1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===/
12
13 #include "clang/Sema/Sema.h"
14 #include "clang/Sema/DeclSpec.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "llvm/ADT/SmallBitVector.h"
24 #include "TreeTransform.h"
25 #include <algorithm>
26
27 namespace clang {
28 using namespace sema;
29
30 /// \brief Various flags that control template argument deduction.
31 ///
32 /// These flags can be bitwise-OR'd together.
33 enum TemplateDeductionFlags {
34 /// \brief No template argument deduction flags, which indicates the
35 /// strictest results for template argument deduction (as used for, e.g.,
36 /// matching class template partial specializations).
37 TDF_None = 0,
38 /// \brief Within template argument deduction from a function call, we are
39 /// matching with a parameter type for which the original parameter was
40 /// a reference.
41 TDF_ParamWithReferenceType = 0x1,
42 /// \brief Within template argument deduction from a function call, we
43 /// are matching in a case where we ignore cv-qualifiers.
44 TDF_IgnoreQualifiers = 0x02,
45 /// \brief Within template argument deduction from a function call,
46 /// we are matching in a case where we can perform template argument
47 /// deduction from a template-id of a derived class of the argument type.
48 TDF_DerivedClass = 0x04,
49 /// \brief Allow non-dependent types to differ, e.g., when performing
50 /// template argument deduction from a function call where conversions
51 /// may apply.
52 TDF_SkipNonDependent = 0x08,
53 /// \brief Whether we are performing template argument deduction for
54 /// parameters and arguments in a top-level template argument
55 TDF_TopLevelParameterTypeList = 0x10
56 };
57 }
58
59 using namespace clang;
60
61 /// \brief Compare two APSInts, extending and switching the sign as
62 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
64 if (Y.getBitWidth() > X.getBitWidth())
65 X = X.extend(Y.getBitWidth());
66 else if (Y.getBitWidth() < X.getBitWidth())
67 Y = Y.extend(X.getBitWidth());
68
69 // If there is a signedness mismatch, correct it.
70 if (X.isSigned() != Y.isSigned()) {
71 // If the signed value is negative, then the values cannot be the same.
72 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
73 return false;
74
75 Y.setIsSigned(true);
76 X.setIsSigned(true);
77 }
78
79 return X == Y;
80 }
81
82 static Sema::TemplateDeductionResult
83 DeduceTemplateArguments(Sema &S,
84 TemplateParameterList *TemplateParams,
85 const TemplateArgument &Param,
86 TemplateArgument Arg,
87 TemplateDeductionInfo &Info,
88 SmallVectorImpl<DeducedTemplateArgument> &Deduced);
89
90 /// \brief Whether template argument deduction for two reference parameters
91 /// resulted in the argument type, parameter type, or neither type being more
92 /// qualified than the other.
93 enum DeductionQualifierComparison {
94 NeitherMoreQualified = 0,
95 ParamMoreQualified,
96 ArgMoreQualified
97 };
98
99 /// \brief Stores the result of comparing two reference parameters while
100 /// performing template argument deduction for partial ordering of function
101 /// templates.
102 struct RefParamPartialOrderingComparison {
103 /// \brief Whether the parameter type is an rvalue reference type.
104 bool ParamIsRvalueRef;
105 /// \brief Whether the argument type is an rvalue reference type.
106 bool ArgIsRvalueRef;
107
108 /// \brief Whether the parameter or argument (or neither) is more qualified.
109 DeductionQualifierComparison Qualifiers;
110 };
111
112
113
114 static Sema::TemplateDeductionResult
115 DeduceTemplateArgumentsByTypeMatch(Sema &S,
116 TemplateParameterList *TemplateParams,
117 QualType Param,
118 QualType Arg,
119 TemplateDeductionInfo &Info,
120 SmallVectorImpl<DeducedTemplateArgument> &
121 Deduced,
122 unsigned TDF,
123 bool PartialOrdering = false,
124 SmallVectorImpl<RefParamPartialOrderingComparison> *
125 RefParamComparisons = 0);
126
127 static Sema::TemplateDeductionResult
128 DeduceTemplateArguments(Sema &S,
129 TemplateParameterList *TemplateParams,
130 const TemplateArgument *Params, unsigned NumParams,
131 const TemplateArgument *Args, unsigned NumArgs,
132 TemplateDeductionInfo &Info,
133 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
134 bool NumberOfArgumentsMustMatch = true);
135
136 /// \brief If the given expression is of a form that permits the deduction
137 /// of a non-type template parameter, return the declaration of that
138 /// non-type template parameter.
getDeducedParameterFromExpr(Expr * E)139 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
140 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
141 E = IC->getSubExpr();
142
143 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
144 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
145
146 return 0;
147 }
148
149 /// \brief Determine whether two declaration pointers refer to the same
150 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)151 static bool isSameDeclaration(Decl *X, Decl *Y) {
152 if (!X || !Y)
153 return !X && !Y;
154
155 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
156 X = NX->getUnderlyingDecl();
157 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
158 Y = NY->getUnderlyingDecl();
159
160 return X->getCanonicalDecl() == Y->getCanonicalDecl();
161 }
162
163 /// \brief Verify that the given, deduced template arguments are compatible.
164 ///
165 /// \returns The deduced template argument, or a NULL template argument if
166 /// the deduced template arguments were incompatible.
167 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)168 checkDeducedTemplateArguments(ASTContext &Context,
169 const DeducedTemplateArgument &X,
170 const DeducedTemplateArgument &Y) {
171 // We have no deduction for one or both of the arguments; they're compatible.
172 if (X.isNull())
173 return Y;
174 if (Y.isNull())
175 return X;
176
177 switch (X.getKind()) {
178 case TemplateArgument::Null:
179 llvm_unreachable("Non-deduced template arguments handled above");
180
181 case TemplateArgument::Type:
182 // If two template type arguments have the same type, they're compatible.
183 if (Y.getKind() == TemplateArgument::Type &&
184 Context.hasSameType(X.getAsType(), Y.getAsType()))
185 return X;
186
187 return DeducedTemplateArgument();
188
189 case TemplateArgument::Integral:
190 // If we deduced a constant in one case and either a dependent expression or
191 // declaration in another case, keep the integral constant.
192 // If both are integral constants with the same value, keep that value.
193 if (Y.getKind() == TemplateArgument::Expression ||
194 Y.getKind() == TemplateArgument::Declaration ||
195 (Y.getKind() == TemplateArgument::Integral &&
196 hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
197 return DeducedTemplateArgument(X,
198 X.wasDeducedFromArrayBound() &&
199 Y.wasDeducedFromArrayBound());
200
201 // All other combinations are incompatible.
202 return DeducedTemplateArgument();
203
204 case TemplateArgument::Template:
205 if (Y.getKind() == TemplateArgument::Template &&
206 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
207 return X;
208
209 // All other combinations are incompatible.
210 return DeducedTemplateArgument();
211
212 case TemplateArgument::TemplateExpansion:
213 if (Y.getKind() == TemplateArgument::TemplateExpansion &&
214 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
215 Y.getAsTemplateOrTemplatePattern()))
216 return X;
217
218 // All other combinations are incompatible.
219 return DeducedTemplateArgument();
220
221 case TemplateArgument::Expression:
222 // If we deduced a dependent expression in one case and either an integral
223 // constant or a declaration in another case, keep the integral constant
224 // or declaration.
225 if (Y.getKind() == TemplateArgument::Integral ||
226 Y.getKind() == TemplateArgument::Declaration)
227 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
228 Y.wasDeducedFromArrayBound());
229
230 if (Y.getKind() == TemplateArgument::Expression) {
231 // Compare the expressions for equality
232 llvm::FoldingSetNodeID ID1, ID2;
233 X.getAsExpr()->Profile(ID1, Context, true);
234 Y.getAsExpr()->Profile(ID2, Context, true);
235 if (ID1 == ID2)
236 return X;
237 }
238
239 // All other combinations are incompatible.
240 return DeducedTemplateArgument();
241
242 case TemplateArgument::Declaration:
243 // If we deduced a declaration and a dependent expression, keep the
244 // declaration.
245 if (Y.getKind() == TemplateArgument::Expression)
246 return X;
247
248 // If we deduced a declaration and an integral constant, keep the
249 // integral constant.
250 if (Y.getKind() == TemplateArgument::Integral)
251 return Y;
252
253 // If we deduced two declarations, make sure they they refer to the
254 // same declaration.
255 if (Y.getKind() == TemplateArgument::Declaration &&
256 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
257 return X;
258
259 // All other combinations are incompatible.
260 return DeducedTemplateArgument();
261
262 case TemplateArgument::Pack:
263 if (Y.getKind() != TemplateArgument::Pack ||
264 X.pack_size() != Y.pack_size())
265 return DeducedTemplateArgument();
266
267 for (TemplateArgument::pack_iterator XA = X.pack_begin(),
268 XAEnd = X.pack_end(),
269 YA = Y.pack_begin();
270 XA != XAEnd; ++XA, ++YA) {
271 if (checkDeducedTemplateArguments(Context,
272 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
273 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
274 .isNull())
275 return DeducedTemplateArgument();
276 }
277
278 return X;
279 }
280
281 llvm_unreachable("Invalid TemplateArgument Kind!");
282 }
283
284 /// \brief Deduce the value of the given non-type template parameter
285 /// from the given constant.
286 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,llvm::APSInt Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)287 DeduceNonTypeTemplateArgument(Sema &S,
288 NonTypeTemplateParmDecl *NTTP,
289 llvm::APSInt Value, QualType ValueType,
290 bool DeducedFromArrayBound,
291 TemplateDeductionInfo &Info,
292 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
293 assert(NTTP->getDepth() == 0 &&
294 "Cannot deduce non-type template argument with depth > 0");
295
296 DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
297 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
298 Deduced[NTTP->getIndex()],
299 NewDeduced);
300 if (Result.isNull()) {
301 Info.Param = NTTP;
302 Info.FirstArg = Deduced[NTTP->getIndex()];
303 Info.SecondArg = NewDeduced;
304 return Sema::TDK_Inconsistent;
305 }
306
307 Deduced[NTTP->getIndex()] = Result;
308 return Sema::TDK_Success;
309 }
310
311 /// \brief Deduce the value of the given non-type template parameter
312 /// from the given type- or value-dependent expression.
313 ///
314 /// \returns true if deduction succeeded, false otherwise.
315 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)316 DeduceNonTypeTemplateArgument(Sema &S,
317 NonTypeTemplateParmDecl *NTTP,
318 Expr *Value,
319 TemplateDeductionInfo &Info,
320 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
321 assert(NTTP->getDepth() == 0 &&
322 "Cannot deduce non-type template argument with depth > 0");
323 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
324 "Expression template argument must be type- or value-dependent.");
325
326 DeducedTemplateArgument NewDeduced(Value);
327 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
328 Deduced[NTTP->getIndex()],
329 NewDeduced);
330
331 if (Result.isNull()) {
332 Info.Param = NTTP;
333 Info.FirstArg = Deduced[NTTP->getIndex()];
334 Info.SecondArg = NewDeduced;
335 return Sema::TDK_Inconsistent;
336 }
337
338 Deduced[NTTP->getIndex()] = Result;
339 return Sema::TDK_Success;
340 }
341
342 /// \brief Deduce the value of the given non-type template parameter
343 /// from the given declaration.
344 ///
345 /// \returns true if deduction succeeded, false otherwise.
346 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Decl * D,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)347 DeduceNonTypeTemplateArgument(Sema &S,
348 NonTypeTemplateParmDecl *NTTP,
349 Decl *D,
350 TemplateDeductionInfo &Info,
351 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
352 assert(NTTP->getDepth() == 0 &&
353 "Cannot deduce non-type template argument with depth > 0");
354
355 DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
356 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
357 Deduced[NTTP->getIndex()],
358 NewDeduced);
359 if (Result.isNull()) {
360 Info.Param = NTTP;
361 Info.FirstArg = Deduced[NTTP->getIndex()];
362 Info.SecondArg = NewDeduced;
363 return Sema::TDK_Inconsistent;
364 }
365
366 Deduced[NTTP->getIndex()] = Result;
367 return Sema::TDK_Success;
368 }
369
370 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)371 DeduceTemplateArguments(Sema &S,
372 TemplateParameterList *TemplateParams,
373 TemplateName Param,
374 TemplateName Arg,
375 TemplateDeductionInfo &Info,
376 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
377 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
378 if (!ParamDecl) {
379 // The parameter type is dependent and is not a template template parameter,
380 // so there is nothing that we can deduce.
381 return Sema::TDK_Success;
382 }
383
384 if (TemplateTemplateParmDecl *TempParam
385 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
386 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
387 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
388 Deduced[TempParam->getIndex()],
389 NewDeduced);
390 if (Result.isNull()) {
391 Info.Param = TempParam;
392 Info.FirstArg = Deduced[TempParam->getIndex()];
393 Info.SecondArg = NewDeduced;
394 return Sema::TDK_Inconsistent;
395 }
396
397 Deduced[TempParam->getIndex()] = Result;
398 return Sema::TDK_Success;
399 }
400
401 // Verify that the two template names are equivalent.
402 if (S.Context.hasSameTemplateName(Param, Arg))
403 return Sema::TDK_Success;
404
405 // Mismatch of non-dependent template parameter to argument.
406 Info.FirstArg = TemplateArgument(Param);
407 Info.SecondArg = TemplateArgument(Arg);
408 return Sema::TDK_NonDeducedMismatch;
409 }
410
411 /// \brief Deduce the template arguments by comparing the template parameter
412 /// type (which is a template-id) with the template argument type.
413 ///
414 /// \param S the Sema
415 ///
416 /// \param TemplateParams the template parameters that we are deducing
417 ///
418 /// \param Param the parameter type
419 ///
420 /// \param Arg the argument type
421 ///
422 /// \param Info information about the template argument deduction itself
423 ///
424 /// \param Deduced the deduced template arguments
425 ///
426 /// \returns the result of template argument deduction so far. Note that a
427 /// "success" result means that template argument deduction has not yet failed,
428 /// but it may still fail, later, for other reasons.
429 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)430 DeduceTemplateArguments(Sema &S,
431 TemplateParameterList *TemplateParams,
432 const TemplateSpecializationType *Param,
433 QualType Arg,
434 TemplateDeductionInfo &Info,
435 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
436 assert(Arg.isCanonical() && "Argument type must be canonical");
437
438 // Check whether the template argument is a dependent template-id.
439 if (const TemplateSpecializationType *SpecArg
440 = dyn_cast<TemplateSpecializationType>(Arg)) {
441 // Perform template argument deduction for the template name.
442 if (Sema::TemplateDeductionResult Result
443 = DeduceTemplateArguments(S, TemplateParams,
444 Param->getTemplateName(),
445 SpecArg->getTemplateName(),
446 Info, Deduced))
447 return Result;
448
449
450 // Perform template argument deduction on each template
451 // argument. Ignore any missing/extra arguments, since they could be
452 // filled in by default arguments.
453 return DeduceTemplateArguments(S, TemplateParams,
454 Param->getArgs(), Param->getNumArgs(),
455 SpecArg->getArgs(), SpecArg->getNumArgs(),
456 Info, Deduced,
457 /*NumberOfArgumentsMustMatch=*/false);
458 }
459
460 // If the argument type is a class template specialization, we
461 // perform template argument deduction using its template
462 // arguments.
463 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
464 if (!RecordArg)
465 return Sema::TDK_NonDeducedMismatch;
466
467 ClassTemplateSpecializationDecl *SpecArg
468 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
469 if (!SpecArg)
470 return Sema::TDK_NonDeducedMismatch;
471
472 // Perform template argument deduction for the template name.
473 if (Sema::TemplateDeductionResult Result
474 = DeduceTemplateArguments(S,
475 TemplateParams,
476 Param->getTemplateName(),
477 TemplateName(SpecArg->getSpecializedTemplate()),
478 Info, Deduced))
479 return Result;
480
481 // Perform template argument deduction for the template arguments.
482 return DeduceTemplateArguments(S, TemplateParams,
483 Param->getArgs(), Param->getNumArgs(),
484 SpecArg->getTemplateArgs().data(),
485 SpecArg->getTemplateArgs().size(),
486 Info, Deduced);
487 }
488
489 /// \brief Determines whether the given type is an opaque type that
490 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)491 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
492 switch (T->getTypeClass()) {
493 case Type::TypeOfExpr:
494 case Type::TypeOf:
495 case Type::DependentName:
496 case Type::Decltype:
497 case Type::UnresolvedUsing:
498 case Type::TemplateTypeParm:
499 return true;
500
501 case Type::ConstantArray:
502 case Type::IncompleteArray:
503 case Type::VariableArray:
504 case Type::DependentSizedArray:
505 return IsPossiblyOpaquelyQualifiedType(
506 cast<ArrayType>(T)->getElementType());
507
508 default:
509 return false;
510 }
511 }
512
513 /// \brief Retrieve the depth and index of a template parameter.
514 static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl * ND)515 getDepthAndIndex(NamedDecl *ND) {
516 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
517 return std::make_pair(TTP->getDepth(), TTP->getIndex());
518
519 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
520 return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
521
522 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
523 return std::make_pair(TTP->getDepth(), TTP->getIndex());
524 }
525
526 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
527 static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP)528 getDepthAndIndex(UnexpandedParameterPack UPP) {
529 if (const TemplateTypeParmType *TTP
530 = UPP.first.dyn_cast<const TemplateTypeParmType *>())
531 return std::make_pair(TTP->getDepth(), TTP->getIndex());
532
533 return getDepthAndIndex(UPP.first.get<NamedDecl *>());
534 }
535
536 /// \brief Helper function to build a TemplateParameter when we don't
537 /// know its type statically.
makeTemplateParameter(Decl * D)538 static TemplateParameter makeTemplateParameter(Decl *D) {
539 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
540 return TemplateParameter(TTP);
541 else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
542 return TemplateParameter(NTTP);
543
544 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
545 }
546
547 /// \brief Prepare to perform template argument deduction for all of the
548 /// arguments in a set of argument packs.
PrepareArgumentPackDeduction(Sema & S,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,SmallVectorImpl<SmallVector<DeducedTemplateArgument,4>> & NewlyDeducedPacks)549 static void PrepareArgumentPackDeduction(Sema &S,
550 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
551 ArrayRef<unsigned> PackIndices,
552 SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
553 SmallVectorImpl<
554 SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
555 // Save the deduced template arguments for each parameter pack expanded
556 // by this pack expansion, then clear out the deduction.
557 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
558 // Save the previously-deduced argument pack, then clear it out so that we
559 // can deduce a new argument pack.
560 SavedPacks[I] = Deduced[PackIndices[I]];
561 Deduced[PackIndices[I]] = TemplateArgument();
562
563 // If the template arugment pack was explicitly specified, add that to
564 // the set of deduced arguments.
565 const TemplateArgument *ExplicitArgs;
566 unsigned NumExplicitArgs;
567 if (NamedDecl *PartiallySubstitutedPack
568 = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
569 &ExplicitArgs,
570 &NumExplicitArgs)) {
571 if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
572 NewlyDeducedPacks[I].append(ExplicitArgs,
573 ExplicitArgs + NumExplicitArgs);
574 }
575 }
576 }
577
578 /// \brief Finish template argument deduction for a set of argument packs,
579 /// producing the argument packs and checking for consistency with prior
580 /// deductions.
