(zero_reg), bd); } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. PrepareCEntryArgs(num_arguments); JumpToExternalReference(ext); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments, result_size); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, BranchDelaySlot bd) { PrepareCEntryFunction(builtin); CEntryStub stub(1); Jump(stub.GetCode(), RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), bd); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a builtin without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); GetBuiltinEntry(t9, id); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(t9)); SetCallKind(t1, CALL_AS_METHOD); Call(t9); call_wrapper.AfterCall(); } else { ASSERT(flag == JUMP_FUNCTION); SetCallKind(t1, CALL_AS_METHOD); Jump(t9); } } void MacroAssembler::GetBuiltinFunction(Register target, Builtins::JavaScript id) { // Load the builtins object into target register. lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); // Load the JavaScript builtin function from the builtins object. lw(target, FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { ASSERT(!target.is(a1)); GetBuiltinFunction(a1, id); // Load the code entry point from the builtins object. lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { li(scratch1, Operand(value)); li(scratch2, Operand(ExternalReference(counter))); sw(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { li(scratch2, Operand(ExternalReference(counter))); lw(scratch1, MemOperand(scratch2)); Addu(scratch1, scratch1, Operand(value)); sw(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { li(scratch2, Operand(ExternalReference(counter))); lw(scratch1, MemOperand(scratch2)); Subu(scratch1, scratch1, Operand(value)); sw(scratch1, MemOperand(scratch2)); } } // ----------------------------------------------------------------------------- // Debugging. void MacroAssembler::Assert(Condition cc, const char* msg, Register rs, Operand rt) { if (emit_debug_code()) Check(cc, msg, rs, rt); } void MacroAssembler::AssertRegisterIsRoot(Register reg, Heap::RootListIndex index) { if (emit_debug_code()) { LoadRoot(at, index); Check(eq, "Register did not match expected root", reg, Operand(at)); } } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { ASSERT(!elements.is(at)); Label ok; push(elements); lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); LoadRoot(at, Heap::kFixedArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); Abort("JSObject with fast elements map has slow elements"); bind(&ok); pop(elements); } } void MacroAssembler::Check(Condition cc, const char* msg, Register rs, Operand rt) { Label L; Branch(&L, cc, rs, rt); Abort(msg); // Will not return here. bind(&L); } void MacroAssembler::Abort(const char* msg) { Label abort_start; bind(&abort_start); // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; ASSERT(reinterpret_cast(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif li(a0, Operand(p0)); push(a0); li(a0, Operand(Smi::FromInt(p1 - p0))); push(a0); // Disable stub call restrictions to always allow calls to abort. if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); CallRuntime(Runtime::kAbort, 2); } else { CallRuntime(Runtime::kAbort, 2); } // Will not return here. if (is_trampoline_pool_blocked()) { // If the calling code cares about the exact number of // instructions generated, we insert padding here to keep the size // of the Abort macro constant. // Currently in debug mode with debug_code enabled the number of // generated instructions is 14, so we use this as a maximum value. static const int kExpectedAbortInstructions = 14; int abort_instructions = InstructionsGeneratedSince(&abort_start); ASSERT(abort_instructions <= kExpectedAbortInstructions); while (abort_instructions++ < kExpectedAbortInstructions) { nop(); } } } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. lw(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { lw(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in esi). Move(dst, cp); } } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { // Load the global or builtins object from the current context. lw(scratch, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check that the function's map is the same as the expected cached map. int expected_index = Context::GetContextMapIndexFromElementsKind(expected_kind); lw(at, MemOperand(scratch, Context::SlotOffset(expected_index))); Branch(no_map_match, ne, map_in_out, Operand(at)); // Use the transitioned cached map. int trans_index = Context::GetContextMapIndexFromElementsKind(transitioned_kind); lw(map_in_out, MemOperand(scratch, Context::SlotOffset(trans_index))); } void MacroAssembler::LoadInitialArrayMap( Register function_in, Register scratch, Register map_out) { ASSERT(!function_in.is(map_out)); Label