• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for C++ expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DeclSpec.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/Sema/ParsedTemplate.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/TemplateDeduction.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/CXXInheritance.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "TypeLocBuilder.h"
33 #include "llvm/ADT/APInt.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/Support/ErrorHandling.h"
36 using namespace clang;
37 using namespace sema;
38 
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)39 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
40                                    IdentifierInfo &II,
41                                    SourceLocation NameLoc,
42                                    Scope *S, CXXScopeSpec &SS,
43                                    ParsedType ObjectTypePtr,
44                                    bool EnteringContext) {
45   // Determine where to perform name lookup.
46 
47   // FIXME: This area of the standard is very messy, and the current
48   // wording is rather unclear about which scopes we search for the
49   // destructor name; see core issues 399 and 555. Issue 399 in
50   // particular shows where the current description of destructor name
51   // lookup is completely out of line with existing practice, e.g.,
52   // this appears to be ill-formed:
53   //
54   //   namespace N {
55   //     template <typename T> struct S {
56   //       ~S();
57   //     };
58   //   }
59   //
60   //   void f(N::S<int>* s) {
61   //     s->N::S<int>::~S();
62   //   }
63   //
64   // See also PR6358 and PR6359.
65   // For this reason, we're currently only doing the C++03 version of this
66   // code; the C++0x version has to wait until we get a proper spec.
67   QualType SearchType;
68   DeclContext *LookupCtx = 0;
69   bool isDependent = false;
70   bool LookInScope = false;
71 
72   // If we have an object type, it's because we are in a
73   // pseudo-destructor-expression or a member access expression, and
74   // we know what type we're looking for.
75   if (ObjectTypePtr)
76     SearchType = GetTypeFromParser(ObjectTypePtr);
77 
78   if (SS.isSet()) {
79     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
80 
81     bool AlreadySearched = false;
82     bool LookAtPrefix = true;
83     // C++ [basic.lookup.qual]p6:
84     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
85     //   the type-names are looked up as types in the scope designated by the
86     //   nested-name-specifier. In a qualified-id of the form:
87     //
88     //     ::[opt] nested-name-specifier  ~ class-name
89     //
90     //   where the nested-name-specifier designates a namespace scope, and in
91     //   a qualified-id of the form:
92     //
93     //     ::opt nested-name-specifier class-name ::  ~ class-name
94     //
95     //   the class-names are looked up as types in the scope designated by
96     //   the nested-name-specifier.
97     //
98     // Here, we check the first case (completely) and determine whether the
99     // code below is permitted to look at the prefix of the
100     // nested-name-specifier.
101     DeclContext *DC = computeDeclContext(SS, EnteringContext);
102     if (DC && DC->isFileContext()) {
103       AlreadySearched = true;
104       LookupCtx = DC;
105       isDependent = false;
106     } else if (DC && isa<CXXRecordDecl>(DC))
107       LookAtPrefix = false;
108 
109     // The second case from the C++03 rules quoted further above.
110     NestedNameSpecifier *Prefix = 0;
111     if (AlreadySearched) {
112       // Nothing left to do.
113     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
114       CXXScopeSpec PrefixSS;
115       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
116       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
117       isDependent = isDependentScopeSpecifier(PrefixSS);
118     } else if (ObjectTypePtr) {
119       LookupCtx = computeDeclContext(SearchType);
120       isDependent = SearchType->isDependentType();
121     } else {
122       LookupCtx = computeDeclContext(SS, EnteringContext);
123       isDependent = LookupCtx && LookupCtx->isDependentContext();
124     }
125 
126     LookInScope = false;
127   } else if (ObjectTypePtr) {
128     // C++ [basic.lookup.classref]p3:
129     //   If the unqualified-id is ~type-name, the type-name is looked up
130     //   in the context of the entire postfix-expression. If the type T
131     //   of the object expression is of a class type C, the type-name is
132     //   also looked up in the scope of class C. At least one of the
133     //   lookups shall find a name that refers to (possibly
134     //   cv-qualified) T.
135     LookupCtx = computeDeclContext(SearchType);
136     isDependent = SearchType->isDependentType();
137     assert((isDependent || !SearchType->isIncompleteType()) &&
138            "Caller should have completed object type");
139 
140     LookInScope = true;
141   } else {
142     // Perform lookup into the current scope (only).
143     LookInScope = true;
144   }
145 
146   TypeDecl *NonMatchingTypeDecl = 0;
147   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
148   for (unsigned Step = 0; Step != 2; ++Step) {
149     // Look for the name first in the computed lookup context (if we
150     // have one) and, if that fails to find a match, in the scope (if
151     // we're allowed to look there).
152     Found.clear();
153     if (Step == 0 && LookupCtx)
154       LookupQualifiedName(Found, LookupCtx);
155     else if (Step == 1 && LookInScope && S)
156       LookupName(Found, S);
157     else
158       continue;
159 
160     // FIXME: Should we be suppressing ambiguities here?
161     if (Found.isAmbiguous())
162       return ParsedType();
163 
164     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
165       QualType T = Context.getTypeDeclType(Type);
166 
167       if (SearchType.isNull() || SearchType->isDependentType() ||
168           Context.hasSameUnqualifiedType(T, SearchType)) {
169         // We found our type!
170 
171         return ParsedType::make(T);
172       }
173 
174       if (!SearchType.isNull())
175         NonMatchingTypeDecl = Type;
176     }
177 
178     // If the name that we found is a class template name, and it is
179     // the same name as the template name in the last part of the
180     // nested-name-specifier (if present) or the object type, then
181     // this is the destructor for that class.
182     // FIXME: This is a workaround until we get real drafting for core
183     // issue 399, for which there isn't even an obvious direction.
184     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
185       QualType MemberOfType;
186       if (SS.isSet()) {
187         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
188           // Figure out the type of the context, if it has one.
189           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
190             MemberOfType = Context.getTypeDeclType(Record);
191         }
192       }
193       if (MemberOfType.isNull())
194         MemberOfType = SearchType;
195 
196       if (MemberOfType.isNull())
197         continue;
198 
199       // We're referring into a class template specialization. If the
200       // class template we found is the same as the template being
201       // specialized, we found what we are looking for.
202       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
203         if (ClassTemplateSpecializationDecl *Spec
204               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
205           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
206                 Template->getCanonicalDecl())
207             return ParsedType::make(MemberOfType);
208         }
209 
210         continue;
211       }
212 
213       // We're referring to an unresolved class template
214       // specialization. Determine whether we class template we found
215       // is the same as the template being specialized or, if we don't
216       // know which template is being specialized, that it at least
217       // has the same name.
218       if (const TemplateSpecializationType *SpecType
219             = MemberOfType->getAs<TemplateSpecializationType>()) {
220         TemplateName SpecName = SpecType->getTemplateName();
221 
222         // The class template we found is the same template being
223         // specialized.
224         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
225           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
226             return ParsedType::make(MemberOfType);
227 
228           continue;
229         }
230 
231         // The class template we found has the same name as the
232         // (dependent) template name being specialized.
233         if (DependentTemplateName *DepTemplate
234                                     = SpecName.getAsDependentTemplateName()) {
235           if (DepTemplate->isIdentifier() &&
236               DepTemplate->getIdentifier() == Template->getIdentifier())
237             return ParsedType::make(MemberOfType);
238 
239           continue;
240         }
241       }
242     }
243   }
244 
245   if (isDependent) {
246     // We didn't find our type, but that's okay: it's dependent
247     // anyway.
248 
249     // FIXME: What if we have no nested-name-specifier?
250     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
251                                    SS.getWithLocInContext(Context),
252                                    II, NameLoc);
253     return ParsedType::make(T);
254   }
255 
256   if (NonMatchingTypeDecl) {
257     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
258     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
259       << T << SearchType;
260     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
261       << T;
262   } else if (ObjectTypePtr)
263     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
264       << &II;
265   else
266     Diag(NameLoc, diag::err_destructor_class_name);
267 
268   return ParsedType();
269 }
270 
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)271 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
272     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
273       return ParsedType();
274     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
275            && "only get destructor types from declspecs");
276     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
277     QualType SearchType = GetTypeFromParser(ObjectType);
278     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
279       return ParsedType::make(T);
280     }
281 
282     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
283       << T << SearchType;
284     return ParsedType();
285 }
286 
287 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)288 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
289                                 SourceLocation TypeidLoc,
290                                 TypeSourceInfo *Operand,
291                                 SourceLocation RParenLoc) {
292   // C++ [expr.typeid]p4:
293   //   The top-level cv-qualifiers of the lvalue expression or the type-id
294   //   that is the operand of typeid are always ignored.
295   //   If the type of the type-id is a class type or a reference to a class
296   //   type, the class shall be completely-defined.
297   Qualifiers Quals;
298   QualType T
299     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
300                                       Quals);
301   if (T->getAs<RecordType>() &&
302       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
303     return ExprError();
304 
305   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
306                                            Operand,
307                                            SourceRange(TypeidLoc, RParenLoc)));
308 }
309 
310 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)311 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
312                                 SourceLocation TypeidLoc,
313                                 Expr *E,
314                                 SourceLocation RParenLoc) {
315   if (E && !E->isTypeDependent()) {
316     if (E->getType()->isPlaceholderType()) {
317       ExprResult result = CheckPlaceholderExpr(E);
318       if (result.isInvalid()) return ExprError();
319       E = result.take();
320     }
321 
322     QualType T = E->getType();
323     if (const RecordType *RecordT = T->getAs<RecordType>()) {
324       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
325       // C++ [expr.typeid]p3:
326       //   [...] If the type of the expression is a class type, the class
327       //   shall be completely-defined.
328       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
329         return ExprError();
330 
331       // C++ [expr.typeid]p3:
332       //   When typeid is applied to an expression other than an glvalue of a
333       //   polymorphic class type [...] [the] expression is an unevaluated
334       //   operand. [...]
335       if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
336         // The subexpression is potentially evaluated; switch the context
337         // and recheck the subexpression.
338         ExprResult Result = TranformToPotentiallyEvaluated(E);
339         if (Result.isInvalid()) return ExprError();
340         E = Result.take();
341 
342         // We require a vtable to query the type at run time.
343         MarkVTableUsed(TypeidLoc, RecordD);
344       }
345     }
346 
347     // C++ [expr.typeid]p4:
348     //   [...] If the type of the type-id is a reference to a possibly
349     //   cv-qualified type, the result of the typeid expression refers to a
350     //   std::type_info object representing the cv-unqualified referenced
351     //   type.
352     Qualifiers Quals;
353     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
354     if (!Context.hasSameType(T, UnqualT)) {
355       T = UnqualT;
356       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
357     }
358   }
359 
360   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
361                                            E,
362                                            SourceRange(TypeidLoc, RParenLoc)));
363 }
364 
365 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
366 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)367 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
368                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
369   // Find the std::type_info type.
370   if (!getStdNamespace())
371     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
372 
373   if (!CXXTypeInfoDecl) {
374     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
375     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
376     LookupQualifiedName(R, getStdNamespace());
377     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
378     if (!CXXTypeInfoDecl)
379       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
380   }
381 
382   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
383 
384   if (isType) {
385     // The operand is a type; handle it as such.
386     TypeSourceInfo *TInfo = 0;
387     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
388                                    &TInfo);
389     if (T.isNull())
390       return ExprError();
391 
392     if (!TInfo)
393       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
394 
395     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
396   }
397 
398   // The operand is an expression.
399   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
400 }
401 
402 /// Retrieve the UuidAttr associated with QT.
GetUuidAttrOfType(QualType QT)403 static UuidAttr *GetUuidAttrOfType(QualType QT) {
404   // Optionally remove one level of pointer, reference or array indirection.
405   const Type *Ty = QT.getTypePtr();;
406   if (QT->isPointerType() || QT->isReferenceType())
407     Ty = QT->getPointeeType().getTypePtr();
408   else if (QT->isArrayType())
409     Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
410 
411   // Loop all record redeclaration looking for an uuid attribute.
412   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
413   for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
414        E = RD->redecls_end(); I != E; ++I) {
415     if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
416       return Uuid;
417   }
418 
419   return 0;
420 }
421 
422 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)423 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
424                                 SourceLocation TypeidLoc,
425                                 TypeSourceInfo *Operand,
426                                 SourceLocation RParenLoc) {
427   if (!Operand->getType()->isDependentType()) {
428     if (!GetUuidAttrOfType(Operand->getType()))
429       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
430   }
431 
432   // FIXME: add __uuidof semantic analysis for type operand.
433   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
434                                            Operand,
435                                            SourceRange(TypeidLoc, RParenLoc)));
436 }
437 
438 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)439 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
440                                 SourceLocation TypeidLoc,
441                                 Expr *E,
442                                 SourceLocation RParenLoc) {
443   if (!E->getType()->isDependentType()) {
444     if (!GetUuidAttrOfType(E->getType()) &&
445         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
446       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
447   }
448   // FIXME: add __uuidof semantic analysis for type operand.
449   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
450                                            E,
451                                            SourceRange(TypeidLoc, RParenLoc)));
452 }
453 
454 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
455 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)456 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
457                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
458   // If MSVCGuidDecl has not been cached, do the lookup.
459   if (!MSVCGuidDecl) {
460     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
461     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
462     LookupQualifiedName(R, Context.getTranslationUnitDecl());
463     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
464     if (!MSVCGuidDecl)
465       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
466   }
467 
468   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
469 
470   if (isType) {
471     // The operand is a type; handle it as such.
472     TypeSourceInfo *TInfo = 0;
473     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
474                                    &TInfo);
475     if (T.isNull())
476       return ExprError();
477 
478     if (!TInfo)
479       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
480 
481     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
482   }
483 
484   // The operand is an expression.
485   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
486 }
487 
488 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
489 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)490 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
491   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
492          "Unknown C++ Boolean value!");
493   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
494                                                 Context.BoolTy, OpLoc));
495 }
496 
497 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
498 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)499 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
500   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
501 }
502 
503 /// ActOnCXXThrow - Parse throw expressions.
504 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)505 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
506   bool IsThrownVarInScope = false;
507   if (Ex) {
508     // C++0x [class.copymove]p31:
509     //   When certain criteria are met, an implementation is allowed to omit the
510     //   copy/move construction of a class object [...]
511     //
512     //     - in a throw-expression, when the operand is the name of a
513     //       non-volatile automatic object (other than a function or catch-
514     //       clause parameter) whose scope does not extend beyond the end of the
515     //       innermost enclosing try-block (if there is one), the copy/move
516     //       operation from the operand to the exception object (15.1) can be
517     //       omitted by constructing the automatic object directly into the
518     //       exception object
519     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
520       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
521         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
522           for( ; S; S = S->getParent()) {
523             if (S->isDeclScope(Var)) {
524               IsThrownVarInScope = true;
525               break;
526             }
527 
528             if (S->getFlags() &
529                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
530                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
531                  Scope::TryScope))
532               break;
533           }
534         }
535       }
536   }
537 
538   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
539 }
540 
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)541 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
542                                bool IsThrownVarInScope) {
543   // Don't report an error if 'throw' is used in system headers.
544   if (!getLangOpts().CXXExceptions &&
545       !getSourceManager().isInSystemHeader(OpLoc))
546     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
547 
548   if (Ex && !Ex->isTypeDependent()) {
549     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
550     if (ExRes.isInvalid())
551       return ExprError();
552     Ex = ExRes.take();
553   }
554 
555   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
556                                           IsThrownVarInScope));
557 }
558 
559 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)560 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
561                                       bool IsThrownVarInScope) {
562   // C++ [except.throw]p3:
563   //   A throw-expression initializes a temporary object, called the exception
564   //   object, the type of which is determined by removing any top-level
565   //   cv-qualifiers from the static type of the operand of throw and adjusting
566   //   the type from "array of T" or "function returning T" to "pointer to T"
567   //   or "pointer to function returning T", [...]
568   if (E->getType().hasQualifiers())
569     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
570                           E->getValueKind()).take();
571 
572   ExprResult Res = DefaultFunctionArrayConversion(E);
573   if (Res.isInvalid())
574     return ExprError();
575   E = Res.take();
576 
577   //   If the type of the exception would be an incomplete type or a pointer
578   //   to an incomplete type other than (cv) void the program is ill-formed.
579   QualType Ty = E->getType();
580   bool isPointer = false;
581   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
582     Ty = Ptr->getPointeeType();
583     isPointer = true;
584   }
585   if (!isPointer || !Ty->isVoidType()) {
586     if (RequireCompleteType(ThrowLoc, Ty,
587                             PDiag(isPointer ? diag::err_throw_incomplete_ptr
588                                             : diag::err_throw_incomplete)
589                               << E->getSourceRange()))
590       return ExprError();
591 
592     if (RequireNonAbstractType(ThrowLoc, E->getType(),
593                                PDiag(diag::err_throw_abstract_type)
594                                  << E->getSourceRange()))
595       return ExprError();
596   }
597 
598   // Initialize the exception result.  This implicitly weeds out
599   // abstract types or types with inaccessible copy constructors.
600 
601   // C++0x [class.copymove]p31:
602   //   When certain criteria are met, an implementation is allowed to omit the
603   //   copy/move construction of a class object [...]
604   //
605   //     - in a throw-expression, when the operand is the name of a
606   //       non-volatile automatic object (other than a function or catch-clause
607   //       parameter) whose scope does not extend beyond the end of the
608   //       innermost enclosing try-block (if there is one), the copy/move
609   //       operation from the operand to the exception object (15.1) can be
610   //       omitted by constructing the automatic object directly into the
611   //       exception object
612   const VarDecl *NRVOVariable = 0;
613   if (IsThrownVarInScope)
614     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
615 
616   InitializedEntity Entity =
617       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
618                                              /*NRVO=*/NRVOVariable != 0);
619   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
620                                         QualType(), E,
621                                         IsThrownVarInScope);
622   if (Res.isInvalid())
623     return ExprError();
624   E = Res.take();
625 
626   // If the exception has class type, we need additional handling.
627   const RecordType *RecordTy = Ty->getAs<RecordType>();
628   if (!RecordTy)
629     return Owned(E);
630   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
631 
632   // If we are throwing a polymorphic class type or pointer thereof,
633   // exception handling will make use of the vtable.
634   MarkVTableUsed(ThrowLoc, RD);
635 
636   // If a pointer is thrown, the referenced object will not be destroyed.
637   if (isPointer)
638     return Owned(E);
639 
640   // If the class has a destructor, we must be able to call it.
641   if (RD->hasIrrelevantDestructor())
642     return Owned(E);
643 
644   CXXDestructorDecl *Destructor = LookupDestructor(RD);
645   if (!Destructor)
646     return Owned(E);
647 
648   MarkFunctionReferenced(E->getExprLoc(), Destructor);
649   CheckDestructorAccess(E->getExprLoc(), Destructor,
650                         PDiag(diag::err_access_dtor_exception) << Ty);
651   DiagnoseUseOfDecl(Destructor, E->getExprLoc());
652   return Owned(E);
653 }
654 
getCurrentThisType()655 QualType Sema::getCurrentThisType() {
656   DeclContext *DC = getFunctionLevelDeclContext();
657   QualType ThisTy = CXXThisTypeOverride;
658   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
659     if (method && method->isInstance())
660       ThisTy = method->getThisType(Context);
661   }
662 
663   return ThisTy;
664 }
665 
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)666 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
667                                          Decl *ContextDecl,
668                                          unsigned CXXThisTypeQuals,
669                                          bool Enabled)
670   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
671 {
672   if (!Enabled || !ContextDecl)
673     return;
674 
675   CXXRecordDecl *Record = 0;
676   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
677     Record = Template->getTemplatedDecl();
678   else
679     Record = cast<CXXRecordDecl>(ContextDecl);
680 
681   S.CXXThisTypeOverride
682     = S.Context.getPointerType(
683         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
684 
685   this->Enabled = true;
686 }
687 
688 
~CXXThisScopeRAII()689 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
690   if (Enabled) {
691     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
692   }
693 }
694 
CheckCXXThisCapture(SourceLocation Loc,bool Explicit)695 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
696   // We don't need to capture this in an unevaluated context.
697   if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
698     return;
699 
700   // Otherwise, check that we can capture 'this'.
701   unsigned NumClosures = 0;
702   for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
703     if (CapturingScopeInfo *CSI =
704             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
705       if (CSI->CXXThisCaptureIndex != 0) {
706         // 'this' is already being captured; there isn't anything more to do.
707         break;
708       }
709 
710       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
711           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
712           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
713           Explicit) {
714         // This closure can capture 'this'; continue looking upwards.
715         NumClosures++;
716         Explicit = false;
717         continue;
718       }
719       // This context can't implicitly capture 'this'; fail out.
720       Diag(Loc, diag::err_this_capture) << Explicit;
721       return;
722     }
723     break;
724   }
725 
726   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
727   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
728   // contexts.
729   for (unsigned idx = FunctionScopes.size() - 1;
730        NumClosures; --idx, --NumClosures) {
731     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
732     Expr *ThisExpr = 0;
733     QualType ThisTy = getCurrentThisType();
734     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
735       // For lambda expressions, build a field and an initializing expression.
736       CXXRecordDecl *Lambda = LSI->Lambda;
737       FieldDecl *Field
738         = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
739                             Context.getTrivialTypeSourceInfo(ThisTy, Loc),
740                             0, false, false);
741       Field->setImplicit(true);
742       Field->setAccess(AS_private);
743       Lambda->addDecl(Field);
744       ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
745     }
746     bool isNested = NumClosures > 1;
747     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
748   }
749 }
750 
ActOnCXXThis(SourceLocation Loc)751 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
752   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
753   /// is a non-lvalue expression whose value is the address of the object for
754   /// which the function is called.
755 
756   QualType ThisTy = getCurrentThisType();
757   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
758 
759   CheckCXXThisCapture(Loc);
760   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
761 }
762 
isThisOutsideMemberFunctionBody(QualType BaseType)763 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
764   // If we're outside the body of a member function, then we'll have a specified
765   // type for 'this'.
766   if (CXXThisTypeOverride.isNull())
767     return false;
768 
769   // Determine whether we're looking into a class that's currently being
770   // defined.
771   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
772   return Class && Class->isBeingDefined();
773 }
774 
775 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)776 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
777                                 SourceLocation LParenLoc,
778                                 MultiExprArg exprs,
779                                 SourceLocation RParenLoc) {
780   if (!TypeRep)
781     return ExprError();
782 
783   TypeSourceInfo *TInfo;
784   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
785   if (!TInfo)
786     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
787 
788   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
789 }
790 
791 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
792 /// Can be interpreted either as function-style casting ("int(x)")
793 /// or class type construction ("ClassType(x,y,z)")
794 /// or creation of a value-initialized type ("int()").
