/* -*- mode: C; c-basic-offset: 3; indent-tabs-mode: nil; -*- */ /* This file is part of drd, a thread error detector. Copyright (C) 2006-2011 Bart Van Assche . This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "drd_basics.h" /* DRD_() */ #include "drd_bitmap.h" #include "drd_error.h" #include "drd_suppression.h" #include "pub_drd_bitmap.h" #include "pub_tool_basics.h" /* Addr, SizeT */ #include "pub_tool_debuginfo.h" /* VG_(get_objname)() */ #include "pub_tool_libcassert.h" /* tl_assert() */ #include "pub_tool_libcbase.h" /* VG_(memset) */ #include "pub_tool_libcprint.h" /* VG_(printf) */ #include "pub_tool_machine.h" /* VG_(get_IP)() */ #include "pub_tool_mallocfree.h" /* VG_(malloc), VG_(free) */ /* Local function declarations. */ static void bm2_merge(struct bitmap2* const bm2l, const struct bitmap2* const bm2r); static void bm2_print(const struct bitmap2* const bm2); /* Local variables. */ static ULong s_bitmap_creation_count; static ULong s_bitmap_merge_count; static ULong s_bitmap2_merge_count; /* Function definitions. */ struct bitmap* DRD_(bm_new)() { struct bitmap* bm; /* If this assert fails, fix the definition of BITS_PER_BITS_PER_UWORD */ /* in drd_bitmap.h. */ tl_assert((1 << BITS_PER_BITS_PER_UWORD) == BITS_PER_UWORD); bm = VG_(malloc)("drd.bitmap.bn.1", sizeof(*bm)); DRD_(bm_init)(bm); return bm; } void DRD_(bm_delete)(struct bitmap* const bm) { tl_assert(bm); DRD_(bm_cleanup)(bm); VG_(free)(bm); } /** Initialize *bm. */ void DRD_(bm_init)(struct bitmap* const bm) { unsigned i; tl_assert(bm); /* * Cache initialization. a1 is initialized with a value that never can * match any valid address: the upper (ADDR_LSB_BITS + ADDR_IGNORED_BITS) * bits of a1 are always zero for a valid cache entry. */ for (i = 0; i < DRD_BITMAP_N_CACHE_ELEM; i++) { bm->cache[i].a1 = ~(UWord)1; bm->cache[i].bm2 = 0; } bm->oset = VG_(OSetGen_Create)(0, 0, DRD_(bm2_alloc_node), "drd.bitmap.bn.2", DRD_(bm2_free_node)); s_bitmap_creation_count++; } /** Free the memory allocated by DRD_(bm_init)(). */ void DRD_(bm_cleanup)(struct bitmap* const bm) { VG_(OSetGen_Destroy)(bm->oset); } /** * Record an access of type access_type at addresses a .. a + size - 1 in * bitmap bm. * * @note The current implementation of bm_access_range does not work for the * highest addresses in the address range. At least on Linux this is * not a problem since the upper part of the address space is reserved * for the kernel. */ void DRD_(bm_access_range)(struct bitmap* const bm, const Addr a1, const Addr a2, const BmAccessTypeT access_type) { tl_assert(access_type == eLoad || access_type == eStore); if (access_type == eLoad) return DRD_(bm_access_range_load)(bm, a1, a2); else return DRD_(bm_access_range_store)(bm, a1, a2); } void DRD_(bm_access_range_load)(struct bitmap* const bm, Addr a1, Addr a2) { Addr b, b_next; tl_assert(bm); tl_assert(a1 <= a2); tl_assert(a2 < first_address_with_higher_msb(a2)); tl_assert(a1 == first_address_with_same_lsb(a1)); tl_assert(a2 == first_address_with_same_lsb(a2)); for (b = a1; b < a2; b = b_next) { Addr b_start; Addr b_end; struct bitmap2* bm2; UWord b0; b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } bm2 = bm2_lookup_or_insert_exclusive(bm, address_msb(b)); tl_assert(bm2); if (make_address(bm2->addr, 0) < a1) b_start = a1; else if (make_address(bm2->addr, 0) < a2) b_start = make_address(bm2->addr, 0); else break; if (make_address(bm2->addr + 1, 0) < a2) b_end = make_address(bm2->addr + 1, 0); else b_end = a2; tl_assert(a1 <= b_start && b_start < b_end && b_end && b_end <= a2); tl_assert(address_msb(b_start) == address_msb(b_end - 1)); tl_assert(address_lsb(b_start) <= address_lsb(b_end - 1)); if (address_lsb(b_start) == 0 && address_lsb(b_end) == 0) { unsigned k; for (k = 0; k < BITMAP1_UWORD_COUNT; k++) { bm2->bm1.bm0_r[k] = ~(UWord)0; } } else { for (b0 = address_lsb(b_start); b0 <= address_lsb(b_end - 1); b0++) { bm0_set(bm2->bm1.bm0_r, b0); } } } } void DRD_(bm_access_load_1)(struct bitmap* const bm, const Addr a1) { bm_access_aligned_load(bm, a1, 1); } void DRD_(bm_access_load_2)(struct bitmap* const bm, const Addr a1) { if ((a1 & 1) == 0) bm_access_aligned_load(bm, a1, 2); else DRD_(bm_access_range)(bm, a1, a1 + 2, eLoad); } void DRD_(bm_access_load_4)(struct bitmap* const bm, const Addr a1) { if ((a1 & 3) == 0) bm_access_aligned_load(bm, a1, 4); else DRD_(bm_access_range)(bm, a1, a1 + 4, eLoad); } void DRD_(bm_access_load_8)(struct bitmap* const bm, const Addr a1) { if ((a1 & 7) == 0) bm_access_aligned_load(bm, a1, 8); else if ((a1 & 3) == 0) { bm_access_aligned_load(bm, a1 + 0, 4); bm_access_aligned_load(bm, a1 + 4, 4); } else DRD_(bm_access_range)(bm, a1, a1 + 8, eLoad); } void DRD_(bm_access_range_store)(struct bitmap* const bm, const Addr a1, const Addr a2) { Addr b, b_next; tl_assert(bm); tl_assert(a1 <= a2); tl_assert(a2 < first_address_with_higher_msb(a2)); tl_assert(a1 == first_address_with_same_lsb(a1)); tl_assert(a2 == first_address_with_same_lsb(a2)); for (b = a1; b < a2; b = b_next) { Addr b_start; Addr b_end; struct bitmap2* bm2; UWord b0; b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } bm2 = bm2_lookup_or_insert_exclusive(bm, address_msb(b)); tl_assert(bm2); if (make_address(bm2->addr, 0) < a1) b_start = a1; else if (make_address(bm2->addr, 0) < a2) b_start = make_address(bm2->addr, 0); else break; if (make_address(bm2->addr + 1, 0) < a2) b_end = make_address(bm2->addr + 1, 0); else b_end = a2; tl_assert(a1 <= b_start && b_start < b_end && b_end && b_end <= a2); tl_assert(address_msb(b_start) == address_msb(b_end - 1)); tl_assert(address_lsb(b_start) <= address_lsb(b_end - 1)); if (address_lsb(b_start) == 0 && address_lsb(b_end) == 0) { unsigned k; for (k = 0; k < BITMAP1_UWORD_COUNT; k++) { bm2->bm1.bm0_w[k] = ~(UWord)0; } } else { for (b0 = address_lsb(b_start); b0 <= address_lsb(b_end - 1); b0++) { bm0_set(bm2->bm1.bm0_w, b0); } } } } void DRD_(bm_access_store_1)(struct bitmap* const bm, const Addr a1) { bm_access_aligned_store(bm, a1, 1); } void DRD_(bm_access_store_2)(struct bitmap* const bm, const Addr a1) { if ((a1 & 1) == 0) bm_access_aligned_store(bm, a1, 2); else DRD_(bm_access_range)(bm, a1, a1 + 2, eStore); } void DRD_(bm_access_store_4)(struct bitmap* const bm, const Addr a1) { if ((a1 & 3) == 0) bm_access_aligned_store(bm, a1, 4); else DRD_(bm_access_range)(bm, a1, a1 + 4, eStore); } void DRD_(bm_access_store_8)(struct bitmap* const bm, const Addr a1) { if ((a1 & 7) == 0) bm_access_aligned_store(bm, a1, 8); else if ((a1 & 3) == 0) { bm_access_aligned_store(bm, a1 + 0, 4); bm_access_aligned_store(bm, a1 + 4, 4); } else DRD_(bm_access_range)(bm, a1, a1 + 8, eStore); } Bool DRD_(bm_has)(struct