done; lw(map_out, FieldMemOperand(function_in, JSFunction::kPrototypeOrInitialMapOffset)); if (!FLAG_smi_only_arrays) { LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS, FAST_ELEMENTS, map_out, scratch, &done); } bind(&done); } void MacroAssembler::LoadGlobalFunction(int index, Register function) { // Load the global or builtins object from the current context. lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); // Load the global context from the global or builtins object. lw(function, FieldMemOperand(function, GlobalObject::kGlobalContextOffset)); // Load the function from the global context. lw(function, MemOperand(function, Context::SlotOffset(index))); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch) { // Load the initial map. The global functions all have initial maps. lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); Branch(&ok); bind(&fail); Abort("Global functions must have initial map"); bind(&ok); } } void MacroAssembler::EnterFrame(StackFrame::Type type) { addiu(sp, sp, -5 * kPointerSize); li(t8, Operand(Smi::FromInt(type))); li(t9, Operand(CodeObject()), CONSTANT_SIZE); sw(ra, MemOperand(sp, 4 * kPointerSize)); sw(fp, MemOperand(sp, 3 * kPointerSize)); sw(cp, MemOperand(sp, 2 * kPointerSize)); sw(t8, MemOperand(sp, 1 * kPointerSize)); sw(t9, MemOperand(sp, 0 * kPointerSize)); addiu(fp, sp, 3 * kPointerSize); } void MacroAssembler::LeaveFrame(StackFrame::Type type) { mov(sp, fp); lw(fp, MemOperand(sp, 0 * kPointerSize)); lw(ra, MemOperand(sp, 1 * kPointerSize)); addiu(sp, sp, 2 * kPointerSize); } void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) { // Set up the frame structure on the stack. STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); // This is how the stack will look: // fp + 2 (==kCallerSPDisplacement) - old stack's end // [fp + 1 (==kCallerPCOffset)] - saved old ra // [fp + 0 (==kCallerFPOffset)] - saved old fp // [fp - 1 (==kSPOffset)] - sp of the called function // [fp - 2 (==kCodeOffset)] - CodeObject // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the // new stack (will contain saved ra) // Save registers. addiu(sp, sp, -4 * kPointerSize); sw(ra, MemOperand(sp, 3 * kPointerSize)); sw(fp, MemOperand(sp, 2 * kPointerSize)); addiu(fp, sp, 2 * kPointerSize); // Set up new frame pointer. if (emit_debug_code()) { sw(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); } // Accessed from ExitFrame::code_slot. li(t8, Operand(CodeObject()), CONSTANT_SIZE); sw(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); // Save the frame pointer and the context in top. li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); sw(fp, MemOperand(t8)); li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); sw(cp, MemOperand(t8)); const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); if (save_doubles) { // The stack must be allign to 0 modulo 8 for stores with sdc1. ASSERT(kDoubleSize == frame_alignment); if (frame_alignment > 0) { ASSERT(IsPowerOf2(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); // Align stack. } int space = FPURegister::kNumRegisters * kDoubleSize; Subu(sp, sp, Operand(space)); // Remember: we only need to save every 2nd double FPU value. for (int i = 0; i < FPURegister::kNumRegisters; i+=2) { FPURegister reg = FPURegister::from_code(i); sdc1(reg, MemOperand(sp, i * kDoubleSize)); } } // Reserve place for the return address, stack space and an optional slot // (used by the DirectCEntryStub to hold the return value if a struct is // returned) and align the frame preparing for calling the runtime function. ASSERT(stack_space >= 0); Subu(sp, sp, Operand((stack_space + 2) * kPointerSize)); if (frame_alignment > 0) { ASSERT(IsPowerOf2(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); // Align stack. } // Set the exit frame sp value to point just before the return address // location. addiu(at, sp, kPointerSize); sw(at, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool do_return) { // Optionally restore all double registers. if (save_doubles) { // Remember: we only need to restore every 2nd double FPU value. lw(t8, MemOperand(fp, ExitFrameConstants::kSPOffset)); for (int i = 0; i < FPURegister::kNumRegisters; i+=2) { FPURegister reg = FPURegister::from_code(i); ldc1(reg, MemOperand(t8, i * kDoubleSize + kPointerSize)); } } // Clear top frame. li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); sw(zero_reg, MemOperand(t8)); // Restore current context from top and clear it in debug mode. li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); lw(cp, MemOperand(t8)); #ifdef DEBUG sw(a3, MemOperand(t8)); #endif // Pop the arguments, restore registers, and return. mov(sp, fp); // Respect ABI stack constraint. lw(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); lw(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); if (argument_count.is_valid()) { sll(t8, argument_count, kPointerSizeLog2); addu(sp, sp, t8); } if (do_return) { Ret(USE_DELAY_SLOT); // If returning, the instruction in the delay slot will be the addiu below. } addiu(sp, sp, 8); } void MacroAssembler::InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2) { sll(scratch1, length, kSmiTagSize); LoadRoot(scratch2, map_index); sw(scratch1, FieldMemOperand(string, String::kLengthOffset)); li(scratch1, Operand(String::kEmptyHashField)); sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); } int MacroAssembler::ActivationFrameAlignment() { #if defined(V8_HOST_ARCH_MIPS) // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one Mips // platform for another Mips platform with a different alignment. return OS::ActivationFrameAlignment(); #else // defined(V8_HOST_ARCH_MIPS) // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // defined(V8_HOST_ARCH_MIPS) } void MacroAssembler::AssertStackIsAligned() { if (emit_debug_code()) { const int frame_alignment = ActivationFrameAlignment(); const int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { Label alignment_as_expected; ASSERT(IsPowerOf2(frame_alignment)); andi(at, sp, frame_alignment_mask); Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); // Don't use Check here, as it will call Runtime_Abort re-entering here. stop("Unexpected stack alignment"); bind(&alignment_as_expected); } } } void MacroAssembler::JumpIfNotPowerOfTwoOrZero( Register reg, Register scratch, Label* not_power_of_two_or_zero) { Subu(scratch, reg, Operand(1)); Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, scratch, Operand(zero_reg)); and_(at, scratch, reg); // In the delay slot. Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); } void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { ASSERT(!reg.is(overflow)); mov(overflow, reg); // Save original value. SmiTag(reg); xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0. } void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src, Register overflow) { if (dst.is(src)) { // Fall back to slower case. SmiTagCheckOverflow(dst, overflow); } else { ASSERT(!dst.is(src)); ASSERT(!dst.is(overflow)); ASSERT(!src.is(overflow)); SmiTag(dst, src); xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0. } } void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case) { JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT); SmiUntag(dst, src); } void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case) { JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT); SmiUntag(dst, src); } void MacroAssembler::JumpIfSmi(Register value, Label* smi_label, Register scratch, BranchDelaySlot bd) { ASSERT_EQ(0, kSmiTag); andi(scratch, value, kSmiTagMask); Branch(bd, smi_label, eq, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch, BranchDelaySlot bd) { ASSERT_EQ(0, kSmiTag); andi(scratch, value, kSmiTagMask); Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi) { STATIC_ASSERT(kSmiTag == 0); ASSERT_EQ(1, kSmiTagMask); or_(at, reg1, reg2); JumpIfNotSmi(at, on_not_both_smi); } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); ASSERT_EQ(1, kSmiTagMask); // Both Smi tags must be 1 (not Smi). and_(at, reg1, reg2); JumpIfSmi(at, on_either_smi); } void MacroAssembler::AbortIfSmi(Register object) { STATIC_ASSERT(kSmiTag == 0); andi(at, object, kSmiTagMask); Assert(ne, "Operand is a smi", at, Operand(zero_reg)); } void MacroAssembler::AbortIfNotSmi(Register object) { STATIC_ASSERT(kSmiTag == 0); andi(at, object, kSmiTagMask); Assert(eq, "Operand is a smi", at, Operand(zero_reg)); } void MacroAssembler::AbortIfNotString(Register object) { STATIC_ASSERT(kSmiTag == 0); And(t0, object, Operand(kSmiTagMask)); Assert(ne, "Operand is not a string", t0, Operand(zero_reg)); push(object); lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); Assert(lo, "Operand is not a string", object, Operand(FIRST_NONSTRING_TYPE)); pop(object); } void MacroAssembler::AbortIfNotRootValue(Register src, Heap::RootListIndex root_value_index, const char* message) { ASSERT(!src.is(at)); LoadRoot(at, root_value_index); Assert(eq, message, src, Operand(at)); } void MacroAssembler::JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number) { lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); } void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Test that both first and second are sequential ASCII strings. // Assume that they are non-smis. lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Check that neither is a smi. STATIC_ASSERT(kSmiTag == 0); And(scratch1, first, Operand(second)); JumpIfSmi(scratch1, failure); JumpIfNonSmisNotBothSequentialAsciiStrings(first, second, scratch1, scratch2, failure); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { int kFlatAsciiStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; int