795 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)796 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
797                                 SourceLocation LParenLoc,
798                                 MultiExprArg exprs,
799                                 SourceLocation RParenLoc) {
800   QualType Ty = TInfo->getType();
801   unsigned NumExprs = exprs.size();
802   Expr **Exprs = (Expr**)exprs.get();
803   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
804 
805   if (Ty->isDependentType() ||
806       CallExpr::hasAnyTypeDependentArguments(
807         llvm::makeArrayRef(Exprs, NumExprs))) {
808     exprs.release();
809 
810     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
811                                                     LParenLoc,
812                                                     Exprs, NumExprs,
813                                                     RParenLoc));
814   }
815 
816   bool ListInitialization = LParenLoc.isInvalid();
817   assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
818          && "List initialization must have initializer list as expression.");
819   SourceRange FullRange = SourceRange(TyBeginLoc,
820       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
821 
822   // C++ [expr.type.conv]p1:
823   // If the expression list is a single expression, the type conversion
824   // expression is equivalent (in definedness, and if defined in meaning) to the
825   // corresponding cast expression.
826   if (NumExprs == 1 && !ListInitialization) {
827     Expr *Arg = Exprs[0];
828     exprs.release();
829     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
830   }
831 
832   QualType ElemTy = Ty;
833   if (Ty->isArrayType()) {
834     if (!ListInitialization)
835       return ExprError(Diag(TyBeginLoc,
836                             diag::err_value_init_for_array_type) << FullRange);
837     ElemTy = Context.getBaseElementType(Ty);
838   }
839 
840   if (!Ty->isVoidType() &&
841       RequireCompleteType(TyBeginLoc, ElemTy,
842                           PDiag(diag::err_invalid_incomplete_type_use)
843                             << FullRange))
844     return ExprError();
845 
846   if (RequireNonAbstractType(TyBeginLoc, Ty,
847                              diag::err_allocation_of_abstract_type))
848     return ExprError();
849 
850   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
851   InitializationKind Kind
852     = NumExprs ? ListInitialization
853                     ? InitializationKind::CreateDirectList(TyBeginLoc)
854                     : InitializationKind::CreateDirect(TyBeginLoc,
855                                                        LParenLoc, RParenLoc)
856                : InitializationKind::CreateValue(TyBeginLoc,
857                                                  LParenLoc, RParenLoc);
858   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
859   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
860 
861   if (!Result.isInvalid() && ListInitialization &&
862       isa<InitListExpr>(Result.get())) {
863     // If the list-initialization doesn't involve a constructor call, we'll get
864     // the initializer-list (with corrected type) back, but that's not what we
865     // want, since it will be treated as an initializer list in further
866     // processing. Explicitly insert a cast here.
867     InitListExpr *List = cast<InitListExpr>(Result.take());
868     Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
869                                     Expr::getValueKindForType(TInfo->getType()),
870                                                  TInfo, TyBeginLoc, CK_NoOp,
871                                                  List, /*Path=*/0, RParenLoc));
872   }
873 
874   // FIXME: Improve AST representation?
875   return move(Result);
876 }
877 
878 /// doesUsualArrayDeleteWantSize - Answers whether the usual
879 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)880 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
881                                          QualType allocType) {
882   const RecordType *record =
883     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
884   if (!record) return false;
885 
886   // Try to find an operator delete[] in class scope.
887 
888   DeclarationName deleteName =
889     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
890   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
891   S.LookupQualifiedName(ops, record->getDecl());
892 
893   // We're just doing this for information.
894   ops.suppressDiagnostics();
895 
896   // Very likely: there's no operator delete[].
897   if (ops.empty()) return false;
898 
899   // If it's ambiguous, it should be illegal to call operator delete[]
900   // on this thing, so it doesn't matter if we allocate extra space or not.
901   if (ops.isAmbiguous()) return false;
902 
903   LookupResult::Filter filter = ops.makeFilter();
904   while (filter.hasNext()) {
905     NamedDecl *del = filter.next()->getUnderlyingDecl();
906 
907     // C++0x [basic.stc.dynamic.deallocation]p2:
908     //   A template instance is never a usual deallocation function,
909     //   regardless of its signature.
910     if (isa<FunctionTemplateDecl>(del)) {
911       filter.erase();
912       continue;
913     }
914 
915     // C++0x [basic.stc.dynamic.deallocation]p2:
916     //   If class T does not declare [an operator delete[] with one
917     //   parameter] but does declare a member deallocation function
918     //   named operator delete[] with exactly two parameters, the
919     //   second of which has type std::size_t, then this function
920     //   is a usual deallocation function.
921     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
922       filter.erase();
923       continue;
924     }
925   }
926   filter.done();
927 
928   if (!ops.isSingleResult()) return false;
929 
930   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
931   return (del->getNumParams() == 2);
932 }
933 
934 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
935 
936 /// E.g.:
937 /// @code new (memory) int[size][4] @endcode
938 /// or
939 /// @code ::new Foo(23, "hello") @endcode
940 ///
941 /// \param StartLoc The first location of the expression.
942 /// \param UseGlobal True if 'new' was prefixed with '::'.
943 /// \param PlacementLParen Opening paren of the placement arguments.
944 /// \param PlacementArgs Placement new arguments.
945 /// \param PlacementRParen Closing paren of the placement arguments.
946 /// \param TypeIdParens If the type is in parens, the source range.
947 /// \param D The type to be allocated, as well as array dimensions.
948 /// \param ConstructorLParen Opening paren of the constructor args, empty if
949 ///                          initializer-list syntax is used.
950 /// \param ConstructorArgs Constructor/initialization arguments.
951 /// \param ConstructorRParen Closing paren of the constructor args.
952 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)953 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
954                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
955                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
956                   Declarator &D, Expr *Initializer) {
957   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
958 
959   Expr *ArraySize = 0;
960   // If the specified type is an array, unwrap it and save the expression.
961   if (D.getNumTypeObjects() > 0 &&
962       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
963     DeclaratorChunk &Chunk = D.getTypeObject(0);
964     if (TypeContainsAuto)
965       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
966         << D.getSourceRange());
967     if (Chunk.Arr.hasStatic)
968       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
969         << D.getSourceRange());
970     if (!Chunk.Arr.NumElts)
971       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
972         << D.getSourceRange());
973 
974     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
975     D.DropFirstTypeObject();
976   }
977 
978   // Every dimension shall be of constant size.
979   if (ArraySize) {
980     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
981       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
982         break;
983 
984       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
985       if (Expr *NumElts = (Expr *)Array.NumElts) {
986         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
987           Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0,
988             PDiag(diag::err_new_array_nonconst)).take();
989           if (!Array.NumElts)
990             return ExprError();
991         }
992       }
993     }
994   }
995 
996   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
997   QualType AllocType = TInfo->getType();
998   if (D.isInvalidType())
999     return ExprError();
1000 
1001   SourceRange DirectInitRange;
1002   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1003     DirectInitRange = List->getSourceRange();
1004 
1005   return BuildCXXNew(StartLoc, UseGlobal,
1006                      PlacementLParen,
1007                      move(PlacementArgs),
1008                      PlacementRParen,
1009                      TypeIdParens,
1010                      AllocType,
1011                      TInfo,
1012                      ArraySize,
1013                      DirectInitRange,
1014                      Initializer,
1015                      TypeContainsAuto);
1016 }
1017 
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1018 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1019                                        Expr *Init) {
1020   if (!Init)
1021     return true;
1022   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1023     return PLE->getNumExprs() == 0;
1024   if (isa<ImplicitValueInitExpr>(Init))
1025     return true;
1026   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1027     return !CCE->isListInitialization() &&
1028            CCE->getConstructor()->isDefaultConstructor();
1029   else if (Style == CXXNewExpr::ListInit) {
1030     assert(isa<InitListExpr>(Init) &&
1031            "Shouldn't create list CXXConstructExprs for arrays.");
1032     return true;
1033   }
1034   return false;
1035 }
1036 
1037 ExprResult
BuildCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1038 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1039                   SourceLocation PlacementLParen,
1040                   MultiExprArg PlacementArgs,
1041                   SourceLocation PlacementRParen,
1042                   SourceRange TypeIdParens,
1043                   QualType AllocType,
1044                   TypeSourceInfo *AllocTypeInfo,
1045                   Expr *ArraySize,
1046                   SourceRange DirectInitRange,
1047                   Expr *Initializer,
1048                   bool TypeMayContainAuto) {
1049   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1050 
1051   CXXNewExpr::InitializationStyle initStyle;
1052   if (DirectInitRange.isValid()) {
1053     assert(Initializer && "Have parens but no initializer.");
1054     initStyle = CXXNewExpr::CallInit;
1055   } else if (Initializer && isa<InitListExpr>(Initializer))
1056     initStyle = CXXNewExpr::ListInit;
1057   else {
1058     // In template instantiation, the initializer could be a CXXDefaultArgExpr
1059     // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1060     // particularly sane way we can handle this (especially since it can even
1061     // occur for array new), so we throw the initializer away and have it be
1062     // rebuilt.
1063     if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1064       Initializer = 0;
1065     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1066             isa<CXXConstructExpr>(Initializer)) &&
1067            "Initializer expression that cannot have been implicitly created.");
1068     initStyle = CXXNewExpr::NoInit;
1069   }
1070 
1071   Expr **Inits = &Initializer;
1072   unsigned NumInits = Initializer ? 1 : 0;
1073   if (initStyle == CXXNewExpr::CallInit) {
1074     if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1075       Inits = List->getExprs();
1076       NumInits = List->getNumExprs();
1077     } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1078       if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1079         // Can happen in template instantiation. Since this is just an implicit
1080         // construction, we just take it apart and rebuild it.
1081         Inits = CCE->getArgs();
1082         NumInits = CCE->getNumArgs();
1083       }
1084     }
1085   }
1086 
1087   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1088   if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
1089     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1090       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1091                        << AllocType << TypeRange);
1092     if (initStyle == CXXNewExpr::ListInit)
1093       return ExprError(Diag(Inits[0]->getLocStart(),
1094                             diag::err_auto_new_requires_parens)
1095                        << AllocType << TypeRange);
1096     if (NumInits > 1) {
1097       Expr *FirstBad = Inits[1];
1098       return ExprError(Diag(FirstBad->getLocStart(),
1099                             diag::err_auto_new_ctor_multiple_expressions)
1100                        << AllocType << TypeRange);
1101     }
1102     Expr *Deduce = Inits[0];
1103     TypeSourceInfo *DeducedType = 0;
1104     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) ==
1105             DAR_Failed)
1106       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1107                        << AllocType << Deduce->getType()
1108                        << TypeRange << Deduce->getSourceRange());
1109     if (!DeducedType)
1110       return ExprError();
1111 
1112     AllocTypeInfo = DeducedType;
1113     AllocType = AllocTypeInfo->getType();
1114   }
1115 
1116   // Per C++0x [expr.new]p5, the type being constructed may be a
1117   // typedef of an array type.
1118   if (!ArraySize) {
1119     if (const ConstantArrayType *Array
1120                               = Context.getAsConstantArrayType(AllocType)) {
1121       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1122                                          Context.getSizeType(),
1123                                          TypeRange.getEnd());
1124       AllocType = Array->getElementType();
1125     }
1126   }
1127 
1128   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1129     return ExprError();
1130 
1131   if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1132     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1133          diag::warn_dangling_std_initializer_list)
1134         << /*at end of FE*/0 << Inits[0]->getSourceRange();
1135   }
1136 
1137   // In ARC, infer 'retaining' for the allocated
1138   if (getLangOpts().ObjCAutoRefCount &&
1139       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1140       AllocType->isObjCLifetimeType()) {
1141     AllocType = Context.getLifetimeQualifiedType(AllocType,
1142                                     AllocType->getObjCARCImplicitLifetime());
1143   }
1144 
1145   QualType ResultType = Context.getPointerType(AllocType);
1146 
1147   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1148   //   integral or enumeration type with a non-negative value."
1149   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1150   //   enumeration type, or a class type for which a single non-explicit
1151   //   conversion function to integral or unscoped enumeration type exists.
1152   if (ArraySize && !ArraySize->isTypeDependent()) {
1153     ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType(
1154       StartLoc, ArraySize,
1155       PDiag(diag::err_array_size_not_integral) << getLangOpts().CPlusPlus0x,
1156       PDiag(diag::err_array_size_incomplete_type)
1157         << ArraySize->getSourceRange(),
1158       PDiag(diag::err_array_size_explicit_conversion),
1159       PDiag(diag::note_array_size_conversion),
1160       PDiag(diag::err_array_size_ambiguous_conversion),
1161       PDiag(diag::note_array_size_conversion),
1162       PDiag(getLangOpts().CPlusPlus0x ?
1163               diag::warn_cxx98_compat_array_size_conversion :
1164               diag::ext_array_size_conversion),
1165       /*AllowScopedEnumerations*/ false);
1166     if (ConvertedSize.isInvalid())
1167       return ExprError();
1168 
1169     ArraySize = ConvertedSize.take();
1170     QualType SizeType = ArraySize->getType();
1171     if (!SizeType->isIntegralOrUnscopedEnumerationType())
1172       return ExprError();
1173 
1174     // C++98 [expr.new]p7:
1175     //   The expression in a direct-new-declarator shall have integral type
1176     //   with a non-negative value.
1177     //
1178     // Let's see if this is a constant < 0. If so, we reject it out of
1179     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1180     // array type.
1181     //
1182     // Note: such a construct has well-defined semantics in C++11: it throws
1183     // std::bad_array_new_length.
1184     if (!ArraySize->isValueDependent()) {
1185       llvm::APSInt Value;
1186       // We've already performed any required implicit conversion to integer or
1187       // unscoped enumeration type.
1188       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1189         if (Value < llvm::APSInt(
1190                         llvm::APInt::getNullValue(Value.getBitWidth()),
1191                                  Value.isUnsigned())) {
1192           if (getLangOpts().CPlusPlus0x)
1193             Diag(ArraySize->getLocStart(),
1194                  diag::warn_typecheck_negative_array_new_size)
1195               << ArraySize->getSourceRange();
1196           else
1197             return ExprError(Diag(ArraySize->getLocStart(),
1198                                   diag::err_typecheck_negative_array_size)
1199                              << ArraySize->getSourceRange());
1200         } else if (!AllocType->isDependentType()) {
1201           unsigned ActiveSizeBits =
1202             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1203           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1204             if (getLangOpts().CPlusPlus0x)
1205               Diag(ArraySize->getLocStart(),
1206                    diag::warn_array_new_too_large)
1207                 << Value.toString(10)
1208                 << ArraySize->getSourceRange();
1209             else
1210               return ExprError(Diag(ArraySize->getLocStart(),
1211                                     diag::err_array_too_large)
1212                                << Value.toString(10)
1213                                << ArraySize->getSourceRange());
1214           }
1215         }
1216       } else if (TypeIdParens.isValid()) {
1217         // Can't have dynamic array size when the type-id is in parentheses.
1218         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1219           << ArraySize->getSourceRange()
1220           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1221           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1222 
1223         TypeIdParens = SourceRange();
1224       }
1225     }
1226 
1227     // ARC: warn about ABI issues.
1228     if (getLangOpts().ObjCAutoRefCount) {
1229       QualType BaseAllocType = Context.getBaseElementType(AllocType);
1230       if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1231         Diag(StartLoc, diag::warn_err_new_delete_object_array)
1232           << 0 << BaseAllocType;
1233     }
1234 
1235     // Note that we do *not* convert the argument in any way.  It can
1236     // be signed, larger than size_t, whatever.
1237   }
1238 
1239   FunctionDecl *OperatorNew = 0;
1240   FunctionDecl *OperatorDelete = 0;
1241   Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1242   unsigned NumPlaceArgs = PlacementArgs.size();
1243 
1244   if (!AllocType->isDependentType() &&
1245       !Expr::hasAnyTypeDependentArguments(
1246         llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1247       FindAllocationFunctions(StartLoc,
1248                               SourceRange(PlacementLParen, PlacementRParen),
1249                               UseGlobal, AllocType, ArraySize, PlaceArgs,
1250                               NumPlaceArgs, OperatorNew, OperatorDelete))
1251     return ExprError();
1252 
1253   // If this is an array allocation, compute whether the usual array
1254   // deallocation function for the type has a size_t parameter.
1255   bool UsualArrayDeleteWantsSize = false;
1256   if (ArraySize && !AllocType->isDependentType())
1257     UsualArrayDeleteWantsSize
1258       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1259 
1260   SmallVector<Expr *, 8> AllPlaceArgs;
1261   if (OperatorNew) {
1262     // Add default arguments, if any.
1263     const FunctionProtoType *Proto =
1264       OperatorNew->getType()->getAs<FunctionProtoType>();
1265     VariadicCallType CallType =
1266       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1267 
1268     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1269                                Proto, 1, PlaceArgs, NumPlaceArgs,
1270                                AllPlaceArgs, CallType))
1271       return ExprError();
1272 
1273     NumPlaceArgs = AllPlaceArgs.size();
1274     if (NumPlaceArgs > 0)
1275       PlaceArgs = &AllPlaceArgs[0];
1276 
1277     DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1278                           PlaceArgs, NumPlaceArgs);
1279 
1280     // FIXME: Missing call to CheckFunctionCall or equivalent
1281   }
1282 
1283   // Warn if the type is over-aligned and is being allocated by global operator
1284   // new.
1285   if (NumPlaceArgs == 0 && OperatorNew &&
1286       (OperatorNew->isImplicit() ||
1287        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1288     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1289       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1290       if (Align > SuitableAlign)
1291         Diag(StartLoc, diag::warn_overaligned_type)
1292             << AllocType
1293             << unsigned(Align / Context.getCharWidth())
1294             << unsigned(SuitableAlign / Context.getCharWidth());
1295     }
1296   }
1297 
1298   QualType InitType = AllocType;
1299   // Array 'new' can't have any initializers except empty parentheses.
1300   // Initializer lists are also allowed, in C++11. Rely on the parser for the
1301   // dialect distinction.
1302   if (ResultType->isArrayType() || ArraySize) {
1303     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1304       SourceRange InitRange(Inits[0]->getLocStart(),
1305                             Inits[NumInits - 1]->getLocEnd());
1306       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1307       return ExprError();
1308     }
1309     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1310       // We do the initialization typechecking against the array type
1311       // corresponding to the number of initializers + 1 (to also check
1312       // default-initialization).
1313       unsigned NumElements = ILE->getNumInits() + 1;
1314       InitType = Context.getConstantArrayType(AllocType,
1315           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1316                                               ArrayType::Normal, 0);
1317     }
1318   }
1319 
1320   if (!AllocType->isDependentType() &&
1321       !Expr::hasAnyTypeDependentArguments(
1322         llvm::makeArrayRef(Inits, NumInits))) {
1323     // C++11 [expr.new]p15:
1324     //   A new-expression that creates an object of type T initializes that
1325     //   object as follows:
1326     InitializationKind Kind
1327     //     - If the new-initializer is omitted, the object is default-
1328     //       initialized (8.5); if no initialization is performed,
1329     //       the object has indeterminate value
1330       = initStyle == CXXNewExpr::NoInit
1331           ? InitializationKind::CreateDefault(TypeRange.getBegin())
1332     //     - Otherwise, the new-initializer is interpreted according to the
1333     //       initialization rules of 8.5 for direct-initialization.
1334           : initStyle == CXXNewExpr::ListInit
1335               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1336               : InitializationKind::CreateDirect(TypeRange.getBegin(),
1337                                                  DirectInitRange.getBegin(),
1338                                                  DirectInitRange.getEnd());
1339 
1340     InitializedEntity Entity
1341       = InitializedEntity::InitializeNew(StartLoc, InitType);
1342     InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1343     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1344                                           MultiExprArg(Inits, NumInits));
1345     if (FullInit.isInvalid())
1346       return ExprError();
1347 
1348     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1349     // we don't want the initialized object to be destructed.
1350     if (CXXBindTemporaryExpr *Binder =
1351             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1352       FullInit = Owned(Binder->getSubExpr());
1353 
1354     Initializer = FullInit.take();
1355   }
1356 
1357   // Mark the new and delete operators as referenced.
1358   if (OperatorNew)
1359     MarkFunctionReferenced(StartLoc, OperatorNew);
1360   if (OperatorDelete)
1361     MarkFunctionReferenced(StartLoc, OperatorDelete);
1362 
1363   // C++0x [expr.new]p17:
1364   //   If the new expression creates an array of objects of class type,
1365   //   access and ambiguity control are done for the destructor.
1366   QualType BaseAllocType = Context.getBaseElementType(AllocType);
1367   if (ArraySize && !BaseAllocType->isDependentType()) {
1368     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1369       if (CXXDestructorDecl *dtor = LookupDestructor(
1370               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1371         MarkFunctionReferenced(StartLoc, dtor);
1372         CheckDestructorAccess(StartLoc, dtor,
1373                               PDiag(diag::err_access_dtor)
1374                                 << BaseAllocType);
1375         DiagnoseUseOfDecl(dtor, StartLoc);
1376       }
1377     }
1378   }
1379 
1380   PlacementArgs.release();
1381 
1382   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1383                                         OperatorDelete,
1384                                         UsualArrayDeleteWantsSize,
1385                                         PlaceArgs, NumPlaceArgs, TypeIdParens,
1386                                         ArraySize, initStyle, Initializer,
1387                                         ResultType, AllocTypeInfo,
1388                                         StartLoc, DirectInitRange));
1389 }
1390 
1391 /// \brief Checks that a type is suitable as the allocated type
1392 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1393 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1394                               SourceRange R) {
1395   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1396   //   abstract class type or array thereof.