bitmap* const bm, const Addr a1, const Addr a2, const BmAccessTypeT access_type) { tl_assert(access_type == eLoad || access_type == eStore); if (access_type == eLoad) return DRD_(bm_has_any_load)(bm, a1, a2); else return DRD_(bm_has_any_store)(bm, a1, a2); } Bool DRD_(bm_has_any_load)(struct bitmap* const bm, const Addr a1, const Addr a2) { Addr b, b_next; tl_assert(bm); for (b = a1; b < a2; b = b_next) { const struct bitmap2* bm2 = bm2_lookup(bm, address_msb(b)); b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } if (bm2) { Addr b_start; Addr b_end; UWord b0; const struct bitmap1* const p1 = &bm2->bm1; if (make_address(bm2->addr, 0) < a1) b_start = a1; else if (make_address(bm2->addr, 0) < a2) b_start = make_address(bm2->addr, 0); else break; tl_assert(a1 <= b_start && b_start <= a2); if (make_address(bm2->addr + 1, 0) < a2) b_end = make_address(bm2->addr + 1, 0); else b_end = a2; tl_assert(a1 <= b_end && b_end <= a2); tl_assert(b_start < b_end); tl_assert(address_lsb(b_start) <= address_lsb(b_end - 1)); for (b0 = address_lsb(b_start); b0 <= address_lsb(b_end - 1); b0++) { if (bm0_is_set(p1->bm0_r, b0)) { return True; } } } } return 0; } Bool DRD_(bm_has_any_store)(struct bitmap* const bm, const Addr a1, const Addr a2) { Addr b, b_next; tl_assert(bm); for (b = a1; b < a2; b = b_next) { const struct bitmap2* bm2 = bm2_lookup(bm, address_msb(b)); b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } if (bm2) { Addr b_start; Addr b_end; UWord b0; const struct bitmap1* const p1 = &bm2->bm1; if (make_address(bm2->addr, 0) < a1) b_start = a1; else if (make_address(bm2->addr, 0) < a2) b_start = make_address(bm2->addr, 0); else break; tl_assert(a1 <= b_start && b_start <= a2); if (make_address(bm2->addr + 1, 0) < a2) b_end = make_address(bm2->addr + 1, 0); else b_end = a2; tl_assert(a1 <= b_end && b_end <= a2); tl_assert(b_start < b_end); tl_assert(address_lsb(b_start) <= address_lsb(b_end - 1)); for (b0 = address_lsb(b_start); b0 <= address_lsb(b_end - 1); b0++) { if (bm0_is_set(p1->bm0_w, b0)) { return True; } } } } return 0; } /* Return True if there is a read access, write access or both */ /* to any of the addresses in the range [ a1, a2 [ in bitmap bm. */ Bool DRD_(bm_has_any_access)(struct bitmap* const bm, const Addr a1, const Addr a2) { Addr b, b_next; tl_assert(bm); for (b = a1; b < a2; b = b_next) { const struct bitmap2* bm2 = bm2_lookup(bm, address_msb(b)); b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } if (bm2) { Addr b_start; Addr b_end; UWord b0; const struct bitmap1* const p1 = &bm2->bm1; if (make_address(bm2->addr, 0) < a1) b_start = a1; else if (make_address(bm2->addr, 0) < a2) b_start = make_address(bm2->addr, 0); else break; tl_assert(a1 <= b_start && b_start <= a2); if (make_address(bm2->addr + 1, 0) < a2) b_end = make_address(bm2->addr + 1, 0); else b_end = a2; tl_assert(a1 <= b_end && b_end <= a2); tl_assert(b_start < b_end); tl_assert(address_lsb(b_start) <= address_lsb(b_end - 1)); for (b0 = address_lsb(b_start); b0 <= address_lsb(b_end - 1); b0++) { /* * Note: the statement below uses a binary or instead of a logical * or on purpose. */ if (bm0_is_set(p1->bm0_r, b0) | bm0_is_set(p1->bm0_w, b0)) { return True; } } } } return False; } /** * Report whether an access of type access_type at address a is recorded in * bitmap bm. */ Bool DRD_(bm_has_1)(struct