kFlatAsciiStringTag = ASCII_STRING_TYPE; ASSERT(kFlatAsciiStringTag <= 0xffff); // Ensure this fits 16-bit immed. andi(scratch1, first, kFlatAsciiStringMask); Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag)); andi(scratch2, second, kFlatAsciiStringMask); Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag)); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, Register scratch, Label* failure) { int kFlatAsciiStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; int kFlatAsciiStringTag = ASCII_STRING_TYPE; And(scratch, type, Operand(kFlatAsciiStringMask)); Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag)); } static const int kRegisterPassedArguments = 4; int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; num_reg_arguments += 2 * num_double_arguments; // Up to four simple arguments are passed in registers a0..a3. if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } stack_passed_words += kCArgSlotCount; return stack_passed_words; } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); // Up to four simple arguments are passed in registers a0..a3. // Those four arguments must have reserved argument slots on the stack for // mips, even though those argument slots are not normally used. // Remaining arguments are pushed on the stack, above (higher address than) // the argument slots. int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for num_arguments - 4 words // and the original value of sp. mov(scratch, sp); Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); ASSERT(IsPowerOf2(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void MacroAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { li(t8, Operand(function)); CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { ASSERT(has_frame()); // Make sure that the stack is aligned before calling a C function unless // running in the simulator. The simulator has its own alignment check which // provides more information. // The argument stots are presumed to have been set up by // PrepareCallCFunction. The C function must be called via t9, for mips ABI. #if defined(V8_HOST_ARCH_MIPS) if (emit_debug_code()) { int frame_alignment = OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { ASSERT(IsPowerOf2(frame_alignment)); Label alignment_as_expected; And(at, sp, Operand(frame_alignment_mask)); Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); // Don't use Check here, as it will call Runtime_Abort possibly // re-entering here. stop("Unexpected alignment in CallCFunction"); bind(&alignment_as_expected); } } #endif // V8_HOST_ARCH_MIPS // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. if (!function.is(t9)) { mov(t9, function); function = t9; } Call(function); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (OS::ActivationFrameAlignment() > kPointerSize) { lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); } } #undef BRANCH_ARGS_CHECK void MacroAssembler::PatchRelocatedValue(Register li_location, Register scratch, Register new_value) { lw(scratch, MemOperand(li_location)); // At this point scratch is a lui(at, ...) instruction. if (emit_debug_code()) { And(scratch, scratch, kOpcodeMask); Check(eq, "The instruction to patch should be a lui.", scratch, Operand(LUI)); lw(scratch, MemOperand(li_location)); } srl(t9, new_value, kImm16Bits); Ins(scratch, t9, 0, kImm16Bits); sw(scratch, MemOperand(li_location)); lw(scratch, MemOperand(li_location, kInstrSize)); // scratch is now ori(at, ...). if (emit_debug_code()) { And(scratch, scratch, kOpcodeMask); Check(eq, "The instruction to patch should be an ori.", scratch, Operand(ORI)); lw(scratch, MemOperand(li_location, kInstrSize)); } Ins(scratch, new_value, 0, kImm16Bits); sw(scratch, MemOperand(li_location, kInstrSize)); // Update the I-cache so the new lui and ori can be executed. FlushICache(li_location, 2); } void MacroAssembler::GetRelocatedValue(Register li_location, Register value, Register scratch) { lw(value, MemOperand(li_location)); if (emit_debug_code()) { And(value, value, kOpcodeMask); Check(eq, "The instruction should be a lui.", value, Operand(LUI)); lw(value, MemOperand(li_location)); } // value now holds a lui instruction. Extract the immediate. sll(value, value, kImm16Bits); lw(scratch, MemOperand(li_location, kInstrSize)); if (emit_debug_code()) { And(scratch, scratch, kOpcodeMask); Check(eq, "The instruction should be an ori.", scratch, Operand(ORI)); lw(scratch, MemOperand(li_location, kInstrSize)); } // "scratch" now holds an ori instruction. Extract the immediate. andi(scratch, scratch, kImm16Mask); // Merge the results. or_(value, value, scratch); } void MacroAssembler::CheckPageFlag( Register object, Register scratch, int mask, Condition