581 static Sema::TemplateDeductionResult
FinishArgumentPackDeduction(Sema & S,TemplateParameterList * TemplateParams,bool HasAnyArguments,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,SmallVectorImpl<SmallVector<DeducedTemplateArgument,4>> & NewlyDeducedPacks,TemplateDeductionInfo & Info)582 FinishArgumentPackDeduction(Sema &S,
583 TemplateParameterList *TemplateParams,
584 bool HasAnyArguments,
585 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
586 ArrayRef<unsigned> PackIndices,
587 SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
588 SmallVectorImpl<
589 SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
590 TemplateDeductionInfo &Info) {
591 // Build argument packs for each of the parameter packs expanded by this
592 // pack expansion.
593 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
594 if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
595 // We were not able to deduce anything for this parameter pack,
596 // so just restore the saved argument pack.
597 Deduced[PackIndices[I]] = SavedPacks[I];
598 continue;
599 }
600
601 DeducedTemplateArgument NewPack;
602
603 if (NewlyDeducedPacks[I].empty()) {
604 // If we deduced an empty argument pack, create it now.
605 NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
606 } else {
607 TemplateArgument *ArgumentPack
608 = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
609 std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
610 ArgumentPack);
611 NewPack
612 = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
613 NewlyDeducedPacks[I].size()),
614 NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
615 }
616
617 DeducedTemplateArgument Result
618 = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
619 if (Result.isNull()) {
620 Info.Param
621 = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
622 Info.FirstArg = SavedPacks[I];
623 Info.SecondArg = NewPack;
624 return Sema::TDK_Inconsistent;
625 }
626
627 Deduced[PackIndices[I]] = Result;
628 }
629
630 return Sema::TDK_Success;
631 }
632
633 /// \brief Deduce the template arguments by comparing the list of parameter
634 /// types to the list of argument types, as in the parameter-type-lists of
635 /// function types (C++ [temp.deduct.type]p10).
636 ///
637 /// \param S The semantic analysis object within which we are deducing
638 ///
639 /// \param TemplateParams The template parameters that we are deducing
640 ///
641 /// \param Params The list of parameter types
642 ///
643 /// \param NumParams The number of types in \c Params
644 ///
645 /// \param Args The list of argument types
646 ///
647 /// \param NumArgs The number of types in \c Args
648 ///
649 /// \param Info information about the template argument deduction itself
650 ///
651 /// \param Deduced the deduced template arguments
652 ///
653 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
654 /// how template argument deduction is performed.
655 ///
656 /// \param PartialOrdering If true, we are performing template argument
657 /// deduction for during partial ordering for a call
658 /// (C++0x [temp.deduct.partial]).
659 ///
660 /// \param RefParamComparisons If we're performing template argument deduction
661 /// in the context of partial ordering, the set of qualifier comparisons.
662 ///
663 /// \returns the result of template argument deduction so far. Note that a
664 /// "success" result means that template argument deduction has not yet failed,
665 /// but it may still fail, later, for other reasons.
666 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons=0)667 DeduceTemplateArguments(Sema &S,
668 TemplateParameterList *TemplateParams,
669 const QualType *Params, unsigned NumParams,
670 const QualType *Args, unsigned NumArgs,
671 TemplateDeductionInfo &Info,
672 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
673 unsigned TDF,
674 bool PartialOrdering = false,
675 SmallVectorImpl<RefParamPartialOrderingComparison> *
676 RefParamComparisons = 0) {
677 // Fast-path check to see if we have too many/too few arguments.
678 if (NumParams != NumArgs &&
679 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
680 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
681 return Sema::TDK_NonDeducedMismatch;
682
683 // C++0x [temp.deduct.type]p10:
684 // Similarly, if P has a form that contains (T), then each parameter type
685 // Pi of the respective parameter-type- list of P is compared with the
686 // corresponding parameter type Ai of the corresponding parameter-type-list
687 // of A. [...]
688 unsigned ArgIdx = 0, ParamIdx = 0;
689 for (; ParamIdx != NumParams; ++ParamIdx) {
690 // Check argument types.
691 const PackExpansionType *Expansion
692 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
693 if (!Expansion) {
694 // Simple case: compare the parameter and argument types at this point.
695
696 // Make sure we have an argument.
697 if (ArgIdx >= NumArgs)
698 return Sema::TDK_NonDeducedMismatch;
699
700 if (isa<PackExpansionType>(Args[ArgIdx])) {
701 // C++0x [temp.deduct.type]p22:
702 // If the original function parameter associated with A is a function
703 // parameter pack and the function parameter associated with P is not
704 // a function parameter pack, then template argument deduction fails.
705 return Sema::TDK_NonDeducedMismatch;
706 }
707
708 if (Sema::TemplateDeductionResult Result
709 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
710 Params[ParamIdx], Args[ArgIdx],
711 Info, Deduced, TDF,
712 PartialOrdering,
713 RefParamComparisons))
714 return Result;
715
716 ++ArgIdx;
717 continue;
718 }
719
720 // C++0x [temp.deduct.type]p5:
721 // The non-deduced contexts are:
722 // - A function parameter pack that does not occur at the end of the
723 // parameter-declaration-clause.
724 if (ParamIdx + 1 < NumParams)
725 return Sema::TDK_Success;
726
727 // C++0x [temp.deduct.type]p10:
728 // If the parameter-declaration corresponding to Pi is a function
729 // parameter pack, then the type of its declarator- id is compared with
730 // each remaining parameter type in the parameter-type-list of A. Each
731 // comparison deduces template arguments for subsequent positions in the
732 // template parameter packs expanded by the function parameter pack.
733
734 // Compute the set of template parameter indices that correspond to
735 // parameter packs expanded by the pack expansion.
736 SmallVector<unsigned, 2> PackIndices;
737 QualType Pattern = Expansion->getPattern();
738 {
739 llvm::SmallBitVector SawIndices(TemplateParams->size());
740 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
741 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
742 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
743 unsigned Depth, Index;
744 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
745 if (Depth == 0 && !SawIndices[Index]) {
746 SawIndices[Index] = true;
747 PackIndices.push_back(Index);
748 }
749 }
750 }
751 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
752
753 // Keep track of the deduced template arguments for each parameter pack
754 // expanded by this pack expansion (the outer index) and for each
755 // template argument (the inner SmallVectors).
756 SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
757 NewlyDeducedPacks(PackIndices.size());
758 SmallVector<DeducedTemplateArgument, 2>
759 SavedPacks(PackIndices.size());
760 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
761 NewlyDeducedPacks);
762
763 bool HasAnyArguments = false;
764 for (; ArgIdx < NumArgs; ++ArgIdx) {
765 HasAnyArguments = true;
766
767 // Deduce template arguments from the pattern.
768 if (Sema::TemplateDeductionResult Result
769 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
770 Args[ArgIdx], Info, Deduced,
771 TDF, PartialOrdering,
772 RefParamComparisons))
773 return Result;
774
775 // Capture the deduced template arguments for each parameter pack expanded
776 // by this pack expansion, add them to the list of arguments we've deduced
777 // for that pack, then clear out the deduced argument.
778 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
779 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
780 if (!DeducedArg.isNull()) {
781 NewlyDeducedPacks[I].push_back(DeducedArg);
782 DeducedArg = DeducedTemplateArgument();
783 }
784 }
785 }
786
787 // Build argument packs for each of the parameter packs expanded by this
788 // pack expansion.
789 if (Sema::TemplateDeductionResult Result
790 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
791 Deduced, PackIndices, SavedPacks,
792 NewlyDeducedPacks, Info))
793 return Result;
794 }
795
796 // Make sure we don't have any extra arguments.
797 if (ArgIdx < NumArgs)
798 return Sema::TDK_NonDeducedMismatch;
799
800 return Sema::TDK_Success;
801 }
802
803 /// \brief Determine whether the parameter has qualifiers that are either
804 /// inconsistent with or a superset of the argument's qualifiers.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)805 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
806 QualType ArgType) {
807 Qualifiers ParamQs = ParamType.getQualifiers();
808 Qualifiers ArgQs = ArgType.getQualifiers();
809
810 if (ParamQs == ArgQs)
811 return false;
812
813 // Mismatched (but not missing) Objective-C GC attributes.
814 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
815 ParamQs.hasObjCGCAttr())
816 return true;
817
818 // Mismatched (but not missing) address spaces.
819 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
820 ParamQs.hasAddressSpace())
821 return true;
822
823 // Mismatched (but not missing) Objective-C lifetime qualifiers.
824 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
825 ParamQs.hasObjCLifetime())
826 return true;
827
828 // CVR qualifier superset.
829 return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
830 ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
831 == ParamQs.getCVRQualifiers());
832 }
833
834 /// \brief Deduce the template arguments by comparing the parameter type and
835 /// the argument type (C++ [temp.deduct.type]).
836 ///
837 /// \param S the semantic analysis object within which we are deducing
838 ///
839 /// \param TemplateParams the template parameters that we are deducing
840 ///
841 /// \param ParamIn the parameter type
842 ///
843 /// \param ArgIn the argument type
844 ///
845 /// \param Info information about the template argument deduction itself
846 ///
847 /// \param Deduced the deduced template arguments
848 ///
849 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
850 /// how template argument deduction is performed.
851 ///
852 /// \param PartialOrdering Whether we're performing template argument deduction
853 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
854 ///
855 /// \param RefParamComparisons If we're performing template argument deduction
856 /// in the context of partial ordering, the set of qualifier comparisons.
857 ///
858 /// \returns the result of template argument deduction so far. Note that a
859 /// "success" result means that template argument deduction has not yet failed,
860 /// but it may still fail, later, for other reasons.
861 static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)862 DeduceTemplateArgumentsByTypeMatch(Sema &S,
863 TemplateParameterList *TemplateParams,
864 QualType ParamIn, QualType ArgIn,
865 TemplateDeductionInfo &Info,
866 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
867 unsigned TDF,
868 bool PartialOrdering,
869 SmallVectorImpl<RefParamPartialOrderingComparison> *
870 RefParamComparisons) {
871 // We only want to look at the canonical types, since typedefs and
872 // sugar are not part of template argument deduction.
873 QualType Param = S.Context.getCanonicalType(ParamIn);
874 QualType Arg = S.Context.getCanonicalType(ArgIn);
875
876 // If the argument type is a pack expansion, look at its pattern.
877 // This isn't explicitly called out
878 if (const PackExpansionType *ArgExpansion
879 = dyn_cast<PackExpansionType>(Arg))
880 Arg = ArgExpansion->getPattern();
881
882 if (PartialOrdering) {
883 // C++0x [temp.deduct.partial]p5:
884 // Before the partial ordering is done, certain transformations are
885 // performed on the types used for partial ordering:
886 // - If P is a reference type, P is replaced by the type referred to.
887 const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
888 if (ParamRef)
889 Param = ParamRef->getPointeeType();
890
891 // - If A is a reference type, A is replaced by the type referred to.
892 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
893 if (ArgRef)
894 Arg = ArgRef->getPointeeType();
895
896 if (RefParamComparisons && ParamRef && ArgRef) {
897 // C++0x [temp.deduct.partial]p6:
898 // If both P and A were reference types (before being replaced with the
899 // type referred to above), determine which of the two types (if any) is
900 // more cv-qualified than the other; otherwise the types are considered
901 // to be equally cv-qualified for partial ordering purposes. The result
902 // of this determination will be used below.
903 //
904 // We save this information for later, using it only when deduction
905 // succeeds in both directions.
906 RefParamPartialOrderingComparison Comparison;
907 Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
908 Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
909 Comparison.Qualifiers = NeitherMoreQualified;
910
911 Qualifiers ParamQuals = Param.getQualifiers();
912 Qualifiers ArgQuals = Arg.getQualifiers();
913 if (ParamQuals.isStrictSupersetOf(ArgQuals))
914 Comparison.Qualifiers = ParamMoreQualified;
915 else if (ArgQuals.isStrictSupersetOf(ParamQuals))
916 Comparison.Qualifiers = ArgMoreQualified;
917 RefParamComparisons->push_back(Comparison);
918 }
919
920 // C++0x [temp.deduct.partial]p7:
921 // Remove any top-level cv-qualifiers:
922 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
923 // version of P.
924 Param = Param.getUnqualifiedType();
925 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
926 // version of A.
927 Arg = Arg.getUnqualifiedType();
928 } else {
929 // C++0x [temp.deduct.call]p4 bullet 1:
930 // - If the original P is a reference type, the deduced A (i.e., the type
931 // referred to by the reference) can be more cv-qualified than the
932 // transformed A.
933 if (TDF & TDF_ParamWithReferenceType) {
934 Qualifiers Quals;
935 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
936 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
937 Arg.getCVRQualifiers());
938 Param = S.Context.getQualifiedType(UnqualParam, Quals);
939 }
940
941 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
942 // C++0x [temp.deduct.type]p10:
943 // If P and A are function types that originated from deduction when
944 // taking the address of a function template (14.8.2.2) or when deducing
945 // template arguments from a function declaration (14.8.2.6) and Pi and
946 // Ai are parameters of the top-level parameter-type-list of P and A,
947 // respectively, Pi is adjusted if it is an rvalue reference to a
948 // cv-unqualified template parameter and Ai is an lvalue reference, in
949 // which case the type of Pi is changed to be the template parameter
950 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
951 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
952 // deduced as X&. - end note ]
953 TDF &= ~TDF_TopLevelParameterTypeList;
954
955 if (const RValueReferenceType *ParamRef
956 = Param->getAs<RValueReferenceType>()) {
957 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
958 !ParamRef->getPointeeType().getQualifiers())
959 if (Arg->isLValueReferenceType())
960 Param = ParamRef->getPointeeType();
961 }
962 }
963 }
964
965 // C++ [temp.deduct.type]p9:
966 // A template type argument T, a template template argument TT or a
967 // template non-type argument i can be deduced if P and A have one of
968 // the following forms:
969 //
970 // T
971 // cv-list T
972 if (const TemplateTypeParmType *TemplateTypeParm
973 = Param->getAs<TemplateTypeParmType>()) {
974 // Just skip any attempts to deduce from a placeholder type.
975 if (Arg->isPlaceholderType())
976 return Sema::TDK_Success;
977
978 unsigned Index = TemplateTypeParm->getIndex();
979 bool RecanonicalizeArg = false;
980
981 // If the argument type is an array type, move the qualifiers up to the
982 // top level, so they can be matched with the qualifiers on the parameter.
983 if (isa<ArrayType>(Arg)) {
984 Qualifiers Quals;
985 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
986 if (Quals) {
987 Arg = S.Context.getQualifiedType(Arg, Quals);
988 RecanonicalizeArg = true;
989 }
990 }
991
992 // The argument type can not be less qualified than the parameter
993 // type.
994 if (!(TDF & TDF_IgnoreQualifiers) &&
995 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
996 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
997 Info.FirstArg = TemplateArgument(Param);
998 Info.SecondArg = TemplateArgument(Arg);
999 return Sema::TDK_Underqualified;
1000 }
1001
1002 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1003 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1004 QualType DeducedType = Arg;
1005
1006 // Remove any qualifiers on the parameter from the deduced type.
1007 // We checked the qualifiers for consistency above.
1008 Qualifiers DeducedQs = DeducedType.getQualifiers();
1009 Qualifiers ParamQs = Param.getQualifiers();
1010 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1011 if (ParamQs.hasObjCGCAttr())
1012 DeducedQs.removeObjCGCAttr();
1013 if (ParamQs.hasAddressSpace())
1014 DeducedQs.removeAddressSpace();
1015 if (ParamQs.hasObjCLifetime())
1016 DeducedQs.removeObjCLifetime();
1017
1018 // Objective-C ARC:
1019 // If template deduction would produce a lifetime qualifier on a type
1020 // that is not a lifetime type, template argument deduction fails.
1021 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1022 !DeducedType->isDependentType()) {
1023 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1024 Info.FirstArg = TemplateArgument(Param);
1025 Info.SecondArg = TemplateArgument(Arg);
1026 return Sema::TDK_Underqualified;
1027 }
1028
1029 // Objective-C ARC:
1030 // If template deduction would produce an argument type with lifetime type
1031 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1032 if (S.getLangOpts().ObjCAutoRefCount &&
1033 DeducedType->isObjCLifetimeType() &&
1034 !DeducedQs.hasObjCLifetime())
1035 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1036
1037 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1038 DeducedQs);
1039
1040 if (RecanonicalizeArg)
1041 DeducedType = S.Context.getCanonicalType(DeducedType);
1042
1043 DeducedTemplateArgument NewDeduced(DeducedType);
1044 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1045 Deduced[Index],
1046 NewDeduced);
1047 if (Result.isNull()) {
1048 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1049 Info.FirstArg = Deduced[Index];
1050 Info.SecondArg = NewDeduced;
1051 return Sema::TDK_Inconsistent;
1052 }
1053
1054 Deduced[Index] = Result;
1055 return Sema::TDK_Success;
1056 }
1057
1058 // Set up the template argument deduction information for a failure.
1059 Info.FirstArg = TemplateArgument(ParamIn);
1060 Info.SecondArg = TemplateArgument(ArgIn);
1061
1062 // If the parameter is an already-substituted template parameter
1063 // pack, do nothing: we don't know which of its arguments to look
1064 // at, so we have to wait until all of the parameter packs in this
1065 // expansion have arguments.
1066 if (isa<SubstTemplateTypeParmPackType>(Param))
1067 return Sema::TDK_Success;
1068
1069 // Check the cv-qualifiers on the parameter and argument types.
1070 if (!(TDF & TDF_IgnoreQualifiers)) {
1071 if (TDF & TDF_ParamWithReferenceType) {
1072 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1073 return Sema::TDK_NonDeducedMismatch;
1074 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1075 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1076 return Sema::TDK_NonDeducedMismatch;
1077 }
1078
1079 // If the parameter type is not dependent, there is nothing to deduce.
1080 if (!Param->isDependentType()) {
1081 if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
1082 return Sema::TDK_NonDeducedMismatch;
1083
1084 return Sema::TDK_Success;
1085 }
1086 } else if (!Param->isDependentType() &&
1087 Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
1088 return Sema::TDK_Success;
1089 }
1090
1091 switch (Param->getTypeClass()) {
1092 // Non-canonical types cannot appear here.
1093 #define NON_CANONICAL_TYPE(Class, Base) \
1094 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1095 #define TYPE(Class, Base)
1096 #include "clang/AST/TypeNodes.def"
1097
1098 case Type::TemplateTypeParm:
1099 case Type::SubstTemplateTypeParmPack:
1100 llvm_unreachable("Type nodes handled above");
1101
1102 // These types cannot be dependent, so simply check whether the types are
1103 // the same.