1397   if (AllocType->isFunctionType())
1398     return Diag(Loc, diag::err_bad_new_type)
1399       << AllocType << 0 << R;
1400   else if (AllocType->isReferenceType())
1401     return Diag(Loc, diag::err_bad_new_type)
1402       << AllocType << 1 << R;
1403   else if (!AllocType->isDependentType() &&
1404            RequireCompleteType(Loc, AllocType,
1405                                PDiag(diag::err_new_incomplete_type)
1406                                  << R))
1407     return true;
1408   else if (RequireNonAbstractType(Loc, AllocType,
1409                                   diag::err_allocation_of_abstract_type))
1410     return true;
1411   else if (AllocType->isVariablyModifiedType())
1412     return Diag(Loc, diag::err_variably_modified_new_type)
1413              << AllocType;
1414   else if (unsigned AddressSpace = AllocType.getAddressSpace())
1415     return Diag(Loc, diag::err_address_space_qualified_new)
1416       << AllocType.getUnqualifiedType() << AddressSpace;
1417   else if (getLangOpts().ObjCAutoRefCount) {
1418     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1419       QualType BaseAllocType = Context.getBaseElementType(AT);
1420       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1421           BaseAllocType->isObjCLifetimeType())
1422         return Diag(Loc, diag::err_arc_new_array_without_ownership)
1423           << BaseAllocType;
1424     }
1425   }
1426 
1427   return false;
1428 }
1429 
1430 /// \brief Determine whether the given function is a non-placement
1431 /// deallocation function.
isNonPlacementDeallocationFunction(FunctionDecl * FD)1432 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1433   if (FD->isInvalidDecl())
1434     return false;
1435 
1436   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1437     return Method->isUsualDeallocationFunction();
1438 
1439   return ((FD->getOverloadedOperator() == OO_Delete ||
1440            FD->getOverloadedOperator() == OO_Array_Delete) &&
1441           FD->getNumParams() == 1);
1442 }
1443 
1444 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1445 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,Expr ** PlaceArgs,unsigned NumPlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1446 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1447                                    bool UseGlobal, QualType AllocType,
1448                                    bool IsArray, Expr **PlaceArgs,
1449                                    unsigned NumPlaceArgs,
1450                                    FunctionDecl *&OperatorNew,
1451                                    FunctionDecl *&OperatorDelete) {
1452   // --- Choosing an allocation function ---
1453   // C++ 5.3.4p8 - 14 & 18
1454   // 1) If UseGlobal is true, only look in the global scope. Else, also look
1455   //   in the scope of the allocated class.
1456   // 2) If an array size is given, look for operator new[], else look for
1457   //   operator new.
1458   // 3) The first argument is always size_t. Append the arguments from the
1459   //   placement form.
1460 
1461   SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1462   // We don't care about the actual value of this argument.
1463   // FIXME: Should the Sema create the expression and embed it in the syntax
1464   // tree? Or should the consumer just recalculate the value?
1465   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1466                       Context.getTargetInfo().getPointerWidth(0)),
1467                       Context.getSizeType(),
1468                       SourceLocation());
1469   AllocArgs[0] = &Size;
1470   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1471 
1472   // C++ [expr.new]p8:
1473   //   If the allocated type is a non-array type, the allocation
1474   //   function's name is operator new and the deallocation function's
1475   //   name is operator delete. If the allocated type is an array
1476   //   type, the allocation function's name is operator new[] and the
1477   //   deallocation function's name is operator delete[].
1478   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1479                                         IsArray ? OO_Array_New : OO_New);
1480   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1481                                         IsArray ? OO_Array_Delete : OO_Delete);
1482 
1483   QualType AllocElemType = Context.getBaseElementType(AllocType);
1484 
1485   if (AllocElemType->isRecordType() && !UseGlobal) {
1486     CXXRecordDecl *Record
1487       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1488     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1489                           AllocArgs.size(), Record, /*AllowMissing=*/true,
1490                           OperatorNew))
1491       return true;
1492   }
1493   if (!OperatorNew) {
1494     // Didn't find a member overload. Look for a global one.
1495     DeclareGlobalNewDelete();
1496     DeclContext *TUDecl = Context.getTranslationUnitDecl();
1497     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1498                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1499                           OperatorNew))
1500       return true;
1501   }
1502 
1503   // We don't need an operator delete if we're running under
1504   // -fno-exceptions.
1505   if (!getLangOpts().Exceptions) {
1506     OperatorDelete = 0;
1507     return false;
1508   }
1509 
1510   // FindAllocationOverload can change the passed in arguments, so we need to
1511   // copy them back.
1512   if (NumPlaceArgs > 0)
1513     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1514 
1515   // C++ [expr.new]p19:
1516   //
1517   //   If the new-expression begins with a unary :: operator, the
1518   //   deallocation function's name is looked up in the global
1519   //   scope. Otherwise, if the allocated type is a class type T or an
1520   //   array thereof, the deallocation function's name is looked up in
1521   //   the scope of T. If this lookup fails to find the name, or if
1522   //   the allocated type is not a class type or array thereof, the
1523   //   deallocation function's name is looked up in the global scope.
1524   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1525   if (AllocElemType->isRecordType() && !UseGlobal) {
1526     CXXRecordDecl *RD
1527       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1528     LookupQualifiedName(FoundDelete, RD);
1529   }
1530   if (FoundDelete.isAmbiguous())
1531     return true; // FIXME: clean up expressions?
1532 
1533   if (FoundDelete.empty()) {
1534     DeclareGlobalNewDelete();
1535     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1536   }
1537 
1538   FoundDelete.suppressDiagnostics();
1539 
1540   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1541 
1542   // Whether we're looking for a placement operator delete is dictated
1543   // by whether we selected a placement operator new, not by whether
1544   // we had explicit placement arguments.  This matters for things like
1545   //   struct A { void *operator new(size_t, int = 0); ... };
1546   //   A *a = new A()
1547   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1548 
1549   if (isPlacementNew) {
1550     // C++ [expr.new]p20:
1551     //   A declaration of a placement deallocation function matches the
1552     //   declaration of a placement allocation function if it has the
1553     //   same number of parameters and, after parameter transformations
1554     //   (8.3.5), all parameter types except the first are
1555     //   identical. [...]
1556     //
1557     // To perform this comparison, we compute the function type that
1558     // the deallocation function should have, and use that type both
1559     // for template argument deduction and for comparison purposes.
1560     //
1561     // FIXME: this comparison should ignore CC and the like.
1562     QualType ExpectedFunctionType;
1563     {
1564       const FunctionProtoType *Proto
1565         = OperatorNew->getType()->getAs<FunctionProtoType>();
1566 
1567       SmallVector<QualType, 4> ArgTypes;
1568       ArgTypes.push_back(Context.VoidPtrTy);
1569       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1570         ArgTypes.push_back(Proto->getArgType(I));
1571 
1572       FunctionProtoType::ExtProtoInfo EPI;
1573       EPI.Variadic = Proto->isVariadic();
1574 
1575       ExpectedFunctionType
1576         = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1577                                   ArgTypes.size(), EPI);
1578     }
1579 
1580     for (LookupResult::iterator D = FoundDelete.begin(),
1581                              DEnd = FoundDelete.end();
1582          D != DEnd; ++D) {
1583       FunctionDecl *Fn = 0;
1584       if (FunctionTemplateDecl *FnTmpl
1585             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1586         // Perform template argument deduction to try to match the
1587         // expected function type.
1588         TemplateDeductionInfo Info(Context, StartLoc);
1589         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1590           continue;
1591       } else
1592         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1593 
1594       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1595         Matches.push_back(std::make_pair(D.getPair(), Fn));
1596     }
1597   } else {
1598     // C++ [expr.new]p20:
1599     //   [...] Any non-placement deallocation function matches a
1600     //   non-placement allocation function. [...]
1601     for (LookupResult::iterator D = FoundDelete.begin(),
1602                              DEnd = FoundDelete.end();
1603          D != DEnd; ++D) {
1604       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1605         if (isNonPlacementDeallocationFunction(Fn))
1606           Matches.push_back(std::make_pair(D.getPair(), Fn));
1607     }
1608   }
1609 
1610   // C++ [expr.new]p20:
1611   //   [...] If the lookup finds a single matching deallocation
1612   //   function, that function will be called; otherwise, no
1613   //   deallocation function will be called.
1614   if (Matches.size() == 1) {
1615     OperatorDelete = Matches[0].second;
1616 
1617     // C++0x [expr.new]p20:
1618     //   If the lookup finds the two-parameter form of a usual
1619     //   deallocation function (3.7.4.2) and that function, considered
1620     //   as a placement deallocation function, would have been
1621     //   selected as a match for the allocation function, the program
1622     //   is ill-formed.
1623     if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
1624         isNonPlacementDeallocationFunction(OperatorDelete)) {
1625       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1626         << SourceRange(PlaceArgs[0]->getLocStart(),
1627                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1628       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1629         << DeleteName;
1630     } else {
1631       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1632                             Matches[0].first);
1633     }
1634   }
1635 
1636   return false;
1637 }
1638 
1639 /// FindAllocationOverload - Find an fitting overload for the allocation
1640 /// function in the specified scope.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,Expr ** Args,unsigned NumArgs,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1641 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1642                                   DeclarationName Name, Expr** Args,
1643                                   unsigned NumArgs, DeclContext *Ctx,
1644                                   bool AllowMissing, FunctionDecl *&Operator,
1645                                   bool Diagnose) {
1646   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1647   LookupQualifiedName(R, Ctx);
1648   if (R.empty()) {
1649     if (AllowMissing || !Diagnose)
1650       return false;
1651     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1652       << Name << Range;
1653   }
1654 
1655   if (R.isAmbiguous())
1656     return true;
1657 
1658   R.suppressDiagnostics();
1659 
1660   OverloadCandidateSet Candidates(StartLoc);
1661   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1662        Alloc != AllocEnd; ++Alloc) {
1663     // Even member operator new/delete are implicitly treated as
1664     // static, so don't use AddMemberCandidate.
1665     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1666 
1667     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1668       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1669                                    /*ExplicitTemplateArgs=*/0,
1670                                    llvm::makeArrayRef(Args, NumArgs),
1671                                    Candidates,
1672                                    /*SuppressUserConversions=*/false);
1673       continue;
1674     }
1675 
1676     FunctionDecl *Fn = cast<FunctionDecl>(D);
1677     AddOverloadCandidate(Fn, Alloc.getPair(),
1678                          llvm::makeArrayRef(Args, NumArgs), Candidates,
1679                          /*SuppressUserConversions=*/false);
1680   }
1681 
1682   // Do the resolution.
1683   OverloadCandidateSet::iterator Best;
1684   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1685   case OR_Success: {
1686     // Got one!
1687     FunctionDecl *FnDecl = Best->Function;
1688     MarkFunctionReferenced(StartLoc, FnDecl);
1689     // The first argument is size_t, and the first parameter must be size_t,
1690     // too. This is checked on declaration and can be assumed. (It can't be
1691     // asserted on, though, since invalid decls are left in there.)
1692     // Watch out for variadic allocator function.
1693     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1694     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1695       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1696                                                        FnDecl->getParamDecl(i));
1697 
1698       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1699         return true;
1700 
1701       ExprResult Result
1702         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1703       if (Result.isInvalid())
1704         return true;
1705 
1706       Args[i] = Result.takeAs<Expr>();
1707     }
1708 
1709     Operator = FnDecl;
1710 
1711     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1712                               Best->FoundDecl, Diagnose) == AR_inaccessible)
1713       return true;
1714 
1715     return false;
1716   }
1717 
1718   case OR_No_Viable_Function:
1719     if (Diagnose) {
1720       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1721         << Name << Range;
1722       Candidates.NoteCandidates(*this, OCD_AllCandidates,
1723                                 llvm::makeArrayRef(Args, NumArgs));
1724     }
1725     return true;
1726 
1727   case OR_Ambiguous:
1728     if (Diagnose) {
1729       Diag(StartLoc, diag::err_ovl_ambiguous_call)
1730         << Name << Range;
1731       Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1732                                 llvm::makeArrayRef(Args, NumArgs));
1733     }
1734     return true;
1735 
1736   case OR_Deleted: {
1737     if (Diagnose) {
1738       Diag(StartLoc, diag::err_ovl_deleted_call)
1739         << Best->Function->isDeleted()
1740         << Name
1741         << getDeletedOrUnavailableSuffix(Best->Function)
1742         << Range;
1743       Candidates.NoteCandidates(*this, OCD_AllCandidates,
1744                                 llvm::makeArrayRef(Args, NumArgs));
1745     }
1746     return true;
1747   }
1748   }
1749   llvm_unreachable("Unreachable, bad result from BestViableFunction");
1750 }
1751 
1752 
1753 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1754 /// delete. These are:
1755 /// @code
1756 ///   // C++03:
1757 ///   void* operator new(std::size_t) throw(std::bad_alloc);
1758 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
1759 ///   void operator delete(void *) throw();
1760 ///   void operator delete[](void *) throw();
1761 ///   // C++0x:
1762 ///   void* operator new(std::size_t);
1763 ///   void* operator new[](std::size_t);
1764 ///   void operator delete(void *);
1765 ///   void operator delete[](void *);
1766 /// @endcode
1767 /// C++0x operator delete is implicitly noexcept.
1768 /// Note that the placement and nothrow forms of new are *not* implicitly
1769 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1770 void Sema::DeclareGlobalNewDelete() {
1771   if (GlobalNewDeleteDeclared)
1772     return;
1773 
1774   // C++ [basic.std.dynamic]p2:
1775   //   [...] The following allocation and deallocation functions (18.4) are
1776   //   implicitly declared in global scope in each translation unit of a
1777   //   program
1778   //
1779   //     C++03:
1780   //     void* operator new(std::size_t) throw(std::bad_alloc);
1781   //     void* operator new[](std::size_t) throw(std::bad_alloc);
1782   //     void  operator delete(void*) throw();
1783   //     void  operator delete[](void*) throw();
1784   //     C++0x:
1785   //     void* operator new(std::size_t);
1786   //     void* operator new[](std::size_t);
1787   //     void  operator delete(void*);
1788   //     void  operator delete[](void*);
1789   //
1790   //   These implicit declarations introduce only the function names operator
1791   //   new, operator new[], operator delete, operator delete[].
1792   //
1793   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1794   // "std" or "bad_alloc" as necessary to form the exception specification.
1795   // However, we do not make these implicit declarations visible to name
1796   // lookup.
1797   // Note that the C++0x versions of operator delete are deallocation functions,
1798   // and thus are implicitly noexcept.
1799   if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
1800     // The "std::bad_alloc" class has not yet been declared, so build it
1801     // implicitly.
1802     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1803                                         getOrCreateStdNamespace(),
1804                                         SourceLocation(), SourceLocation(),
1805                                       &PP.getIdentifierTable().get("bad_alloc"),
1806                                         0);
1807     getStdBadAlloc()->setImplicit(true);
1808   }
1809 
1810   GlobalNewDeleteDeclared = true;
1811 
1812   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1813   QualType SizeT = Context.getSizeType();
1814   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1815 
1816   DeclareGlobalAllocationFunction(
1817       Context.DeclarationNames.getCXXOperatorName(OO_New),
1818       VoidPtr, SizeT, AssumeSaneOperatorNew);
1819   DeclareGlobalAllocationFunction(
1820       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1821       VoidPtr, SizeT, AssumeSaneOperatorNew);
1822   DeclareGlobalAllocationFunction(
1823       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1824       Context.VoidTy, VoidPtr);
1825   DeclareGlobalAllocationFunction(
1826       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1827       Context.VoidTy, VoidPtr);
1828 }
1829 
1830 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1831 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Argument,bool AddMallocAttr)1832 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1833                                            QualType Return, QualType Argument,
1834                                            bool AddMallocAttr) {
1835   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1836 
1837   // Check if this function is already declared.
1838   {
1839     DeclContext::lookup_iterator Alloc, AllocEnd;
1840     for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1841          Alloc != AllocEnd; ++Alloc) {
1842       // Only look at non-template functions, as it is the predefined,
1843       // non-templated allocation function we are trying to declare here.
1844       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1845         QualType InitialParamType =
1846           Context.getCanonicalType(
1847             Func->getParamDecl(0)->getType().getUnqualifiedType());
1848         // FIXME: Do we need to check for default arguments here?
1849         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1850           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1851             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1852           return;
1853         }
1854       }
1855     }
1856   }
1857 
1858   QualType BadAllocType;
1859   bool HasBadAllocExceptionSpec
1860     = (Name.getCXXOverloadedOperator() == OO_New ||
1861        Name.getCXXOverloadedOperator() == OO_Array_New);
1862   if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
1863     assert(StdBadAlloc && "Must have std::bad_alloc declared");
1864     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1865   }
1866 
1867   FunctionProtoType::ExtProtoInfo EPI;
1868   if (HasBadAllocExceptionSpec) {
1869     if (!getLangOpts().CPlusPlus0x) {
1870       EPI.ExceptionSpecType = EST_Dynamic;
1871       EPI.NumExceptions = 1;
1872       EPI.Exceptions = &BadAllocType;
1873     }
1874   } else {
1875     EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
1876                                 EST_BasicNoexcept : EST_DynamicNone;
1877   }
1878 
1879   QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1880   FunctionDecl *Alloc =
1881     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1882                          SourceLocation(), Name,
1883                          FnType, /*TInfo=*/0, SC_None,
1884                          SC_None, false, true);
1885   Alloc->setImplicit();
1886 
1887   if (AddMallocAttr)
1888     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1889 
1890   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1891                                            SourceLocation(), 0,
1892                                            Argument, /*TInfo=*/0,
1893                                            SC_None, SC_None, 0);
1894   Alloc->setParams(Param);
1895 
1896   // FIXME: Also add this declaration to the IdentifierResolver, but
1897   // make sure it is at the end of the chain to coincide with the
1898   // global scope.
1899   Context.getTranslationUnitDecl()->addDecl(Alloc);
1900 }
1901 
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)1902 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1903                                     DeclarationName Name,
1904                                     FunctionDecl* &Operator, bool Diagnose) {
1905   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1906   // Try to find operator delete/operator delete[] in class scope.
1907   LookupQualifiedName(Found, RD);
1908 
1909   if (Found.isAmbiguous())
1910     return true;
1911 
1912   Found.suppressDiagnostics();
1913 
1914   SmallVector<DeclAccessPair,4> Matches;
1915   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1916        F != FEnd; ++F) {
1917     NamedDecl *ND = (*F)->getUnderlyingDecl();
1918 
1919     // Ignore template operator delete members from the check for a usual
1920     // deallocation function.
1921     if (isa<FunctionTemplateDecl>(ND))
1922       continue;
1923 
1924     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1925       Matches.push_back(F.getPair());
1926   }
1927 
1928   // There's exactly one suitable operator;  pick it.
1929   if (Matches.size() == 1) {
1930     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1931 
1932     if (Operator->isDeleted()) {
1933       if (Diagnose) {
1934         Diag(StartLoc, diag::err_deleted_function_use);
1935         NoteDeletedFunction(Operator);
1936       }
1937       return true;
1938     }
1939 
1940     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1941                               Matches[0], Diagnose) == AR_inaccessible)
1942       return true;
1943 
1944     return false;
1945 
1946   // We found multiple suitable operators;  complain about the ambiguity.
1947   } else if (!Matches.empty()) {
1948     if (Diagnose) {
1949       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1950         << Name << RD;
1951 
1952       for (SmallVectorImpl<DeclAccessPair>::iterator
1953              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1954         Diag((*F)->getUnderlyingDecl()->getLocation(),
1955              diag::note_member_declared_here) << Name;
1956     }
1957     return true;
1958   }
1959 
1960   // We did find operator delete/operator delete[] declarations, but
1961   // none of them were suitable.
1962   if (!Found.empty()) {
1963     if (Diagnose) {
1964       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1965         << Name << RD;
1966 
1967       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1968            F != FEnd; ++F)
1969         Diag((*F)->getUnderlyingDecl()->getLocation(),
1970              diag::note_member_declared_here) << Name;
1971     }
1972     return true;
1973   }
1974 
1975   // Look for a global declaration.
1976   DeclareGlobalNewDelete();
1977   DeclContext *TUDecl = Context.getTranslationUnitDecl();
1978 
1979   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1980   Expr* DeallocArgs[1];
1981   DeallocArgs[0] = &Null;
1982   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1983                              DeallocArgs, 1, TUDecl, !Diagnose,
1984                              Operator, Diagnose))
1985     return true;
1986 
1987   assert(Operator && "Did not find a deallocation function!");
1988   return false;
1989 }
1990 
1991 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1992 /// @code ::delete ptr; @endcode
1993 /// or
1994 /// @code delete [] ptr; @endcode
1995 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)1996 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1997                      bool ArrayForm, Expr *ExE) {
1998   // C++ [expr.delete]p1:
1999   //   The operand shall have a pointer type, or a class type having a single
2000   //   conversion function to a pointer type. The result has type void.
2001   //
2002   // DR599 amends "pointer type" to "pointer to object type" in both cases.
2003 
2004   ExprResult Ex = Owned(ExE);
2005   FunctionDecl *OperatorDelete = 0;
2006   bool ArrayFormAsWritten = ArrayForm;
2007   bool UsualArrayDeleteWantsSize = false;
2008 
2009   if (!Ex.get()->isTypeDependent()) {
2010     // Perform lvalue-to-rvalue cast, if needed.
2011     Ex = DefaultLvalueConversion(Ex.take());
2012 
2013     QualType Type = Ex.get()->getType();
2014 
2015     if (const RecordType *Record = Type->getAs<RecordType>()) {
2016       if (RequireCompleteType(StartLoc, Type,
2017                               PDiag(diag::err_delete_incomplete_class_type)))
2018         return ExprError();
2019 
2020       SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2021 
2022       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2023       const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
2024       for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2025              E = Conversions->end(); I != E; ++I) {
2026         NamedDecl *D = I.getDecl();
2027         if (isa<UsingShadowDecl>(D))
2028           D = cast<UsingShadowDecl>(D)->getTargetDecl();
2029 
2030         // Skip over templated conversion functions; they aren't considered.
2031         if (isa<FunctionTemplateDecl>(D))
2032           continue;
2033 
2034         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2035 
2036         QualType ConvType = Conv->getConversionType().getNonReferenceType();
2037         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2038           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2039             ObjectPtrConversions.push_back(Conv);
2040       }
2041       if (ObjectPtrConversions.size() == 1) {
2042         // We have a single conversion to a pointer-to-object type. Perform
2043         // that conversion.
2044         // TODO: don't redo the conversion calculation.