cc, Label* condition_met) { And(scratch, object, Operand(~Page::kPageAlignmentMask)); lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); And(scratch, scratch, Operand(mask)); Branch(condition_met, cc, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black) { HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register mask_scratch, Label* has_color, int first_bit, int second_bit) { ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t8)); ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t9)); GetMarkBits(object, bitmap_scratch, mask_scratch); Label other_color, word_boundary; lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); And(t8, t9, Operand(mask_scratch)); Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg)); // Shift left 1 by adding. Addu(mask_scratch, mask_scratch, Operand(mask_scratch)); Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg)); And(t8, t9, Operand(mask_scratch)); Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg)); jmp(&other_color); bind(&word_boundary); lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize)); And(t9, t9, Operand(1)); Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg)); bind(&other_color); } // Detect some, but not all, common pointer-free objects. This is used by the // incremental write barrier which doesn't care about oddballs (they are always // marked black immediately so this code is not hit). void MacroAssembler::JumpIfDataObject(Register value, Register scratch, Label* not_data_object) { ASSERT(!AreAliased(value, scratch, t8, no_reg)); Label is_data_object; lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); LoadRoot(t8, Heap::kHeapNumberMapRootIndex); Branch(&is_data_object, eq, t8, Operand(scratch)); ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask)); Branch(not_data_object, ne, t8, Operand(zero_reg)); bind(&is_data_object); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask)); Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits); sll(t8, t8, kPointerSizeLog2); Addu(bitmap_reg, bitmap_reg, t8); li(t8, Operand(1)); sllv(mask_reg, t8, mask_reg); } void MacroAssembler::EnsureNotWhite( Register value, Register bitmap_scratch, Register mask_scratch, Register load_scratch, Label* value_is_white_and_not_data) { ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, t8)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); Label done; // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); And(t8, mask_scratch, load_scratch); Branch(&done, ne, t8, Operand(zero_reg)); if (emit_debug_code()) { // Check for impossible bit pattern. Label ok; // sll may overflow, making the check conservative. sll(t8, mask_scratch, 1); And(t8, load_scratch, t8); Branch(&ok, eq, t8, Operand(zero_reg)); stop("Impossible marking bit pattern"); bind(&ok); } // Value is white. We check whether it is data that doesn't need scanning. // Currently only checks for HeapNumber and non-cons strings. Register map = load_scratch; // Holds map while checking type. Register length = load_scratch; // Holds length of object after testing type. Label is_data_object; // Check for heap-number lw(map, FieldMemOperand(value, HeapObject::kMapOffset)); LoadRoot(t8, Heap::kHeapNumberMapRootIndex); { Label skip; Branch(&skip, ne, t8, Operand(map)); li(length, HeapNumber::kSize); Branch(&is_data_object); bind(&skip); } // Check for strings. ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. Register instance_type = load_scratch; lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask)); Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg)); // It's a non-indirect (non-cons and non-slice) string. // If it's external, the length is just ExternalString::kSize. // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). // External strings are the only ones with the kExternalStringTag bit // set. ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); ASSERT_EQ(0, kConsStringTag & kExternalStringTag); And(t8, instance_type, Operand(kExternalStringTag)); { Label skip; Branch(&skip, eq, t8, Operand(zero_reg)); li(length, ExternalString::kSize); Branch(&is_data_object); bind(&skip); } // Sequential string, either ASCII or UC16. // For ASCII (char-size of 1) we shift the smi tag away to get the length. // For UC16 (char-size of 2) we just leave the smi tag in place, thereby // getting the length multiplied by 2. ASSERT(kAsciiStringTag == 4 && kStringEncodingMask == 4); ASSERT(kSmiTag == 0 && kSmiTagSize == 1); lw(t9, FieldMemOperand(value, String::kLengthOffset)); And(t8, instance_type, Operand(kStringEncodingMask)); { Label skip; Branch(&skip, eq, t8, Operand(zero_reg)); srl(t9, t9, 1); bind(&skip); } Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask)); And(length, length, Operand(~kObjectAlignmentMask)); bind(&is_data_object); // Value is a data object, and it is white. Mark it black. Since we know // that the object is white we can make it black by flipping one