bitmap* const bm, const Addr a, const BmAccessTypeT access_type) { const struct bitmap2* p2; const struct bitmap1* p1; const UWord* p0; const UWord a0 = address_lsb(a); tl_assert(bm); p2 = bm2_lookup(bm, address_msb(a)); if (p2) { p1 = &p2->bm1; p0 = (access_type == eLoad) ? p1->bm0_r : p1->bm0_w; return bm0_is_set(p0, a0) ? True : False; } return False; } void DRD_(bm_clear)(struct bitmap* const bm, Addr a1, Addr a2) { Addr b, b_next; tl_assert(bm); tl_assert(a1); tl_assert(a1 <= a2); tl_assert(a1 == first_address_with_same_lsb(a1)); tl_assert(a2 == first_address_with_same_lsb(a2)); for (b = a1; b < a2; b = b_next) { struct bitmap2* p2; Addr c; #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b < a2); #endif p2 = bm2_lookup_exclusive(bm, address_msb(b)); b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } if (p2 == 0) continue; c = b; /* If the first address in the bitmap that must be cleared does not */ /* start on an UWord boundary, start clearing the first addresses. */ if (uword_lsb(address_lsb(c))) { Addr c_next = first_address_with_higher_uword_msb(c); if (c_next > b_next) c_next = b_next; #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c <= c_next && c_next <= b_next && b_next <= a2); #endif bm0_clear_range(p2->bm1.bm0_r, address_lsb(c), SCALED_SIZE(c_next - c)); bm0_clear_range(p2->bm1.bm0_w, address_lsb(c), SCALED_SIZE(c_next - c)); c = c_next; } /* If some UWords have to be cleared entirely, do this now. */ if (uword_lsb(address_lsb(c)) == 0) { Addr c_next = first_address_with_same_uword_lsb(b_next); #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(uword_lsb(address_lsb(c)) == 0); tl_assert(uword_lsb(address_lsb(c_next)) == 0); tl_assert(c_next <= b_next); #endif if (c_next > c) { UWord idx = uword_msb(address_lsb(c)); VG_(memset)(&p2->bm1.bm0_r[idx], 0, SCALED_SIZE((c_next - c) / 8)); VG_(memset)(&p2->bm1.bm0_w[idx], 0, SCALED_SIZE((c_next - c) / 8)); c = c_next; } } /* If the last address in the bitmap that must be cleared does not */ /* fall on an UWord boundary, clear the last addresses. */ #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c <= b_next && b_next <= a2); #endif bm0_clear_range(p2->bm1.bm0_r, address_lsb(c), SCALED_SIZE(b_next - c)); bm0_clear_range(p2->bm1.bm0_w, address_lsb(c), SCALED_SIZE(b_next - c)); } } /** * Clear all references to loads in bitmap bm starting at address a1 and * up to but not including address a2. */ void DRD_(bm_clear_load)(struct bitmap* const bm, Addr a1, Addr a2) { Addr b, b_next; tl_assert(bm); tl_assert(a1); tl_assert(a1 <= a2); tl_assert(a1 == first_address_with_same_lsb(a1)); tl_assert(a2 == first_address_with_same_lsb(a2)); for (b = a1; b < a2; b = b_next) { struct bitmap2* p2; Addr c; #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b < a2); #endif p2 = bm2_lookup_exclusive(bm, address_msb(b)); b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } if (p2 == 0) continue; c = b; /* If the first address in the bitmap that must be cleared does not */ /* start on an UWord boundary, start clearing the first addresses. */ #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c < b_next && b_next <= a2); #endif if (uword_lsb(address_lsb(c))) { Addr c_next = first_address_with_higher_uword_msb(c); if (c_next > b_next) c_next = b_next; #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c < c_next && c_next <= b_next && b_next <= a2); #endif bm0_clear_range(p2->bm1.bm0_r, address_lsb(c), SCALED_SIZE(c_next - c)); c = c_next; } /* If some UWords have to be cleared entirely, do this now. */ #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c <= b_next && b_next <= a2); #endif if (uword_lsb(address_lsb(c)) == 0) { Addr c_next = first_address_with_same_uword_lsb(b_next); #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(uword_lsb(address_lsb(c)) == 0); tl_assert(uword_lsb(address_lsb(c_next)) == 0); tl_assert(a1 <= b && b <= c && c <= c_next && c_next <= b_next && b_next <= a2); #endif if (c_next > c) { UWord idx = uword_msb(address_lsb(c)); VG_(memset)(&p2->bm1.bm0_r[idx], 0, SCALED_SIZE((c_next - c) / 8)); c = c_next; } } /* If the last address in the bitmap that must be cleared does not */ /* fall on an UWord boundary, clear the last addresses. */ #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c <= b_next && b_next <= a2); #endif bm0_clear_range(p2->bm1.bm0_r, address_lsb(c), SCALED_SIZE(b_next - c)); } } /** * Clear all references to stores in bitmap bm starting at address a1 and * up to but not including address a2. */ void DRD_(bm_clear_store)(struct bitmap* const bm, const Addr a1, const Addr a2) { Addr b, b_next; tl_assert(bm); tl_assert(a1); tl_assert(a1 <= a2); tl_assert(a1 == first_address_with_same_lsb(a1)); tl_assert(a2 == first_address_with_same_lsb(a2)); for (b = a1; b < a2; b = b_next) { struct bitmap2* p2; Addr c; #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b < a2); #endif p2 = bm2_lookup_exclusive(bm, address_msb(b)); b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } if (p2 == 0) continue; c = b; /* If the first address in the bitmap that must be cleared does not */ /* start on an UWord boundary, start clearing the first addresses. */ #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c < b_next && b_next <= a2); #endif if (uword_lsb(address_lsb(c))) { Addr c_next = first_address_with_higher_uword_msb(c); if (c_next > b_next) c_next = b_next; #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c < c_next && c_next <= b_next && b_next <= a2); #endif bm0_clear_range(p2->bm1.bm0_w, address_lsb(c), SCALED_SIZE(c_next - c)); c = c_next; } /* If some UWords have to be cleared entirely, do this now. */ #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c <= b_next && b_next <= a2); #endif if (uword_lsb(address_lsb(c)) == 0) { Addr c_next = first_address_with_same_uword_lsb(b_next); #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(uword_lsb(address_lsb(c)) == 0); tl_assert(uword_lsb(address_lsb(c_next)) == 0); tl_assert(a1 <= b && b <= c && c <= c_next && c_next <= b_next && b_next <= a2); #endif if (c_next > c) { UWord idx = uword_msb(address_lsb(c)); VG_(memset)(&p2->bm1.bm0_w[idx], 0, SCALED_SIZE((c_next - c) / 8)); c = c_next; } } /* If the last address in the bitmap that must be cleared does not */ /* fall on an UWord boundary, clear the last addresses. */ #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(a1 <= b && b <= c && c <= b_next && b_next <= a2); #endif bm0_clear_range(p2->bm1.bm0_w, address_lsb(c), SCALED_SIZE(b_next - c)); } } /** * Clear bitmap bm starting at address a1 and up to but not including address * a2. Return True if and only if any of the addresses was set before * clearing. */ Bool DRD_(bm_test_and_clear)(struct bitmap* const bm, const Addr a1, const Addr a2) { Bool result; result = DRD_(bm_has_any_access)(bm, a1, a2) != 0; DRD_(bm_clear)(bm, a1, a2); return result; } Bool DRD_(bm_has_conflict_with)(struct bitmap* const bm, const Addr a1, const Addr a2, const BmAccessTypeT access_type) { Addr b, b_next; tl_assert(bm); for (b = a1; b < a2; b = b_next) { const struct bitmap2* bm2 = bm2_lookup(bm, address_msb(b)); b_next = first_address_with_higher_msb(b); if (b_next > a2) { b_next = a2; } if (bm2) { Addr b_start; Addr b_end; UWord b0; const struct bitmap1* const p1 = &bm2->bm1; if (make_address(bm2->addr, 0) < a1) b_start = a1; else if (make_address(bm2->addr, 0) < a2) b_start = make_address(bm2->addr, 0); else break; tl_assert(a1 <= b_start && b_start <= a2); if (make_address(bm2->addr + 1, 0) < a2) b_end = make_address(bm2->addr + 1, 0); else b_end = a2; tl_assert(a1 <= b_end && b_end <= a2); tl_assert(b_start < b_end); tl_assert(address_lsb(b_start) <= address_lsb(b_end - 1)); for (b0 = address_lsb(b_start); b0 <= address_lsb(b_end - 1); b0++) { if (access_type == eLoad) { if (bm0_is_set(p1->bm0_w, b0)) { return True; } } else { tl_assert(access_type == eStore); if (bm0_is_set(p1->bm0_r, b0) | bm0_is_set(p1->bm0_w, b0)) { return True; } } } } } return False; } Bool DRD_(bm_load_has_conflict_with)(struct bitmap* const bm, const Addr a1, const Addr a2) { return DRD_(bm_has_conflict_with)(bm, a1, a2, eLoad); } Bool DRD_(bm_load_1_has_conflict_with)(struct bitmap* const bm, const Addr a1) { return bm_aligned_load_has_conflict_with(bm, a1, 1); } Bool DRD_(bm_load_2_has_conflict_with)(struct bitmap* const bm, const Addr a1) { if ((a1 & 1) == 0) return bm_aligned_load_has_conflict_with(bm, a1, 2); else return DRD_(bm_has_conflict_with)(bm, a1, a1 + 2, eLoad); } Bool DRD_(bm_load_4_has_conflict_with)(struct bitmap* const bm, const Addr a1) { if ((a1 & 3) == 0) return bm_aligned_load_has_conflict_with(bm, a1, 4); else return DRD_(bm_has_conflict_with)(bm, a1, a1 + 4, eLoad); } Bool DRD_(bm_load_8_has_conflict_with)(struct bitmap* const bm, const Addr a1) { if ((a1 & 7) == 0) return bm_aligned_load_has_conflict_with(bm, a1, 8); else return DRD_(bm_has_conflict_with)(bm, a1, a1 + 8, eLoad); } Bool DRD_(bm_store_1_has_conflict_with)(struct bitmap* const bm, const Addr a1) { return bm_aligned_store_has_conflict_with(bm, a1, 1); } Bool DRD_(bm_store_2_has_conflict_with)(struct bitmap* const bm, const Addr a1) { if ((a1 & 1) == 0) return bm_aligned_store_has_conflict_with(bm, a1, 2); else return DRD_(bm_has_conflict_with)(bm, a1, a1 + 2, eStore); } Bool DRD_(bm_store_4_has_conflict_with)(struct bitmap* const bm, const Addr a1) { if ((a1 & 3) == 0) return bm_aligned_store_has_conflict_with(bm, a1, 4); else return DRD_(bm_has_conflict_with)(bm, a1, a1 + 4, eStore); } Bool DRD_(bm_store_8_has_conflict_with)(struct bitmap* const bm, const Addr a1) { if ((a1 & 7) == 0) return bm_aligned_store_has_conflict_with(bm, a1, 8); else return DRD_(bm_has_conflict_with)(bm, a1, a1 + 8, eStore); } Bool DRD_(bm_store_has_conflict_with)(struct bitmap* const bm, const Addr a1, const Addr a2) { return DRD_(bm_has_conflict_with)(bm, a1, a2, eStore); } /** * Return True if the two bitmaps *lhs and *rhs are identical, and false * if not. */ Bool DRD_(bm_equal)(struct bitmap* const lhs, struct bitmap* const rhs) { struct bitmap2* bm2l; struct bitmap2* bm2r; /* It's not possible to have two independent iterators over the same OSet, */ /* so complain if lhs == rhs. */ tl_assert(lhs != rhs); VG_(OSetGen_ResetIter)(lhs->oset); VG_(OSetGen_ResetIter)(rhs->oset); for ( ; (bm2l = VG_(OSetGen_Next)(lhs->oset)) != 0; ) { while (bm2l && ! DRD_(bm_has_any_access)(lhs, make_address(bm2l->addr, 0), make_address(bm2l->addr + 1, 0))) { bm2l = VG_(OSetGen_Next)(lhs->oset); } if (bm2l == 0) break; tl_assert(bm2l); do { bm2r = VG_(OSetGen_Next)(rhs->oset); if (bm2r == 0) return False; } while (! DRD_(bm_has_any_access)(rhs, make_address(bm2r->addr, 0), make_address(bm2r->addr + 1, 0))); tl_assert(bm2r); tl_assert(DRD_(bm_has_any_access)(rhs, make_address(bm2r->addr, 0), make_address(bm2r->addr + 1, 0))); if (bm2l != bm2r && (bm2l->addr != bm2r->addr || VG_(memcmp)(&bm2l->bm1, &bm2r->bm1, sizeof(bm2l->bm1)) != 0)) { return False; } } do { bm2r = VG_(OSetGen_Next)(rhs->oset); } while (bm2r && ! DRD_(bm_has_any_access)(rhs, make_address(bm2r->addr, 0), make_address(bm2r->addr + 1, 0))); if (bm2r) { tl_assert(DRD_(bm_has_any_access)(rhs, make_address(bm2r->addr, 0), make_address(bm2r->addr + 1, 0))); return False; } return True; } void DRD_(bm_swap)(struct bitmap* const bm1, struct bitmap* const bm2) { OSet* const tmp = bm1->oset; bm1->oset = bm2->oset; bm2->oset = tmp; } /** Merge bitmaps *lhs and *rhs into *lhs. */ void DRD_(bm_merge2)(struct bitmap* const lhs, struct bitmap* const rhs) { struct bitmap2* bm2l; struct bitmap2* bm2r; /* * It's not possible to have two independent iterators over the same OSet, * so complain if lhs == rhs. */ tl_assert(lhs != rhs); s_bitmap_merge_count++; VG_(OSetGen_ResetIter)(rhs->oset); for ( ; (bm2r = VG_(OSetGen_Next)(rhs->oset)) != 0; ) { bm2l = VG_(OSetGen_Lookup)(lhs->oset, &bm2r->addr); if (bm2l) { tl_assert(bm2l != bm2r); bm2_merge(bm2l, bm2r); } else { bm2_insert_copy(lhs, bm2r); } } } /** Clear bitmap2::recalc. */ void DRD_(bm_unmark)(struct bitmap* bm) { struct bitmap2* bm2; for (VG_(OSetGen_ResetIter)(bm->oset); (bm2 = VG_(OSetGen_Next)(bm->oset)) != 0; ) { bm2->recalc = False; } } /** * Report whether bitmap2::recalc has been set for the second level bitmap * corresponding to address a. */ Bool DRD_(bm_is_marked)(struct bitmap* bm, const Addr a) { const struct bitmap2* bm2; bm2 = bm2_lookup(bm, a); return bm2 && bm2->recalc; } /** * Set bitmap2::recalc in bml for each second level bitmap in bmr that contains * at least one access. * * @note Any new second-level bitmaps inserted in bml by this function are * uninitialized. */ void DRD_(bm_mark)(struct bitmap* bml, struct bitmap* bmr) { struct bitmap2* bm2l; struct bitmap2* bm2r; for (VG_(OSetGen_ResetIter)(bmr->oset); (bm2r = VG_(OSetGen_Next)(bmr->oset)) != 0; ) { bm2l = bm2_lookup_or_insert(bml, bm2r->addr); bm2l->recalc = True; } } /** Clear all second-level bitmaps for which bitmap2::recalc == True. */ void DRD_(bm_clear_marked)(struct bitmap* bm) { struct bitmap2* bm2; for (VG_(OSetGen_ResetIter)(bm->oset); (bm2 = VG_(OSetGen_Next)(bm->oset)) != 0; ) { if (bm2->recalc) bm2_clear(bm2); } } /** Merge the second level bitmaps from *rhs into *lhs for which recalc == True. */ void DRD_(bm_merge2_marked)(struct bitmap* const lhs, struct bitmap* const rhs) { struct bitmap2* bm2l; struct