2045         ExprResult Res =
2046           PerformImplicitConversion(Ex.get(),
2047                             ObjectPtrConversions.front()->getConversionType(),
2048                                     AA_Converting);
2049         if (Res.isUsable()) {
2050           Ex = move(Res);
2051           Type = Ex.get()->getType();
2052         }
2053       }
2054       else if (ObjectPtrConversions.size() > 1) {
2055         Diag(StartLoc, diag::err_ambiguous_delete_operand)
2056               << Type << Ex.get()->getSourceRange();
2057         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2058           NoteOverloadCandidate(ObjectPtrConversions[i]);
2059         return ExprError();
2060       }
2061     }
2062 
2063     if (!Type->isPointerType())
2064       return ExprError(Diag(StartLoc, diag::err_delete_operand)
2065         << Type << Ex.get()->getSourceRange());
2066 
2067     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2068     QualType PointeeElem = Context.getBaseElementType(Pointee);
2069 
2070     if (unsigned AddressSpace = Pointee.getAddressSpace())
2071       return Diag(Ex.get()->getLocStart(),
2072                   diag::err_address_space_qualified_delete)
2073                << Pointee.getUnqualifiedType() << AddressSpace;
2074 
2075     CXXRecordDecl *PointeeRD = 0;
2076     if (Pointee->isVoidType() && !isSFINAEContext()) {
2077       // The C++ standard bans deleting a pointer to a non-object type, which
2078       // effectively bans deletion of "void*". However, most compilers support
2079       // this, so we treat it as a warning unless we're in a SFINAE context.
2080       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2081         << Type << Ex.get()->getSourceRange();
2082     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2083       return ExprError(Diag(StartLoc, diag::err_delete_operand)
2084         << Type << Ex.get()->getSourceRange());
2085     } else if (!Pointee->isDependentType()) {
2086       if (!RequireCompleteType(StartLoc, Pointee,
2087                                PDiag(diag::warn_delete_incomplete)
2088                                  << Ex.get()->getSourceRange())) {
2089         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2090           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2091       }
2092     }
2093 
2094     // C++ [expr.delete]p2:
2095     //   [Note: a pointer to a const type can be the operand of a
2096     //   delete-expression; it is not necessary to cast away the constness
2097     //   (5.2.11) of the pointer expression before it is used as the operand
2098     //   of the delete-expression. ]
2099     if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
2100       Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2101                                           CK_BitCast, Ex.take(), 0, VK_RValue));
2102 
2103     if (Pointee->isArrayType() && !ArrayForm) {
2104       Diag(StartLoc, diag::warn_delete_array_type)
2105           << Type << Ex.get()->getSourceRange()
2106           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2107       ArrayForm = true;
2108     }
2109 
2110     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2111                                       ArrayForm ? OO_Array_Delete : OO_Delete);
2112 
2113     if (PointeeRD) {
2114       if (!UseGlobal &&
2115           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2116                                    OperatorDelete))
2117         return ExprError();
2118 
2119       // If we're allocating an array of records, check whether the
2120       // usual operator delete[] has a size_t parameter.
2121       if (ArrayForm) {
2122         // If the user specifically asked to use the global allocator,
2123         // we'll need to do the lookup into the class.
2124         if (UseGlobal)
2125           UsualArrayDeleteWantsSize =
2126             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2127 
2128         // Otherwise, the usual operator delete[] should be the
2129         // function we just found.
2130         else if (isa<CXXMethodDecl>(OperatorDelete))
2131           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2132       }
2133 
2134       if (!PointeeRD->hasIrrelevantDestructor())
2135         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2136           MarkFunctionReferenced(StartLoc,
2137                                     const_cast<CXXDestructorDecl*>(Dtor));
2138           DiagnoseUseOfDecl(Dtor, StartLoc);
2139         }
2140 
2141       // C++ [expr.delete]p3:
2142       //   In the first alternative (delete object), if the static type of the
2143       //   object to be deleted is different from its dynamic type, the static
2144       //   type shall be a base class of the dynamic type of the object to be
2145       //   deleted and the static type shall have a virtual destructor or the
2146       //   behavior is undefined.
2147       //
2148       // Note: a final class cannot be derived from, no issue there
2149       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2150         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2151         if (dtor && !dtor->isVirtual()) {
2152           if (PointeeRD->isAbstract()) {
2153             // If the class is abstract, we warn by default, because we're
2154             // sure the code has undefined behavior.
2155             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2156                 << PointeeElem;
2157           } else if (!ArrayForm) {
2158             // Otherwise, if this is not an array delete, it's a bit suspect,
2159             // but not necessarily wrong.
2160             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2161           }
2162         }
2163       }
2164 
2165     } else if (getLangOpts().ObjCAutoRefCount &&
2166                PointeeElem->isObjCLifetimeType() &&
2167                (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2168                 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2169                ArrayForm) {
2170       Diag(StartLoc, diag::warn_err_new_delete_object_array)
2171         << 1 << PointeeElem;
2172     }
2173 
2174     if (!OperatorDelete) {
2175       // Look for a global declaration.
2176       DeclareGlobalNewDelete();
2177       DeclContext *TUDecl = Context.getTranslationUnitDecl();
2178       Expr *Arg = Ex.get();
2179       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2180                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
2181                                  OperatorDelete))
2182         return ExprError();
2183     }
2184 
2185     MarkFunctionReferenced(StartLoc, OperatorDelete);
2186 
2187     // Check access and ambiguity of operator delete and destructor.
2188     if (PointeeRD) {
2189       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2190           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2191                       PDiag(diag::err_access_dtor) << PointeeElem);
2192       }
2193     }
2194 
2195   }
2196 
2197   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2198                                            ArrayFormAsWritten,
2199                                            UsualArrayDeleteWantsSize,
2200                                            OperatorDelete, Ex.take(), StartLoc));
2201 }
2202 
2203 /// \brief Check the use of the given variable as a C++ condition in an if,
2204 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2205 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2206                                         SourceLocation StmtLoc,
2207                                         bool ConvertToBoolean) {
2208   QualType T = ConditionVar->getType();
2209 
2210   // C++ [stmt.select]p2:
2211   //   The declarator shall not specify a function or an array.
2212   if (T->isFunctionType())
2213     return ExprError(Diag(ConditionVar->getLocation(),
2214                           diag::err_invalid_use_of_function_type)
2215                        << ConditionVar->getSourceRange());
2216   else if (T->isArrayType())
2217     return ExprError(Diag(ConditionVar->getLocation(),
2218                           diag::err_invalid_use_of_array_type)
2219                      << ConditionVar->getSourceRange());
2220 
2221   ExprResult Condition =
2222     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2223                               SourceLocation(),
2224                               ConditionVar,
2225                               /*enclosing*/ false,
2226                               ConditionVar->getLocation(),
2227                               ConditionVar->getType().getNonReferenceType(),
2228                               VK_LValue));
2229 
2230   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2231 
2232   if (ConvertToBoolean) {
2233     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2234     if (Condition.isInvalid())
2235       return ExprError();
2236   }
2237 
2238   return move(Condition);
2239 }
2240 
2241 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2242 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2243   // C++ 6.4p4:
2244   // The value of a condition that is an initialized declaration in a statement
2245   // other than a switch statement is the value of the declared variable
2246   // implicitly converted to type bool. If that conversion is ill-formed, the
2247   // program is ill-formed.
2248   // The value of a condition that is an expression is the value of the
2249   // expression, implicitly converted to bool.
2250   //
2251   return PerformContextuallyConvertToBool(CondExpr);
2252 }
2253 
2254 /// Helper function to determine whether this is the (deprecated) C++
2255 /// conversion from a string literal to a pointer to non-const char or
2256 /// non-const wchar_t (for narrow and wide string literals,
2257 /// respectively).
2258 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2259 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2260   // Look inside the implicit cast, if it exists.
2261   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2262     From = Cast->getSubExpr();
2263 
2264   // A string literal (2.13.4) that is not a wide string literal can
2265   // be converted to an rvalue of type "pointer to char"; a wide
2266   // string literal can be converted to an rvalue of type "pointer
2267   // to wchar_t" (C++ 4.2p2).
2268   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2269     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2270       if (const BuiltinType *ToPointeeType
2271           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2272         // This conversion is considered only when there is an
2273         // explicit appropriate pointer target type (C++ 4.2p2).
2274         if (!ToPtrType->getPointeeType().hasQualifiers()) {
2275           switch (StrLit->getKind()) {
2276             case StringLiteral::UTF8:
2277             case StringLiteral::UTF16:
2278             case StringLiteral::UTF32:
2279               // We don't allow UTF literals to be implicitly converted
2280               break;
2281             case StringLiteral::Ascii:
2282               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2283                       ToPointeeType->getKind() == BuiltinType::Char_S);
2284             case StringLiteral::Wide:
2285               return ToPointeeType->isWideCharType();
2286           }
2287         }
2288       }
2289 
2290   return false;
2291 }
2292 
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2293 static ExprResult BuildCXXCastArgument(Sema &S,
2294                                        SourceLocation CastLoc,
2295                                        QualType Ty,
2296                                        CastKind Kind,
2297                                        CXXMethodDecl *Method,
2298                                        DeclAccessPair FoundDecl,
2299                                        bool HadMultipleCandidates,
2300                                        Expr *From) {
2301   switch (Kind) {
2302   default: llvm_unreachable("Unhandled cast kind!");
2303   case CK_ConstructorConversion: {
2304     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2305     ASTOwningVector<Expr*> ConstructorArgs(S);
2306 
2307     if (S.CompleteConstructorCall(Constructor,
2308                                   MultiExprArg(&From, 1),
2309                                   CastLoc, ConstructorArgs))
2310       return ExprError();
2311 
2312     S.CheckConstructorAccess(CastLoc, Constructor,
2313                              InitializedEntity::InitializeTemporary(Ty),
2314                              Constructor->getAccess());
2315 
2316     ExprResult Result
2317       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2318                                 move_arg(ConstructorArgs),
2319                                 HadMultipleCandidates, /*ZeroInit*/ false,
2320                                 CXXConstructExpr::CK_Complete, SourceRange());
2321     if (Result.isInvalid())
2322       return ExprError();
2323 
2324     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2325   }
2326 
2327   case CK_UserDefinedConversion: {
2328     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2329 
2330     // Create an implicit call expr that calls it.
2331     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2332     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2333                                                  HadMultipleCandidates);
2334     if (Result.isInvalid())
2335       return ExprError();
2336     // Record usage of conversion in an implicit cast.
2337     Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2338                                               Result.get()->getType(),
2339                                               CK_UserDefinedConversion,
2340                                               Result.get(), 0,
2341                                               Result.get()->getValueKind()));
2342 
2343     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2344 
2345     return S.MaybeBindToTemporary(Result.get());
2346   }
2347   }
2348 }
2349 
2350 /// PerformImplicitConversion - Perform an implicit conversion of the
2351 /// expression From to the type ToType using the pre-computed implicit
2352 /// conversion sequence ICS. Returns the converted
2353 /// expression. Action is the kind of conversion we're performing,
2354 /// used in the error message.
2355 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2356 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2357                                 const ImplicitConversionSequence &ICS,
2358                                 AssignmentAction Action,
2359                                 CheckedConversionKind CCK) {
2360   switch (ICS.getKind()) {
2361   case ImplicitConversionSequence::StandardConversion: {
2362     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2363                                                Action, CCK);
2364     if (Res.isInvalid())
2365       return ExprError();
2366     From = Res.take();
2367     break;
2368   }
2369 
2370   case ImplicitConversionSequence::UserDefinedConversion: {
2371 
2372       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2373       CastKind CastKind;
2374       QualType BeforeToType;
2375       assert(FD && "FIXME: aggregate initialization from init list");
2376       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2377         CastKind = CK_UserDefinedConversion;
2378 
2379         // If the user-defined conversion is specified by a conversion function,
2380         // the initial standard conversion sequence converts the source type to
2381         // the implicit object parameter of the conversion function.
2382         BeforeToType = Context.getTagDeclType(Conv->getParent());
2383       } else {
2384         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2385         CastKind = CK_ConstructorConversion;
2386         // Do no conversion if dealing with ... for the first conversion.
2387         if (!ICS.UserDefined.EllipsisConversion) {
2388           // If the user-defined conversion is specified by a constructor, the
2389           // initial standard conversion sequence converts the source type to the
2390           // type required by the argument of the constructor
2391           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2392         }
2393       }
2394       // Watch out for elipsis conversion.
2395       if (!ICS.UserDefined.EllipsisConversion) {
2396         ExprResult Res =
2397           PerformImplicitConversion(From, BeforeToType,
2398                                     ICS.UserDefined.Before, AA_Converting,
2399                                     CCK);
2400         if (Res.isInvalid())
2401           return ExprError();
2402         From = Res.take();
2403       }
2404 
2405       ExprResult CastArg
2406         = BuildCXXCastArgument(*this,
2407                                From->getLocStart(),
2408                                ToType.getNonReferenceType(),
2409                                CastKind, cast<CXXMethodDecl>(FD),
2410                                ICS.UserDefined.FoundConversionFunction,
2411                                ICS.UserDefined.HadMultipleCandidates,
2412                                From);
2413 
2414       if (CastArg.isInvalid())
2415         return ExprError();
2416 
2417       From = CastArg.take();
2418 
2419       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2420                                        AA_Converting, CCK);
2421   }
2422 
2423   case ImplicitConversionSequence::AmbiguousConversion:
2424     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2425                           PDiag(diag::err_typecheck_ambiguous_condition)
2426                             << From->getSourceRange());
2427      return ExprError();
2428 
2429   case ImplicitConversionSequence::EllipsisConversion:
2430     llvm_unreachable("Cannot perform an ellipsis conversion");
2431 
2432   case ImplicitConversionSequence::BadConversion:
2433     return ExprError();
2434   }
2435 
2436   // Everything went well.
2437   return Owned(From);
2438 }
2439 
2440 /// PerformImplicitConversion - Perform an implicit conversion of the
2441 /// expression From to the type ToType by following the standard
2442 /// conversion sequence SCS. Returns the converted
2443 /// expression. Flavor is the context in which we're performing this
2444 /// conversion, for use in error messages.
2445 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2446 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2447                                 const StandardConversionSequence& SCS,
2448                                 AssignmentAction Action,
2449                                 CheckedConversionKind CCK) {
2450   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2451 
2452   // Overall FIXME: we are recomputing too many types here and doing far too
2453   // much extra work. What this means is that we need to keep track of more
2454   // information that is computed when we try the implicit conversion initially,
2455   // so that we don't need to recompute anything here.
2456   QualType FromType = From->getType();
2457 
2458   if (SCS.CopyConstructor) {
2459     // FIXME: When can ToType be a reference type?
2460     assert(!ToType->isReferenceType());
2461     if (SCS.Second == ICK_Derived_To_Base) {
2462       ASTOwningVector<Expr*> ConstructorArgs(*this);
2463       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2464                                   MultiExprArg(*this, &From, 1),
2465                                   /*FIXME:ConstructLoc*/SourceLocation(),
2466                                   ConstructorArgs))
2467         return ExprError();
2468       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2469                                    ToType, SCS.CopyConstructor,
2470                                    move_arg(ConstructorArgs),
2471                                    /*HadMultipleCandidates*/ false,
2472                                    /*ZeroInit*/ false,
2473                                    CXXConstructExpr::CK_Complete,
2474                                    SourceRange());
2475     }
2476     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2477                                  ToType, SCS.CopyConstructor,
2478                                  MultiExprArg(*this, &From, 1),
2479                                  /*HadMultipleCandidates*/ false,
2480                                  /*ZeroInit*/ false,
2481                                  CXXConstructExpr::CK_Complete,
2482                                  SourceRange());
2483   }
2484 
2485   // Resolve overloaded function references.
2486   if (Context.hasSameType(FromType, Context.OverloadTy)) {
2487     DeclAccessPair Found;
2488     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2489                                                           true, Found);
2490     if (!Fn)
2491       return ExprError();
2492 
2493     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2494       return ExprError();
2495 
2496     From = FixOverloadedFunctionReference(From, Found, Fn);
2497     FromType = From->getType();
2498   }
2499 
2500   // Perform the first implicit conversion.
2501   switch (SCS.First) {
2502   case ICK_Identity:
2503     // Nothing to do.
2504     break;
2505 
2506   case ICK_Lvalue_To_Rvalue: {
2507     assert(From->getObjectKind() != OK_ObjCProperty);
2508     FromType = FromType.getUnqualifiedType();
2509     ExprResult FromRes = DefaultLvalueConversion(From);
2510     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2511     From = FromRes.take();
2512     break;
2513   }
2514 
2515   case ICK_Array_To_Pointer:
2516     FromType = Context.getArrayDecayedType(FromType);
2517     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2518                              VK_RValue, /*BasePath=*/0, CCK).take();
2519     break;
2520 
2521   case ICK_Function_To_Pointer:
2522     FromType = Context.getPointerType(FromType);
2523     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2524                              VK_RValue, /*BasePath=*/0, CCK).take();
2525     break;
2526 
2527   default:
2528     llvm_unreachable("Improper first standard conversion");
2529   }
2530 
2531   // Perform the second implicit conversion
2532   switch (SCS.Second) {
2533   case ICK_Identity:
2534     // If both sides are functions (or pointers/references to them), there could
2535     // be incompatible exception declarations.
2536     if (CheckExceptionSpecCompatibility(From, ToType))
2537       return ExprError();
2538     // Nothing else to do.
2539     break;
2540 
2541   case ICK_NoReturn_Adjustment:
2542     // If both sides are functions (or pointers/references to them), there could
2543     // be incompatible exception declarations.
2544     if (CheckExceptionSpecCompatibility(From, ToType))
2545       return ExprError();
2546 
2547     From = ImpCastExprToType(From, ToType, CK_NoOp,
2548                              VK_RValue, /*BasePath=*/0, CCK).take();
2549     break;
2550 
2551   case ICK_Integral_Promotion:
2552   case ICK_Integral_Conversion:
2553     From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2554                              VK_RValue, /*BasePath=*/0, CCK).take();
2555     break;
2556 
2557   case ICK_Floating_Promotion:
2558   case ICK_Floating_Conversion:
2559     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2560                              VK_RValue, /*BasePath=*/0, CCK).take();
2561     break;
2562 
2563   case ICK_Complex_Promotion:
2564   case ICK_Complex_Conversion: {
2565     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2566     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2567     CastKind CK;
2568     if (FromEl->isRealFloatingType()) {
2569       if (ToEl->isRealFloatingType())
2570         CK = CK_FloatingComplexCast;
2571       else
2572         CK = CK_FloatingComplexToIntegralComplex;
2573     } else if (ToEl->isRealFloatingType()) {
2574       CK = CK_IntegralComplexToFloatingComplex;
2575     } else {
2576       CK = CK_IntegralComplexCast;
2577     }
2578     From = ImpCastExprToType(From, ToType, CK,
2579                              VK_RValue, /*BasePath=*/0, CCK).take();
2580     break;
2581   }
2582 
2583   case ICK_Floating_Integral:
2584     if (ToType->isRealFloatingType())
2585       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2586                                VK_RValue, /*BasePath=*/0, CCK).take();
2587     else
2588       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2589                                VK_RValue, /*BasePath=*/0, CCK).take();
2590     break;
2591 
2592   case ICK_Compatible_Conversion:
2593       From = ImpCastExprToType(From, ToType, CK_NoOp,
2594                                VK_RValue, /*BasePath=*/0, CCK).take();
2595     break;
2596 
2597   case ICK_Writeback_Conversion:
2598   case ICK_Pointer_Conversion: {
2599     if (SCS.IncompatibleObjC && Action != AA_Casting) {
2600       // Diagnose incompatible Objective-C conversions
2601       if (Action == AA_Initializing || Action == AA_Assigning)
2602         Diag(From->getLocStart(),
2603              diag::ext_typecheck_convert_incompatible_pointer)
2604           << ToType << From->getType() << Action
2605           << From->getSourceRange() << 0;
2606       else
2607         Diag(From->getLocStart(),
2608              diag::ext_typecheck_convert_incompatible_pointer)
2609           << From->getType() << ToType << Action
2610           << From->getSourceRange() << 0;
2611 
2612       if (From->getType()->isObjCObjectPointerType() &&
2613           ToType->isObjCObjectPointerType())
2614         EmitRelatedResultTypeNote(From);
2615     }
2616     else if (getLangOpts().ObjCAutoRefCount &&
2617              !CheckObjCARCUnavailableWeakConversion(ToType,
2618                                                     From->getType())) {
2619       if (Action == AA_Initializing)
2620         Diag(From->getLocStart(),
2621              diag::err_arc_weak_unavailable_assign);
2622       else
2623         Diag(From->getLocStart(),
2624              diag::err_arc_convesion_of_weak_unavailable)
2625           << (Action == AA_Casting) << From->getType() << ToType
2626           << From->getSourceRange();
2627     }
2628 
2629     CastKind Kind = CK_Invalid;
2630     CXXCastPath BasePath;
2631     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2632       return ExprError();
2633 
2634     // Make sure we extend blocks if necessary.
2635     // FIXME: doing this here is really ugly.
2636     if (Kind == CK_BlockPointerToObjCPointerCast) {
2637       ExprResult E = From;
2638       (void) PrepareCastToObjCObjectPointer(E);
2639       From = E.take();
2640     }
2641 
2642     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2643              .take();
2644     break;
2645   }
2646 
2647   case ICK_Pointer_Member: {
2648     CastKind Kind = CK_Invalid;
2649     CXXCastPath BasePath;
2650     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2651       return ExprError();
2652     if (CheckExceptionSpecCompatibility(From, ToType))
2653       return ExprError();
2654     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2655              .take();
2656     break;
2657   }
2658 
2659   case ICK_Boolean_Conversion:
2660     // Perform half-to-boolean conversion via float.