1104 case Type::Builtin:
1105 case Type::VariableArray:
1106 case Type::Vector:
1107 case Type::FunctionNoProto:
1108 case Type::Record:
1109 case Type::Enum:
1110 case Type::ObjCObject:
1111 case Type::ObjCInterface:
1112 case Type::ObjCObjectPointer: {
1113 if (TDF & TDF_SkipNonDependent)
1114 return Sema::TDK_Success;
1115
1116 if (TDF & TDF_IgnoreQualifiers) {
1117 Param = Param.getUnqualifiedType();
1118 Arg = Arg.getUnqualifiedType();
1119 }
1120
1121 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1122 }
1123
1124 // _Complex T [placeholder extension]
1125 case Type::Complex:
1126 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1127 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1128 cast<ComplexType>(Param)->getElementType(),
1129 ComplexArg->getElementType(),
1130 Info, Deduced, TDF);
1131
1132 return Sema::TDK_NonDeducedMismatch;
1133
1134 // _Atomic T [extension]
1135 case Type::Atomic:
1136 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1137 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1138 cast<AtomicType>(Param)->getValueType(),
1139 AtomicArg->getValueType(),
1140 Info, Deduced, TDF);
1141
1142 return Sema::TDK_NonDeducedMismatch;
1143
1144 // T *
1145 case Type::Pointer: {
1146 QualType PointeeType;
1147 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1148 PointeeType = PointerArg->getPointeeType();
1149 } else if (const ObjCObjectPointerType *PointerArg
1150 = Arg->getAs<ObjCObjectPointerType>()) {
1151 PointeeType = PointerArg->getPointeeType();
1152 } else {
1153 return Sema::TDK_NonDeducedMismatch;
1154 }
1155
1156 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1157 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1158 cast<PointerType>(Param)->getPointeeType(),
1159 PointeeType,
1160 Info, Deduced, SubTDF);
1161 }
1162
1163 // T &
1164 case Type::LValueReference: {
1165 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1166 if (!ReferenceArg)
1167 return Sema::TDK_NonDeducedMismatch;
1168
1169 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1170 cast<LValueReferenceType>(Param)->getPointeeType(),
1171 ReferenceArg->getPointeeType(), Info, Deduced, 0);
1172 }
1173
1174 // T && [C++0x]
1175 case Type::RValueReference: {
1176 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1177 if (!ReferenceArg)
1178 return Sema::TDK_NonDeducedMismatch;
1179
1180 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1181 cast<RValueReferenceType>(Param)->getPointeeType(),
1182 ReferenceArg->getPointeeType(),
1183 Info, Deduced, 0);
1184 }
1185
1186 // T [] (implied, but not stated explicitly)
1187 case Type::IncompleteArray: {
1188 const IncompleteArrayType *IncompleteArrayArg =
1189 S.Context.getAsIncompleteArrayType(Arg);
1190 if (!IncompleteArrayArg)
1191 return Sema::TDK_NonDeducedMismatch;
1192
1193 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1194 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1195 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1196 IncompleteArrayArg->getElementType(),
1197 Info, Deduced, SubTDF);
1198 }
1199
1200 // T [integer-constant]
1201 case Type::ConstantArray: {
1202 const ConstantArrayType *ConstantArrayArg =
1203 S.Context.getAsConstantArrayType(Arg);
1204 if (!ConstantArrayArg)
1205 return Sema::TDK_NonDeducedMismatch;
1206
1207 const ConstantArrayType *ConstantArrayParm =
1208 S.Context.getAsConstantArrayType(Param);
1209 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1210 return Sema::TDK_NonDeducedMismatch;
1211
1212 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1213 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1214 ConstantArrayParm->getElementType(),
1215 ConstantArrayArg->getElementType(),
1216 Info, Deduced, SubTDF);
1217 }
1218
1219 // type [i]
1220 case Type::DependentSizedArray: {
1221 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1222 if (!ArrayArg)
1223 return Sema::TDK_NonDeducedMismatch;
1224
1225 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1226
1227 // Check the element type of the arrays
1228 const DependentSizedArrayType *DependentArrayParm
1229 = S.Context.getAsDependentSizedArrayType(Param);
1230 if (Sema::TemplateDeductionResult Result
1231 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1232 DependentArrayParm->getElementType(),
1233 ArrayArg->getElementType(),
1234 Info, Deduced, SubTDF))
1235 return Result;
1236
1237 // Determine the array bound is something we can deduce.
1238 NonTypeTemplateParmDecl *NTTP
1239 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1240 if (!NTTP)
1241 return Sema::TDK_Success;
1242
1243 // We can perform template argument deduction for the given non-type
1244 // template parameter.
1245 assert(NTTP->getDepth() == 0 &&
1246 "Cannot deduce non-type template argument at depth > 0");
1247 if (const ConstantArrayType *ConstantArrayArg
1248 = dyn_cast<ConstantArrayType>(ArrayArg)) {
1249 llvm::APSInt Size(ConstantArrayArg->getSize());
1250 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1251 S.Context.getSizeType(),
1252 /*ArrayBound=*/true,
1253 Info, Deduced);
1254 }
1255 if (const DependentSizedArrayType *DependentArrayArg
1256 = dyn_cast<DependentSizedArrayType>(ArrayArg))
1257 if (DependentArrayArg->getSizeExpr())
1258 return DeduceNonTypeTemplateArgument(S, NTTP,
1259 DependentArrayArg->getSizeExpr(),
1260 Info, Deduced);
1261
1262 // Incomplete type does not match a dependently-sized array type
1263 return Sema::TDK_NonDeducedMismatch;
1264 }
1265
1266 // type(*)(T)
1267 // T(*)()
1268 // T(*)(T)
1269 case Type::FunctionProto: {
1270 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1271 const FunctionProtoType *FunctionProtoArg =
1272 dyn_cast<FunctionProtoType>(Arg);
1273 if (!FunctionProtoArg)
1274 return Sema::TDK_NonDeducedMismatch;
1275
1276 const FunctionProtoType *FunctionProtoParam =
1277 cast<FunctionProtoType>(Param);
1278
1279 if (FunctionProtoParam->getTypeQuals()
1280 != FunctionProtoArg->getTypeQuals() ||
1281 FunctionProtoParam->getRefQualifier()
1282 != FunctionProtoArg->getRefQualifier() ||
1283 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1284 return Sema::TDK_NonDeducedMismatch;
1285
1286 // Check return types.
1287 if (Sema::TemplateDeductionResult Result
1288 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1289 FunctionProtoParam->getResultType(),
1290 FunctionProtoArg->getResultType(),
1291 Info, Deduced, 0))
1292 return Result;
1293
1294 return DeduceTemplateArguments(S, TemplateParams,
1295 FunctionProtoParam->arg_type_begin(),
1296 FunctionProtoParam->getNumArgs(),
1297 FunctionProtoArg->arg_type_begin(),
1298 FunctionProtoArg->getNumArgs(),
1299 Info, Deduced, SubTDF);
1300 }
1301
1302 case Type::InjectedClassName: {
1303 // Treat a template's injected-class-name as if the template
1304 // specialization type had been used.
1305 Param = cast<InjectedClassNameType>(Param)
1306 ->getInjectedSpecializationType();
1307 assert(isa<TemplateSpecializationType>(Param) &&
1308 "injected class name is not a template specialization type");
1309 // fall through
1310 }
1311
1312 // template-name<T> (where template-name refers to a class template)
1313 // template-name<i>
1314 // TT<T>
1315 // TT<i>
1316 // TT<>
1317 case Type::TemplateSpecialization: {
1318 const TemplateSpecializationType *SpecParam
1319 = cast<TemplateSpecializationType>(Param);
1320
1321 // Try to deduce template arguments from the template-id.
1322 Sema::TemplateDeductionResult Result
1323 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1324 Info, Deduced);
1325
1326 if (Result && (TDF & TDF_DerivedClass)) {
1327 // C++ [temp.deduct.call]p3b3:
1328 // If P is a class, and P has the form template-id, then A can be a
1329 // derived class of the deduced A. Likewise, if P is a pointer to a
1330 // class of the form template-id, A can be a pointer to a derived
1331 // class pointed to by the deduced A.
1332 //
1333 // More importantly:
1334 // These alternatives are considered only if type deduction would
1335 // otherwise fail.
1336 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1337 // We cannot inspect base classes as part of deduction when the type
1338 // is incomplete, so either instantiate any templates necessary to
1339 // complete the type, or skip over it if it cannot be completed.
1340 if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1341 return Result;
1342
1343 // Use data recursion to crawl through the list of base classes.
1344 // Visited contains the set of nodes we have already visited, while
1345 // ToVisit is our stack of records that we still need to visit.
1346 llvm::SmallPtrSet<const RecordType *, 8> Visited;
1347 SmallVector<const RecordType *, 8> ToVisit;
1348 ToVisit.push_back(RecordT);
1349 bool Successful = false;
1350 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1351 Deduced.end());
1352 while (!ToVisit.empty()) {
1353 // Retrieve the next class in the inheritance hierarchy.
1354 const RecordType *NextT = ToVisit.back();
1355 ToVisit.pop_back();
1356
1357 // If we have already seen this type, skip it.
1358 if (!Visited.insert(NextT))
1359 continue;
1360
1361 // If this is a base class, try to perform template argument
1362 // deduction from it.
1363 if (NextT != RecordT) {
1364 Sema::TemplateDeductionResult BaseResult
1365 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1366 QualType(NextT, 0), Info, Deduced);
1367
1368 // If template argument deduction for this base was successful,
1369 // note that we had some success. Otherwise, ignore any deductions
1370 // from this base class.
1371 if (BaseResult == Sema::TDK_Success) {
1372 Successful = true;
1373 DeducedOrig.clear();
1374 DeducedOrig.append(Deduced.begin(), Deduced.end());
1375 }
1376 else
1377 Deduced = DeducedOrig;
1378 }
1379
1380 // Visit base classes
1381 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1382 for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1383 BaseEnd = Next->bases_end();
1384 Base != BaseEnd; ++Base) {
1385 assert(Base->getType()->isRecordType() &&
1386 "Base class that isn't a record?");
1387 ToVisit.push_back(Base->getType()->getAs<RecordType>());
1388 }
1389 }
1390
1391 if (Successful)
1392 return Sema::TDK_Success;
1393 }
1394
1395 }
1396
1397 return Result;
1398 }
1399
1400 // T type::*
1401 // T T::*
1402 // T (type::*)()
1403 // type (T::*)()
1404 // type (type::*)(T)
1405 // type (T::*)(T)
1406 // T (type::*)(T)
1407 // T (T::*)()
1408 // T (T::*)(T)
1409 case Type::MemberPointer: {
1410 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1411 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1412 if (!MemPtrArg)
1413 return Sema::TDK_NonDeducedMismatch;
1414
1415 if (Sema::TemplateDeductionResult Result
1416 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1417 MemPtrParam->getPointeeType(),
1418 MemPtrArg->getPointeeType(),
1419 Info, Deduced,
1420 TDF & TDF_IgnoreQualifiers))
1421 return Result;
1422
1423 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1424 QualType(MemPtrParam->getClass(), 0),
1425 QualType(MemPtrArg->getClass(), 0),
1426 Info, Deduced,
1427 TDF & TDF_IgnoreQualifiers);
1428 }
1429
1430 // (clang extension)
1431 //
1432 // type(^)(T)
1433 // T(^)()
1434 // T(^)(T)
1435 case Type::BlockPointer: {
1436 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1437 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1438
1439 if (!BlockPtrArg)
1440 return Sema::TDK_NonDeducedMismatch;
1441
1442 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1443 BlockPtrParam->getPointeeType(),
1444 BlockPtrArg->getPointeeType(),
1445 Info, Deduced, 0);
1446 }
1447
1448 // (clang extension)
1449 //
1450 // T __attribute__(((ext_vector_type(<integral constant>))))
1451 case Type::ExtVector: {
1452 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1453 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1454 // Make sure that the vectors have the same number of elements.
1455 if (VectorParam->getNumElements() != VectorArg->getNumElements())
1456 return Sema::TDK_NonDeducedMismatch;
1457
1458 // Perform deduction on the element types.
1459 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1460 VectorParam->getElementType(),
1461 VectorArg->getElementType(),
1462 Info, Deduced, TDF);
1463 }
1464
1465 if (const DependentSizedExtVectorType *VectorArg
1466 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1467 // We can't check the number of elements, since the argument has a
1468 // dependent number of elements. This can only occur during partial
1469 // ordering.
1470
1471 // Perform deduction on the element types.
1472 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1473 VectorParam->getElementType(),
1474 VectorArg->getElementType(),
1475 Info, Deduced, TDF);
1476 }
1477
1478 return Sema::TDK_NonDeducedMismatch;
1479 }
1480
1481 // (clang extension)
1482 //
1483 // T __attribute__(((ext_vector_type(N))))
1484 case Type::DependentSizedExtVector: {
1485 const DependentSizedExtVectorType *VectorParam
1486 = cast<DependentSizedExtVectorType>(Param);
1487
1488 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1489 // Perform deduction on the element types.
1490 if (Sema::TemplateDeductionResult Result
1491 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1492 VectorParam->getElementType(),
1493 VectorArg->getElementType(),
1494 Info, Deduced, TDF))
1495 return Result;
1496
1497 // Perform deduction on the vector size, if we can.
1498 NonTypeTemplateParmDecl *NTTP
1499 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1500 if (!NTTP)
1501 return Sema::TDK_Success;
1502
1503 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1504 ArgSize = VectorArg->getNumElements();
1505 return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1506 false, Info, Deduced);
1507 }
1508
1509 if (const DependentSizedExtVectorType *VectorArg
1510 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1511 // Perform deduction on the element types.
1512 if (Sema::TemplateDeductionResult Result
1513 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1514 VectorParam->getElementType(),
1515 VectorArg->getElementType(),
1516 Info, Deduced, TDF))
1517 return Result;
1518
1519 // Perform deduction on the vector size, if we can.
1520 NonTypeTemplateParmDecl *NTTP
1521 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1522 if (!NTTP)
1523 return Sema::TDK_Success;
1524
1525 return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1526 Info, Deduced);
1527 }
1528
1529 return Sema::TDK_NonDeducedMismatch;
1530 }
1531
1532 case Type::TypeOfExpr:
1533 case Type::TypeOf:
1534 case Type::DependentName:
1535 case Type::UnresolvedUsing:
1536 case Type::Decltype:
1537 case Type::UnaryTransform:
1538 case Type::Auto:
1539 case Type::DependentTemplateSpecialization:
1540 case Type::PackExpansion:
1541 // No template argument deduction for these types
1542 return Sema::TDK_Success;
1543 }
1544
1545 llvm_unreachable("Invalid Type Class!");
1546 }
1547
1548 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1549 DeduceTemplateArguments(Sema &S,
1550 TemplateParameterList *TemplateParams,
1551 const TemplateArgument &Param,
1552 TemplateArgument Arg,
1553 TemplateDeductionInfo &Info,
1554 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1555 // If the template argument is a pack expansion, perform template argument
1556 // deduction against the pattern of that expansion. This only occurs during
1557 // partial ordering.
1558 if (Arg.isPackExpansion())
1559 Arg = Arg.getPackExpansionPattern();
1560
1561 switch (Param.getKind()) {
1562 case TemplateArgument::Null:
1563 llvm_unreachable("Null template argument in parameter list");
1564
1565 case TemplateArgument::Type:
1566 if (Arg.getKind() == TemplateArgument::Type)
1567 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1568 Param.getAsType(),
1569 Arg.getAsType(),
1570 Info, Deduced, 0);
1571 Info.FirstArg = Param;
1572 Info.SecondArg = Arg;
1573 return Sema::TDK_NonDeducedMismatch;
1574
1575 case TemplateArgument::Template:
1576 if (Arg.getKind() == TemplateArgument::Template)
1577 return DeduceTemplateArguments(S, TemplateParams,
1578 Param.getAsTemplate(),
1579 Arg.getAsTemplate(), Info, Deduced);
1580 Info.FirstArg = Param;
1581 Info.SecondArg = Arg;
1582 return Sema::TDK_NonDeducedMismatch;
1583
1584 case TemplateArgument::TemplateExpansion:
1585 llvm_unreachable("caller should handle pack expansions");
1586
1587 case TemplateArgument::Declaration:
1588 if (Arg.getKind() == TemplateArgument::Declaration &&
1589 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
1590 return Sema::TDK_Success;
1591
1592 Info.FirstArg = Param;
1593 Info.SecondArg = Arg;
1594 return Sema::TDK_NonDeducedMismatch;
1595
1596 case TemplateArgument::Integral:
1597 if (Arg.getKind() == TemplateArgument::Integral) {
1598 if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
1599 return Sema::TDK_Success;
1600
1601 Info.FirstArg = Param;
1602 Info.SecondArg = Arg;
1603 return Sema::TDK_NonDeducedMismatch;
1604 }
1605
1606 if (Arg.getKind() == TemplateArgument::Expression) {
1607 Info.FirstArg = Param;
1608 Info.SecondArg = Arg;
1609 return Sema::TDK_NonDeducedMismatch;
1610 }
1611
1612 Info.FirstArg = Param;
1613 Info.SecondArg = Arg;
1614 return Sema::TDK_NonDeducedMismatch;
1615
1616 case TemplateArgument::Expression: {
1617 if (NonTypeTemplateParmDecl *NTTP
1618 = getDeducedParameterFromExpr(Param.getAsExpr())) {
1619 if (Arg.getKind() == TemplateArgument::Integral)
1620 return DeduceNonTypeTemplateArgument(S, NTTP,
1621 *Arg.getAsIntegral(),
1622 Arg.getIntegralType(),
1623 /*ArrayBound=*/false,
1624 Info, Deduced);
1625 if (Arg.getKind() == TemplateArgument::Expression)
1626 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1627 Info, Deduced);
1628 if (Arg.getKind() == TemplateArgument::Declaration)
1629 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1630 Info, Deduced);
1631
1632 Info.FirstArg = Param;
1633 Info.SecondArg = Arg;
1634 return Sema::TDK_NonDeducedMismatch;
1635 }
1636
1637 // Can't deduce anything, but that's okay.
1638 return Sema::TDK_Success;
1639 }
1640 case TemplateArgument::Pack:
1641 llvm_unreachable("Argument packs should be expanded by the caller!");
1642 }
1643
1644 llvm_unreachable("Invalid TemplateArgument Kind!");
1645 }
1646
1647 /// \brief Determine whether there is a template argument to be used for
1648 /// deduction.
1649 ///
1650 /// This routine "expands" argument packs in-place, overriding its input
1651 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1652 ///
1653 /// \returns true if there is another template argument (which will be at
1654 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(const TemplateArgument * & Args,unsigned & ArgIdx,unsigned & NumArgs)1655 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1656 unsigned &ArgIdx,
1657 unsigned &NumArgs) {
1658 if (ArgIdx == NumArgs)
1659 return false;
1660
1661 const TemplateArgument &Arg = Args[ArgIdx];
1662 if (Arg.getKind() != TemplateArgument::Pack)
1663 return true;
1664
1665 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1666 Args = Arg.pack_begin();
1667 NumArgs = Arg.pack_size();
1668 ArgIdx = 0;
1669 return ArgIdx < NumArgs;
1670 }
1671
1672 /// \brief Determine whether the given set of template arguments has a pack
1673 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(const TemplateArgument * Args,unsigned NumArgs)1674 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1675 unsigned NumArgs) {
1676 unsigned ArgIdx = 0;
1677 while (ArgIdx < NumArgs) {
1678 const TemplateArgument &Arg = Args[ArgIdx];
1679
1680 // Unwrap argument packs.
1681 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1682 Args = Arg.pack_begin();
1683 NumArgs = Arg.pack_size();
1684 ArgIdx = 0;
1685 continue;
1686 }
1687
1688 ++ArgIdx;
1689 if (ArgIdx == NumArgs)
1690 return false;
1691
1692 if (Arg.isPackExpansion())
1693 return true;
1694 }
1695
1696 return false;
1697 }
1698
1699 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument * Params,unsigned NumParams,const TemplateArgument * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,bool NumberOfArgumentsMustMatch)1700 DeduceTemplateArguments(Sema &S,
1701 TemplateParameterList *TemplateParams,
1702 const TemplateArgument *Params, unsigned NumParams,
1703 const TemplateArgument *Args, unsigned NumArgs,
1704 TemplateDeductionInfo &Info,
1705 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1706 bool NumberOfArgumentsMustMatch) {
1707 // C++0x [temp.deduct.type]p9:
1708 // If the template argument list of P contains a pack expansion that is not
1709 // the last template argument, the entire template argument list is a
1710 // non-deduced context.