bitmap2* bm2r; /* * It's not possible to have two independent iterators over the same OSet, * so complain if lhs == rhs. */ tl_assert(lhs != rhs); s_bitmap_merge_count++; VG_(OSetGen_ResetIter)(rhs->oset); for ( ; (bm2r = VG_(OSetGen_Next)(rhs->oset)) != 0; ) { bm2l = VG_(OSetGen_Lookup)(lhs->oset, &bm2r->addr); if (bm2l && bm2l->recalc) { tl_assert(bm2l != bm2r); bm2_merge(bm2l, bm2r); } } } /** Remove all marked second-level bitmaps that do not contain any access. */ void DRD_(bm_remove_cleared_marked)(struct bitmap* bm) { struct bitmap2* bm2; VG_(OSetGen_ResetIter)(bm->oset); for ( ; (bm2 = VG_(OSetGen_Next)(bm->oset)) != 0; ) { const UWord a1 = bm2->addr; if (bm2->recalc && ! DRD_(bm_has_any_access(bm, make_address(a1, 0), make_address(a1 + 1, 0)))) { bm2_remove(bm, a1); VG_(OSetGen_ResetIterAt)(bm->oset, &a1); } } } /** * Report whether there are any RW / WR / WW patterns in lhs and rhs. * @param lhs First bitmap. * @param rhs Bitmap to be compared with lhs. * @return !=0 if there are data races, == 0 if there are none. */ int DRD_(bm_has_races)(struct bitmap* const lhs, struct bitmap* const rhs) { VG_(OSetGen_ResetIter)(lhs->oset); VG_(OSetGen_ResetIter)(rhs->oset); for (;;) { const struct bitmap2* bm2l; const struct bitmap2* bm2r; const struct bitmap1* bm1l; const struct bitmap1* bm1r; unsigned k; bm2l = VG_(OSetGen_Next)(lhs->oset); bm2r = VG_(OSetGen_Next)(rhs->oset); while (bm2l && bm2r && bm2l->addr != bm2r->addr) { if (bm2l->addr < bm2r->addr) bm2l = VG_(OSetGen_Next)(lhs->oset); else bm2r = VG_(OSetGen_Next)(rhs->oset); } if (bm2l == 0 || bm2r == 0) break; bm1l = &bm2l->bm1; bm1r = &bm2r->bm1; for (k = 0; k < BITMAP1_UWORD_COUNT; k++) { unsigned b; for (b = 0; b < BITS_PER_UWORD; b++) { UWord const access_mask = ((bm1l->bm0_r[k] & bm0_mask(b)) ? LHS_R : 0) | ((bm1l->bm0_w[k] & bm0_mask(b)) ? LHS_W : 0) | ((bm1r->bm0_r[k] & bm0_mask(b)) ? RHS_R : 0) | ((bm1r->bm0_w[k] & bm0_mask(b)) ? RHS_W : 0); Addr const a = make_address(bm2l->addr, k * BITS_PER_UWORD | b); if (HAS_RACE(access_mask) && ! DRD_(is_suppressed)(a, a + 1)) { return 1; } } } } return 0; } void DRD_(bm_print)(struct bitmap* const bm) { struct bitmap2* bm2; for (VG_(OSetGen_ResetIter)(bm->oset); (bm2 = VG_(OSetGen_Next)(bm->oset)) != 0; ) { bm2_print(bm2); } } static void bm2_print(const struct bitmap2* const bm2) { const struct bitmap1* bm1; Addr a; tl_assert(bm2); bm1 = &bm2->bm1; for (a = make_address(bm2->addr, 0); a <= make_address(bm2->addr + 1, 0) - 1; a++) { const Bool r = bm0_is_set(bm1->bm0_r, address_lsb(a)) != 0; const Bool w = bm0_is_set(bm1->bm0_w, address_lsb(a)) != 0; if (r || w) { VG_(printf)("0x%08lx %c %c\n", a, w ? 'W' : ' ', r ? 'R' : ' '); } } } ULong DRD_(bm_get_bitmap_creation_count)(void) { return s_bitmap_creation_count; } ULong DRD_(bm_get_bitmap2_creation_count)(void) { return s_bitmap2_creation_count; } ULong DRD_(bm_get_bitmap2_merge_count)(void) { return s_bitmap2_merge_count; } /** Compute *bm2l |= *bm2r. */ static void bm2_merge(struct bitmap2* const bm2l, const struct bitmap2* const bm2r) { unsigned k; tl_assert(bm2l); tl_assert(bm2r); tl_assert(bm2l->addr == bm2r->addr); s_bitmap2_merge_count++; for (k = 0; k < BITMAP1_UWORD_COUNT; k++) { bm2l->bm1.bm0_r[k] |= bm2r->bm1.bm0_r[k]; } for (k = 0; k < BITMAP1_UWORD_COUNT; k++) { bm2l->bm1.bm0_w[k] |= bm2r->bm1.bm0_w[k]; } }