2661     if (From->getType()->isHalfType()) {
2662       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2663       FromType = Context.FloatTy;
2664     }
2665 
2666     From = ImpCastExprToType(From, Context.BoolTy,
2667                              ScalarTypeToBooleanCastKind(FromType),
2668                              VK_RValue, /*BasePath=*/0, CCK).take();
2669     break;
2670 
2671   case ICK_Derived_To_Base: {
2672     CXXCastPath BasePath;
2673     if (CheckDerivedToBaseConversion(From->getType(),
2674                                      ToType.getNonReferenceType(),
2675                                      From->getLocStart(),
2676                                      From->getSourceRange(),
2677                                      &BasePath,
2678                                      CStyle))
2679       return ExprError();
2680 
2681     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2682                       CK_DerivedToBase, From->getValueKind(),
2683                       &BasePath, CCK).take();
2684     break;
2685   }
2686 
2687   case ICK_Vector_Conversion:
2688     From = ImpCastExprToType(From, ToType, CK_BitCast,
2689                              VK_RValue, /*BasePath=*/0, CCK).take();
2690     break;
2691 
2692   case ICK_Vector_Splat:
2693     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2694                              VK_RValue, /*BasePath=*/0, CCK).take();
2695     break;
2696 
2697   case ICK_Complex_Real:
2698     // Case 1.  x -> _Complex y
2699     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2700       QualType ElType = ToComplex->getElementType();
2701       bool isFloatingComplex = ElType->isRealFloatingType();
2702 
2703       // x -> y
2704       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2705         // do nothing
2706       } else if (From->getType()->isRealFloatingType()) {
2707         From = ImpCastExprToType(From, ElType,
2708                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2709       } else {
2710         assert(From->getType()->isIntegerType());
2711         From = ImpCastExprToType(From, ElType,
2712                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2713       }
2714       // y -> _Complex y
2715       From = ImpCastExprToType(From, ToType,
2716                    isFloatingComplex ? CK_FloatingRealToComplex
2717                                      : CK_IntegralRealToComplex).take();
2718 
2719     // Case 2.  _Complex x -> y
2720     } else {
2721       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2722       assert(FromComplex);
2723 
2724       QualType ElType = FromComplex->getElementType();
2725       bool isFloatingComplex = ElType->isRealFloatingType();
2726 
2727       // _Complex x -> x
2728       From = ImpCastExprToType(From, ElType,
2729                    isFloatingComplex ? CK_FloatingComplexToReal
2730                                      : CK_IntegralComplexToReal,
2731                                VK_RValue, /*BasePath=*/0, CCK).take();
2732 
2733       // x -> y
2734       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2735         // do nothing
2736       } else if (ToType->isRealFloatingType()) {
2737         From = ImpCastExprToType(From, ToType,
2738                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2739                                  VK_RValue, /*BasePath=*/0, CCK).take();
2740       } else {
2741         assert(ToType->isIntegerType());
2742         From = ImpCastExprToType(From, ToType,
2743                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2744                                  VK_RValue, /*BasePath=*/0, CCK).take();
2745       }
2746     }
2747     break;
2748 
2749   case ICK_Block_Pointer_Conversion: {
2750     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2751                              VK_RValue, /*BasePath=*/0, CCK).take();
2752     break;
2753   }
2754 
2755   case ICK_TransparentUnionConversion: {
2756     ExprResult FromRes = Owned(From);
2757     Sema::AssignConvertType ConvTy =
2758       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2759     if (FromRes.isInvalid())
2760       return ExprError();
2761     From = FromRes.take();
2762     assert ((ConvTy == Sema::Compatible) &&
2763             "Improper transparent union conversion");
2764     (void)ConvTy;
2765     break;
2766   }
2767 
2768   case ICK_Lvalue_To_Rvalue:
2769   case ICK_Array_To_Pointer:
2770   case ICK_Function_To_Pointer:
2771   case ICK_Qualification:
2772   case ICK_Num_Conversion_Kinds:
2773     llvm_unreachable("Improper second standard conversion");
2774   }
2775 
2776   switch (SCS.Third) {
2777   case ICK_Identity:
2778     // Nothing to do.
2779     break;
2780 
2781   case ICK_Qualification: {
2782     // The qualification keeps the category of the inner expression, unless the
2783     // target type isn't a reference.
2784     ExprValueKind VK = ToType->isReferenceType() ?
2785                                   From->getValueKind() : VK_RValue;
2786     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2787                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2788 
2789     if (SCS.DeprecatedStringLiteralToCharPtr &&
2790         !getLangOpts().WritableStrings)
2791       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2792         << ToType.getNonReferenceType();
2793 
2794     break;
2795     }
2796 
2797   default:
2798     llvm_unreachable("Improper third standard conversion");
2799   }
2800 
2801   // If this conversion sequence involved a scalar -> atomic conversion, perform
2802   // that conversion now.
2803   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2804     if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2805       From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2806                                CCK).take();
2807 
2808   return Owned(From);
2809 }
2810 
ActOnUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,ParsedType Ty,SourceLocation RParen)2811 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2812                                      SourceLocation KWLoc,
2813                                      ParsedType Ty,
2814                                      SourceLocation RParen) {
2815   TypeSourceInfo *TSInfo;
2816   QualType T = GetTypeFromParser(Ty, &TSInfo);
2817 
2818   if (!TSInfo)
2819     TSInfo = Context.getTrivialTypeSourceInfo(T);
2820   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2821 }
2822 
2823 /// \brief Check the completeness of a type in a unary type trait.
2824 ///
2825 /// If the particular type trait requires a complete type, tries to complete
2826 /// it. If completing the type fails, a diagnostic is emitted and false
2827 /// returned. If completing the type succeeds or no completion was required,
2828 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,UnaryTypeTrait UTT,SourceLocation Loc,QualType ArgTy)2829 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2830                                                 UnaryTypeTrait UTT,
2831                                                 SourceLocation Loc,
2832                                                 QualType ArgTy) {
2833   // C++0x [meta.unary.prop]p3:
2834   //   For all of the class templates X declared in this Clause, instantiating
2835   //   that template with a template argument that is a class template
2836   //   specialization may result in the implicit instantiation of the template
2837   //   argument if and only if the semantics of X require that the argument
2838   //   must be a complete type.
2839   // We apply this rule to all the type trait expressions used to implement
2840   // these class templates. We also try to follow any GCC documented behavior
2841   // in these expressions to ensure portability of standard libraries.
2842   switch (UTT) {
2843     // is_complete_type somewhat obviously cannot require a complete type.
2844   case UTT_IsCompleteType:
2845     // Fall-through
2846 
2847     // These traits are modeled on the type predicates in C++0x
2848     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2849     // requiring a complete type, as whether or not they return true cannot be
2850     // impacted by the completeness of the type.
2851   case UTT_IsVoid:
2852   case UTT_IsIntegral:
2853   case UTT_IsFloatingPoint:
2854   case UTT_IsArray:
2855   case UTT_IsPointer:
2856   case UTT_IsLvalueReference:
2857   case UTT_IsRvalueReference:
2858   case UTT_IsMemberFunctionPointer:
2859   case UTT_IsMemberObjectPointer:
2860   case UTT_IsEnum:
2861   case UTT_IsUnion:
2862   case UTT_IsClass:
2863   case UTT_IsFunction:
2864   case UTT_IsReference:
2865   case UTT_IsArithmetic:
2866   case UTT_IsFundamental:
2867   case UTT_IsObject:
2868   case UTT_IsScalar:
2869   case UTT_IsCompound:
2870   case UTT_IsMemberPointer:
2871     // Fall-through
2872 
2873     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2874     // which requires some of its traits to have the complete type. However,
2875     // the completeness of the type cannot impact these traits' semantics, and
2876     // so they don't require it. This matches the comments on these traits in
2877     // Table 49.
2878   case UTT_IsConst:
2879   case UTT_IsVolatile:
2880   case UTT_IsSigned:
2881   case UTT_IsUnsigned:
2882     return true;
2883 
2884     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2885     // applied to a complete type.
2886   case UTT_IsTrivial:
2887   case UTT_IsTriviallyCopyable:
2888   case UTT_IsStandardLayout:
2889   case UTT_IsPOD:
2890   case UTT_IsLiteral:
2891   case UTT_IsEmpty:
2892   case UTT_IsPolymorphic:
2893   case UTT_IsAbstract:
2894     // Fall-through
2895 
2896   // These traits require a complete type.
2897   case UTT_IsFinal:
2898 
2899     // These trait expressions are designed to help implement predicates in
2900     // [meta.unary.prop] despite not being named the same. They are specified
2901     // by both GCC and the Embarcadero C++ compiler, and require the complete
2902     // type due to the overarching C++0x type predicates being implemented
2903     // requiring the complete type.
2904   case UTT_HasNothrowAssign:
2905   case UTT_HasNothrowConstructor:
2906   case UTT_HasNothrowCopy:
2907   case UTT_HasTrivialAssign:
2908   case UTT_HasTrivialDefaultConstructor:
2909   case UTT_HasTrivialCopy:
2910   case UTT_HasTrivialDestructor:
2911   case UTT_HasVirtualDestructor:
2912     // Arrays of unknown bound are expressly allowed.
2913     QualType ElTy = ArgTy;
2914     if (ArgTy->isIncompleteArrayType())
2915       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2916 
2917     // The void type is expressly allowed.
2918     if (ElTy->isVoidType())
2919       return true;
2920 
2921     return !S.RequireCompleteType(
2922       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2923   }
2924   llvm_unreachable("Type trait not handled by switch");
2925 }
2926 
EvaluateUnaryTypeTrait(Sema & Self,UnaryTypeTrait UTT,SourceLocation KeyLoc,QualType T)2927 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2928                                    SourceLocation KeyLoc, QualType T) {
2929   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2930 
2931   ASTContext &C = Self.Context;
2932   switch(UTT) {
2933     // Type trait expressions corresponding to the primary type category
2934     // predicates in C++0x [meta.unary.cat].
2935   case UTT_IsVoid:
2936     return T->isVoidType();
2937   case UTT_IsIntegral:
2938     return T->isIntegralType(C);
2939   case UTT_IsFloatingPoint:
2940     return T->isFloatingType();
2941   case UTT_IsArray:
2942     return T->isArrayType();
2943   case UTT_IsPointer:
2944     return T->isPointerType();
2945   case UTT_IsLvalueReference:
2946     return T->isLValueReferenceType();
2947   case UTT_IsRvalueReference:
2948     return T->isRValueReferenceType();
2949   case UTT_IsMemberFunctionPointer:
2950     return T->isMemberFunctionPointerType();
2951   case UTT_IsMemberObjectPointer:
2952     return T->isMemberDataPointerType();
2953   case UTT_IsEnum:
2954     return T->isEnumeralType();
2955   case UTT_IsUnion:
2956     return T->isUnionType();
2957   case UTT_IsClass:
2958     return T->isClassType() || T->isStructureType();
2959   case UTT_IsFunction:
2960     return T->isFunctionType();
2961 
2962     // Type trait expressions which correspond to the convenient composition
2963     // predicates in C++0x [meta.unary.comp].
2964   case UTT_IsReference:
2965     return T->isReferenceType();
2966   case UTT_IsArithmetic:
2967     return T->isArithmeticType() && !T->isEnumeralType();
2968   case UTT_IsFundamental:
2969     return T->isFundamentalType();
2970   case UTT_IsObject:
2971     return T->isObjectType();
2972   case UTT_IsScalar:
2973     // Note: semantic analysis depends on Objective-C lifetime types to be
2974     // considered scalar types. However, such types do not actually behave
2975     // like scalar types at run time (since they may require retain/release
2976     // operations), so we report them as non-scalar.
2977     if (T->isObjCLifetimeType()) {
2978       switch (T.getObjCLifetime()) {
2979       case Qualifiers::OCL_None:
2980       case Qualifiers::OCL_ExplicitNone:
2981         return true;
2982 
2983       case Qualifiers::OCL_Strong:
2984       case Qualifiers::OCL_Weak:
2985       case Qualifiers::OCL_Autoreleasing:
2986         return false;
2987       }
2988     }
2989 
2990     return T->isScalarType();
2991   case UTT_IsCompound:
2992     return T->isCompoundType();
2993   case UTT_IsMemberPointer:
2994     return T->isMemberPointerType();
2995 
2996     // Type trait expressions which correspond to the type property predicates
2997     // in C++0x [meta.unary.prop].
2998   case UTT_IsConst:
2999     return T.isConstQualified();
3000   case UTT_IsVolatile:
3001     return T.isVolatileQualified();
3002   case UTT_IsTrivial:
3003     return T.isTrivialType(Self.Context);
3004   case UTT_IsTriviallyCopyable:
3005     return T.isTriviallyCopyableType(Self.Context);
3006   case UTT_IsStandardLayout:
3007     return T->isStandardLayoutType();
3008   case UTT_IsPOD:
3009     return T.isPODType(Self.Context);
3010   case UTT_IsLiteral:
3011     return T->isLiteralType();
3012   case UTT_IsEmpty:
3013     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3014       return !RD->isUnion() && RD->isEmpty();
3015     return false;
3016   case UTT_IsPolymorphic:
3017     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3018       return RD->isPolymorphic();
3019     return false;
3020   case UTT_IsAbstract:
3021     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3022       return RD->isAbstract();
3023     return false;
3024   case UTT_IsFinal:
3025     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3026       return RD->hasAttr<FinalAttr>();
3027     return false;
3028   case UTT_IsSigned:
3029     return T->isSignedIntegerType();
3030   case UTT_IsUnsigned:
3031     return T->isUnsignedIntegerType();
3032 
3033     // Type trait expressions which query classes regarding their construction,
3034     // destruction, and copying. Rather than being based directly on the
3035     // related type predicates in the standard, they are specified by both
3036     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3037     // specifications.
3038     //
3039     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3040     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3041   case UTT_HasTrivialDefaultConstructor:
3042     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3043     //   If __is_pod (type) is true then the trait is true, else if type is
3044     //   a cv class or union type (or array thereof) with a trivial default
3045     //   constructor ([class.ctor]) then the trait is true, else it is false.
3046     if (T.isPODType(Self.Context))
3047       return true;
3048     if (const RecordType *RT =
3049           C.getBaseElementType(T)->getAs<RecordType>())
3050       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
3051     return false;
3052   case UTT_HasTrivialCopy:
3053     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3054     //   If __is_pod (type) is true or type is a reference type then
3055     //   the trait is true, else if type is a cv class or union type
3056     //   with a trivial copy constructor ([class.copy]) then the trait
3057     //   is true, else it is false.
3058     if (T.isPODType(Self.Context) || T->isReferenceType())
3059       return true;
3060     if (const RecordType *RT = T->getAs<RecordType>())
3061       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
3062     return false;
3063   case UTT_HasTrivialAssign:
3064     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3065     //   If type is const qualified or is a reference type then the
3066     //   trait is false. Otherwise if __is_pod (type) is true then the
3067     //   trait is true, else if type is a cv class or union type with
3068     //   a trivial copy assignment ([class.copy]) then the trait is
3069     //   true, else it is false.
3070     // Note: the const and reference restrictions are interesting,
3071     // given that const and reference members don't prevent a class
3072     // from having a trivial copy assignment operator (but do cause
3073     // errors if the copy assignment operator is actually used, q.v.
3074     // [class.copy]p12).
3075 
3076     if (C.getBaseElementType(T).isConstQualified())
3077       return false;
3078     if (T.isPODType(Self.Context))
3079       return true;
3080     if (const RecordType *RT = T->getAs<RecordType>())
3081       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3082     return false;
3083   case UTT_HasTrivialDestructor:
3084     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3085     //   If __is_pod (type) is true or type is a reference type
3086     //   then the trait is true, else if type is a cv class or union
3087     //   type (or array thereof) with a trivial destructor
3088     //   ([class.dtor]) then the trait is true, else it is
3089     //   false.
3090     if (T.isPODType(Self.Context) || T->isReferenceType())
3091       return true;
3092 
3093     // Objective-C++ ARC: autorelease types don't require destruction.
3094     if (T->isObjCLifetimeType() &&
3095         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3096       return true;
3097 
3098     if (const RecordType *RT =
3099           C.getBaseElementType(T)->getAs<RecordType>())
3100       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3101     return false;
3102   // TODO: Propagate nothrowness for implicitly declared special members.
3103   case UTT_HasNothrowAssign:
3104     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3105     //   If type is const qualified or is a reference type then the
3106     //   trait is false. Otherwise if __has_trivial_assign (type)
3107     //   is true then the trait is true, else if type is a cv class
3108     //   or union type with copy assignment operators that are known
3109     //   not to throw an exception then the trait is true, else it is
3110     //   false.
3111     if (C.getBaseElementType(T).isConstQualified())
3112       return false;
3113     if (T->isReferenceType())
3114       return false;
3115     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3116       return true;
3117     if (const RecordType *RT = T->getAs<RecordType>()) {
3118       CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3119       if (RD->hasTrivialCopyAssignment())
3120         return true;
3121 
3122       bool FoundAssign = false;
3123       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3124       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3125                        Sema::LookupOrdinaryName);
3126       if (Self.LookupQualifiedName(Res, RD)) {
3127         Res.suppressDiagnostics();
3128         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3129              Op != OpEnd; ++Op) {
3130           if (isa<FunctionTemplateDecl>(*Op))
3131             continue;
3132 
3133           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3134           if (Operator->isCopyAssignmentOperator()) {
3135             FoundAssign = true;
3136             const FunctionProtoType *CPT
3137                 = Operator->getType()->getAs<FunctionProtoType>();
3138             CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3139             if (!CPT)
3140               return false;
3141             if (CPT->getExceptionSpecType() == EST_Delayed)
3142               return false;
3143             if (!CPT->isNothrow(Self.Context))
3144               return false;
3145           }
3146         }
3147       }
3148 
3149       return FoundAssign;
3150     }
3151     return false;
3152   case UTT_HasNothrowCopy:
3153     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3154     //   If __has_trivial_copy (type) is true then the trait is true, else
3155     //   if type is a cv class or union type with copy constructors that are
3156     //   known not to throw an exception then the trait is true, else it is
3157     //   false.
3158     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3159       return true;
3160     if (const RecordType *RT = T->getAs<RecordType>()) {
3161       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3162       if (RD->hasTrivialCopyConstructor())
3163         return true;
3164 
3165       bool FoundConstructor = false;
3166       unsigned FoundTQs;
3167       DeclContext::lookup_const_iterator Con, ConEnd;
3168       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3169            Con != ConEnd; ++Con) {
3170         // A template constructor is never a copy constructor.
3171         // FIXME: However, it may actually be selected at the actual overload
3172         // resolution point.
3173         if (isa<FunctionTemplateDecl>(*Con))
3174           continue;
3175         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3176         if (Constructor->isCopyConstructor(FoundTQs)) {
3177           FoundConstructor = true;
3178           const FunctionProtoType *CPT
3179               = Constructor->getType()->getAs<FunctionProtoType>();
3180           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3181           if (!CPT)
3182             return false;
3183           if (CPT->getExceptionSpecType() == EST_Delayed)
3184             return false;
3185           // FIXME: check whether evaluating default arguments can throw.
3186           // For now, we'll be conservative and assume that they can throw.
3187           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3188             return false;
3189         }
3190       }
3191 
3192       return FoundConstructor;
3193     }
3194     return false;
3195   case UTT_HasNothrowConstructor:
3196     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3197     //   If __has_trivial_constructor (type) is true then the trait is
3198     //   true, else if type is a cv class or union type (or array
3199     //   thereof) with a default constructor that is known not to
3200     //   throw an exception then the trait is true, else it is false.
3201     if (T.isPODType(C) || T->isObjCLifetimeType())
3202       return true;
3203     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3204       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3205       if (RD->hasTrivialDefaultConstructor())
3206         return true;
3207 
3208       DeclContext::lookup_const_iterator Con, ConEnd;
3209       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3210            Con != ConEnd; ++Con) {
3211         // FIXME: In C++0x, a constructor template can be a default constructor.
3212         if (isa<FunctionTemplateDecl>(*Con))
3213           continue;
3214         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3215         if (Constructor->isDefaultConstructor()) {
3216           const FunctionProtoType *CPT
3217               = Constructor->getType()->getAs<FunctionProtoType>();
3218           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3219           if (!CPT)
3220             return false;
3221           if (CPT->getExceptionSpecType() == EST_Delayed)
3222             return false;
3223           // TODO: check whether evaluating default arguments can throw.
3224           // For now, we'll be conservative and assume that they can throw.
3225           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3226         }
3227       }
3228     }
3229     return false;
3230   case UTT_HasVirtualDestructor:
3231     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3232     //   If type is a class type with a virtual destructor ([class.dtor])
3233     //   then the trait is true, else it is false.
3234     if (const RecordType *Record = T->getAs<RecordType>()) {
3235       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3236       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3237         return Destructor->isVirtual();
3238     }
3239     return false;
3240 
3241     // These type trait expressions are modeled on the specifications for the
3242     // Embarcadero C++0x type trait functions:
3243     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3244   case UTT_IsCompleteType:
3245     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3246     //   Returns True if and only if T is a complete type at the point of the
3247     //   function call.
3248     return !T->isIncompleteType();
3249   }
3250   llvm_unreachable("Type trait not covered by switch");
3251 }
3252 
BuildUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,SourceLocation RParen)3253 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3254                                      SourceLocation KWLoc,
3255                                      TypeSourceInfo *TSInfo,
3256                                      SourceLocation RParen) {
3257   QualType T = TSInfo->getType();
3258   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3259     return ExprError();
3260 
3261   bool Value = false;
3262   if (!T->isDependentType())
3263     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3264 
3265   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3266                                                 RParen, Context.BoolTy));
3267 }
3268 
ActOnBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,ParsedType LhsTy,ParsedType RhsTy,SourceLocation RParen)3269 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3270                                       SourceLocation KWLoc,
3271                                       ParsedType LhsTy,
3272                                       ParsedType RhsTy,
3273                                       SourceLocation RParen) {
3274   TypeSourceInfo *LhsTSInfo;
3275   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3276   if (!LhsTSInfo)
3277     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3278 
3279   TypeSourceInfo *RhsTSInfo;
3280   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3281   if (!RhsTSInfo)
3282     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3283 
3284   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3285 }
3286 
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3287 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3288                               ArrayRef<TypeSourceInfo *> Args,
3289                               SourceLocation RParenLoc) {
3290   switch (Kind) {
3291   case clang::TT_IsTriviallyConstructible: {
3292     // C++11 [meta.unary.prop]:
3293     //   is_trivially_constructible is defined as:
3294     //
3295     //     is_constructible<T, Args...>::value is true and the variable
3296     //     definition for is_constructible, as defined below, is known to call no
3297     //     operation that is not trivial.
3298     //
3299     //   The predicate condition for a template specialization
3300     //   is_constructible<T, Args...> shall be satisfied if and only if the
3301     //   following variable definition would be well-formed for some invented
3302     //   variable t:
3303     //
3304     //     T t(create<Args>()...);
3305     if (Args.empty()) {
3306       S.Diag(KWLoc, diag::err_type_trait_arity)
3307         << 1 << 1 << 1 << (int)Args.size();
3308       return false;
3309     }
3310 
3311     bool SawVoid = false;
3312     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3313       if (Args[I]->getType()->isVoidType()) {
3314         SawVoid = true;
3315         continue;
3316       }
3317 
3318       if (!Args[I]->getType()->isIncompleteType() &&
3319         S.RequireCompleteType(KWLoc, Args[I]->getType(),
3320           diag::err_incomplete_type_used_in_type_trait_expr))
3321         return false;
3322     }
3323 
3324     // If any argument was 'void', of course it won't type-check.
3325     if (SawVoid)
3326       return false;
3327 
3328     llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3329     llvm::SmallVector<Expr *, 2> ArgExprs;
3330     ArgExprs.reserve(Args.size() - 1);
3331     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3332       QualType T = Args[I]->getType();
3333       if (T->isObjectType() || T->isFunctionType())
3334         T = S.Context.getRValueReferenceType(T);
3335       OpaqueArgExprs.push_back(
3336         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3337                         T.getNonLValueExprType(S.Context),
3338                         Expr::getValueKindForType(T)));
3339       ArgExprs.push_back(&OpaqueArgExprs.back());
3340     }
3341 
3342     // Perform the initialization in an unevaluated context within a SFINAE
3343     // trap at translation unit scope.
3344     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3345     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3346     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3347     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3348     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3349                                                                  RParenLoc));
3350     InitializationSequence Init(S, To, InitKind,
3351                                 ArgExprs.begin(), ArgExprs.size());
3352     if (Init.Failed())
3353       return false;
3354 
3355     ExprResult Result = Init.Perform(S, To, InitKind,
3356                                      MultiExprArg(ArgExprs.data(),
3357                                                   ArgExprs.size()));
3358     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3359       return false;
3360 
3361     // The initialization succeeded; not make sure there are no non-trivial
3362     // calls.
3363     return !Result.get()->hasNonTrivialCall(S.Context);
3364   }
3365   }
3366 
3367   return false;
3368 }
3369 
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3370 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3371                                 ArrayRef<TypeSourceInfo *> Args,
3372                                 SourceLocation RParenLoc) {
3373   bool Dependent = false;
3374   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3375     if (Args[I]->getType()->isDependentType()) {
3376       Dependent = true;
3377       break;
3378     }
3379   }
3380 
3381   bool Value = false;
3382   if (!Dependent)
3383     Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3384 
3385   return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3386                                Args, RParenLoc, Value);
3387 }
3388 
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3389 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3390                                 ArrayRef<ParsedType> Args,
3391                                 SourceLocation RParenLoc) {
3392   llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3393   ConvertedArgs.reserve(Args.size());
3394 
3395   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3396     TypeSourceInfo *TInfo;
3397     QualType T = GetTypeFromParser(Args[I], &TInfo);
3398     if (!TInfo)
3399       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3400 
3401     ConvertedArgs.push_back(TInfo);
3402   }
3403 
3404   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3405 }
3406 
EvaluateBinaryTypeTrait(Sema & Self,BinaryTypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3407 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3408                                     QualType LhsT, QualType RhsT,
3409                                     SourceLocation KeyLoc) {
3410   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3411          "Cannot evaluate traits of dependent types");
3412 
3413   switch(BTT) {
3414   case BTT_IsBaseOf: {
3415     // C++0x [meta.rel]p2
3416     // Base is a base class of Derived without regard to cv-qualifiers or
3417     // Base and Derived are not unions and name the same class type without
3418     // regard to cv-qualifiers.
3419 
3420     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3421     if (!lhsRecord) return false;
3422 
3423     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3424     if (!rhsRecord) return false;
3425 
3426     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3427              == (lhsRecord == rhsRecord));
3428 
3429     if (lhsRecord == rhsRecord)
3430       return !lhsRecord->getDecl()->isUnion();
3431 
3432     // C++0x [meta.rel]p2:
3433     //   If Base and Derived are class types and are different types
3434     //   (ignoring possible cv-qualifiers) then Derived shall be a
3435     //   complete type.
3436     if (Self.RequireCompleteType(KeyLoc, RhsT,
3437                           diag::err_incomplete_type_used_in_type_trait_expr))
3438       return false;
3439 
3440     return cast<CXXRecordDecl>(rhsRecord->getDecl())
3441       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3442   }
3443   case BTT_IsSame:
3444     return Self.Context.hasSameType(LhsT, RhsT);
3445   case BTT_TypeCompatible:
3446     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3447                                            RhsT.getUnqualifiedType());
3448   case BTT_IsConvertible:
3449   case BTT_IsConvertibleTo: {
3450     // C++0x [meta.rel]p4:
3451     //   Given the following function prototype:
3452     //
3453     //     template <class T>
3454     //       typename add_rvalue_reference<T>::type create();
3455     //
3456     //   the predicate condition for a template specialization
3457     //   is_convertible<From, To> shall be satisfied if and only if
3458     //   the return expression in the following code would be
3459     //   well-formed, including any implicit conversions to the return
3460     //   type of the function:
3461     //
3462     //     To test() {
3463     //       return create<From>();
3464     //     }
3465     //
3466     //   Access checking is performed as if in a context unrelated to To and
3467     //   From. Only the validity of the immediate context of the expression
3468     //   of the return-statement (including conversions to the return type)
3469     //   is considered.
3470     //
3471     // We model the initialization as a copy-initialization of a temporary
3472     // of the appropriate type, which for this expression is identical to the
3473     // return statement (since NRVO doesn't apply).
3474     if (LhsT->isObjectType() || LhsT->isFunctionType())
3475       LhsT = Self.Context.getRValueReferenceType(LhsT);
3476 
3477     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3478     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3479                          Expr::getValueKindForType(LhsT));
3480     Expr *FromPtr = &From;
3481     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3482                                                            SourceLocation()));
3483 
3484     // Perform the initialization in an unevaluated context within a SFINAE
3485     // trap at translation unit scope.
3486     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3487     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3488     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3489     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3490     if (Init.Failed())
3491       return false;
3492 
3493     ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3494     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3495   }
3496 
3497   case BTT_IsTriviallyAssignable: {
3498     // C++11 [meta.unary.prop]p3:
3499     //   is_trivially_assignable is defined as:
3500     //     is_assignable<T, U>::value is true and the assignment, as defined by
3501     //     is_assignable, is known to call no operation that is not trivial
3502     //
3503     //   is_assignable is defined as:
3504     //     The expression declval<T>() = declval<U>() is well-formed when
3505     //     treated as an unevaluated operand (Clause 5).
3506     //
3507     //   For both, T and U shall be complete types, (possibly cv-qualified)
3508     //   void, or arrays of unknown bound.
3509     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3510         Self.RequireCompleteType(KeyLoc, LhsT,
3511           diag::err_incomplete_type_used_in_type_trait_expr))
3512       return false;
3513     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3514         Self.RequireCompleteType(KeyLoc, RhsT,
3515           diag::err_incomplete_type_used_in_type_trait_expr))
3516       return false;
3517 
3518     // cv void is never assignable.
3519     if (LhsT->isVoidType() || RhsT->isVoidType())
3520       return false;
3521 
3522     // Build expressions that emulate the effect of declval<T>() and
3523     // declval<U>().
3524     if (LhsT->isObjectType() || LhsT->isFunctionType())
3525       LhsT = Self.Context.getRValueReferenceType(LhsT);
3526     if (RhsT->isObjectType() || RhsT->isFunctionType())
3527       RhsT = Self.Context.getRValueReferenceType(RhsT);
3528     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3529                         Expr::getValueKindForType(LhsT));
3530     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3531                         Expr::getValueKindForType(RhsT));
3532 
3533     // Attempt the assignment in an unevaluated context within a SFINAE
3534     // trap at translation unit scope.
3535     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3536     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3537     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3538     ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3539     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3540       return false;
3541 
3542     return !Result.get()->hasNonTrivialCall(Self.Context);
3543   }
3544   }
3545   llvm_unreachable("Unknown type trait or not implemented");
3546 }
3547 
BuildBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,TypeSourceInfo * LhsTSInfo,TypeSourceInfo * RhsTSInfo,SourceLocation RParen)3548 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3549                                       SourceLocation KWLoc,
3550                                       TypeSourceInfo *LhsTSInfo,
3551                                       TypeSourceInfo *RhsTSInfo,
3552                                       SourceLocation RParen) {
3553   QualType LhsT = LhsTSInfo->getType();
3554   QualType RhsT = RhsTSInfo->getType();
3555 
3556   if (BTT == BTT_TypeCompatible) {
3557     if (getLangOpts().CPlusPlus) {
3558       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3559         << SourceRange(KWLoc, RParen);
3560       return ExprError();
3561     }
3562   }
3563 
3564   bool Value = false;
3565   if (!LhsT->isDependentType() && !RhsT->isDependentType())
3566     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3567 
3568   // Select trait result type.
3569   QualType ResultType;
3570   switch (BTT) {
3571   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3572   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3573   case BTT_IsSame:         ResultType = Context.BoolTy; break;
3574   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3575   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3576   case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3577   }
3578 
3579   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3580                                                  RhsTSInfo, Value, RParen,
3581                                                  ResultType));
3582 }
3583 
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3584 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3585                                      SourceLocation KWLoc,
3586                                      ParsedType Ty,
3587                                      Expr* DimExpr,
3588                                      SourceLocation RParen) {
3589   TypeSourceInfo *TSInfo;
3590   QualType T = GetTypeFromParser(Ty, &TSInfo);
3591   if (!TSInfo)
3592     TSInfo = Context.getTrivialTypeSourceInfo(T);
3593 
3594   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3595 }
3596 
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3597 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3598                                            QualType T, Expr *DimExpr,
3599                                            SourceLocation KeyLoc) {
3600   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3601 
3602   switch(ATT) {
3603   case ATT_ArrayRank:
3604     if (T->isArrayType()) {
3605       unsigned Dim = 0;
3606       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3607         ++Dim;
3608         T = AT->getElementType();
3609       }
3610       return Dim;
3611     }
3612     return 0;
3613 
3614   case ATT_ArrayExtent: {
3615     llvm::APSInt Value;
3616     uint64_t Dim;
3617     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3618           Self.PDiag(diag::err_dimension_expr_not_constant_integer),
3619           false).isInvalid())
3620       return 0;
3621     if (Value.isSigned() && Value.isNegative()) {
3622       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3623         << DimExpr->getSourceRange();
3624       return 0;
3625     }
3626     Dim = Value.getLimitedValue();
3627 
3628     if (T->isArrayType()) {
3629       unsigned D = 0;
3630       bool Matched = false;
3631       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3632         if (Dim == D) {
3633           Matched = true;
3634           break;
3635         }
3636         ++D;
3637         T = AT->getElementType();
3638       }
3639 
3640       if (Matched && T->isArrayType()) {
3641         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3642           return CAT->getSize().getLimitedValue();
3643       }
3644     }
3645     return 0;
3646   }
3647   }
3648   llvm_unreachable("Unknown type trait or not implemented");
3649 }
3650 
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3651 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3652                                      SourceLocation KWLoc,
3653                                      TypeSourceInfo *TSInfo,
3654                                      Expr* DimExpr,
3655                                      SourceLocation RParen) {
3656   QualType T = TSInfo->getType();
3657 
3658   // FIXME: This should likely be tracked as an APInt to remove any host
3659   // assumptions about the width of size_t on the target.
3660   uint64_t Value = 0;
3661   if (!T->isDependentType())
3662     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3663 
3664   // While the specification for these traits from the Embarcadero C++
3665   // compiler's documentation says the return type is 'unsigned int', Clang
3666   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3667   // compiler, there is no difference. On several other platforms this is an
3668   // important distinction.
3669   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3670                                                 DimExpr, RParen,
3671                                                 Context.getSizeType()));
3672 }
3673 
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3674 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3675                                       SourceLocation KWLoc,
3676                                       Expr *Queried,
3677                                       SourceLocation RParen) {
3678   // If error parsing the expression, ignore.
3679   if (!Queried)
3680     return ExprError();
3681 
3682   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3683 
3684   return move(Result);
3685 }
3686 
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)3687 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3688   switch (ET) {
3689   case ET_IsLValueExpr: return E->isLValue();
3690   case ET_IsRValueExpr: return E->isRValue();
3691   }
3692   llvm_unreachable("Expression trait not covered by switch");
3693 }
3694 
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3695 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3696                                       SourceLocation KWLoc,
3697                                       Expr *Queried,
3698                                       SourceLocation RParen) {
3699   if (Queried->isTypeDependent()) {
3700     // Delay type-checking for type-dependent expressions.
3701   } else if (Queried->getType()->isPlaceholderType()) {
3702     ExprResult PE = CheckPlaceholderExpr(Queried);
3703     if (PE.isInvalid()) return ExprError();
3704     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3705   }
3706 
3707   bool Value = EvaluateExpressionTrait(ET, Queried);
3708 
3709   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3710                                                  RParen, Context.BoolTy));
3711 }
3712 
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)3713 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3714                                             ExprValueKind &VK,
3715                                             SourceLocation Loc,
3716                                             bool isIndirect) {
3717   assert(!LHS.get()->getType()->isPlaceholderType() &&
3718          !RHS.get()->getType()->isPlaceholderType() &&
3719          "placeholders should have been weeded out by now");
3720 
3721   // The LHS undergoes lvalue conversions if this is ->*.
3722   if (isIndirect) {
3723     LHS = DefaultLvalueConversion(LHS.take());
3724     if (LHS.isInvalid()) return QualType();
3725   }
3726 
3727   // The RHS always undergoes lvalue conversions.
3728   RHS = DefaultLvalueConversion(RHS.take());
3729   if (RHS.isInvalid()) return QualType();
3730 
3731   const char *OpSpelling = isIndirect ? "->*" : ".*";
3732   // C++ 5.5p2
3733   //   The binary operator .* [p3: ->*] binds its second operand, which shall
3734   //   be of type "pointer to member of T" (where T is a completely-defined
3735   //   class type) [...]
3736   QualType RHSType = RHS.get()->getType();
3737   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3738   if (!MemPtr) {
3739     Diag(Loc, diag::err_bad_memptr_rhs)
3740       << OpSpelling << RHSType << RHS.get()->getSourceRange();
3741     return QualType();
3742   }
3743 
3744   QualType Class(MemPtr->getClass(), 0);
3745 
3746   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3747   // member pointer points must be completely-defined. However, there is no
3748   // reason for this semantic distinction, and the rule is not enforced by
3749   // other compilers. Therefore, we do not check this property, as it is
3750   // likely to be considered a defect.
3751 
3752   // C++ 5.5p2
3753   //   [...] to its first operand, which shall be of class T or of a class of
3754   //   which T is an unambiguous and accessible base class. [p3: a pointer to
3755   //   such a class]
3756   QualType LHSType = LHS.get()->getType();
3757   if (isIndirect) {
3758     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3759       LHSType = Ptr->getPointeeType();
3760     else {
3761       Diag(Loc, diag::err_bad_memptr_lhs)
3762         << OpSpelling << 1 << LHSType
3763         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3764       return QualType();
3765     }
3766   }
3767 
3768   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3769     // If we want to check the hierarchy, we need a complete type.
3770     if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs)
3771         << OpSpelling << (int)isIndirect)) {
3772       return QualType();
3773     }
3774     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3775                        /*DetectVirtual=*/false);
3776     // FIXME: Would it be useful to print full ambiguity paths, or is that
3777     // overkill?
3778     if (!IsDerivedFrom(LHSType, Class, Paths) ||
3779         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3780       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3781         << (int)isIndirect << LHS.get()->getType();
3782       return QualType();
3783     }
3784     // Cast LHS to type of use.
3785     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3786     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3787 
3788     CXXCastPath BasePath;
3789     BuildBasePathArray(Paths, BasePath);
3790     LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3791                             &BasePath);
3792   }
3793 
3794   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3795     // Diagnose use of pointer-to-member type which when used as
3796     // the functional cast in a pointer-to-member expression.
3797     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3798      return QualType();
3799   }
3800 
3801   // C++ 5.5p2
3802   //   The result is an object or a function of the type specified by the
3803   //   second operand.
3804   // The cv qualifiers are the union of those in the pointer and the left side,
3805   // in accordance with 5.5p5 and 5.2.5.
3806   QualType Result = MemPtr->getPointeeType();
3807   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3808 
3809   // C++0x [expr.mptr.oper]p6:
3810   //   In a .* expression whose object expression is an rvalue, the program is
3811   //   ill-formed if the second operand is a pointer to member function with
3812   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3813   //   expression is an lvalue, the program is ill-formed if the second operand
3814   //   is a pointer to member function with ref-qualifier &&.
3815   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3816     switch (Proto->getRefQualifier()) {
3817     case RQ_None:
3818       // Do nothing
3819       break;
3820 
3821     case RQ_LValue:
3822       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3823         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3824           << RHSType << 1 << LHS.get()->getSourceRange();
3825       break;
3826 
3827     case RQ_RValue:
3828       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3829         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3830           << RHSType << 0 << LHS.get()->getSourceRange();
3831       break;
3832     }
3833   }
3834 
3835   // C++ [expr.mptr.oper]p6:
3836   //   The result of a .* expression whose second operand is a pointer
3837   //   to a data member is of the same value category as its
3838   //   first operand. The result of a .* expression whose second
3839   //   operand is a pointer to a member function is a prvalue. The
3840   //   result of an ->* expression is an lvalue if its second operand
3841   //   is a pointer to data member and a prvalue otherwise.
3842   if (Result->isFunctionType()) {
3843     VK = VK_RValue;
3844     return Context.BoundMemberTy;
3845   } else if (isIndirect) {
3846     VK = VK_LValue;
3847   } else {
3848     VK = LHS.get()->getValueKind();
3849   }
3850 
3851   return Result;
3852 }
3853 
3854 /// \brief Try to convert a type to another according to C++0x 5.16p3.
3855 ///
3856 /// This is part of the parameter validation for the ? operator. If either
3857 /// value operand is a class type, the two operands are attempted to be
3858 /// converted to each other. This function does the conversion in one direction.
3859 /// It returns true if the program is ill-formed and has already been diagnosed
3860 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)3861 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3862                                 SourceLocation QuestionLoc,
3863                                 bool &HaveConversion,
3864                                 QualType &ToType) {
3865   HaveConversion = false;
3866   ToType = To->getType();
3867 
3868   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3869                                                            SourceLocation());
3870   // C++0x 5.16p3
3871   //   The process for determining whether an operand expression E1 of type T1
3872   //   can be converted to match an operand expression E2 of type T2 is defined
3873   //   as follows:
3874   //   -- If E2 is an lvalue:
3875   bool ToIsLvalue = To->isLValue();
3876   if (ToIsLvalue) {
3877     //   E1 can be converted to match E2 if E1 can be implicitly converted to
3878     //   type "lvalue reference to T2", subject to the constraint that in the
3879     //   conversion the reference must bind directly to E1.
3880     QualType T = Self.Context.getLValueReferenceType(ToType);
3881     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3882 
3883     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3884     if (InitSeq.isDirectReferenceBinding()) {
3885       ToType = T;
3886       HaveConversion = true;
3887       return false;
3888     }
3889 
3890     if (InitSeq.isAmbiguous())
3891       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3892   }
3893 
3894   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3895   //      -- if E1 and E2 have class type, and the underlying class types are
3896   //         the same or one is a base class of the other:
3897   QualType FTy = From->getType();
3898   QualType TTy = To->getType();
3899   const RecordType *FRec = FTy->getAs<RecordType>();
3900   const RecordType *TRec = TTy->getAs<RecordType>();
3901   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3902                        Self.IsDerivedFrom(FTy, TTy);
3903   if (FRec && TRec &&
3904       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3905     //         E1 can be converted to match E2 if the class of T2 is the
3906     //         same type as, or a base class of, the class of T1, and
3907     //         [cv2 > cv1].
3908     if (FRec == TRec || FDerivedFromT) {
3909       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3910         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3911         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3912         if (InitSeq) {
3913           HaveConversion = true;
3914           return false;
3915         }
3916 
3917         if (InitSeq.isAmbiguous())
3918           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3919       }
3920     }
3921 
3922     return false;
3923   }
3924 
3925   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3926   //        implicitly converted to the type that expression E2 would have
3927   //        if E2 were converted to an rvalue (or the type it has, if E2 is
3928   //        an rvalue).
3929   //
3930   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3931   // to the array-to-pointer or function-to-pointer conversions.
3932   if (!TTy->getAs<TagType>())
3933     TTy = TTy.getUnqualifiedType();
3934 
3935   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3936   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3937   HaveConversion = !InitSeq.Failed();
3938   ToType = TTy;
3939   if (InitSeq.isAmbiguous())
3940     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3941 
3942   return false;
3943 }
3944 
3945 /// \brief Try to find a common type for two according to C++0x 5.16p5.
3946 ///
3947 /// This is part of the parameter validation for the ? operator. If either
3948 /// value operand is a class type, overload resolution is used to find a
3949 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)3950 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3951                                     SourceLocation QuestionLoc) {
3952   Expr *Args[2] = { LHS.get(), RHS.get() };
3953   OverloadCandidateSet CandidateSet(QuestionLoc);
3954   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3955                                     CandidateSet);
3956 
3957   OverloadCandidateSet::iterator Best;
3958   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3959     case OR_Success: {
3960       // We found a match. Perform the conversions on the arguments and move on.
3961       ExprResult LHSRes =
3962         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3963                                        Best->Conversions[0], Sema::AA_Converting);
3964       if (LHSRes.isInvalid())
3965         break;
3966       LHS = move(LHSRes);
3967 
3968       ExprResult RHSRes =
3969         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3970                                        Best->Conversions[1], Sema::AA_Converting);
3971       if (RHSRes.isInvalid())
3972         break;
3973       RHS = move(RHSRes);
3974       if (Best->Function)
3975         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
3976       return false;
3977     }
3978 
3979     case OR_No_Viable_Function:
3980 
3981       // Emit a better diagnostic if one of the expressions is a null pointer
3982       // constant and the other is a pointer type. In this case, the user most
3983       // likely forgot to take the address of the other expression.
3984       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3985         return true;
3986 
3987       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3988         << LHS.get()->getType() << RHS.get()->getType()
3989         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3990       return true;
3991 
3992     case OR_Ambiguous:
3993       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3994         << LHS.get()->getType() << RHS.get()->getType()
3995         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3996       // FIXME: Print the possible common types by printing the return types of
3997       // the viable candidates.
3998       break;
3999 
4000     case OR_Deleted:
4001       llvm_unreachable("Conditional operator has only built-in overloads");
4002   }
4003   return true;
4004 }
4005 
4006 /// \brief Perform an "extended" implicit conversion as returned by
4007 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4008 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4009   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4010   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4011                                                            SourceLocation());
4012   Expr *Arg = E.take();
4013   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4014   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
4015   if (Result.isInvalid())
4016     return true;
4017 
4018   E = Result;
4019   return false;
4020 }
4021 
4022 /// \brief Check the operands of ?: under C++ semantics.
4023 ///
4024 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4025 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4026 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
4027                                            ExprValueKind &VK, ExprObjectKind &OK,
4028                                            SourceLocation QuestionLoc) {
4029   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4030   // interface pointers.
4031 
4032   // C++0x 5.16p1
4033   //   The first expression is contextually converted to bool.
4034   if (!Cond.get()->isTypeDependent()) {
4035     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4036     if (CondRes.isInvalid())
4037       return QualType();
4038     Cond = move(CondRes);
4039   }
4040 
4041   // Assume r-value.
4042   VK = VK_RValue;
4043   OK = OK_Ordinary;
4044 
4045   // Either of the arguments dependent?
4046   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4047     return Context.DependentTy;
4048 
4049   // C++0x 5.16p2
4050   //   If either the second or the third operand has type (cv) void, ...
4051   QualType LTy = LHS.get()->getType();
4052   QualType RTy = RHS.get()->getType();
4053   bool LVoid = LTy->isVoidType();
4054   bool RVoid = RTy->isVoidType();
4055   if (LVoid || RVoid) {
4056     //   ... then the [l2r] conversions are performed on the second and third
4057     //   operands ...
4058     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4059     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4060     if (LHS.isInvalid() || RHS.isInvalid())
4061       return QualType();
4062     LTy = LHS.get()->getType();
4063     RTy = RHS.get()->getType();
4064 
4065     //   ... and one of the following shall hold:
4066     //   -- The second or the third operand (but not both) is a throw-
4067     //      expression; the result is of the type of the other and is an rvalue.
4068     bool LThrow = isa<CXXThrowExpr>(LHS.get());
4069     bool RThrow = isa<CXXThrowExpr>(RHS.get());
4070     if (LThrow && !RThrow)
4071       return RTy;
4072     if (RThrow && !LThrow)
4073       return LTy;
4074 
4075     //   -- Both the second and third operands have type void; the result is of
4076     //      type void and is an rvalue.
4077     if (LVoid && RVoid)
4078       return Context.VoidTy;
4079 
4080     // Neither holds, error.
4081     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4082       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4083       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4084     return QualType();
4085   }
4086 
4087   // Neither is void.
4088 
4089   // C++0x 5.16p3
4090   //   Otherwise, if the second and third operand have different types, and
4091   //   either has (cv) class type, and attempt is made to convert each of those
4092   //   operands to the other.
4093   if (!Context.hasSameType(LTy, RTy) &&
4094       (LTy->isRecordType() || RTy->isRecordType())) {
4095     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4096     // These return true if a single direction is already ambiguous.
4097     QualType L2RType, R2LType;
4098     bool HaveL2R, HaveR2L;
4099     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4100       return QualType();
4101     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4102       return QualType();
4103 
4104     //   If both can be converted, [...] the program is ill-formed.
4105     if (HaveL2R && HaveR2L) {
4106       Diag(QuestionLoc, diag::err_conditional_ambiguous)
4107         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4108       return QualType();
4109     }
4110 
4111     //   If exactly one conversion is possible, that conversion is applied to
4112     //   the chosen operand and the converted operands are used in place of the
4113     //   original operands for the remainder of this section.
4114     if (HaveL2R) {
4115       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4116         return QualType();
4117       LTy = LHS.get()->getType();
4118     } else if (HaveR2L) {
4119       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4120         return QualType();
4121       RTy = RHS.get()->getType();
4122     }
4123   }
4124 
4125   // C++0x 5.16p4
4126   //   If the second and third operands are glvalues of the same value
4127   //   category and have the same type, the result is of that type and
4128   //   value category and it is a bit-field if the second or the third
4129   //   operand is a bit-field, or if both are bit-fields.
4130   // We only extend this to bitfields, not to the crazy other kinds of
4131   // l-values.
4132   bool Same = Context.hasSameType(LTy, RTy);
4133   if (Same &&
4134       LHS.get()->isGLValue() &&
4135       LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
4136       LHS.get()->isOrdinaryOrBitFieldObject() &&
4137       RHS.get()->isOrdinaryOrBitFieldObject()) {
4138     VK = LHS.get()->getValueKind();
4139     if (LHS.get()->getObjectKind() == OK_BitField ||
4140         RHS.get()->getObjectKind() == OK_BitField)
4141       OK = OK_BitField;
4142     return LTy;
4143   }
4144 
4145   // C++0x 5.16p5
4146   //   Otherwise, the result is an rvalue. If the second and third operands
4147   //   do not have the same type, and either has (cv) class type, ...
4148   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4149     //   ... overload resolution is used to determine the conversions (if any)
4150     //   to be applied to the operands. If the overload resolution fails, the
4151     //   program is ill-formed.
4152     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4153       return QualType();
4154   }
4155 
4156   // C++0x 5.16p6
4157   //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
4158   //   conversions are performed on the second and third operands.
4159   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4160   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4161   if (LHS.isInvalid() || RHS.isInvalid())
4162     return QualType();
4163   LTy = LHS.get()->getType();
4164   RTy = RHS.get()->getType();
4165 
4166   //   After those conversions, one of the following shall hold:
4167   //   -- The second and third operands have the same type; the result
4168   //      is of that type. If the operands have class type, the result
4169   //      is a prvalue temporary of the result type, which is
4170   //      copy-initialized from either the second operand or the third
4171   //      operand depending on the value of the first operand.
4172   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4173     if (LTy->isRecordType()) {
4174       // The operands have class type. Make a temporary copy.
4175       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4176       ExprResult LHSCopy = PerformCopyInitialization(Entity,
4177                                                      SourceLocation(),
4178                                                      LHS);
4179       if (LHSCopy.isInvalid())
4180         return QualType();
4181 
4182       ExprResult RHSCopy = PerformCopyInitialization(Entity,
4183                                                      SourceLocation(),
4184                                                      RHS);
4185       if (RHSCopy.isInvalid())
4186         return QualType();
4187 
4188       LHS = LHSCopy;
4189       RHS = RHSCopy;
4190     }
4191 
4192     return LTy;
4193   }
4194 
4195   // Extension: conditional operator involving vector types.
4196   if (LTy->isVectorType() || RTy->isVectorType())
4197     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4198 
4199   //   -- The second and third operands have arithmetic or enumeration type;
4200   //      the usual arithmetic conversions are performed to bring them to a
4201   //      common type, and the result is of that type.
4202   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4203     UsualArithmeticConversions(LHS, RHS);
4204     if (LHS.isInvalid() || RHS.isInvalid())
4205       return QualType();
4206     return LHS.get()->getType();
4207   }
4208 
4209   //   -- The second and third operands have pointer type, or one has pointer
4210   //      type and the other is a null pointer constant; pointer conversions
4211   //      and qualification conversions are performed to bring them to their
4212   //      composite pointer type. The result is of the composite pointer type.
4213   //   -- The second and third operands have pointer to member type, or one has
4214   //      pointer to member type and the other is a null pointer constant;
4215   //      pointer to member conversions and qualification conversions are
4216   //      performed to bring them to a common type, whose cv-qualification
4217   //      shall match the cv-qualification of either the second or the third
4218   //      operand. The result is of the common type.
4219   bool NonStandardCompositeType = false;
4220   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4221                               isSFINAEContext()? 0 : &NonStandardCompositeType);
4222   if (!Composite.isNull()) {
4223     if (NonStandardCompositeType)
4224       Diag(QuestionLoc,
4225            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4226         << LTy << RTy << Composite
4227         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4228 
4229     return Composite;
4230   }
4231 
4232   // Similarly, attempt to find composite type of two objective-c pointers.
4233   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4234   if (!Composite.isNull())
4235     return Composite;
4236 
4237   // Check if we are using a null with a non-pointer type.
4238   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4239     return QualType();
4240 
4241   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4242     << LHS.get()->getType() << RHS.get()->getType()
4243     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4244   return QualType();
4245 }
4246 
4247 /// \brief Find a merged pointer type and convert the two expressions to it.
4248 ///
4249 /// This finds the composite pointer type (or member pointer type) for @p E1
4250 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
4251 /// type and returns it.
4252 /// It does not emit diagnostics.
4253 ///
4254 /// \param Loc The location of the operator requiring these two expressions to
4255 /// be converted to the composite pointer type.
4256 ///
4257 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4258 /// a non-standard (but still sane) composite type to which both expressions
4259 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4260 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4261 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4262                                         Expr *&E1, Expr *&E2,
4263                                         bool *NonStandardCompositeType) {
4264   if (NonStandardCompositeType)
4265     *NonStandardCompositeType = false;
4266 
4267   assert(getLangOpts().CPlusPlus && "This function assumes C++");
4268   QualType T1 = E1->getType(), T2 = E2->getType();
4269 
4270   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4271       !T2->isAnyPointerType() && !T2->isMemberPointerType())
4272    return QualType();
4273 
4274   // C++0x 5.9p2
4275   //   Pointer conversions and qualification conversions are performed on
4276   //   pointer operands to bring them to their composite pointer type. If
4277   //   one operand is a null pointer constant, the composite pointer type is
4278   //   the type of the other operand.
4279   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4280     if (T2->isMemberPointerType())
4281       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4282     else
4283       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4284     return T2;
4285   }
4286   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4287     if (T1->isMemberPointerType())
4288       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4289     else
4290       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4291     return T1;
4292   }
4293 
4294   // Now both have to be pointers or member pointers.
4295   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4296       (!T2->isPointerType() && !T2->isMemberPointerType()))
4297     return QualType();
4298 
4299   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4300   //   the other has type "pointer to cv2 T" and the composite pointer type is
4301   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4302   //   Otherwise, the composite pointer type is a pointer type similar to the
4303   //   type of one of the operands, with a cv-qualification signature that is
4304   //   the union of the cv-qualification signatures of the operand types.
4305   // In practice, the first part here is redundant; it's subsumed by the second.
4306   // What we do here is, we build the two possible composite types, and try the
4307   // conversions in both directions. If only one works, or if the two composite
4308   // types are the same, we have succeeded.
4309   // FIXME: extended qualifiers?
4310   typedef SmallVector<unsigned, 4> QualifierVector;
4311   QualifierVector QualifierUnion;
4312   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4313       ContainingClassVector;
4314   ContainingClassVector MemberOfClass;
4315   QualType Composite1 = Context.getCanonicalType(T1),
4316            Composite2 = Context.getCanonicalType(T2);
4317   unsigned NeedConstBefore = 0;
4318   do {
4319     const PointerType *Ptr1, *Ptr2;
4320     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4321         (Ptr2 = Composite2->getAs<PointerType>())) {
4322       Composite1 = Ptr1->getPointeeType();
4323       Composite2 = Ptr2->getPointeeType();
4324 
4325       // If we're allowed to create a non-standard composite type, keep track
4326       // of where we need to fill in additional 'const' qualifiers.
4327       if (NonStandardCompositeType &&
4328           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4329         NeedConstBefore = QualifierUnion.size();
4330 
4331       QualifierUnion.push_back(
4332                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4333       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4334       continue;
4335     }
4336 
4337     const MemberPointerType *MemPtr1, *MemPtr2;
4338     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4339         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4340       Composite1 = MemPtr1->getPointeeType();
4341       Composite2 = MemPtr2->getPointeeType();
4342 
4343       // If we're allowed to create a non-standard composite type, keep track
4344       // of where we need to fill in additional 'const' qualifiers.
4345       if (NonStandardCompositeType &&
4346           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4347         NeedConstBefore = QualifierUnion.size();
4348 
4349       QualifierUnion.push_back(
4350                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4351       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4352                                              MemPtr2->getClass()));
4353       continue;
4354     }
4355 
4356     // FIXME: block pointer types?
4357 
4358     // Cannot unwrap any more types.
4359     break;
4360   } while (true);
4361 
4362   if (NeedConstBefore && NonStandardCompositeType) {
4363     // Extension: Add 'const' to qualifiers that come before the first qualifier
4364     // mismatch, so that our (non-standard!) composite type meets the
4365     // requirements of C++ [conv.qual]p4 bullet 3.
4366     for (unsigned I = 0; I != NeedConstBefore; ++I) {
4367       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4368         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4369         *NonStandardCompositeType = true;
4370       }
4371     }
4372   }
4373 
4374   // Rewrap the composites as pointers or member pointers with the union CVRs.
4375   ContainingClassVector::reverse_iterator MOC
4376     = MemberOfClass.rbegin();
4377   for (QualifierVector::reverse_iterator
4378          I = QualifierUnion.rbegin(),
4379          E = QualifierUnion.rend();
4380        I != E; (void)++I, ++MOC) {
4381     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4382     if (MOC->first && MOC->second) {
4383       // Rebuild member pointer type
4384       Composite1 = Context.getMemberPointerType(
4385                                     Context.getQualifiedType(Composite1, Quals),
4386                                     MOC->first);
4387       Composite2 = Context.getMemberPointerType(
4388                                     Context.getQualifiedType(Composite2, Quals),
4389                                     MOC->second);
4390     } else {
4391       // Rebuild pointer type
4392       Composite1
4393         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4394       Composite2
4395         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4396     }
4397   }
4398 
4399   // Try to convert to the first composite pointer type.
4400   InitializedEntity Entity1
4401     = InitializedEntity::InitializeTemporary(Composite1);
4402   InitializationKind Kind
4403     = InitializationKind::CreateCopy(Loc, SourceLocation());
4404   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4405   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4406 
4407   if (E1ToC1 && E2ToC1) {
4408     // Conversion to Composite1 is viable.
4409     if (!Context.hasSameType(Composite1, Composite2)) {
4410       // Composite2 is a different type from Composite1. Check whether
4411       // Composite2 is also viable.
4412       InitializedEntity Entity2
4413         = InitializedEntity::InitializeTemporary(Composite2);
4414       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4415       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4416       if (E1ToC2 && E2ToC2) {
4417         // Both Composite1 and Composite2 are viable and are different;
4418         // this is an ambiguity.
4419         return QualType();
4420       }
4421     }
4422 
4423     // Convert E1 to Composite1
4424     ExprResult E1Result
4425       = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
4426     if (E1Result.isInvalid())
4427       return QualType();
4428     E1 = E1Result.takeAs<Expr>();
4429 
4430     // Convert E2 to Composite1
4431     ExprResult E2Result
4432       = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
4433     if (E2Result.isInvalid())
4434       return QualType();
4435     E2 = E2Result.takeAs<Expr>();
4436 
4437     return Composite1;
4438   }
4439 
4440   // Check whether Composite2 is viable.
4441   InitializedEntity Entity2
4442     = InitializedEntity::InitializeTemporary(Composite2);
4443   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4444   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4445   if (!E1ToC2 || !E2ToC2)
4446     return QualType();
4447 
4448   // Convert E1 to Composite2
4449   ExprResult E1Result
4450     = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
4451   if (E1Result.isInvalid())
4452     return QualType();
4453   E1 = E1Result.takeAs<Expr>();
4454 
4455   // Convert E2 to Composite2
4456   ExprResult E2Result
4457     = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
4458   if (E2Result.isInvalid())
4459     return QualType();
4460   E2 = E2Result.takeAs<Expr>();
4461 
4462   return Composite2;
4463 }
4464 
MaybeBindToTemporary(Expr * E)4465 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4466   if (!E)
4467     return ExprError();
4468 
4469   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4470 
4471   // If the result is a glvalue, we shouldn't bind it.
4472   if (!E->isRValue())
4473     return Owned(E);
4474 
4475   // In ARC, calls that return a retainable type can return retained,
4476   // in which case we have to insert a consuming cast.
4477   if (getLangOpts().ObjCAutoRefCount &&
4478       E->getType()->isObjCRetainableType()) {
4479 
4480     bool ReturnsRetained;
4481 
4482     // For actual calls, we compute this by examining the type of the
4483     // called value.
4484     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4485       Expr *Callee = Call->getCallee()->IgnoreParens();
4486       QualType T = Callee->getType();
4487 
4488       if (T == Context.BoundMemberTy) {
4489         // Handle pointer-to-members.
4490         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4491           T = BinOp->getRHS()->getType();
4492         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4493           T = Mem->getMemberDecl()->getType();
4494       }
4495 
4496       if (const PointerType *Ptr = T->getAs<PointerType>())
4497         T = Ptr->getPointeeType();
4498       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4499         T = Ptr->getPointeeType();
4500       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4501         T = MemPtr->getPointeeType();
4502 
4503       const FunctionType *FTy = T->getAs<FunctionType>();
4504       assert(FTy && "call to value not of function type?");
4505       ReturnsRetained = FTy->getExtInfo().getProducesResult();
4506 
4507     // ActOnStmtExpr arranges things so that StmtExprs of retainable
4508     // type always produce a +1 object.
4509     } else if (isa<StmtExpr>(E)) {
4510       ReturnsRetained = true;
4511 
4512     // We hit this case with the lambda conversion-to-block optimization;
4513     // we don't want any extra casts here.
4514     } else if (isa<CastExpr>(E) &&
4515                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4516       return Owned(E);
4517 
4518     // For message sends and property references, we try to find an
4519     // actual method.  FIXME: we should infer retention by selector in
4520     // cases where we don't have an actual method.
4521     } else {
4522       ObjCMethodDecl *D = 0;
4523       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4524         D = Send->getMethodDecl();
4525       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4526         D = BoxedExpr->getBoxingMethod();
4527       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4528         D = ArrayLit->getArrayWithObjectsMethod();
4529       } else if (ObjCDictionaryLiteral *DictLit
4530                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
4531         D = DictLit->getDictWithObjectsMethod();
4532       }
4533 
4534       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4535 
4536       // Don't do reclaims on performSelector calls; despite their
4537       // return type, the invoked method doesn't necessarily actually
4538       // return an object.
4539       if (!ReturnsRetained &&
4540           D && D->getMethodFamily() == OMF_performSelector)
4541         return Owned(E);
4542     }
4543 
4544     // Don't reclaim an object of Class type.
4545     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4546       return Owned(E);
4547 
4548     ExprNeedsCleanups = true;
4549 
4550     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4551                                    : CK_ARCReclaimReturnedObject);
4552     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4553                                           VK_RValue));
4554   }
4555 
4556   if (!getLangOpts().CPlusPlus)
4557     return Owned(E);
4558 
4559   // Search for the base element type (cf. ASTContext::getBaseElementType) with
4560   // a fast path for the common case that the type is directly a RecordType.
4561   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4562   const RecordType *RT = 0;
4563   while (!RT) {
4564     switch (T->getTypeClass()) {
4565     case Type::Record:
4566       RT = cast<RecordType>(T);
4567       break;
4568     case Type::ConstantArray:
4569     case Type::IncompleteArray:
4570     case Type::VariableArray:
4571     case Type::DependentSizedArray:
4572       T = cast<ArrayType>(T)->getElementType().getTypePtr();
4573       break;
4574     default:
4575       return Owned(E);
4576     }
4577   }
4578 
4579   // That should be enough to guarantee that this type is complete, if we're
4580   // not processing a decltype expression.
4581   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4582   if (RD->isInvalidDecl() || RD->isDependentContext())
4583     return Owned(E);
4584 
4585   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4586   CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4587 
4588   if (Destructor) {
4589     MarkFunctionReferenced(E->getExprLoc(), Destructor);
4590     CheckDestructorAccess(E->getExprLoc(), Destructor,
4591                           PDiag(diag::err_access_dtor_temp)
4592                             << E->getType());
4593     DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4594 
4595     // If destructor is trivial, we can avoid the extra copy.
4596     if (Destructor->isTrivial())
4597       return Owned(E);
4598 
4599     // We need a cleanup, but we don't need to remember the temporary.
4600     ExprNeedsCleanups = true;
4601   }
4602 
4603   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4604   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4605 
4606   if (IsDecltype)
4607     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4608 
4609   return Owned(Bind);
4610 }
4611 
4612 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4613 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4614   if (SubExpr.isInvalid())
4615     return ExprError();
4616 
4617   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4618 }
4619 
MaybeCreateExprWithCleanups(Expr * SubExpr)4620 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4621   assert(SubExpr && "sub expression can't be null!");
4622 
4623   CleanupVarDeclMarking();
4624 
4625   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4626   assert(ExprCleanupObjects.size() >= FirstCleanup);
4627   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4628   if (!ExprNeedsCleanups)
4629     return SubExpr;
4630 
4631   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4632     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4633                          ExprCleanupObjects.size() - FirstCleanup);
4634 
4635   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4636   DiscardCleanupsInEvaluationContext();
4637 
4638   return E;
4639 }
4640 
MaybeCreateStmtWithCleanups(Stmt * SubStmt)4641 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4642   assert(SubStmt && "sub statement can't be null!");
4643 
4644   CleanupVarDeclMarking();
4645 
4646   if (!ExprNeedsCleanups)
4647     return SubStmt;
4648 
4649   // FIXME: In order to attach the temporaries, wrap the statement into
4650   // a StmtExpr; currently this is only used for asm statements.
4651   // This is hacky, either create a new CXXStmtWithTemporaries statement or
4652   // a new AsmStmtWithTemporaries.
4653   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4654                                                       SourceLocation(),
4655                                                       SourceLocation());
4656   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4657                                    SourceLocation());
4658   return MaybeCreateExprWithCleanups(E);
4659 }
4660 
4661 /// Process the expression contained within a decltype. For such expressions,
4662 /// certain semantic checks on temporaries are delayed until this point, and
4663 /// are omitted for the 'topmost' call in the decltype expression. If the
4664 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)4665 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4666   ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4667   assert(Rec.IsDecltype && "not in a decltype expression");
4668 
4669   // C++11 [expr.call]p11:
4670   //   If a function call is a prvalue of object type,
4671   // -- if the function call is either
4672   //   -- the operand of a decltype-specifier, or
4673   //   -- the right operand of a comma operator that is the operand of a
4674   //      decltype-specifier,
4675   //   a temporary object is not introduced for the prvalue.
4676 
4677   // Recursively rebuild ParenExprs and comma expressions to strip out the
4678   // outermost CXXBindTemporaryExpr, if any.
4679   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4680     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4681     if (SubExpr.isInvalid())
4682       return ExprError();
4683     if (SubExpr.get() == PE->getSubExpr())
4684       return Owned(E);
4685     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4686   }
4687   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4688     if (BO->getOpcode() == BO_Comma) {
4689       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4690       if (RHS.isInvalid())
4691         return ExprError();
4692       if (RHS.get() == BO->getRHS())
4693         return Owned(E);
4694       return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4695                                                 BO_Comma, BO->getType(),
4696                                                 BO->getValueKind(),
4697                                                 BO->getObjectKind(),
4698                                                 BO->getOperatorLoc()));
4699     }
4700   }
4701 
4702   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4703   if (TopBind)
4704     E = TopBind->getSubExpr();
4705 
4706   // Disable the special decltype handling now.
4707   Rec.IsDecltype = false;
4708 
4709   // Perform the semantic checks we delayed until this point.
4710   CallExpr *TopCall = dyn_cast<CallExpr>(E);
4711   for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4712     CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4713     if (Call == TopCall)
4714       continue;
4715 
4716     if (CheckCallReturnType(Call->getCallReturnType(),
4717                             Call->getLocStart(),
4718                             Call, Call->getDirectCallee()))
4719       return ExprError();
4720   }
4721 
4722   // Now all relevant types are complete, check the destructors are accessible
4723   // and non-deleted, and annotate them on the temporaries.
4724   for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4725     CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4726     if (Bind == TopBind)
4727       continue;
4728 
4729     CXXTemporary *Temp = Bind->getTemporary();
4730 
4731     CXXRecordDecl *RD =
4732       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4733     CXXDestructorDecl *Destructor = LookupDestructor(RD);
4734     Temp->setDestructor(Destructor);
4735 
4736     MarkFunctionReferenced(E->getExprLoc(), Destructor);
4737     CheckDestructorAccess(E->getExprLoc(), Destructor,
4738                           PDiag(diag::err_access_dtor_temp)
4739                             << E->getType());
4740     DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4741 
4742     // We need a cleanup, but we don't need to remember the temporary.
4743     ExprNeedsCleanups = true;
4744   }
4745 
4746   // Possibly strip off the top CXXBindTemporaryExpr.
4747   return Owned(E);
4748 }
4749 
4750 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)4751 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4752                                    tok::TokenKind OpKind, ParsedType &ObjectType,
4753                                    bool &MayBePseudoDestructor) {
4754   // Since this might be a postfix expression, get rid of ParenListExprs.
4755   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4756   if (Result.isInvalid()) return ExprError();
4757   Base = Result.get();
4758 
4759   Result = CheckPlaceholderExpr(Base);
4760   if (Result.isInvalid()) return ExprError();
4761   Base = Result.take();
4762 
4763   QualType BaseType = Base->getType();
4764   MayBePseudoDestructor = false;
4765   if (BaseType->isDependentType()) {
4766     // If we have a pointer to a dependent type and are using the -> operator,
4767     // the object type is the type that the pointer points to. We might still
4768     // have enough information about that type to do something useful.
4769     if (OpKind == tok::arrow)
4770       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4771         BaseType = Ptr->getPointeeType();
4772 
4773     ObjectType = ParsedType::make(BaseType);
4774     MayBePseudoDestructor = true;
4775     return Owned(Base);
4776   }
4777 
4778   // C++ [over.match.oper]p8:
4779   //   [...] When operator->returns, the operator-> is applied  to the value
4780   //   returned, with the original second operand.
4781   if (OpKind == tok::arrow) {
4782     // The set of types we've considered so far.
4783     llvm::SmallPtrSet<CanQualType,8> CTypes;
4784     SmallVector<SourceLocation, 8> Locations;
4785     CTypes.insert(Context.getCanonicalType(BaseType));
4786 
4787     while (BaseType->isRecordType()) {
4788       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4789       if (Result.isInvalid())
4790         return ExprError();
4791       Base = Result.get();
4792       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4793         Locations.push_back(OpCall->getDirectCallee()->getLocation());
4794       BaseType = Base->getType();
4795       CanQualType CBaseType = Context.getCanonicalType(BaseType);
4796       if (!CTypes.insert(CBaseType)) {
4797         Diag(OpLoc, diag::err_operator_arrow_circular);
4798         for (unsigned i = 0; i < Locations.size(); i++)
4799           Diag(Locations[i], diag::note_declared_at);
4800         return ExprError();
4801       }
4802     }
4803 
4804     if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4805       BaseType = BaseType->getPointeeType();
4806   }
4807 
4808   // Objective-C properties allow "." access on Objective-C pointer types,
4809   // so adjust the base type to the object type itself.
4810   if (BaseType->isObjCObjectPointerType())
4811     BaseType = BaseType->getPointeeType();
4812 
4813   // C++ [basic.lookup.classref]p2:
4814   //   [...] If the type of the object expression is of pointer to scalar
4815   //   type, the unqualified-id is looked up in the context of the complete
4816   //   postfix-expression.
4817   //
4818   // This also indicates that we could be parsing a pseudo-destructor-name.
4819   // Note that Objective-C class and object types can be pseudo-destructor
4820   // expressions or normal member (ivar or property) access expressions.
4821   if (BaseType->isObjCObjectOrInterfaceType()) {
4822     MayBePseudoDestructor = true;
4823   } else if (!BaseType->isRecordType()) {
4824     ObjectType = ParsedType();
4825     MayBePseudoDestructor = true;
4826     return Owned(Base);
4827   }
4828 
4829   // The object type must be complete (or dependent), or
4830   // C++11 [expr.prim.general]p3:
4831   //   Unlike the object expression in other contexts, *this is not required to
4832   //   be of complete type for purposes of class member access (5.2.5) outside
4833   //   the member function body.
4834   if (!BaseType->isDependentType() &&
4835       !isThisOutsideMemberFunctionBody(BaseType) &&
4836       RequireCompleteType(OpLoc, BaseType,
4837                           PDiag(diag::err_incomplete_member_access)))
4838     return ExprError();
4839 
4840   // C++ [basic.lookup.classref]p2:
4841   //   If the id-expression in a class member access (5.2.5) is an
4842   //   unqualified-id, and the type of the object expression is of a class
4843   //   type C (or of pointer to a class type C), the unqualified-id is looked
4844   //   up in the scope of class C. [...]
4845   ObjectType = ParsedType::make(BaseType);
4846   return move(Base);
4847 }
4848 
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)4849 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4850                                                    Expr *MemExpr) {
4851   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4852   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4853     << isa<CXXPseudoDestructorExpr>(MemExpr)
4854     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4855 
4856   return ActOnCallExpr(/*Scope*/ 0,
4857                        MemExpr,
4858                        /*LPLoc*/ ExpectedLParenLoc,
4859                        MultiExprArg(),
4860                        /*RPLoc*/ ExpectedLParenLoc);
4861 }
4862 
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)4863 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
4864                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
4865   if (Base->hasPlaceholderType()) {
4866     ExprResult result = S.CheckPlaceholderExpr(Base);
4867     if (result.isInvalid()) return true;
4868     Base = result.take();
4869   }
4870   ObjectType = Base->getType();
4871 
4872   // C++ [expr.pseudo]p2:
4873   //   The left-hand side of the dot operator shall be of scalar type. The
4874   //   left-hand side of the arrow operator shall be of pointer to scalar type.
4875   //   This scalar type is the object type.
4876   // Note that this is rather different from the normal handling for the
4877   // arrow operator.
4878   if (OpKind == tok::arrow) {
4879     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4880       ObjectType = Ptr->getPointeeType();
4881     } else if (!Base->isTypeDependent()) {
4882       // The user wrote "p->" when she probably meant "p."; fix it.
4883       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4884         << ObjectType << true
4885         << FixItHint::CreateReplacement(OpLoc, ".");
4886       if (S.isSFINAEContext())
4887         return true;
4888 
4889       OpKind = tok::period;
4890     }
4891   }
4892 
4893   return false;
4894 }
4895 
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)4896 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4897                                            SourceLocation OpLoc,
4898                                            tok::TokenKind OpKind,
4899                                            const CXXScopeSpec &SS,
4900                                            TypeSourceInfo *ScopeTypeInfo,
4901                                            SourceLocation CCLoc,
4902                                            SourceLocation TildeLoc,
4903                                          PseudoDestructorTypeStorage Destructed,
4904                                            bool HasTrailingLParen) {
4905   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4906 
4907   QualType ObjectType;
4908   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
4909     return ExprError();
4910 
4911   if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4912     if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
4913       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
4914     else
4915       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4916         << ObjectType << Base->getSourceRange();
4917     return ExprError();
4918   }
4919 
4920   // C++ [expr.pseudo]p2:
4921   //   [...] The cv-unqualified versions of the object type and of the type
4922   //   designated by the pseudo-destructor-name shall be the same type.
4923   if (DestructedTypeInfo) {
4924     QualType DestructedType = DestructedTypeInfo->getType();
4925     SourceLocation DestructedTypeStart
4926       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4927     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4928       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4929         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4930           << ObjectType << DestructedType << Base->getSourceRange()
4931           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4932 
4933         // Recover by setting the destructed type to the object type.
4934         DestructedType = ObjectType;
4935         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4936                                                            DestructedTypeStart);
4937         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4938       } else if (DestructedType.getObjCLifetime() !=
4939                                                 ObjectType.getObjCLifetime()) {
4940 
4941         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4942           // Okay: just pretend that the user provided the correctly-qualified
4943           // type.
4944         } else {
4945           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4946             << ObjectType << DestructedType << Base->getSourceRange()
4947             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4948         }
4949 
4950         // Recover by setting the destructed type to the object type.
4951         DestructedType = ObjectType;
4952         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4953                                                            DestructedTypeStart);
4954         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4955       }
4956     }
4957   }
4958 
4959   // C++ [expr.pseudo]p2:
4960   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4961   //   form
4962   //
4963   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4964   //
4965   //   shall designate the same scalar type.
4966   if (ScopeTypeInfo) {
4967     QualType ScopeType = ScopeTypeInfo->getType();
4968     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4969         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4970 
4971       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4972            diag::err_pseudo_dtor_type_mismatch)
4973         << ObjectType << ScopeType << Base->getSourceRange()
4974         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4975 
4976       ScopeType = QualType();
4977       ScopeTypeInfo = 0;
4978     }
4979   }
4980 
4981   Expr *Result
4982     = new (Context) CXXPseudoDestructorExpr(Context, Base,
4983                                             OpKind == tok::arrow, OpLoc,
4984                                             SS.getWithLocInContext(Context),
4985                                             ScopeTypeInfo,
4986                                             CCLoc,
4987                                             TildeLoc,
4988                                             Destructed);
4989 
4990   if (HasTrailingLParen)
4991     return Owned(Result);
4992 
4993   return DiagnoseDtorReference(Destructed.getLocation(), Result);
4994 }
4995 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)4996 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4997                                            SourceLocation OpLoc,
4998                                            tok::TokenKind OpKind,
4999                                            CXXScopeSpec &SS,
5000                                            UnqualifiedId &FirstTypeName,
5001                                            SourceLocation CCLoc,
5002                                            SourceLocation TildeLoc,
5003                                            UnqualifiedId &SecondTypeName,
5004                                            bool HasTrailingLParen) {
5005   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5006           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5007          "Invalid first type name in pseudo-destructor");
5008   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5009           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5010          "Invalid second type name in pseudo-destructor");
5011 
5012   QualType ObjectType;
5013   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5014     return ExprError();
5015 
5016   // Compute the object type that we should use for name lookup purposes. Only
5017   // record types and dependent types matter.
5018   ParsedType ObjectTypePtrForLookup;
5019   if (!SS.isSet()) {
5020     if (ObjectType->isRecordType())
5021       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5022     else if (ObjectType->isDependentType())
5023       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5024   }
5025 
5026   // Convert the name of the type being destructed (following the ~) into a
5027   // type (with source-location information).
5028   QualType DestructedType;
5029   TypeSourceInfo *DestructedTypeInfo = 0;
5030   PseudoDestructorTypeStorage Destructed;
5031   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5032     ParsedType T = getTypeName(*SecondTypeName.Identifier,
5033                                SecondTypeName.StartLocation,
5034                                S, &SS, true, false, ObjectTypePtrForLookup);
5035     if (!T &&
5036         ((SS.isSet() && !computeDeclContext(SS, false)) ||
5037          (!SS.isSet() && ObjectType->isDependentType()))) {
5038       // The name of the type being destroyed is a dependent name, and we
5039       // couldn't find anything useful in scope. Just store the identifier and
5040       // it's location, and we'll perform (qualified) name lookup again at
5041       // template instantiation time.
5042       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5043                                                SecondTypeName.StartLocation);
5044     } else if (!T) {
5045       Diag(SecondTypeName.StartLocation,
5046            diag::err_pseudo_dtor_destructor_non_type)
5047         << SecondTypeName.Identifier << ObjectType;
5048       if (isSFINAEContext())
5049         return ExprError();
5050 
5051       // Recover by assuming we had the right type all along.
5052       DestructedType = ObjectType;
5053     } else
5054       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5055   } else {
5056     // Resolve the template-id to a type.
5057     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5058     ASTTemplateArgsPtr TemplateArgsPtr(*this,
5059                                        TemplateId->getTemplateArgs(),
5060                                        TemplateId->NumArgs);
5061     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5062                                        TemplateId->TemplateKWLoc,
5063                                        TemplateId->Template,
5064                                        TemplateId->TemplateNameLoc,
5065                                        TemplateId->LAngleLoc,
5066                                        TemplateArgsPtr,
5067                                        TemplateId->RAngleLoc);
5068     if (T.isInvalid() || !T.get()) {
5069       // Recover by assuming we had the right type all along.
5070       DestructedType = ObjectType;
5071     } else
5072       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5073   }
5074 
5075   // If we've performed some kind of recovery, (re-)build the type source
5076   // information.
5077   if (!DestructedType.isNull()) {
5078     if (!DestructedTypeInfo)
5079       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5080                                                   SecondTypeName.StartLocation);
5081     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5082   }
5083 
5084   // Convert the name of the scope type (the type prior to '::') into a type.
5085   TypeSourceInfo *ScopeTypeInfo = 0;
5086   QualType ScopeType;
5087   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5088       FirstTypeName.Identifier) {
5089     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5090       ParsedType T = getTypeName(*FirstTypeName.Identifier,
5091                                  FirstTypeName.StartLocation,
5092                                  S, &SS, true, false, ObjectTypePtrForLookup);
5093       if (!T) {
5094         Diag(FirstTypeName.StartLocation,
5095              diag::err_pseudo_dtor_destructor_non_type)
5096           << FirstTypeName.Identifier << ObjectType;
5097 
5098         if (isSFINAEContext())
5099           return ExprError();
5100 
5101         // Just drop this type. It's unnecessary anyway.
5102         ScopeType = QualType();
5103       } else
5104         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5105     } else {
5106       // Resolve the template-id to a type.
5107       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5108       ASTTemplateArgsPtr TemplateArgsPtr(*this,
5109                                          TemplateId->getTemplateArgs(),
5110                                          TemplateId->NumArgs);
5111       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5112                                          TemplateId->TemplateKWLoc,
5113                                          TemplateId->Template,
5114                                          TemplateId->TemplateNameLoc,
5115                                          TemplateId->LAngleLoc,
5116                                          TemplateArgsPtr,
5117                                          TemplateId->RAngleLoc);
5118       if (T.isInvalid() || !T.get()) {
5119         // Recover by dropping this type.
5120         ScopeType = QualType();
5121       } else
5122         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5123     }
5124   }
5125 
5126   if (!ScopeType.isNull() && !ScopeTypeInfo)
5127     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5128                                                   FirstTypeName.StartLocation);
5129 
5130 
5131   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5132                                    ScopeTypeInfo, CCLoc, TildeLoc,
5133                                    Destructed, HasTrailingLParen);
5134 }
5135 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS,bool HasTrailingLParen)5136 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5137                                            SourceLocation OpLoc,
5138                                            tok::TokenKind OpKind,
5139                                            SourceLocation TildeLoc,
5140                                            const DeclSpec& DS,
5141                                            bool HasTrailingLParen) {
5142   QualType ObjectType;
5143   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5144     return ExprError();
5145 
5146   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5147 
5148   TypeLocBuilder TLB;
5149   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5150   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5151   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5152   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5153 
5154   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5155                                    0, SourceLocation(), TildeLoc,
5156                                    Destructed, HasTrailingLParen);
5157 }
5158 
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5159 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5160                                         CXXConversionDecl *Method,
5161                                         bool HadMultipleCandidates) {
5162   if (Method->getParent()->isLambda() &&
5163       Method->getConversionType()->isBlockPointerType()) {
5164     // This is a lambda coversion to block pointer; check if the argument
5165     // is a LambdaExpr.
5166     Expr *SubE = E;
5167     CastExpr *CE = dyn_cast<CastExpr>(SubE);
5168     if (CE && CE->getCastKind() == CK_NoOp)
5169       SubE = CE->getSubExpr();
5170     SubE = SubE->IgnoreParens();
5171     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5172       SubE = BE->getSubExpr();
5173     if (isa<LambdaExpr>(SubE)) {
5174       // For the conversion to block pointer on a lambda expression, we
5175       // construct a special BlockLiteral instead; this doesn't really make
5176       // a difference in ARC, but outside of ARC the resulting block literal
5177       // follows the normal lifetime rules for block literals instead of being
5178       // autoreleased.
5179       DiagnosticErrorTrap Trap(Diags);
5180       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5181                                                      E->getExprLoc(),
5182                                                      Method, E);
5183       if (Exp.isInvalid())
5184         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5185       return Exp;
5186     }
5187   }
5188 
5189 
5190   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5191                                           FoundDecl, Method);
5192   if (Exp.isInvalid())
5193     return true;
5194 
5195   MemberExpr *ME =
5196       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5197                                SourceLocation(), Context.BoundMemberTy,
5198                                VK_RValue, OK_Ordinary);
5199   if (HadMultipleCandidates)
5200     ME->setHadMultipleCandidates(true);
5201 
5202   QualType ResultType = Method->getResultType();
5203   ExprValueKind VK = Expr::getValueKindForType(ResultType);
5204   ResultType = ResultType.getNonLValueExprType(Context);
5205 
5206   MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5207   CXXMemberCallExpr *CE =
5208     new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
5209                                     Exp.get()->getLocEnd());
5210   return CE;
5211 }
5212 
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5213 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5214                                       SourceLocation RParen) {
5215   CanThrowResult CanThrow = canThrow(Operand);
5216   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5217                                              CanThrow, KeyLoc, RParen));
5218 }
5219 
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5220 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5221                                    Expr *Operand, SourceLocation RParen) {
5222   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5223 }
5224 
5225 /// Perform the conversions required for an expression used in a
5226 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5227 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5228   if (E->hasPlaceholderType()) {
5229     ExprResult result = CheckPlaceholderExpr(E);
5230     if (result.isInvalid()) return Owned(E);
5231     E = result.take();
5232   }
5233 
5234   // C99 6.3.2.1:
5235   //   [Except in specific positions,] an lvalue that does not have
5236   //   array type is converted to the value stored in the
5237   //   designated object (and is no longer an lvalue).
5238   if (E->isRValue()) {
5239     // In C, function designators (i.e. expressions of function type)
5240     // are r-values, but we still want to do function-to-pointer decay
5241     // on them.  This is both technically correct and convenient for
5242     // some clients.
5243     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5244       return DefaultFunctionArrayConversion(E);
5245 
5246     return Owned(E);
5247   }
5248 
5249   // Otherwise, this rule does not apply in C++, at least not for the moment.
5250   if (getLangOpts().CPlusPlus) return Owned(E);
5251 
5252   // GCC seems to also exclude expressions of incomplete enum type.
5253   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5254     if (!T->getDecl()->isComplete()) {
5255       // FIXME: stupid workaround for a codegen bug!
5256       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5257       return Owned(E);
5258     }
5259   }
5260 
5261   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5262   if (Res.isInvalid())
5263     return Owned(E);
5264   E = Res.take();
5265 
5266   if (!E->getType()->isVoidType())
5267     RequireCompleteType(E->getExprLoc(), E->getType(),
5268                         diag::err_incomplete_type);
5269   return Owned(E);
5270 }
5271 
ActOnFinishFullExpr(Expr * FE)5272 ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
5273   ExprResult FullExpr = Owned(FE);
5274 
5275   if (!FullExpr.get())
5276     return ExprError();
5277 
5278   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5279     return ExprError();
5280 
5281   // Top-level message sends default to 'id' when we're in a debugger.
5282   if (getLangOpts().DebuggerCastResultToId &&
5283       FullExpr.get()->getType() == Context.UnknownAnyTy &&
5284       isa<ObjCMessageExpr>(FullExpr.get())) {
5285     FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5286     if (FullExpr.isInvalid())
5287       return ExprError();
5288   }
5289 
5290   FullExpr = CheckPlaceholderExpr(FullExpr.take());
5291   if (FullExpr.isInvalid())
5292     return ExprError();
5293 
5294   FullExpr = IgnoredValueConversions(FullExpr.take());
5295   if (FullExpr.isInvalid())
5296     return ExprError();
5297 
5298   CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc());
5299   return MaybeCreateExprWithCleanups(FullExpr);
5300 }
5301 
ActOnFinishFullStmt(Stmt * FullStmt)5302 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5303   if (!FullStmt) return StmtError();
5304 
5305   return MaybeCreateStmtWithCleanups(FullStmt);
5306 }
5307 
5308 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)5309 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5310                                    CXXScopeSpec &SS,
5311                                    const DeclarationNameInfo &TargetNameInfo) {
5312   DeclarationName TargetName = TargetNameInfo.getName();
5313   if (!TargetName)
5314     return IER_DoesNotExist;
5315 
5316   // If the name itself is dependent, then the result is dependent.
5317   if (TargetName.isDependentName())
5318     return IER_Dependent;
5319 
5320   // Do the redeclaration lookup in the current scope.
5321   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5322                  Sema::NotForRedeclaration);
5323   LookupParsedName(R, S, &SS);
5324   R.suppressDiagnostics();
5325 
5326   switch (R.getResultKind()) {
5327   case LookupResult::Found:
5328   case LookupResult::FoundOverloaded:
5329   case LookupResult::FoundUnresolvedValue:
5330   case LookupResult::Ambiguous:
5331     return IER_Exists;
5332 
5333   case LookupResult::NotFound:
5334     return IER_DoesNotExist;
5335 
5336   case LookupResult::NotFoundInCurrentInstantiation:
5337     return IER_Dependent;
5338   }
5339 
5340   llvm_unreachable("Invalid LookupResult Kind!");
5341 }
5342 
5343 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)5344 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5345                                    bool IsIfExists, CXXScopeSpec &SS,
5346                                    UnqualifiedId &Name) {
5347   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5348 
5349   // Check for unexpanded parameter packs.
5350   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5351   collectUnexpandedParameterPacks(SS, Unexpanded);
5352   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5353   if (!Unexpanded.empty()) {
5354     DiagnoseUnexpandedParameterPacks(KeywordLoc,
5355                                      IsIfExists? UPPC_IfExists
5356                                                : UPPC_IfNotExists,
5357                                      Unexpanded);
5358     return IER_Error;
5359   }
5360 
5361   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5362 }
5363