1711 if (hasPackExpansionBeforeEnd(Params, NumParams))
1712 return Sema::TDK_Success;
1713
1714 // C++0x [temp.deduct.type]p9:
1715 // If P has a form that contains <T> or <i>, then each argument Pi of the
1716 // respective template argument list P is compared with the corresponding
1717 // argument Ai of the corresponding template argument list of A.
1718 unsigned ArgIdx = 0, ParamIdx = 0;
1719 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1720 ++ParamIdx) {
1721 if (!Params[ParamIdx].isPackExpansion()) {
1722 // The simple case: deduce template arguments by matching Pi and Ai.
1723
1724 // Check whether we have enough arguments.
1725 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1726 return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1727 : Sema::TDK_Success;
1728
1729 if (Args[ArgIdx].isPackExpansion()) {
1730 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1731 // but applied to pack expansions that are template arguments.
1732 return Sema::TDK_NonDeducedMismatch;
1733 }
1734
1735 // Perform deduction for this Pi/Ai pair.
1736 if (Sema::TemplateDeductionResult Result
1737 = DeduceTemplateArguments(S, TemplateParams,
1738 Params[ParamIdx], Args[ArgIdx],
1739 Info, Deduced))
1740 return Result;
1741
1742 // Move to the next argument.
1743 ++ArgIdx;
1744 continue;
1745 }
1746
1747 // The parameter is a pack expansion.
1748
1749 // C++0x [temp.deduct.type]p9:
1750 // If Pi is a pack expansion, then the pattern of Pi is compared with
1751 // each remaining argument in the template argument list of A. Each
1752 // comparison deduces template arguments for subsequent positions in the
1753 // template parameter packs expanded by Pi.
1754 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1755
1756 // Compute the set of template parameter indices that correspond to
1757 // parameter packs expanded by the pack expansion.
1758 SmallVector<unsigned, 2> PackIndices;
1759 {
1760 llvm::SmallBitVector SawIndices(TemplateParams->size());
1761 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1762 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1763 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1764 unsigned Depth, Index;
1765 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1766 if (Depth == 0 && !SawIndices[Index]) {
1767 SawIndices[Index] = true;
1768 PackIndices.push_back(Index);
1769 }
1770 }
1771 }
1772 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1773
1774 // FIXME: If there are no remaining arguments, we can bail out early
1775 // and set any deduced parameter packs to an empty argument pack.
1776 // The latter part of this is a (minor) correctness issue.
1777
1778 // Save the deduced template arguments for each parameter pack expanded
1779 // by this pack expansion, then clear out the deduction.
1780 SmallVector<DeducedTemplateArgument, 2>
1781 SavedPacks(PackIndices.size());
1782 SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
1783 NewlyDeducedPacks(PackIndices.size());
1784 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1785 NewlyDeducedPacks);
1786
1787 // Keep track of the deduced template arguments for each parameter pack
1788 // expanded by this pack expansion (the outer index) and for each
1789 // template argument (the inner SmallVectors).
1790 bool HasAnyArguments = false;
1791 while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1792 HasAnyArguments = true;
1793
1794 // Deduce template arguments from the pattern.
1795 if (Sema::TemplateDeductionResult Result
1796 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1797 Info, Deduced))
1798 return Result;
1799
1800 // Capture the deduced template arguments for each parameter pack expanded
1801 // by this pack expansion, add them to the list of arguments we've deduced
1802 // for that pack, then clear out the deduced argument.
1803 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1804 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1805 if (!DeducedArg.isNull()) {
1806 NewlyDeducedPacks[I].push_back(DeducedArg);
1807 DeducedArg = DeducedTemplateArgument();
1808 }
1809 }
1810
1811 ++ArgIdx;
1812 }
1813
1814 // Build argument packs for each of the parameter packs expanded by this
1815 // pack expansion.
1816 if (Sema::TemplateDeductionResult Result
1817 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1818 Deduced, PackIndices, SavedPacks,
1819 NewlyDeducedPacks, Info))
1820 return Result;
1821 }
1822
1823 // If there is an argument remaining, then we had too many arguments.
1824 if (NumberOfArgumentsMustMatch &&
1825 hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1826 return Sema::TDK_NonDeducedMismatch;
1827
1828 return Sema::TDK_Success;
1829 }
1830
1831 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1832 DeduceTemplateArguments(Sema &S,
1833 TemplateParameterList *TemplateParams,
1834 const TemplateArgumentList &ParamList,
1835 const TemplateArgumentList &ArgList,
1836 TemplateDeductionInfo &Info,
1837 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1838 return DeduceTemplateArguments(S, TemplateParams,
1839 ParamList.data(), ParamList.size(),
1840 ArgList.data(), ArgList.size(),
1841 Info, Deduced);
1842 }
1843
1844 /// \brief Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,const TemplateArgument & X,const TemplateArgument & Y)1845 static bool isSameTemplateArg(ASTContext &Context,
1846 const TemplateArgument &X,
1847 const TemplateArgument &Y) {
1848 if (X.getKind() != Y.getKind())
1849 return false;
1850
1851 switch (X.getKind()) {
1852 case TemplateArgument::Null:
1853 llvm_unreachable("Comparing NULL template argument");
1854
1855 case TemplateArgument::Type:
1856 return Context.getCanonicalType(X.getAsType()) ==
1857 Context.getCanonicalType(Y.getAsType());
1858
1859 case TemplateArgument::Declaration:
1860 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
1861
1862 case TemplateArgument::Template:
1863 case TemplateArgument::TemplateExpansion:
1864 return Context.getCanonicalTemplateName(
1865 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1866 Context.getCanonicalTemplateName(
1867 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1868
1869 case TemplateArgument::Integral:
1870 return *X.getAsIntegral() == *Y.getAsIntegral();
1871
1872 case TemplateArgument::Expression: {
1873 llvm::FoldingSetNodeID XID, YID;
1874 X.getAsExpr()->Profile(XID, Context, true);
1875 Y.getAsExpr()->Profile(YID, Context, true);
1876 return XID == YID;
1877 }
1878
1879 case TemplateArgument::Pack:
1880 if (X.pack_size() != Y.pack_size())
1881 return false;
1882
1883 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1884 XPEnd = X.pack_end(),
1885 YP = Y.pack_begin();
1886 XP != XPEnd; ++XP, ++YP)
1887 if (!isSameTemplateArg(Context, *XP, *YP))
1888 return false;
1889
1890 return true;
1891 }
1892
1893 llvm_unreachable("Invalid TemplateArgument Kind!");
1894 }
1895
1896 /// \brief Allocate a TemplateArgumentLoc where all locations have
1897 /// been initialized to the given location.
1898 ///
1899 /// \param S The semantic analysis object.
1900 ///
1901 /// \param The template argument we are producing template argument
1902 /// location information for.
1903 ///
1904 /// \param NTTPType For a declaration template argument, the type of
1905 /// the non-type template parameter that corresponds to this template
1906 /// argument.
1907 ///
1908 /// \param Loc The source location to use for the resulting template
1909 /// argument.
1910 static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema & S,const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)1911 getTrivialTemplateArgumentLoc(Sema &S,
1912 const TemplateArgument &Arg,
1913 QualType NTTPType,
1914 SourceLocation Loc) {
1915 switch (Arg.getKind()) {
1916 case TemplateArgument::Null:
1917 llvm_unreachable("Can't get a NULL template argument here");
1918
1919 case TemplateArgument::Type:
1920 return TemplateArgumentLoc(Arg,
1921 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1922
1923 case TemplateArgument::Declaration: {
1924 Expr *E
1925 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1926 .takeAs<Expr>();
1927 return TemplateArgumentLoc(TemplateArgument(E), E);
1928 }
1929
1930 case TemplateArgument::Integral: {
1931 Expr *E
1932 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1933 return TemplateArgumentLoc(TemplateArgument(E), E);
1934 }
1935
1936 case TemplateArgument::Template:
1937 case TemplateArgument::TemplateExpansion: {
1938 NestedNameSpecifierLocBuilder Builder;
1939 TemplateName Template = Arg.getAsTemplate();
1940 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
1941 Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
1942 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
1943 Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
1944
1945 if (Arg.getKind() == TemplateArgument::Template)
1946 return TemplateArgumentLoc(Arg,
1947 Builder.getWithLocInContext(S.Context),
1948 Loc);
1949
1950
1951 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
1952 Loc, Loc);
1953 }
1954
1955 case TemplateArgument::Expression:
1956 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1957
1958 case TemplateArgument::Pack:
1959 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1960 }
1961
1962 llvm_unreachable("Invalid TemplateArgument Kind!");
1963 }
1964
1965
1966 /// \brief Convert the given deduced template argument and add it to the set of
1967 /// fully-converted template arguments.
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,QualType NTTPType,unsigned ArgumentPackIndex,TemplateDeductionInfo & Info,bool InFunctionTemplate,SmallVectorImpl<TemplateArgument> & Output)1968 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1969 DeducedTemplateArgument Arg,
1970 NamedDecl *Template,
1971 QualType NTTPType,
1972 unsigned ArgumentPackIndex,
1973 TemplateDeductionInfo &Info,
1974 bool InFunctionTemplate,
1975 SmallVectorImpl<TemplateArgument> &Output) {
1976 if (Arg.getKind() == TemplateArgument::Pack) {
1977 // This is a template argument pack, so check each of its arguments against
1978 // the template parameter.
1979 SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1980 for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1981 PAEnd = Arg.pack_end();
1982 PA != PAEnd; ++PA) {
1983 // When converting the deduced template argument, append it to the
1984 // general output list. We need to do this so that the template argument
1985 // checking logic has all of the prior template arguments available.
1986 DeducedTemplateArgument InnerArg(*PA);
1987 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
1988 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
1989 NTTPType, PackedArgsBuilder.size(),
1990 Info, InFunctionTemplate, Output))
1991 return true;
1992
1993 // Move the converted template argument into our argument pack.
1994 PackedArgsBuilder.push_back(Output.back());
1995 Output.pop_back();
1996 }
1997
1998 // Create the resulting argument pack.
1999 Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2000 PackedArgsBuilder.data(),
2001 PackedArgsBuilder.size()));
2002 return false;
2003 }
2004
2005 // Convert the deduced template argument into a template
2006 // argument that we can check, almost as if the user had written
2007 // the template argument explicitly.
2008 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2009 Info.getLocation());
2010
2011 // Check the template argument, converting it as necessary.
2012 return S.CheckTemplateArgument(Param, ArgLoc,
2013 Template,
2014 Template->getLocation(),
2015 Template->getSourceRange().getEnd(),
2016 ArgumentPackIndex,
2017 Output,
2018 InFunctionTemplate
2019 ? (Arg.wasDeducedFromArrayBound()
2020 ? Sema::CTAK_DeducedFromArrayBound
2021 : Sema::CTAK_Deduced)
2022 : Sema::CTAK_Specified);
2023 }
2024
2025 /// Complete template argument deduction for a class template partial
2026 /// specialization.
2027 static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema & S,ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2028 FinishTemplateArgumentDeduction(Sema &S,
2029 ClassTemplatePartialSpecializationDecl *Partial,
2030 const TemplateArgumentList &TemplateArgs,
2031 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2032 TemplateDeductionInfo &Info) {
2033 // Unevaluated SFINAE context.
2034 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2035 Sema::SFINAETrap Trap(S);
2036
2037 Sema::ContextRAII SavedContext(S, Partial);
2038
2039 // C++ [temp.deduct.type]p2:
2040 // [...] or if any template argument remains neither deduced nor
2041 // explicitly specified, template argument deduction fails.
2042 SmallVector<TemplateArgument, 4> Builder;
2043 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2044 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2045 NamedDecl *Param = PartialParams->getParam(I);
2046 if (Deduced[I].isNull()) {
2047 Info.Param = makeTemplateParameter(Param);
2048 return Sema::TDK_Incomplete;
2049 }
2050
2051 // We have deduced this argument, so it still needs to be
2052 // checked and converted.
2053
2054 // First, for a non-type template parameter type that is
2055 // initialized by a declaration, we need the type of the
2056 // corresponding non-type template parameter.
2057 QualType NTTPType;
2058 if (NonTypeTemplateParmDecl *NTTP
2059 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2060 NTTPType = NTTP->getType();
2061 if (NTTPType->isDependentType()) {
2062 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2063 Builder.data(), Builder.size());
2064 NTTPType = S.SubstType(NTTPType,
2065 MultiLevelTemplateArgumentList(TemplateArgs),
2066 NTTP->getLocation(),
2067 NTTP->getDeclName());
2068 if (NTTPType.isNull()) {
2069 Info.Param = makeTemplateParameter(Param);
2070 // FIXME: These template arguments are temporary. Free them!
2071 Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2072 Builder.data(),
2073 Builder.size()));
2074 return Sema::TDK_SubstitutionFailure;
2075 }
2076 }
2077 }
2078
2079 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2080 Partial, NTTPType, 0, Info, false,
2081 Builder)) {
2082 Info.Param = makeTemplateParameter(Param);
2083 // FIXME: These template arguments are temporary. Free them!
2084 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2085 Builder.size()));
2086 return Sema::TDK_SubstitutionFailure;
2087 }
2088 }
2089
2090 // Form the template argument list from the deduced template arguments.
2091 TemplateArgumentList *DeducedArgumentList
2092 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2093 Builder.size());
2094
2095 Info.reset(DeducedArgumentList);
2096
2097 // Substitute the deduced template arguments into the template
2098 // arguments of the class template partial specialization, and
2099 // verify that the instantiated template arguments are both valid
2100 // and are equivalent to the template arguments originally provided
2101 // to the class template.
2102 LocalInstantiationScope InstScope(S);
2103 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2104 const TemplateArgumentLoc *PartialTemplateArgs
2105 = Partial->getTemplateArgsAsWritten();
2106
2107 // Note that we don't provide the langle and rangle locations.
2108 TemplateArgumentListInfo InstArgs;
2109
2110 if (S.Subst(PartialTemplateArgs,
2111 Partial->getNumTemplateArgsAsWritten(),
2112 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2113 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2114 if (ParamIdx >= Partial->getTemplateParameters()->size())
2115 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2116
2117 Decl *Param
2118 = const_cast<NamedDecl *>(
2119 Partial->getTemplateParameters()->getParam(ParamIdx));
2120 Info.Param = makeTemplateParameter(Param);
2121 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2122 return Sema::TDK_SubstitutionFailure;
2123 }
2124
2125 SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2126 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2127 InstArgs, false, ConvertedInstArgs))
2128 return Sema::TDK_SubstitutionFailure;
2129
2130 TemplateParameterList *TemplateParams
2131 = ClassTemplate->getTemplateParameters();
2132 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2133 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2134 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2135 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2136 Info.FirstArg = TemplateArgs[I];
2137 Info.SecondArg = InstArg;
2138 return Sema::TDK_NonDeducedMismatch;
2139 }
2140 }
2141
2142 if (Trap.hasErrorOccurred())
2143 return Sema::TDK_SubstitutionFailure;
2144
2145 return Sema::TDK_Success;
2146 }
2147
2148 /// \brief Perform template argument deduction to determine whether
2149 /// the given template arguments match the given class template
2150 /// partial specialization per C++ [temp.class.spec.match].
2151 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2152 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2153 const TemplateArgumentList &TemplateArgs,
2154 TemplateDeductionInfo &Info) {
2155 // C++ [temp.class.spec.match]p2:
2156 // A partial specialization matches a given actual template
2157 // argument list if the template arguments of the partial
2158 // specialization can be deduced from the actual template argument
2159 // list (14.8.2).
2160
2161 // Unevaluated SFINAE context.
2162 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2163 SFINAETrap Trap(*this);
2164
2165 SmallVector<DeducedTemplateArgument, 4> Deduced;
2166 Deduced.resize(Partial->getTemplateParameters()->size());
2167 if (TemplateDeductionResult Result
2168 = ::DeduceTemplateArguments(*this,
2169 Partial->getTemplateParameters(),
2170 Partial->getTemplateArgs(),
2171 TemplateArgs, Info, Deduced))
2172 return Result;
2173
2174 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2175 Deduced.data(), Deduced.size(), Info);
2176 if (Inst)
2177 return TDK_InstantiationDepth;
2178
2179 if (Trap.hasErrorOccurred())
2180 return Sema::TDK_SubstitutionFailure;
2181
2182 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2183 Deduced, Info);
2184 }
2185
2186 /// \brief Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)2187 static bool isSimpleTemplateIdType(QualType T) {
2188 if (const TemplateSpecializationType *Spec
2189 = T->getAs<TemplateSpecializationType>())
2190 return Spec->getTemplateName().getAsTemplateDecl() != 0;
2191
2192 return false;
2193 }
2194
2195 /// \brief Substitute the explicitly-provided template arguments into the
2196 /// given function template according to C++ [temp.arg.explicit].
2197 ///
2198 /// \param FunctionTemplate the function template into which the explicit
2199 /// template arguments will be substituted.
2200 ///
2201 /// \param ExplicitTemplateArguments the explicitly-specified template
2202 /// arguments.
2203 ///
2204 /// \param Deduced the deduced template arguments, which will be populated
2205 /// with the converted and checked explicit template arguments.
2206 ///
2207 /// \param ParamTypes will be populated with the instantiated function
2208 /// parameters.
2209 ///
2210 /// \param FunctionType if non-NULL, the result type of the function template
2211 /// will also be instantiated and the pointed-to value will be updated with
2212 /// the instantiated function type.
2213 ///
2214 /// \param Info if substitution fails for any reason, this object will be
2215 /// populated with more information about the failure.
2216 ///
2217 /// \returns TDK_Success if substitution was successful, or some failure
2218 /// condition.
2219 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)2220 Sema::SubstituteExplicitTemplateArguments(
2221 FunctionTemplateDecl *FunctionTemplate,
2222 TemplateArgumentListInfo &ExplicitTemplateArgs,
2223 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2224 SmallVectorImpl<QualType> &ParamTypes,
2225 QualType *FunctionType,
2226 TemplateDeductionInfo &Info) {
2227 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2228 TemplateParameterList *TemplateParams
2229 = FunctionTemplate->getTemplateParameters();
2230
2231 if (ExplicitTemplateArgs.size() == 0) {
2232 // No arguments to substitute; just copy over the parameter types and
2233 // fill in the function type.
2234 for (FunctionDecl::param_iterator P = Function->param_begin(),
2235 PEnd = Function->param_end();
2236 P != PEnd;
2237 ++P)
2238 ParamTypes.push_back((*P)->getType());
2239
2240 if (FunctionType)
2241 *FunctionType = Function->getType();
2242 return TDK_Success;
2243 }
2244
2245 // Unevaluated SFINAE context.
2246 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2247 SFINAETrap Trap(*this);
2248
2249 // C++ [temp.arg.explicit]p3:
2250 // Template arguments that are present shall be specified in the
2251 // declaration order of their corresponding template-parameters. The
2252 // template argument list shall not specify more template-arguments than
2253 // there are corresponding template-parameters.
2254 SmallVector<TemplateArgument, 4> Builder;
2255
2256 // Enter a new template instantiation context where we check the
2257 // explicitly-specified template arguments against this function template,
2258 // and then substitute them into the function parameter types.
2259 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2260 FunctionTemplate, Deduced.data(), Deduced.size(),
2261 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2262 Info);
2263 if (Inst)
2264 return TDK_InstantiationDepth;
2265
2266 if (CheckTemplateArgumentList(FunctionTemplate,
2267 SourceLocation(),
2268 ExplicitTemplateArgs,
2269 true,
2270 Builder) || Trap.hasErrorOccurred()) {
2271 unsigned Index = Builder.size();
2272 if (Index >= TemplateParams->size())
2273 Index = TemplateParams->size() - 1;
2274 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2275 return TDK_InvalidExplicitArguments;
2276 }
2277
2278 // Form the template argument list from the explicitly-specified
2279 // template arguments.
2280 TemplateArgumentList *ExplicitArgumentList
2281 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2282 Info.reset(ExplicitArgumentList);
2283
2284 // Template argument deduction and the final substitution should be
2285 // done in the context of the templated declaration. Explicit
2286 // argument substitution, on the other hand, needs to happen in the
2287 // calling context.
2288 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2289
2290 // If we deduced template arguments for a template parameter pack,
2291 // note that the template argument pack is partially substituted and record
2292 // the explicit template arguments. They'll be used as part of deduction
2293 // for this template parameter pack.
2294 for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2295 const TemplateArgument &Arg = Builder[I];
2296 if (Arg.getKind() == TemplateArgument::Pack) {
2297 CurrentInstantiationScope->SetPartiallySubstitutedPack(
2298 TemplateParams->getParam(I),
2299 Arg.pack_begin(),
2300 Arg.pack_size());
2301 break;
2302 }
2303 }
2304
2305 const FunctionProtoType *Proto
2306 = Function->getType()->getAs<FunctionProtoType>();
2307 assert(Proto && "Function template does not have a prototype?");
2308
2309 // Instantiate the types of each of the function parameters given the
2310 // explicitly-specified template arguments. If the function has a trailing
2311 // return type, substitute it after the arguments to ensure we substitute
2312 // in lexical order.
2313 if (Proto->hasTrailingReturn()) {
2314 if (SubstParmTypes(Function->getLocation(),
2315 Function->param_begin(), Function->getNumParams(),
2316 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2317 ParamTypes))
2318 return TDK_SubstitutionFailure;
2319 }
2320
2321 // Instantiate the return type.
2322 // FIXME: exception-specifications?
2323 QualType ResultType;
2324 {
2325 // C++11 [expr.prim.general]p3:
2326 // If a declaration declares a member function or member function
2327 // template of a class X, the expression this is a prvalue of type
2328 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2329 // and the end of the function-definition, member-declarator, or
2330 // declarator.
2331 unsigned ThisTypeQuals = 0;
2332 CXXRecordDecl *ThisContext = 0;
2333 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2334 ThisContext = Method->getParent();
2335 ThisTypeQuals = Method->getTypeQualifiers();
2336 }
2337
2338 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2339 getLangOpts().CPlusPlus0x);
2340
2341 ResultType = SubstType(Proto->getResultType(),
2342 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2343 Function->getTypeSpecStartLoc(),
2344 Function->getDeclName());
2345 if (ResultType.isNull() || Trap.hasErrorOccurred())
2346 return TDK_SubstitutionFailure;
2347 }
2348
2349 // Instantiate the types of each of the function parameters given the
2350 // explicitly-specified template arguments if we didn't do so earlier.
2351 if (!Proto->hasTrailingReturn() &&
2352 SubstParmTypes(Function->getLocation(),
2353 Function->param_begin(), Function->getNumParams(),
2354 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2355 ParamTypes))
2356 return TDK_SubstitutionFailure;
2357
2358 if (FunctionType) {
2359 *FunctionType = BuildFunctionType(ResultType,
2360 ParamTypes.data(), ParamTypes.size(),
2361 Proto->isVariadic(),
2362 Proto->hasTrailingReturn(),
2363 Proto->getTypeQuals(),
2364 Proto->getRefQualifier(),
2365 Function->getLocation(),
2366 Function->getDeclName(),
2367 Proto->getExtInfo());
2368 if (FunctionType->isNull() || Trap.hasErrorOccurred())
2369 return TDK_SubstitutionFailure;
2370 }
2371
2372 // C++ [temp.arg.explicit]p2:
2373 // Trailing template arguments that can be deduced (14.8.2) may be
2374 // omitted from the list of explicit template-arguments. If all of the
2375 // template arguments can be deduced, they may all be omitted; in this
2376 // case, the empty template argument list <> itself may also be omitted.
2377 //
2378 // Take all of the explicitly-specified arguments and put them into
2379 // the set of deduced template arguments. Explicitly-specified
2380 // parameter packs, however, will be set to NULL since the deduction
2381 // mechanisms handle explicitly-specified argument packs directly.
2382 Deduced.reserve(TemplateParams->size());
2383 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2384 const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2385 if (Arg.getKind() == TemplateArgument::Pack)
2386 Deduced.push_back(DeducedTemplateArgument());
2387 else
2388 Deduced.push_back(Arg);
2389 }
2390
2391 return TDK_Success;
2392 }
2393
2394 /// \brief Check whether the deduced argument type for a call to a function
2395 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
2396 static bool
CheckOriginalCallArgDeduction(Sema & S,Sema::OriginalCallArg OriginalArg,QualType DeducedA)2397 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2398 QualType DeducedA) {
2399 ASTContext &Context = S.Context;
2400
2401 QualType A = OriginalArg.OriginalArgType;
2402 QualType OriginalParamType = OriginalArg.OriginalParamType;
2403
2404 // Check for type equality (top-level cv-qualifiers are ignored).
2405 if (Context.hasSameUnqualifiedType(A, DeducedA))
2406 return false;
2407
2408 // Strip off references on the argument types; they aren't needed for
2409 // the following checks.
2410 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2411 DeducedA = DeducedARef->getPointeeType();
2412 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2413 A = ARef->getPointeeType();
2414
2415 // C++ [temp.deduct.call]p4:
2416 // [...] However, there are three cases that allow a difference:
2417 // - If the original P is a reference type, the deduced A (i.e., the
2418 // type referred to by the reference) can be more cv-qualified than
2419 // the transformed A.
2420 if (const ReferenceType *OriginalParamRef
2421 = OriginalParamType->getAs<ReferenceType>()) {
2422 // We don't want to keep the reference around any more.
2423 OriginalParamType = OriginalParamRef->getPointeeType();
2424
2425 Qualifiers AQuals = A.getQualifiers();
2426 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2427 if (AQuals == DeducedAQuals) {
2428 // Qualifiers match; there's nothing to do.
2429 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2430 return true;
2431 } else {
2432 // Qualifiers are compatible, so have the argument type adopt the
2433 // deduced argument type's qualifiers as if we had performed the
2434 // qualification conversion.
2435 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2436 }
2437 }
2438
2439 // - The transformed A can be another pointer or pointer to member
2440 // type that can be converted to the deduced A via a qualification
2441 // conversion.
2442 //
2443 // Also allow conversions which merely strip [[noreturn]] from function types
2444 // (recursively) as an extension.
2445 // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2446 bool ObjCLifetimeConversion = false;
2447 QualType ResultTy;
2448 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2449 (S.IsQualificationConversion(A, DeducedA, false,
2450 ObjCLifetimeConversion) ||
2451 S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2452 return false;
2453
2454
2455 // - If P is a class and P has the form simple-template-id, then the
2456 // transformed A can be a derived class of the deduced A. [...]
2457 // [...] Likewise, if P is a pointer to a class of the form
2458 // simple-template-id, the transformed A can be a pointer to a
2459 // derived class pointed to by the deduced A.
2460 if (const PointerType *OriginalParamPtr
2461 = OriginalParamType->getAs<PointerType>()) {
2462 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2463 if (const PointerType *APtr = A->getAs<PointerType>()) {
2464 if (A->getPointeeType()->isRecordType()) {
2465 OriginalParamType = OriginalParamPtr->getPointeeType();
2466 DeducedA = DeducedAPtr->getPointeeType();
2467 A = APtr->getPointeeType();
2468 }
2469 }
2470 }
2471 }
2472
2473 if (Context.hasSameUnqualifiedType(A, DeducedA))
2474 return false;
2475
2476 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2477 S.IsDerivedFrom(A, DeducedA))
2478 return false;
2479
2480 return true;
2481 }
2482
2483 /// \brief Finish template argument deduction for a function template,
2484 /// checking the deduced template arguments for completeness and forming
2485 /// the function template specialization.
2486 ///
2487 /// \param OriginalCallArgs If non-NULL, the original call arguments against
2488 /// which the deduced argument types should be compared.
2489 Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs)2490 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2491 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2492 unsigned NumExplicitlySpecified,
2493 FunctionDecl *&Specialization,
2494 TemplateDeductionInfo &Info,
2495 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2496 TemplateParameterList *TemplateParams
2497 = FunctionTemplate->getTemplateParameters();
2498
2499 // Unevaluated SFINAE context.
2500 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2501 SFINAETrap Trap(*this);
2502
2503 // Enter a new template instantiation context while we instantiate the
2504 // actual function declaration.
2505 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2506 FunctionTemplate, Deduced.data(), Deduced.size(),
2507 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2508 Info);
2509 if (Inst)
2510 return TDK_InstantiationDepth;
2511
2512 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2513
2514 // C++ [temp.deduct.type]p2:
2515 // [...] or if any template argument remains neither deduced nor
2516 // explicitly specified, template argument deduction fails.
2517 SmallVector<TemplateArgument, 4> Builder;
2518 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2519 NamedDecl *Param = TemplateParams->getParam(I);
2520
2521 if (!Deduced[I].isNull()) {
2522 if (I < NumExplicitlySpecified) {
2523 // We have already fully type-checked and converted this
2524 // argument, because it was explicitly-specified. Just record the
2525 // presence of this argument.
2526 Builder.push_back(Deduced[I]);
2527 continue;
2528 }
2529
2530 // We have deduced this argument, so it still needs to be
2531 // checked and converted.
2532
2533 // First, for a non-type template parameter type that is
2534 // initialized by a declaration, we need the type of the
2535 // corresponding non-type template parameter.
2536 QualType NTTPType;
2537 if (NonTypeTemplateParmDecl *NTTP
2538 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2539 NTTPType = NTTP->getType();
2540 if (NTTPType->isDependentType()) {
2541 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2542 Builder.data(), Builder.size());
2543 NTTPType = SubstType(NTTPType,
2544 MultiLevelTemplateArgumentList(TemplateArgs),
2545 NTTP->getLocation(),
2546 NTTP->getDeclName());
2547 if (NTTPType.isNull()) {
2548 Info.Param = makeTemplateParameter(Param);
2549 // FIXME: These template arguments are temporary. Free them!
2550 Info.reset(TemplateArgumentList::CreateCopy(Context,
2551 Builder.data(),
2552 Builder.size()));
2553 return TDK_SubstitutionFailure;
2554 }
2555 }
2556 }
2557
2558 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2559 FunctionTemplate, NTTPType, 0, Info,
2560 true, Builder)) {
2561 Info.Param = makeTemplateParameter(Param);
2562 // FIXME: These template arguments are temporary. Free them!
2563 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2564 Builder.size()));
2565 return TDK_SubstitutionFailure;
2566 }
2567
2568 continue;
2569 }
2570
2571 // C++0x [temp.arg.explicit]p3:
2572 // A trailing template parameter pack (14.5.3) not otherwise deduced will
2573 // be deduced to an empty sequence of template arguments.
2574 // FIXME: Where did the word "trailing" come from?
2575 if (Param->isTemplateParameterPack()) {
2576 // We may have had explicitly-specified template arguments for this
2577 // template parameter pack. If so, our empty deduction extends the
2578 // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2579 const TemplateArgument *ExplicitArgs;
2580 unsigned NumExplicitArgs;
2581 if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2582 &NumExplicitArgs)
2583 == Param)
2584 Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2585 else
2586 Builder.push_back(TemplateArgument(0, 0));
2587
2588 continue;
2589 }
2590
2591 // Substitute into the default template argument, if available.
2592 TemplateArgumentLoc DefArg
2593 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2594 FunctionTemplate->getLocation(),
2595 FunctionTemplate->getSourceRange().getEnd(),
2596 Param,
2597 Builder);
2598
2599 // If there was no default argument, deduction is incomplete.
2600 if (DefArg.getArgument().isNull()) {
2601 Info.Param = makeTemplateParameter(
2602 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2603 return TDK_Incomplete;
2604 }
2605
2606 // Check whether we can actually use the default argument.
2607 if (CheckTemplateArgument(Param, DefArg,
2608 FunctionTemplate,
2609 FunctionTemplate->getLocation(),
2610 FunctionTemplate->getSourceRange().getEnd(),
2611 0, Builder,
2612 CTAK_Specified)) {
2613 Info.Param = makeTemplateParameter(
2614 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2615 // FIXME: These template arguments are temporary. Free them!
2616 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2617 Builder.size()));
2618 return TDK_SubstitutionFailure;
2619 }
2620
2621 // If we get here, we successfully used the default template argument.
2622 }
2623
2624 // Form the template argument list from the deduced template arguments.
2625 TemplateArgumentList *DeducedArgumentList
2626 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2627 Info.reset(DeducedArgumentList);
2628
2629 // Substitute the deduced template arguments into the function template
2630 // declaration to produce the function template specialization.
2631 DeclContext *Owner = FunctionTemplate->getDeclContext();
2632 if (FunctionTemplate->getFriendObjectKind())
2633 Owner = FunctionTemplate->getLexicalDeclContext();
2634 Specialization = cast_or_null<FunctionDecl>(
2635 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2636 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2637 if (!Specialization || Specialization->isInvalidDecl())
2638 return TDK_SubstitutionFailure;
2639
2640 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2641 FunctionTemplate->getCanonicalDecl());
2642
2643 // If the template argument list is owned by the function template
2644 // specialization, release it.
2645 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2646 !Trap.hasErrorOccurred())
2647 Info.take();
2648
2649 // There may have been an error that did not prevent us from constructing a
2650 // declaration. Mark the declaration invalid and return with a substitution
2651 // failure.
2652 if (Trap.hasErrorOccurred()) {
2653 Specialization->setInvalidDecl(true);
2654 return TDK_SubstitutionFailure;
2655 }
2656
2657 if (OriginalCallArgs) {
2658 // C++ [temp.deduct.call]p4:
2659 // In general, the deduction process attempts to find template argument
2660 // values that will make the deduced A identical to A (after the type A
2661 // is transformed as described above). [...]
2662 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2663 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2664 unsigned ParamIdx = OriginalArg.ArgIdx;
2665
2666 if (ParamIdx >= Specialization->getNumParams())
2667 continue;
2668
2669 QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2670 if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2671 return Sema::TDK_SubstitutionFailure;
2672 }
2673 }
2674
2675 // If we suppressed any diagnostics while performing template argument
2676 // deduction, and if we haven't already instantiated this declaration,
2677 // keep track of these diagnostics. They'll be emitted if this specialization
2678 // is actually used.
2679 if (Info.diag_begin() != Info.diag_end()) {
2680 llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
2681 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2682 if (Pos == SuppressedDiagnostics.end())
2683 SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2684 .append(Info.diag_begin(), Info.diag_end());
2685 }
2686
2687 return TDK_Success;
2688 }
2689
2690 /// Gets the type of a function for template-argument-deducton
2691 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(ASTContext & Context,const OverloadExpr::FindResult & R,FunctionDecl * Fn)2692 static QualType GetTypeOfFunction(ASTContext &Context,
2693 const OverloadExpr::FindResult &R,
2694 FunctionDecl *Fn) {
2695 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2696 if (Method->isInstance()) {
2697 // An instance method that's referenced in a form that doesn't
2698 // look like a member pointer is just invalid.
2699 if (!R.HasFormOfMemberPointer) return QualType();
2700
2701 return Context.getMemberPointerType(Fn->getType(),
2702 Context.getTypeDeclType(Method->getParent()).getTypePtr());
2703 }
2704
2705 if (!R.IsAddressOfOperand) return Fn->getType();
2706 return Context.getPointerType(Fn->getType());
2707 }
2708
2709 /// Apply the deduction rules for overload sets.
2710 ///
2711 /// \return the null type if this argument should be treated as an
2712 /// undeduced context
2713 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)2714 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2715 Expr *Arg, QualType ParamType,
2716 bool ParamWasReference) {
2717
2718 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2719
2720 OverloadExpr *Ovl = R.Expression;
2721
2722 // C++0x [temp.deduct.call]p4
2723 unsigned TDF = 0;
2724 if (ParamWasReference)
2725 TDF |= TDF_ParamWithReferenceType;
2726 if (R.IsAddressOfOperand)
2727 TDF |= TDF_IgnoreQualifiers;
2728
2729 // C++0x [temp.deduct.call]p6:
2730 // When P is a function type, pointer to function type, or pointer
2731 // to member function type:
2732
2733 if (!ParamType->isFunctionType() &&
2734 !ParamType->isFunctionPointerType() &&
2735 !ParamType->isMemberFunctionPointerType()) {
2736 if (Ovl->hasExplicitTemplateArgs()) {
2737 // But we can still look for an explicit specialization.
2738 if (FunctionDecl *ExplicitSpec
2739 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2740 return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2741 }
2742
2743 return QualType();
2744 }
2745
2746 // Gather the explicit template arguments, if any.
2747 TemplateArgumentListInfo ExplicitTemplateArgs;
2748 if (Ovl->hasExplicitTemplateArgs())
2749 Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
2750 QualType Match;
2751 for (UnresolvedSetIterator I = Ovl->decls_begin(),
2752 E = Ovl->decls_end(); I != E; ++I) {
2753 NamedDecl *D = (*I)->getUnderlyingDecl();
2754
2755 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
2756 // - If the argument is an overload set containing one or more
2757 // function templates, the parameter is treated as a
2758 // non-deduced context.
2759 if (!Ovl->hasExplicitTemplateArgs())
2760 return QualType();
2761
2762 // Otherwise, see if we can resolve a function type
2763 FunctionDecl *Specialization = 0;
2764 TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2765 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
2766 Specialization, Info))
2767 continue;
2768
2769 D = Specialization;
2770 }
2771
2772 FunctionDecl *Fn = cast<FunctionDecl>(D);
2773 QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2774 if (ArgType.isNull()) continue;
2775
2776 // Function-to-pointer conversion.
2777 if (!ParamWasReference && ParamType->isPointerType() &&
2778 ArgType->isFunctionType())
2779 ArgType = S.Context.getPointerType(ArgType);
2780
2781 // - If the argument is an overload set (not containing function
2782 // templates), trial argument deduction is attempted using each
2783 // of the members of the set. If deduction succeeds for only one
2784 // of the overload set members, that member is used as the
2785 // argument value for the deduction. If deduction succeeds for
2786 // more than one member of the overload set the parameter is
2787 // treated as a non-deduced context.
2788
2789 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2790 // Type deduction is done independently for each P/A pair, and
2791 // the deduced template argument values are then combined.
2792 // So we do not reject deductions which were made elsewhere.
2793 SmallVector<DeducedTemplateArgument, 8>
2794 Deduced(TemplateParams->size());
2795 TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2796 Sema::TemplateDeductionResult Result
2797 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2798 ArgType, Info, Deduced, TDF);
2799 if (Result) continue;
2800 if (!Match.isNull()) return QualType();
2801 Match = ArgType;
2802 }
2803
2804 return Match;
2805 }
2806
2807 /// \brief Perform the adjustments to the parameter and argument types
2808 /// described in C++ [temp.deduct.call].
2809 ///
2810 /// \returns true if the caller should not attempt to perform any template
2811 /// argument deduction based on this P/A pair.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)2812 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2813 TemplateParameterList *TemplateParams,
2814 QualType &ParamType,
2815 QualType &ArgType,
2816 Expr *Arg,
2817 unsigned &TDF) {
2818 // C++0x [temp.deduct.call]p3:
2819 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
2820 // are ignored for type deduction.
2821 if (ParamType.hasQualifiers())
2822 ParamType = ParamType.getUnqualifiedType();
2823 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2824 if (ParamRefType) {
2825 QualType PointeeType = ParamRefType->getPointeeType();
2826
2827 // If the argument has incomplete array type, try to complete it's type.
2828 if (ArgType->isIncompleteArrayType() &&
2829 !S.RequireCompleteExprType(Arg, S.PDiag(),
2830 std::make_pair(SourceLocation(), S.PDiag())))
2831 ArgType = Arg->getType();
2832
2833 // [C++0x] If P is an rvalue reference to a cv-unqualified
2834 // template parameter and the argument is an lvalue, the type
2835 // "lvalue reference to A" is used in place of A for type
2836 // deduction.
2837 if (isa<RValueReferenceType>(ParamType)) {
2838 if (!PointeeType.getQualifiers() &&
2839 isa<TemplateTypeParmType>(PointeeType) &&
2840 Arg->Classify(S.Context).isLValue() &&
2841 Arg->getType() != S.Context.OverloadTy &&
2842 Arg->getType() != S.Context.BoundMemberTy)
2843 ArgType = S.Context.getLValueReferenceType(ArgType);
2844 }
2845
2846 // [...] If P is a reference type, the type referred to by P is used
2847 // for type deduction.
2848 ParamType = PointeeType;
2849 }
2850
2851 // Overload sets usually make this parameter an undeduced
2852 // context, but there are sometimes special circumstances.
2853 if (ArgType == S.Context.OverloadTy) {
2854 ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2855 Arg, ParamType,
2856 ParamRefType != 0);
2857 if (ArgType.isNull())
2858 return true;
2859 }
2860
2861 if (ParamRefType) {
2862 // C++0x [temp.deduct.call]p3:
2863 // [...] If P is of the form T&&, where T is a template parameter, and
2864 // the argument is an lvalue, the type A& is used in place of A for
2865 // type deduction.
2866 if (ParamRefType->isRValueReferenceType() &&
2867 ParamRefType->getAs<TemplateTypeParmType>() &&
2868 Arg->isLValue())
2869 ArgType = S.Context.getLValueReferenceType(ArgType);
2870 } else {
2871 // C++ [temp.deduct.call]p2:
2872 // If P is not a reference type:
2873 // - If A is an array type, the pointer type produced by the
2874 // array-to-pointer standard conversion (4.2) is used in place of
2875 // A for type deduction; otherwise,
2876 if (ArgType->isArrayType())
2877 ArgType = S.Context.getArrayDecayedType(ArgType);
2878 // - If A is a function type, the pointer type produced by the
2879 // function-to-pointer standard conversion (4.3) is used in place
2880 // of A for type deduction; otherwise,
2881 else if (ArgType->isFunctionType())
2882 ArgType = S.Context.getPointerType(ArgType);
2883 else {
2884 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
2885 // type are ignored for type deduction.
2886 ArgType = ArgType.getUnqualifiedType();
2887 }
2888 }
2889
2890 // C++0x [temp.deduct.call]p4:
2891 // In general, the deduction process attempts to find template argument
2892 // values that will make the deduced A identical to A (after the type A
2893 // is transformed as described above). [...]
2894 TDF = TDF_SkipNonDependent;
2895
2896 // - If the original P is a reference type, the deduced A (i.e., the
2897 // type referred to by the reference) can be more cv-qualified than
2898 // the transformed A.
2899 if (ParamRefType)
2900 TDF |= TDF_ParamWithReferenceType;
2901 // - The transformed A can be another pointer or pointer to member
2902 // type that can be converted to the deduced A via a qualification
2903 // conversion (4.4).
2904 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2905 ArgType->isObjCObjectPointerType())
2906 TDF |= TDF_IgnoreQualifiers;
2907 // - If P is a class and P has the form simple-template-id, then the
2908 // transformed A can be a derived class of the deduced A. Likewise,
2909 // if P is a pointer to a class of the form simple-template-id, the
2910 // transformed A can be a pointer to a derived class pointed to by
2911 // the deduced A.
2912 if (isSimpleTemplateIdType(ParamType) ||
2913 (isa<PointerType>(ParamType) &&
2914 isSimpleTemplateIdType(
2915 ParamType->getAs<PointerType>()->getPointeeType())))
2916 TDF |= TDF_DerivedClass;
2917
2918 return false;
2919 }
2920
2921 static bool hasDeducibleTemplateParameters(Sema &S,
2922 FunctionTemplateDecl *FunctionTemplate,
2923 QualType T);
2924
2925 /// \brief Perform template argument deduction by matching a parameter type
2926 /// against a single expression, where the expression is an element of
2927 /// an initializer list that was originally matched against the argument
2928 /// type.
2929 static Sema::TemplateDeductionResult
DeduceTemplateArgumentByListElement(Sema & S,TemplateParameterList * TemplateParams,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF)2930 DeduceTemplateArgumentByListElement(Sema &S,
2931 TemplateParameterList *TemplateParams,
2932 QualType ParamType, Expr *Arg,
2933 TemplateDeductionInfo &Info,
2934 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2935 unsigned TDF) {
2936 // Handle the case where an init list contains another init list as the
2937 // element.
2938 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
2939 QualType X;
2940 if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
2941 return Sema::TDK_Success; // Just ignore this expression.
2942
2943 // Recurse down into the init list.
2944 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
2945 if (Sema::TemplateDeductionResult Result =
2946 DeduceTemplateArgumentByListElement(S, TemplateParams, X,
2947 ILE->getInit(i),
2948 Info, Deduced, TDF))
2949 return Result;
2950 }
2951 return Sema::TDK_Success;
2952 }
2953
2954 // For all other cases, just match by type.
2955 QualType ArgType = Arg->getType();
2956 if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
2957 ArgType, Arg, TDF))
2958 return Sema::TDK_FailedOverloadResolution;
2959 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2960 ArgType, Info, Deduced, TDF);
2961 }
2962
2963 /// \brief Perform template argument deduction from a function call
2964 /// (C++ [temp.deduct.call]).
2965 ///
2966 /// \param FunctionTemplate the function template for which we are performing
2967 /// template argument deduction.
2968 ///
2969 /// \param ExplicitTemplateArguments the explicit template arguments provided
2970 /// for this call.
2971 ///
2972 /// \param Args the function call arguments
2973 ///
2974 /// \param NumArgs the number of arguments in Args
2975 ///
2976 /// \param Name the name of the function being called. This is only significant
2977 /// when the function template is a conversion function template, in which
2978 /// case this routine will also perform template argument deduction based on
2979 /// the function to which
2980 ///
2981 /// \param Specialization if template argument deduction was successful,
2982 /// this will be set to the function template specialization produced by
2983 /// template argument deduction.
2984 ///
2985 /// \param Info the argument will be updated to provide additional information
2986 /// about template argument deduction.
2987 ///
2988 /// \returns the result of template argument deduction.
2989 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)2990 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2991 TemplateArgumentListInfo *ExplicitTemplateArgs,
2992 llvm::ArrayRef<Expr *> Args,
2993 FunctionDecl *&Specialization,
2994 TemplateDeductionInfo &Info) {
2995 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2996
2997 // C++ [temp.deduct.call]p1:
2998 // Template argument deduction is done by comparing each function template
2999 // parameter type (call it P) with the type of the corresponding argument
3000 // of the call (call it A) as described below.
3001 unsigned CheckArgs = Args.size();
3002 if (Args.size() < Function->getMinRequiredArguments())
3003 return TDK_TooFewArguments;
3004 else if (Args.size() > Function->getNumParams()) {
3005 const FunctionProtoType *Proto
3006 = Function->getType()->getAs<FunctionProtoType>();
3007 if (Proto->isTemplateVariadic())
3008 /* Do nothing */;
3009 else if (Proto->isVariadic())
3010 CheckArgs = Function->getNumParams();
3011 else
3012 return TDK_TooManyArguments;
3013 }
3014
3015 // The types of the parameters from which we will perform template argument
3016 // deduction.
3017 LocalInstantiationScope InstScope(*this);
3018 TemplateParameterList *TemplateParams
3019 = FunctionTemplate->getTemplateParameters();
3020 SmallVector<DeducedTemplateArgument, 4> Deduced;
3021 SmallVector<QualType, 4> ParamTypes;
3022 unsigned NumExplicitlySpecified = 0;
3023 if (ExplicitTemplateArgs) {
3024 TemplateDeductionResult Result =
3025 SubstituteExplicitTemplateArguments(FunctionTemplate,
3026 *ExplicitTemplateArgs,
3027 Deduced,
3028 ParamTypes,
3029 0,
3030 Info);
3031 if (Result)
3032 return Result;
3033
3034 NumExplicitlySpecified = Deduced.size();
3035 } else {
3036 // Just fill in the parameter types from the function declaration.
3037 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3038 ParamTypes.push_back(Function->getParamDecl(I)->getType());
3039 }
3040
3041 // Deduce template arguments from the function parameters.
3042 Deduced.resize(TemplateParams->size());
3043 unsigned ArgIdx = 0;
3044 SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3045 for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3046 ParamIdx != NumParams; ++ParamIdx) {
3047 QualType OrigParamType = ParamTypes[ParamIdx];
3048 QualType ParamType = OrigParamType;
3049
3050 const PackExpansionType *ParamExpansion
3051 = dyn_cast<PackExpansionType>(ParamType);
3052 if (!ParamExpansion) {
3053 // Simple case: matching a function parameter to a function argument.
3054 if (ArgIdx >= CheckArgs)
3055 break;
3056
3057 Expr *Arg = Args[ArgIdx++];
3058 QualType ArgType = Arg->getType();
3059
3060 unsigned TDF = 0;
3061 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3062 ParamType, ArgType, Arg,
3063 TDF))
3064 continue;
3065
3066 // If we have nothing to deduce, we're done.
3067 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3068 continue;
3069
3070 // If the argument is an initializer list ...
3071 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3072 // ... then the parameter is an undeduced context, unless the parameter
3073 // type is (reference to cv) std::initializer_list<P'>, in which case
3074 // deduction is done for each element of the initializer list, and the
3075 // result is the deduced type if it's the same for all elements.
3076 QualType X;
3077 // Removing references was already done.
3078 if (!isStdInitializerList(ParamType, &X))
3079 continue;
3080
3081 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3082 if (TemplateDeductionResult Result =
3083 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3084 ILE->getInit(i),
3085 Info, Deduced, TDF))
3086 return Result;
3087 }
3088 // Don't track the argument type, since an initializer list has none.
3089 continue;
3090 }
3091
3092 // Keep track of the argument type and corresponding parameter index,
3093 // so we can check for compatibility between the deduced A and A.
3094 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3095 ArgType));
3096
3097 if (TemplateDeductionResult Result
3098 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3099 ParamType, ArgType,
3100 Info, Deduced, TDF))
3101 return Result;
3102
3103 continue;
3104 }
3105
3106 // C++0x [temp.deduct.call]p1:
3107 // For a function parameter pack that occurs at the end of the
3108 // parameter-declaration-list, the type A of each remaining argument of
3109 // the call is compared with the type P of the declarator-id of the
3110 // function parameter pack. Each comparison deduces template arguments
3111 // for subsequent positions in the template parameter packs expanded by
3112 // the function parameter pack. For a function parameter pack that does
3113 // not occur at the end of the parameter-declaration-list, the type of
3114 // the parameter pack is a non-deduced context.
3115 if (ParamIdx + 1 < NumParams)
3116 break;
3117
3118 QualType ParamPattern = ParamExpansion->getPattern();
3119 SmallVector<unsigned, 2> PackIndices;
3120 {
3121 llvm::SmallBitVector SawIndices(TemplateParams->size());
3122 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3123 collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3124 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3125 unsigned Depth, Index;
3126 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3127 if (Depth == 0 && !SawIndices[Index]) {
3128 SawIndices[Index] = true;
3129 PackIndices.push_back(Index);
3130 }
3131 }
3132 }
3133 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3134
3135 // Keep track of the deduced template arguments for each parameter pack
3136 // expanded by this pack expansion (the outer index) and for each
3137 // template argument (the inner SmallVectors).
3138 SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
3139 NewlyDeducedPacks(PackIndices.size());
3140 SmallVector<DeducedTemplateArgument, 2>
3141 SavedPacks(PackIndices.size());
3142 PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3143 NewlyDeducedPacks);
3144 bool HasAnyArguments = false;
3145 for (; ArgIdx < Args.size(); ++ArgIdx) {
3146 HasAnyArguments = true;
3147
3148 QualType OrigParamType = ParamPattern;
3149 ParamType = OrigParamType;
3150 Expr *Arg = Args[ArgIdx];
3151 QualType ArgType = Arg->getType();
3152
3153 unsigned TDF = 0;
3154 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3155 ParamType, ArgType, Arg,
3156 TDF)) {
3157 // We can't actually perform any deduction for this argument, so stop
3158 // deduction at this point.
3159 ++ArgIdx;
3160 break;
3161 }
3162
3163 // As above, initializer lists need special handling.
3164 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3165 QualType X;
3166 if (!isStdInitializerList(ParamType, &X)) {
3167 ++ArgIdx;
3168 break;
3169 }
3170
3171 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3172 if (TemplateDeductionResult Result =
3173 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3174 ILE->getInit(i)->getType(),
3175 Info, Deduced, TDF))
3176 return Result;
3177 }
3178 } else {
3179
3180 // Keep track of the argument type and corresponding argument index,
3181 // so we can check for compatibility between the deduced A and A.
3182 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3183 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3184 ArgType));
3185
3186 if (TemplateDeductionResult Result
3187 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3188 ParamType, ArgType, Info,
3189 Deduced, TDF))
3190 return Result;
3191 }
3192
3193 // Capture the deduced template arguments for each parameter pack expanded
3194 // by this pack expansion, add them to the list of arguments we've deduced
3195 // for that pack, then clear out the deduced argument.
3196 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3197 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3198 if (!DeducedArg.isNull()) {
3199 NewlyDeducedPacks[I].push_back(DeducedArg);
3200 DeducedArg = DeducedTemplateArgument();
3201 }
3202 }
3203 }
3204
3205 // Build argument packs for each of the parameter packs expanded by this
3206 // pack expansion.
3207 if (Sema::TemplateDeductionResult Result
3208 = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3209 Deduced, PackIndices, SavedPacks,
3210 NewlyDeducedPacks, Info))
3211 return Result;
3212
3213 // After we've matching against a parameter pack, we're done.
3214 break;
3215 }
3216
3217 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3218 NumExplicitlySpecified,
3219 Specialization, Info, &OriginalCallArgs);
3220 }
3221
3222 /// \brief Deduce template arguments when taking the address of a function
3223 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3224 /// a template.
3225 ///
3226 /// \param FunctionTemplate the function template for which we are performing
3227 /// template argument deduction.
3228 ///
3229 /// \param ExplicitTemplateArguments the explicitly-specified template
3230 /// arguments.
3231 ///
3232 /// \param ArgFunctionType the function type that will be used as the
3233 /// "argument" type (A) when performing template argument deduction from the
3234 /// function template's function type. This type may be NULL, if there is no
3235 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3236 ///
3237 /// \param Specialization if template argument deduction was successful,
3238 /// this will be set to the function template specialization produced by
3239 /// template argument deduction.
3240 ///
3241 /// \param Info the argument will be updated to provide additional information
3242 /// about template argument deduction.
3243 ///
3244 /// \returns the result of template argument deduction.
3245 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3246 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3247 TemplateArgumentListInfo *ExplicitTemplateArgs,
3248 QualType ArgFunctionType,
3249 FunctionDecl *&Specialization,
3250 TemplateDeductionInfo &Info) {
3251 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3252 TemplateParameterList *TemplateParams
3253 = FunctionTemplate->getTemplateParameters();
3254 QualType FunctionType = Function->getType();
3255
3256 // Substitute any explicit template arguments.
3257 LocalInstantiationScope InstScope(*this);
3258 SmallVector<DeducedTemplateArgument, 4> Deduced;
3259 unsigned NumExplicitlySpecified = 0;
3260 SmallVector<QualType, 4> ParamTypes;
3261 if (ExplicitTemplateArgs) {
3262 if (TemplateDeductionResult Result
3263 = SubstituteExplicitTemplateArguments(FunctionTemplate,
3264 *ExplicitTemplateArgs,
3265 Deduced, ParamTypes,
3266 &FunctionType, Info))
3267 return Result;
3268
3269 NumExplicitlySpecified = Deduced.size();
3270 }
3271
3272 // Unevaluated SFINAE context.
3273 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3274 SFINAETrap Trap(*this);
3275
3276 Deduced.resize(TemplateParams->size());
3277
3278 if (!ArgFunctionType.isNull()) {
3279 // Deduce template arguments from the function type.
3280 if (TemplateDeductionResult Result
3281 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3282 FunctionType, ArgFunctionType, Info,
3283 Deduced, TDF_TopLevelParameterTypeList))
3284 return Result;
3285 }
3286
3287 if (TemplateDeductionResult Result
3288 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3289 NumExplicitlySpecified,
3290 Specialization, Info))
3291 return Result;
3292
3293 // If the requested function type does not match the actual type of the
3294 // specialization, template argument deduction fails.
3295 if (!ArgFunctionType.isNull() &&
3296 !Context.hasSameType(ArgFunctionType, Specialization->getType()))
3297 return TDK_NonDeducedMismatch;
3298
3299 return TDK_Success;
3300 }
3301
3302 /// \brief Deduce template arguments for a templated conversion
3303 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
3304 /// conversion function template specialization.
3305 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)3306 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3307 QualType ToType,
3308 CXXConversionDecl *&Specialization,
3309 TemplateDeductionInfo &Info) {
3310 CXXConversionDecl *Conv
3311 = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3312 QualType FromType = Conv->getConversionType();
3313
3314 // Canonicalize the types for deduction.
3315 QualType P = Context.getCanonicalType(FromType);
3316 QualType A = Context.getCanonicalType(ToType);
3317
3318 // C++0x [temp.deduct.conv]p2:
3319 // If P is a reference type, the type referred to by P is used for
3320 // type deduction.
3321 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3322 P = PRef->getPointeeType();
3323
3324 // C++0x [temp.deduct.conv]p4:
3325 // [...] If A is a reference type, the type referred to by A is used
3326 // for type deduction.
3327 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3328 A = ARef->getPointeeType().getUnqualifiedType();
3329 // C++ [temp.deduct.conv]p3:
3330 //
3331 // If A is not a reference type:
3332 else {
3333 assert(!A->isReferenceType() && "Reference types were handled above");
3334
3335 // - If P is an array type, the pointer type produced by the
3336 // array-to-pointer standard conversion (4.2) is used in place
3337 // of P for type deduction; otherwise,
3338 if (P->isArrayType())
3339 P = Context.getArrayDecayedType(P);
3340 // - If P is a function type, the pointer type produced by the
3341 // function-to-pointer standard conversion (4.3) is used in
3342 // place of P for type deduction; otherwise,
3343 else if (P->isFunctionType())
3344 P = Context.getPointerType(P);
3345 // - If P is a cv-qualified type, the top level cv-qualifiers of
3346 // P's type are ignored for type deduction.
3347 else
3348 P = P.getUnqualifiedType();
3349
3350 // C++0x [temp.deduct.conv]p4:
3351 // If A is a cv-qualified type, the top level cv-qualifiers of A's
3352 // type are ignored for type deduction. If A is a reference type, the type
3353 // referred to by A is used for type deduction.
3354 A = A.getUnqualifiedType();
3355 }
3356
3357 // Unevaluated SFINAE context.
3358 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3359 SFINAETrap Trap(*this);
3360
3361 // C++ [temp.deduct.conv]p1:
3362 // Template argument deduction is done by comparing the return
3363 // type of the template conversion function (call it P) with the
3364 // type that is required as the result of the conversion (call it
3365 // A) as described in 14.8.2.4.
3366 TemplateParameterList *TemplateParams
3367 = FunctionTemplate->getTemplateParameters();
3368 SmallVector<DeducedTemplateArgument, 4> Deduced;
3369 Deduced.resize(TemplateParams->size());
3370
3371 // C++0x [temp.deduct.conv]p4:
3372 // In general, the deduction process attempts to find template
3373 // argument values that will make the deduced A identical to
3374 // A. However, there are two cases that allow a difference:
3375 unsigned TDF = 0;
3376 // - If the original A is a reference type, A can be more
3377 // cv-qualified than the deduced A (i.e., the type referred to
3378 // by the reference)
3379 if (ToType->isReferenceType())
3380 TDF |= TDF_ParamWithReferenceType;
3381 // - The deduced A can be another pointer or pointer to member
3382 // type that can be converted to A via a qualification
3383 // conversion.
3384 //
3385 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3386 // both P and A are pointers or member pointers. In this case, we
3387 // just ignore cv-qualifiers completely).
3388 if ((P->isPointerType() && A->isPointerType()) ||
3389 (P->isMemberPointerType() && A->isMemberPointerType()))
3390 TDF |= TDF_IgnoreQualifiers;
3391 if (TemplateDeductionResult Result
3392 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3393 P, A, Info, Deduced, TDF))
3394 return Result;
3395
3396 // Finish template argument deduction.
3397 LocalInstantiationScope InstScope(*this);
3398 FunctionDecl *Spec = 0;
3399 TemplateDeductionResult Result
3400 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3401 Info);
3402 Specialization = cast_or_null<CXXConversionDecl>(Spec);
3403 return Result;
3404 }
3405
3406 /// \brief Deduce template arguments for a function template when there is
3407 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3408 ///
3409 /// \param FunctionTemplate the function template for which we are performing
3410 /// template argument deduction.
3411 ///
3412 /// \param ExplicitTemplateArguments the explicitly-specified template
3413 /// arguments.
3414 ///
3415 /// \param Specialization if template argument deduction was successful,
3416 /// this will be set to the function template specialization produced by
3417 /// template argument deduction.
3418 ///
3419 /// \param Info the argument will be updated to provide additional information
3420 /// about template argument deduction.
3421 ///
3422 /// \returns the result of template argument deduction.
3423 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3424 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3425 TemplateArgumentListInfo *ExplicitTemplateArgs,
3426 FunctionDecl *&Specialization,
3427 TemplateDeductionInfo &Info) {
3428 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3429 QualType(), Specialization, Info);
3430 }
3431
3432 namespace {
3433 /// Substitute the 'auto' type specifier within a type for a given replacement
3434 /// type.
3435 class SubstituteAutoTransform :
3436 public TreeTransform<SubstituteAutoTransform> {
3437 QualType Replacement;
3438 public:
SubstituteAutoTransform(Sema & SemaRef,QualType Replacement)3439 SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3440 TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3441 }
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)3442 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3443 // If we're building the type pattern to deduce against, don't wrap the
3444 // substituted type in an AutoType. Certain template deduction rules
3445 // apply only when a template type parameter appears directly (and not if
3446 // the parameter is found through desugaring). For instance:
3447 // auto &&lref = lvalue;
3448 // must transform into "rvalue reference to T" not "rvalue reference to
3449 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3450 if (isa<TemplateTypeParmType>(Replacement)) {
3451 QualType Result = Replacement;
3452 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
3453 NewTL.setNameLoc(TL.getNameLoc());
3454 return Result;
3455 } else {
3456 QualType Result = RebuildAutoType(Replacement);
3457 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3458 NewTL.setNameLoc(TL.getNameLoc());
3459 return Result;
3460 }
3461 }
3462
TransformLambdaExpr(LambdaExpr * E)3463 ExprResult TransformLambdaExpr(LambdaExpr *E) {
3464 // Lambdas never need to be transformed.
3465 return E;
3466 }
3467 };
3468 }
3469
3470 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
3471 ///
3472 /// \param Type the type pattern using the auto type-specifier.
3473 ///
3474 /// \param Init the initializer for the variable whose type is to be deduced.
3475 ///
3476 /// \param Result if type deduction was successful, this will be set to the
3477 /// deduced type. This may still contain undeduced autos if the type is
3478 /// dependent. This will be set to null if deduction succeeded, but auto
3479 /// substitution failed; the appropriate diagnostic will already have been
3480 /// produced in that case.
3481 Sema::DeduceAutoResult
DeduceAutoType(TypeSourceInfo * Type,Expr * & Init,TypeSourceInfo * & Result)3482 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
3483 TypeSourceInfo *&Result) {
3484 if (Init->getType()->isNonOverloadPlaceholderType()) {
3485 ExprResult result = CheckPlaceholderExpr(Init);
3486 if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
3487 Init = result.take();
3488 }
3489
3490 if (Init->isTypeDependent()) {
3491 Result = Type;
3492 return DAR_Succeeded;
3493 }
3494
3495 SourceLocation Loc = Init->getExprLoc();
3496
3497 LocalInstantiationScope InstScope(*this);
3498
3499 // Build template<class TemplParam> void Func(FuncParam);
3500 TemplateTypeParmDecl *TemplParam =
3501 TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3502 false, false);
3503 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3504 NamedDecl *TemplParamPtr = TemplParam;
3505 FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3506 Loc);
3507
3508 TypeSourceInfo *FuncParamInfo =
3509 SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
3510 assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
3511 QualType FuncParam = FuncParamInfo->getType();
3512
3513 // Deduce type of TemplParam in Func(Init)
3514 SmallVector<DeducedTemplateArgument, 1> Deduced;
3515 Deduced.resize(1);
3516 QualType InitType = Init->getType();
3517 unsigned TDF = 0;
3518
3519 TemplateDeductionInfo Info(Context, Loc);
3520
3521 InitListExpr * InitList = dyn_cast<InitListExpr>(Init);
3522 if (InitList) {
3523 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3524 if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3525 TemplArg,
3526 InitList->getInit(i),
3527 Info, Deduced, TDF))
3528 return DAR_Failed;
3529 }
3530 } else {
3531 if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3532 FuncParam, InitType, Init,
3533 TDF))
3534 return DAR_Failed;
3535
3536 if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3537 InitType, Info, Deduced, TDF))
3538 return DAR_Failed;
3539 }
3540
3541 QualType DeducedType = Deduced[0].getAsType();
3542 if (DeducedType.isNull())
3543 return DAR_Failed;
3544
3545 if (InitList) {
3546 DeducedType = BuildStdInitializerList(DeducedType, Loc);
3547 if (DeducedType.isNull())
3548 return DAR_FailedAlreadyDiagnosed;
3549 }
3550
3551 Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
3552
3553 // Check that the deduced argument type is compatible with the original
3554 // argument type per C++ [temp.deduct.call]p4.
3555 if (!InitList && Result &&
3556 CheckOriginalCallArgDeduction(*this,
3557 Sema::OriginalCallArg(FuncParam,0,InitType),
3558 Result->getType())) {
3559 Result = 0;
3560 return DAR_Failed;
3561 }
3562
3563 return DAR_Succeeded;
3564 }
3565
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)3566 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3567 if (isa<InitListExpr>(Init))
3568 Diag(VDecl->getLocation(),
3569 diag::err_auto_var_deduction_failure_from_init_list)
3570 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3571 else
3572 Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3573 << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3574 << Init->getSourceRange();
3575 }
3576
3577 static void
3578 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3579 bool OnlyDeduced,
3580 unsigned Level,
3581 llvm::SmallBitVector &Deduced);
3582
3583 /// \brief If this is a non-static member function,
MaybeAddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)3584 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
3585 CXXMethodDecl *Method,
3586 SmallVectorImpl<QualType> &ArgTypes) {
3587 if (Method->isStatic())
3588 return;
3589
3590 // C++ [over.match.funcs]p4:
3591 //
3592 // For non-static member functions, the type of the implicit
3593 // object parameter is
3594 // - "lvalue reference to cv X" for functions declared without a
3595 // ref-qualifier or with the & ref-qualifier
3596 // - "rvalue reference to cv X" for functions declared with the
3597 // && ref-qualifier
3598 //
3599 // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
3600 QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3601 ArgTy = Context.getQualifiedType(ArgTy,
3602 Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3603 ArgTy = Context.getLValueReferenceType(ArgTy);
3604 ArgTypes.push_back(ArgTy);
3605 }
3606
3607 /// \brief Determine whether the function template \p FT1 is at least as
3608 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)3609 static bool isAtLeastAsSpecializedAs(Sema &S,
3610 SourceLocation Loc,
3611 FunctionTemplateDecl *FT1,
3612 FunctionTemplateDecl *FT2,
3613 TemplatePartialOrderingContext TPOC,
3614 unsigned NumCallArguments,
3615 SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3616 FunctionDecl *FD1 = FT1->getTemplatedDecl();
3617 FunctionDecl *FD2 = FT2->getTemplatedDecl();
3618 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3619 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3620
3621 assert(Proto1 && Proto2 && "Function templates must have prototypes");
3622 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3623 SmallVector<DeducedTemplateArgument, 4> Deduced;
3624 Deduced.resize(TemplateParams->size());
3625
3626 // C++0x [temp.deduct.partial]p3:
3627 // The types used to determine the ordering depend on the context in which
3628 // the partial ordering is done:
3629 TemplateDeductionInfo Info(S.Context, Loc);
3630 CXXMethodDecl *Method1 = 0;
3631 CXXMethodDecl *Method2 = 0;
3632 bool IsNonStatic2 = false;
3633 bool IsNonStatic1 = false;
3634 unsigned Skip2 = 0;
3635 switch (TPOC) {
3636 case TPOC_Call: {
3637 // - In the context of a function call, the function parameter types are
3638 // used.
3639 Method1 = dyn_cast<CXXMethodDecl>(FD1);
3640 Method2 = dyn_cast<CXXMethodDecl>(FD2);
3641 IsNonStatic1 = Method1 && !Method1->isStatic();
3642 IsNonStatic2 = Method2 && !Method2->isStatic();
3643
3644 // C++0x [temp.func.order]p3:
3645 // [...] If only one of the function templates is a non-static
3646 // member, that function template is considered to have a new
3647 // first parameter inserted in its function parameter list. The
3648 // new parameter is of type "reference to cv A," where cv are
3649 // the cv-qualifiers of the function template (if any) and A is
3650 // the class of which the function template is a member.
3651 //
3652 // C++98/03 doesn't have this provision, so instead we drop the
3653 // first argument of the free function or static member, which
3654 // seems to match existing practice.
3655 SmallVector<QualType, 4> Args1;
3656 unsigned Skip1 = !S.getLangOpts().CPlusPlus0x &&
3657 IsNonStatic2 && !IsNonStatic1;
3658 if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
3659 MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
3660 Args1.insert(Args1.end(),
3661 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3662
3663 SmallVector<QualType, 4> Args2;
3664 Skip2 = !S.getLangOpts().CPlusPlus0x &&
3665 IsNonStatic1 && !IsNonStatic2;
3666 if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3667 MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
3668 Args2.insert(Args2.end(),
3669 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3670
3671 // C++ [temp.func.order]p5:
3672 // The presence of unused ellipsis and default arguments has no effect on
3673 // the partial ordering of function templates.
3674 if (Args1.size() > NumCallArguments)
3675 Args1.resize(NumCallArguments);
3676 if (Args2.size() > NumCallArguments)
3677 Args2.resize(NumCallArguments);
3678 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3679 Args1.data(), Args1.size(), Info, Deduced,
3680 TDF_None, /*PartialOrdering=*/true,
3681 RefParamComparisons))
3682 return false;
3683
3684 break;
3685 }
3686
3687 case TPOC_Conversion:
3688 // - In the context of a call to a conversion operator, the return types
3689 // of the conversion function templates are used.
3690 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3691 Proto2->getResultType(),
3692 Proto1->getResultType(),
3693 Info, Deduced, TDF_None,
3694 /*PartialOrdering=*/true,
3695 RefParamComparisons))
3696 return false;
3697 break;
3698
3699 case TPOC_Other:
3700 // - In other contexts (14.6.6.2) the function template's function type
3701 // is used.
3702 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3703 FD2->getType(), FD1->getType(),
3704 Info, Deduced, TDF_None,
3705 /*PartialOrdering=*/true,
3706 RefParamComparisons))
3707 return false;
3708 break;
3709 }
3710
3711 // C++0x [temp.deduct.partial]p11:
3712 // In most cases, all template parameters must have values in order for
3713 // deduction to succeed, but for partial ordering purposes a template
3714 // parameter may remain without a value provided it is not used in the
3715 // types being used for partial ordering. [ Note: a template parameter used
3716 // in a non-deduced context is considered used. -end note]
3717 unsigned ArgIdx = 0, NumArgs = Deduced.size();
3718 for (; ArgIdx != NumArgs; ++ArgIdx)
3719 if (Deduced[ArgIdx].isNull())
3720 break;
3721
3722 if (ArgIdx == NumArgs) {
3723 // All template arguments were deduced. FT1 is at least as specialized
3724 // as FT2.
3725 return true;
3726 }
3727
3728 // Figure out which template parameters were used.
3729 llvm::SmallBitVector UsedParameters(TemplateParams->size());
3730 switch (TPOC) {
3731 case TPOC_Call: {
3732 unsigned NumParams = std::min(NumCallArguments,
3733 std::min(Proto1->getNumArgs(),
3734 Proto2->getNumArgs()));
3735 if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3736 ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
3737 false,
3738 TemplateParams->getDepth(), UsedParameters);
3739 for (unsigned I = Skip2; I < NumParams; ++I)
3740 ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
3741 TemplateParams->getDepth(),
3742 UsedParameters);
3743 break;
3744 }
3745
3746 case TPOC_Conversion:
3747 ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
3748 TemplateParams->getDepth(),
3749 UsedParameters);
3750 break;
3751
3752 case TPOC_Other:
3753 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
3754 TemplateParams->getDepth(),
3755 UsedParameters);
3756 break;
3757 }
3758
3759 for (; ArgIdx != NumArgs; ++ArgIdx)
3760 // If this argument had no value deduced but was used in one of the types
3761 // used for partial ordering, then deduction fails.
3762 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3763 return false;
3764
3765 return true;
3766 }
3767
3768 /// \brief Determine whether this a function template whose parameter-type-list
3769 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)3770 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3771 FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3772 unsigned NumParams = Function->getNumParams();
3773 if (NumParams == 0)
3774 return false;
3775
3776 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3777 if (!Last->isParameterPack())
3778 return false;
3779
3780 // Make sure that no previous parameter is a parameter pack.
3781 while (--NumParams > 0) {
3782 if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3783 return false;
3784 }
3785
3786 return true;
3787 }
3788
3789 /// \brief Returns the more specialized function template according
3790 /// to the rules of function template partial ordering (C++ [temp.func.order]).
3791 ///
3792 /// \param FT1 the first function template
3793 ///
3794 /// \param FT2 the second function template
3795 ///
3796 /// \param TPOC the context in which we are performing partial ordering of
3797 /// function templates.
3798 ///
3799 /// \param NumCallArguments The number of arguments in a call, used only
3800 /// when \c TPOC is \c TPOC_Call.
3801 ///
3802 /// \returns the more specialized function template. If neither
3803 /// template is more specialized, returns NULL.
3804 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments)3805 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3806 FunctionTemplateDecl *FT2,
3807 SourceLocation Loc,
3808 TemplatePartialOrderingContext TPOC,
3809 unsigned NumCallArguments) {
3810 SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
3811 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3812 NumCallArguments, 0);
3813 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3814 NumCallArguments,
3815 &RefParamComparisons);
3816
3817 if (Better1 != Better2) // We have a clear winner
3818 return Better1? FT1 : FT2;
3819
3820 if (!Better1 && !Better2) // Neither is better than the other
3821 return 0;
3822
3823 // C++0x [temp.deduct.partial]p10:
3824 // If for each type being considered a given template is at least as
3825 // specialized for all types and more specialized for some set of types and
3826 // the other template is not more specialized for any types or is not at
3827 // least as specialized for any types, then the given template is more
3828 // specialized than the other template. Otherwise, neither template is more
3829 // specialized than the other.
3830 Better1 = false;
3831 Better2 = false;
3832 for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
3833 // C++0x [temp.deduct.partial]p9:
3834 // If, for a given type, deduction succeeds in both directions (i.e., the
3835 // types are identical after the transformations above) and both P and A
3836 // were reference types (before being replaced with the type referred to
3837 // above):
3838
3839 // -- if the type from the argument template was an lvalue reference
3840 // and the type from the parameter template was not, the argument
3841 // type is considered to be more specialized than the other;
3842 // otherwise,
3843 if (!RefParamComparisons[I].ArgIsRvalueRef &&
3844 RefParamComparisons[I].ParamIsRvalueRef) {
3845 Better2 = true;
3846 if (Better1)
3847 return 0;
3848 continue;
3849 } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
3850 RefParamComparisons[I].ArgIsRvalueRef) {
3851 Better1 = true;
3852 if (Better2)
3853 return 0;
3854 continue;
3855 }
3856
3857 // -- if the type from the argument template is more cv-qualified than
3858 // the type from the parameter template (as described above), the
3859 // argument type is considered to be more specialized than the
3860 // other; otherwise,
3861 switch (RefParamComparisons[I].Qualifiers) {
3862 case NeitherMoreQualified:
3863 break;
3864
3865 case ParamMoreQualified:
3866 Better1 = true;
3867 if (Better2)
3868 return 0;
3869 continue;
3870
3871 case ArgMoreQualified:
3872 Better2 = true;
3873 if (Better1)
3874 return 0;
3875 continue;
3876 }
3877
3878 // -- neither type is more specialized than the other.
3879 }
3880
3881 assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3882 if (Better1)
3883 return FT1;
3884 else if (Better2)
3885 return FT2;
3886
3887 // FIXME: This mimics what GCC implements, but doesn't match up with the
3888 // proposed resolution for core issue 692. This area needs to be sorted out,
3889 // but for now we attempt to maintain compatibility.
3890 bool Variadic1 = isVariadicFunctionTemplate(FT1);
3891 bool Variadic2 = isVariadicFunctionTemplate(FT2);
3892 if (Variadic1 != Variadic2)
3893 return Variadic1? FT2 : FT1;
3894
3895 return 0;
3896 }
3897
3898 /// \brief Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)3899 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3900 if (T1 == T2)
3901 return true;
3902
3903 if (!T1 || !T2)
3904 return false;
3905
3906 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3907 }
3908
3909 /// \brief Retrieve the most specialized of the given function template
3910 /// specializations.
3911 ///
3912 /// \param SpecBegin the start iterator of the function template
3913 /// specializations that we will be comparing.
3914 ///
3915 /// \param SpecEnd the end iterator of the function template
3916 /// specializations, paired with \p SpecBegin.
3917 ///
3918 /// \param TPOC the partial ordering context to use to compare the function
3919 /// template specializations.
3920 ///
3921 /// \param NumCallArguments The number of arguments in a call, used only
3922 /// when \c TPOC is \c TPOC_Call.
3923 ///
3924 /// \param Loc the location where the ambiguity or no-specializations
3925 /// diagnostic should occur.
3926 ///
3927 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
3928 /// no matching candidates.
3929 ///
3930 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3931 /// occurs.
3932 ///
3933 /// \param CandidateDiag partial diagnostic used for each function template
3934 /// specialization that is a candidate in the ambiguous ordering. One parameter
3935 /// in this diagnostic should be unbound, which will correspond to the string
3936 /// describing the template arguments for the function template specialization.
3937 ///
3938 /// \param Index if non-NULL and the result of this function is non-nULL,
3939 /// receives the index corresponding to the resulting function template
3940 /// specialization.
3941 ///
3942 /// \returns the most specialized function template specialization, if
3943 /// found. Otherwise, returns SpecEnd.
3944 ///
3945 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
3946 /// template argument deduction.
3947 UnresolvedSetIterator
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)3948 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
3949 UnresolvedSetIterator SpecEnd,
3950 TemplatePartialOrderingContext TPOC,
3951 unsigned NumCallArguments,
3952 SourceLocation Loc,
3953 const PartialDiagnostic &NoneDiag,
3954 const PartialDiagnostic &AmbigDiag,
3955 const PartialDiagnostic &CandidateDiag,
3956 bool Complain,
3957 QualType TargetType) {
3958 if (SpecBegin == SpecEnd) {
3959 if (Complain)
3960 Diag(Loc, NoneDiag);
3961 return SpecEnd;
3962 }
3963
3964 if (SpecBegin + 1 == SpecEnd)
3965 return SpecBegin;
3966
3967 // Find the function template that is better than all of the templates it
3968 // has been compared to.
3969 UnresolvedSetIterator Best = SpecBegin;
3970 FunctionTemplateDecl *BestTemplate
3971 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
3972 assert(BestTemplate && "Not a function template specialization?");
3973 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
3974 FunctionTemplateDecl *Challenger
3975 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3976 assert(Challenger && "Not a function template specialization?");
3977 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3978 Loc, TPOC, NumCallArguments),
3979 Challenger)) {
3980 Best = I;
3981 BestTemplate = Challenger;
3982 }
3983 }
3984
3985 // Make sure that the "best" function template is more specialized than all
3986 // of the others.
3987 bool Ambiguous = false;
3988 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
3989 FunctionTemplateDecl *Challenger
3990 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3991 if (I != Best &&
3992 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3993 Loc, TPOC, NumCallArguments),
3994 BestTemplate)) {
3995 Ambiguous = true;
3996 break;
3997 }
3998 }
3999
4000 if (!Ambiguous) {
4001 // We found an answer. Return it.
4002 return Best;
4003 }
4004
4005 // Diagnose the ambiguity.
4006 if (Complain)
4007 Diag(Loc, AmbigDiag);
4008
4009 if (Complain)
4010 // FIXME: Can we order the candidates in some sane way?
4011 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4012 PartialDiagnostic PD = CandidateDiag;
4013 PD << getTemplateArgumentBindingsText(
4014 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4015 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4016 if (!TargetType.isNull())
4017 HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4018 TargetType);
4019 Diag((*I)->getLocation(), PD);
4020 }
4021
4022 return SpecEnd;
4023 }
4024
4025 /// \brief Returns the more specialized class template partial specialization
4026 /// according to the rules of partial ordering of class template partial
4027 /// specializations (C++ [temp.class.order]).
4028 ///
4029 /// \param PS1 the first class template partial specialization
4030 ///
4031 /// \param PS2 the second class template partial specialization
4032 ///
4033 /// \returns the more specialized class template partial specialization. If
4034 /// neither partial specialization is more specialized, returns NULL.
4035 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4036 Sema::getMoreSpecializedPartialSpecialization(
4037 ClassTemplatePartialSpecializationDecl *PS1,
4038 ClassTemplatePartialSpecializationDecl *PS2,
4039 SourceLocation Loc) {
4040 // C++ [temp.class.order]p1:
4041 // For two class template partial specializations, the first is at least as
4042 // specialized as the second if, given the following rewrite to two
4043 // function templates, the first function template is at least as
4044 // specialized as the second according to the ordering rules for function
4045 // templates (14.6.6.2):
4046 // - the first function template has the same template parameters as the
4047 // first partial specialization and has a single function parameter
4048 // whose type is a class template specialization with the template
4049 // arguments of the first partial specialization, and
4050 // - the second function template has the same template parameters as the
4051 // second partial specialization and has a single function parameter
4052 // whose type is a class template specialization with the template
4053 // arguments of the second partial specialization.
4054 //
4055 // Rather than synthesize function templates, we merely perform the
4056 // equivalent partial ordering by performing deduction directly on
4057 // the template arguments of the class template partial
4058 // specializations. This computation is slightly simpler than the
4059 // general problem of function template partial ordering, because
4060 // class template partial specializations are more constrained. We
4061 // know that every template parameter is deducible from the class
4062 // template partial specialization's template arguments, for
4063 // example.
4064 SmallVector<DeducedTemplateArgument, 4> Deduced;
4065 TemplateDeductionInfo Info(Context, Loc);
4066
4067 QualType PT1 = PS1->getInjectedSpecializationType();
4068 QualType PT2 = PS2->getInjectedSpecializationType();
4069
4070 // Determine whether PS1 is at least as specialized as PS2
4071 Deduced.resize(PS2->getTemplateParameters()->size());
4072 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4073 PS2->getTemplateParameters(),
4074 PT2, PT1, Info, Deduced, TDF_None,
4075 /*PartialOrdering=*/true,
4076 /*RefParamComparisons=*/0);
4077 if (Better1) {
4078 InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4079 Deduced.data(), Deduced.size(), Info);
4080 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4081 PS1->getTemplateArgs(),
4082 Deduced, Info);
4083 }
4084
4085 // Determine whether PS2 is at least as specialized as PS1
4086 Deduced.clear();
4087 Deduced.resize(PS1->getTemplateParameters()->size());
4088 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4089 PS1->getTemplateParameters(),
4090 PT1, PT2, Info, Deduced, TDF_None,
4091 /*PartialOrdering=*/true,
4092 /*RefParamComparisons=*/0);
4093 if (Better2) {
4094 InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4095 Deduced.data(), Deduced.size(), Info);
4096 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4097 PS2->getTemplateArgs(),
4098 Deduced, Info);
4099 }
4100
4101 if (Better1 == Better2)
4102 return 0;
4103
4104 return Better1? PS1 : PS2;
4105 }
4106
4107 static void
4108 MarkUsedTemplateParameters(ASTContext &Ctx,
4109 const TemplateArgument &TemplateArg,
4110 bool OnlyDeduced,
4111 unsigned Depth,
4112 llvm::SmallBitVector &Used);
4113
4114 /// \brief Mark the template parameters that are used by the given
4115 /// expression.
4116 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4117 MarkUsedTemplateParameters(ASTContext &Ctx,
4118 const Expr *E,
4119 bool OnlyDeduced,
4120 unsigned Depth,
4121 llvm::SmallBitVector &Used) {
4122 // We can deduce from a pack expansion.
4123 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4124 E = Expansion->getPattern();
4125
4126 // Skip through any implicit casts we added while type-checking.
4127 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4128 E = ICE->getSubExpr();
4129
4130 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4131 // find other occurrences of template parameters.
4132 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4133 if (!DRE)
4134 return;
4135
4136 const NonTypeTemplateParmDecl *NTTP
4137 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4138 if (!NTTP)
4139 return;
4140
4141 if (NTTP->getDepth() == Depth)
4142 Used[NTTP->getIndex()] = true;
4143 }
4144
4145 /// \brief Mark the template parameters that are used by the given
4146 /// nested name specifier.
4147 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4148 MarkUsedTemplateParameters(ASTContext &Ctx,
4149 NestedNameSpecifier *NNS,
4150 bool OnlyDeduced,
4151 unsigned Depth,
4152 llvm::SmallBitVector &Used) {
4153 if (!NNS)
4154 return;
4155
4156 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4157 Used);
4158 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4159 OnlyDeduced, Depth, Used);
4160 }
4161
4162 /// \brief Mark the template parameters that are used by the given
4163 /// template name.
4164 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4165 MarkUsedTemplateParameters(ASTContext &Ctx,
4166 TemplateName Name,
4167 bool OnlyDeduced,
4168 unsigned Depth,
4169 llvm::SmallBitVector &Used) {
4170 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4171 if (TemplateTemplateParmDecl *TTP
4172 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4173 if (TTP->getDepth() == Depth)
4174 Used[TTP->getIndex()] = true;
4175 }
4176 return;
4177 }
4178
4179 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4180 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4181 Depth, Used);
4182 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4183 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4184 Depth, Used);
4185 }
4186
4187 /// \brief Mark the template parameters that are used by the given
4188 /// type.
4189 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4190 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4191 bool OnlyDeduced,
4192 unsigned Depth,
4193 llvm::SmallBitVector &Used) {
4194 if (T.isNull())
4195 return;
4196
4197 // Non-dependent types have nothing deducible
4198 if (!T->isDependentType())
4199 return;
4200
4201 T = Ctx.getCanonicalType(T);
4202 switch (T->getTypeClass()) {
4203 case Type::Pointer:
4204 MarkUsedTemplateParameters(Ctx,
4205 cast<PointerType>(T)->getPointeeType(),
4206 OnlyDeduced,
4207 Depth,
4208 Used);
4209 break;
4210
4211 case Type::BlockPointer:
4212 MarkUsedTemplateParameters(Ctx,
4213 cast<BlockPointerType>(T)->getPointeeType(),
4214 OnlyDeduced,
4215 Depth,
4216 Used);
4217 break;
4218
4219 case Type::LValueReference:
4220 case Type::RValueReference:
4221 MarkUsedTemplateParameters(Ctx,
4222 cast<ReferenceType>(T)->getPointeeType(),
4223 OnlyDeduced,
4224 Depth,
4225 Used);
4226 break;
4227
4228 case Type::MemberPointer: {
4229 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4230 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4231 Depth, Used);
4232 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4233 OnlyDeduced, Depth, Used);
4234 break;
4235 }
4236
4237 case Type::DependentSizedArray:
4238 MarkUsedTemplateParameters(Ctx,
4239 cast<DependentSizedArrayType>(T)->getSizeExpr(),
4240 OnlyDeduced, Depth, Used);
4241 // Fall through to check the element type
4242
4243 case Type::ConstantArray:
4244 case Type::IncompleteArray:
4245 MarkUsedTemplateParameters(Ctx,
4246 cast<ArrayType>(T)->getElementType(),
4247 OnlyDeduced, Depth, Used);
4248 break;
4249
4250 case Type::Vector:
4251 case Type::ExtVector:
4252 MarkUsedTemplateParameters(Ctx,
4253 cast<VectorType>(T)->getElementType(),
4254 OnlyDeduced, Depth, Used);
4255 break;
4256
4257 case Type::DependentSizedExtVector: {
4258 const DependentSizedExtVectorType *VecType
4259 = cast<DependentSizedExtVectorType>(T);
4260 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4261 Depth, Used);
4262 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4263 Depth, Used);
4264 break;
4265 }
4266
4267 case Type::FunctionProto: {
4268 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4269 MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4270 Depth, Used);
4271 for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4272 MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4273 Depth, Used);
4274 break;
4275 }
4276
4277 case Type::TemplateTypeParm: {
4278 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4279 if (TTP->getDepth() == Depth)
4280 Used[TTP->getIndex()] = true;
4281 break;
4282 }
4283
4284 case Type::SubstTemplateTypeParmPack: {
4285 const SubstTemplateTypeParmPackType *Subst
4286 = cast<SubstTemplateTypeParmPackType>(T);
4287 MarkUsedTemplateParameters(Ctx,
4288 QualType(Subst->getReplacedParameter(), 0),
4289 OnlyDeduced, Depth, Used);
4290 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4291 OnlyDeduced, Depth, Used);
4292 break;
4293 }
4294
4295 case Type::InjectedClassName:
4296 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4297 // fall through
4298
4299 case Type::TemplateSpecialization: {
4300 const TemplateSpecializationType *Spec
4301 = cast<TemplateSpecializationType>(T);
4302 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4303 Depth, Used);
4304
4305 // C++0x [temp.deduct.type]p9:
4306 // If the template argument list of P contains a pack expansion that is not
4307 // the last template argument, the entire template argument list is a
4308 // non-deduced context.
4309 if (OnlyDeduced &&
4310 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4311 break;
4312
4313 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4314 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4315 Used);
4316 break;
4317 }
4318
4319 case Type::Complex:
4320 if (!OnlyDeduced)
4321 MarkUsedTemplateParameters(Ctx,
4322 cast<ComplexType>(T)->getElementType(),
4323 OnlyDeduced, Depth, Used);
4324 break;
4325
4326 case Type::Atomic:
4327 if (!OnlyDeduced)
4328 MarkUsedTemplateParameters(Ctx,
4329 cast<AtomicType>(T)->getValueType(),
4330 OnlyDeduced, Depth, Used);
4331 break;
4332
4333 case Type::DependentName:
4334 if (!OnlyDeduced)
4335 MarkUsedTemplateParameters(Ctx,
4336 cast<DependentNameType>(T)->getQualifier(),
4337 OnlyDeduced, Depth, Used);
4338 break;
4339
4340 case Type::DependentTemplateSpecialization: {
4341 const DependentTemplateSpecializationType *Spec
4342 = cast<DependentTemplateSpecializationType>(T);
4343 if (!OnlyDeduced)
4344 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4345 OnlyDeduced, Depth, Used);
4346
4347 // C++0x [temp.deduct.type]p9:
4348 // If the template argument list of P contains a pack expansion that is not
4349 // the last template argument, the entire template argument list is a
4350 // non-deduced context.
4351 if (OnlyDeduced &&
4352 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4353 break;
4354
4355 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4356 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4357 Used);
4358 break;
4359 }
4360
4361 case Type::TypeOf:
4362 if (!OnlyDeduced)
4363 MarkUsedTemplateParameters(Ctx,
4364 cast<TypeOfType>(T)->getUnderlyingType(),
4365 OnlyDeduced, Depth, Used);
4366 break;
4367
4368 case Type::TypeOfExpr:
4369 if (!OnlyDeduced)
4370 MarkUsedTemplateParameters(Ctx,
4371 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4372 OnlyDeduced, Depth, Used);
4373 break;
4374
4375 case Type::Decltype:
4376 if (!OnlyDeduced)
4377 MarkUsedTemplateParameters(Ctx,
4378 cast<DecltypeType>(T)->getUnderlyingExpr(),
4379 OnlyDeduced, Depth, Used);
4380 break;
4381
4382 case Type::UnaryTransform:
4383 if (!OnlyDeduced)
4384 MarkUsedTemplateParameters(Ctx,
4385 cast<UnaryTransformType>(T)->getUnderlyingType(),
4386 OnlyDeduced, Depth, Used);
4387 break;
4388
4389 case Type::PackExpansion:
4390 MarkUsedTemplateParameters(Ctx,
4391 cast<PackExpansionType>(T)->getPattern(),
4392 OnlyDeduced, Depth, Used);
4393 break;
4394
4395 case Type::Auto:
4396 MarkUsedTemplateParameters(Ctx,
4397 cast<AutoType>(T)->getDeducedType(),
4398 OnlyDeduced, Depth, Used);
4399
4400 // None of these types have any template parameters in them.
4401 case Type::Builtin:
4402 case Type::VariableArray:
4403 case Type::FunctionNoProto:
4404 case Type::Record:
4405 case Type::Enum:
4406 case Type::ObjCInterface:
4407 case Type::ObjCObject:
4408 case Type::ObjCObjectPointer:
4409 case Type::UnresolvedUsing:
4410 #define TYPE(Class, Base)
4411 #define ABSTRACT_TYPE(Class, Base)
4412 #define DEPENDENT_TYPE(Class, Base)
4413 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4414 #include "clang/AST/TypeNodes.def"
4415 break;
4416 }
4417 }
4418
4419 /// \brief Mark the template parameters that are used by this
4420 /// template argument.
4421 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4422 MarkUsedTemplateParameters(ASTContext &Ctx,
4423 const TemplateArgument &TemplateArg,
4424 bool OnlyDeduced,
4425 unsigned Depth,
4426 llvm::SmallBitVector &Used) {
4427 switch (TemplateArg.getKind()) {
4428 case TemplateArgument::Null:
4429 case TemplateArgument::Integral:
4430 case TemplateArgument::Declaration:
4431 break;
4432
4433 case TemplateArgument::Type:
4434 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4435 Depth, Used);
4436 break;
4437
4438 case TemplateArgument::Template:
4439 case TemplateArgument::TemplateExpansion:
4440 MarkUsedTemplateParameters(Ctx,
4441 TemplateArg.getAsTemplateOrTemplatePattern(),
4442 OnlyDeduced, Depth, Used);
4443 break;
4444
4445 case TemplateArgument::Expression:
4446 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4447 Depth, Used);
4448 break;
4449
4450 case TemplateArgument::Pack:
4451 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4452 PEnd = TemplateArg.pack_end();
4453 P != PEnd; ++P)
4454 MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4455 break;
4456 }
4457 }
4458
4459 /// \brief Mark the template parameters can be deduced by the given
4460 /// template argument list.
4461 ///
4462 /// \param TemplateArgs the template argument list from which template
4463 /// parameters will be deduced.
4464 ///
4465 /// \param Deduced a bit vector whose elements will be set to \c true
4466 /// to indicate when the corresponding template parameter will be
4467 /// deduced.
4468 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4469 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4470 bool OnlyDeduced, unsigned Depth,
4471 llvm::SmallBitVector &Used) {
4472 // C++0x [temp.deduct.type]p9:
4473 // If the template argument list of P contains a pack expansion that is not
4474 // the last template argument, the entire template argument list is a
4475 // non-deduced context.
4476 if (OnlyDeduced &&
4477 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4478 return;
4479
4480 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4481 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4482 Depth, Used);
4483 }
4484
4485 /// \brief Marks all of the template parameters that will be deduced by a
4486 /// call to the given function template.
4487 void
MarkDeducedTemplateParameters(ASTContext & Ctx,FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)4488 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4489 FunctionTemplateDecl *FunctionTemplate,
4490 llvm::SmallBitVector &Deduced) {
4491 TemplateParameterList *TemplateParams
4492 = FunctionTemplate->getTemplateParameters();
4493 Deduced.clear();
4494 Deduced.resize(TemplateParams->size());
4495
4496 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4497 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4498 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4499 true, TemplateParams->getDepth(), Deduced);
4500 }
4501
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)4502 bool hasDeducibleTemplateParameters(Sema &S,
4503 FunctionTemplateDecl *FunctionTemplate,
4504 QualType T) {
4505 if (!T->isDependentType())
4506 return false;
4507
4508 TemplateParameterList *TemplateParams
4509 = FunctionTemplate->getTemplateParameters();
4510 llvm::SmallBitVector Deduced(TemplateParams->size());
4511 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4512 Deduced);
4513
4514 return Deduced.any();
4515 }
4516