bit. lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); Or(t8, t8, Operand(mask_scratch)); sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask)); lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); Addu(t8, t8, Operand(length)); sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); bind(&done); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { lw(descriptors, FieldMemOperand(map, Map::kInstanceDescriptorsOrBitField3Offset)); Label not_smi; JumpIfNotSmi(descriptors, ¬_smi); LoadRoot(descriptors, Heap::kEmptyDescriptorArrayRootIndex); bind(¬_smi); } void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { Label next; // Preload a couple of values used in the loop. Register empty_fixed_array_value = t2; LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); Register empty_descriptor_array_value = t3; LoadRoot(empty_descriptor_array_value, Heap::kEmptyDescriptorArrayRootIndex); mov(a1, a0); bind(&next); // Check that there are no elements. Register a1 contains the // current JS object we've reached through the prototype chain. lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset)); Branch(call_runtime, ne, a2, Operand(empty_fixed_array_value)); // Check that instance descriptors are not empty so that we can // check for an enum cache. Leave the map in a2 for the subsequent // prototype load. lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset)); lw(a3, FieldMemOperand(a2, Map::kInstanceDescriptorsOrBitField3Offset)); JumpIfSmi(a3, call_runtime); // Check that there is an enum cache in the non-empty instance // descriptors (a3). This is the case if the next enumeration // index field does not contain a smi. lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumerationIndexOffset)); JumpIfSmi(a3, call_runtime); // For all objects but the receiver, check that the cache is empty. Label check_prototype; Branch(&check_prototype, eq, a1, Operand(a0)); lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumCacheBridgeCacheOffset)); Branch(call_runtime, ne, a3, Operand(empty_fixed_array_value)); // Load the prototype from the map and loop if non-null. bind(&check_prototype); lw(a1, FieldMemOperand(a2, Map::kPrototypeOffset)); Branch(&next, ne, a1, Operand(null_value)); } void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { ASSERT(!output_reg.is(input_reg)); Label done; li(output_reg, Operand(255)); // Normal branch: nop in delay slot. Branch(&done, gt, input_reg, Operand(output_reg)); // Use delay slot in this branch. Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg)); mov(output_reg, zero_reg); // In delay slot. mov(output_reg, input_reg); // Value is in range 0..255. bind(&done); } void MacroAssembler::ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister temp_double_reg) { Label above_zero; Label done; Label in_bounds; Move(temp_double_reg, 0.0); BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg); // Double value is less than zero, NaN or Inf, return 0. mov(result_reg, zero_reg); Branch(&done); // Double value is >= 255, return 255. bind(&above_zero); Move(temp_double_reg, 255.0); BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg); li(result_reg, Operand(255)); Branch(&done); // In 0-255 range, round and truncate. bind(&in_bounds); round_w_d(temp_double_reg, input_reg); mfc1(result_reg, temp_double_reg); bind(&done); } bool AreAliased(Register r1, Register r2, Register r3, Register r4) { if (r1.is(r2)) return true; if (r1.is(r3)) return true; if (r1.is(r4)) return true; if (r2.is(r3)) return true; if (r2.is(r4)) return true; if (r3.is(r4)) return true; return false; } CodePatcher::CodePatcher(byte* address, int instructions) : address_(address), instructions_(instructions), size_(instructions * Assembler::kInstrSize), masm_(Isolate::Current(), address, size_ + Assembler::kGap) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. CPU::FlushICache(address_, size_); // Check that the code was patched as expected. ASSERT(masm_.pc_ == address_ + size_); ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void CodePatcher::Emit(Instr instr) { masm()->emit(instr); } void CodePatcher::Emit(Address addr) { masm()->emit(reinterpret_cast(addr)); } void CodePatcher::ChangeBranchCondition(Condition cond) { Instr instr = Assembler::instr_at(masm_.pc_); ASSERT(Assembler::IsBranch(instr)); uint32_t opcode = Assembler::GetOpcodeField(instr); // Currently only the 'eq' and 'ne' cond values are supported and the simple // branch instructions (with opcode being the branch type). // There are some special cases (see Assembler::IsBranch()) so extending this // would be tricky. ASSERT(opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL); opcode = (cond == eq) ? BEQ : BNE; instr = (instr & ~kOpcodeMask) | opcode; masm_.emit(instr); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS