• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 //  This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===/
12 
13 #include "clang/Sema/Sema.h"
14 #include "clang/Sema/DeclSpec.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "llvm/ADT/SmallBitVector.h"
24 #include "TreeTransform.h"
25 #include <algorithm>
26 
27 namespace clang {
28   using namespace sema;
29 
30   /// \brief Various flags that control template argument deduction.
31   ///
32   /// These flags can be bitwise-OR'd together.
33   enum TemplateDeductionFlags {
34     /// \brief No template argument deduction flags, which indicates the
35     /// strictest results for template argument deduction (as used for, e.g.,
36     /// matching class template partial specializations).
37     TDF_None = 0,
38     /// \brief Within template argument deduction from a function call, we are
39     /// matching with a parameter type for which the original parameter was
40     /// a reference.
41     TDF_ParamWithReferenceType = 0x1,
42     /// \brief Within template argument deduction from a function call, we
43     /// are matching in a case where we ignore cv-qualifiers.
44     TDF_IgnoreQualifiers = 0x02,
45     /// \brief Within template argument deduction from a function call,
46     /// we are matching in a case where we can perform template argument
47     /// deduction from a template-id of a derived class of the argument type.
48     TDF_DerivedClass = 0x04,
49     /// \brief Allow non-dependent types to differ, e.g., when performing
50     /// template argument deduction from a function call where conversions
51     /// may apply.
52     TDF_SkipNonDependent = 0x08,
53     /// \brief Whether we are performing template argument deduction for
54     /// parameters and arguments in a top-level template argument
55     TDF_TopLevelParameterTypeList = 0x10
56   };
57 }
58 
59 using namespace clang;
60 
61 /// \brief Compare two APSInts, extending and switching the sign as
62 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
64   if (Y.getBitWidth() > X.getBitWidth())
65     X = X.extend(Y.getBitWidth());
66   else if (Y.getBitWidth() < X.getBitWidth())
67     Y = Y.extend(X.getBitWidth());
68 
69   // If there is a signedness mismatch, correct it.
70   if (X.isSigned() != Y.isSigned()) {
71     // If the signed value is negative, then the values cannot be the same.
72     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
73       return false;
74 
75     Y.setIsSigned(true);
76     X.setIsSigned(true);
77   }
78 
79   return X == Y;
80 }
81 
82 static Sema::TemplateDeductionResult
83 DeduceTemplateArguments(Sema &S,
84                         TemplateParameterList *TemplateParams,
85                         const TemplateArgument &Param,
86                         TemplateArgument Arg,
87                         TemplateDeductionInfo &Info,
88                       SmallVectorImpl<DeducedTemplateArgument> &Deduced);
89 
90 /// \brief Whether template argument deduction for two reference parameters
91 /// resulted in the argument type, parameter type, or neither type being more
92 /// qualified than the other.
93 enum DeductionQualifierComparison {
94   NeitherMoreQualified = 0,
95   ParamMoreQualified,
96   ArgMoreQualified
97 };
98 
99 /// \brief Stores the result of comparing two reference parameters while
100 /// performing template argument deduction for partial ordering of function
101 /// templates.
102 struct RefParamPartialOrderingComparison {
103   /// \brief Whether the parameter type is an rvalue reference type.
104   bool ParamIsRvalueRef;
105   /// \brief Whether the argument type is an rvalue reference type.
106   bool ArgIsRvalueRef;
107 
108   /// \brief Whether the parameter or argument (or neither) is more qualified.
109   DeductionQualifierComparison Qualifiers;
110 };
111 
112 
113 
114 static Sema::TemplateDeductionResult
115 DeduceTemplateArgumentsByTypeMatch(Sema &S,
116                                    TemplateParameterList *TemplateParams,
117                                    QualType Param,
118                                    QualType Arg,
119                                    TemplateDeductionInfo &Info,
120                                    SmallVectorImpl<DeducedTemplateArgument> &
121                                                       Deduced,
122                                    unsigned TDF,
123                                    bool PartialOrdering = false,
124                             SmallVectorImpl<RefParamPartialOrderingComparison> *
125                                                       RefParamComparisons = 0);
126 
127 static Sema::TemplateDeductionResult
128 DeduceTemplateArguments(Sema &S,
129                         TemplateParameterList *TemplateParams,
130                         const TemplateArgument *Params, unsigned NumParams,
131                         const TemplateArgument *Args, unsigned NumArgs,
132                         TemplateDeductionInfo &Info,
133                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
134                         bool NumberOfArgumentsMustMatch = true);
135 
136 /// \brief If the given expression is of a form that permits the deduction
137 /// of a non-type template parameter, return the declaration of that
138 /// non-type template parameter.
getDeducedParameterFromExpr(Expr * E)139 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
140   if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
141     E = IC->getSubExpr();
142 
143   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
144     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
145 
146   return 0;
147 }
148 
149 /// \brief Determine whether two declaration pointers refer to the same
150 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)151 static bool isSameDeclaration(Decl *X, Decl *Y) {
152   if (!X || !Y)
153     return !X && !Y;
154 
155   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
156     X = NX->getUnderlyingDecl();
157   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
158     Y = NY->getUnderlyingDecl();
159 
160   return X->getCanonicalDecl() == Y->getCanonicalDecl();
161 }
162 
163 /// \brief Verify that the given, deduced template arguments are compatible.
164 ///
165 /// \returns The deduced template argument, or a NULL template argument if
166 /// the deduced template arguments were incompatible.
167 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)168 checkDeducedTemplateArguments(ASTContext &Context,
169                               const DeducedTemplateArgument &X,
170                               const DeducedTemplateArgument &Y) {
171   // We have no deduction for one or both of the arguments; they're compatible.
172   if (X.isNull())
173     return Y;
174   if (Y.isNull())
175     return X;
176 
177   switch (X.getKind()) {
178   case TemplateArgument::Null:
179     llvm_unreachable("Non-deduced template arguments handled above");
180 
181   case TemplateArgument::Type:
182     // If two template type arguments have the same type, they're compatible.
183     if (Y.getKind() == TemplateArgument::Type &&
184         Context.hasSameType(X.getAsType(), Y.getAsType()))
185       return X;
186 
187     return DeducedTemplateArgument();
188 
189   case TemplateArgument::Integral:
190     // If we deduced a constant in one case and either a dependent expression or
191     // declaration in another case, keep the integral constant.
192     // If both are integral constants with the same value, keep that value.
193     if (Y.getKind() == TemplateArgument::Expression ||
194         Y.getKind() == TemplateArgument::Declaration ||
195         (Y.getKind() == TemplateArgument::Integral &&
196          hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
197       return DeducedTemplateArgument(X,
198                                      X.wasDeducedFromArrayBound() &&
199                                      Y.wasDeducedFromArrayBound());
200 
201     // All other combinations are incompatible.
202     return DeducedTemplateArgument();
203 
204   case TemplateArgument::Template:
205     if (Y.getKind() == TemplateArgument::Template &&
206         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
207       return X;
208 
209     // All other combinations are incompatible.
210     return DeducedTemplateArgument();
211 
212   case TemplateArgument::TemplateExpansion:
213     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
214         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
215                                     Y.getAsTemplateOrTemplatePattern()))
216       return X;
217 
218     // All other combinations are incompatible.
219     return DeducedTemplateArgument();
220 
221   case TemplateArgument::Expression:
222     // If we deduced a dependent expression in one case and either an integral
223     // constant or a declaration in another case, keep the integral constant
224     // or declaration.
225     if (Y.getKind() == TemplateArgument::Integral ||
226         Y.getKind() == TemplateArgument::Declaration)
227       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
228                                      Y.wasDeducedFromArrayBound());
229 
230     if (Y.getKind() == TemplateArgument::Expression) {
231       // Compare the expressions for equality
232       llvm::FoldingSetNodeID ID1, ID2;
233       X.getAsExpr()->Profile(ID1, Context, true);
234       Y.getAsExpr()->Profile(ID2, Context, true);
235       if (ID1 == ID2)
236         return X;
237     }
238 
239     // All other combinations are incompatible.
240     return DeducedTemplateArgument();
241 
242   case TemplateArgument::Declaration:
243     // If we deduced a declaration and a dependent expression, keep the
244     // declaration.
245     if (Y.getKind() == TemplateArgument::Expression)
246       return X;
247 
248     // If we deduced a declaration and an integral constant, keep the
249     // integral constant.
250     if (Y.getKind() == TemplateArgument::Integral)
251       return Y;
252 
253     // If we deduced two declarations, make sure they they refer to the
254     // same declaration.
255     if (Y.getKind() == TemplateArgument::Declaration &&
256         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
257       return X;
258 
259     // All other combinations are incompatible.
260     return DeducedTemplateArgument();
261 
262   case TemplateArgument::Pack:
263     if (Y.getKind() != TemplateArgument::Pack ||
264         X.pack_size() != Y.pack_size())
265       return DeducedTemplateArgument();
266 
267     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
268                                       XAEnd = X.pack_end(),
269                                          YA = Y.pack_begin();
270          XA != XAEnd; ++XA, ++YA) {
271       if (checkDeducedTemplateArguments(Context,
272                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
273                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
274             .isNull())
275         return DeducedTemplateArgument();
276     }
277 
278     return X;
279   }
280 
281   llvm_unreachable("Invalid TemplateArgument Kind!");
282 }
283 
284 /// \brief Deduce the value of the given non-type template parameter
285 /// from the given constant.
286 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,llvm::APSInt Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)287 DeduceNonTypeTemplateArgument(Sema &S,
288                               NonTypeTemplateParmDecl *NTTP,
289                               llvm::APSInt Value, QualType ValueType,
290                               bool DeducedFromArrayBound,
291                               TemplateDeductionInfo &Info,
292                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
293   assert(NTTP->getDepth() == 0 &&
294          "Cannot deduce non-type template argument with depth > 0");
295 
296   DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
297   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
298                                                      Deduced[NTTP->getIndex()],
299                                                                  NewDeduced);
300   if (Result.isNull()) {
301     Info.Param = NTTP;
302     Info.FirstArg = Deduced[NTTP->getIndex()];
303     Info.SecondArg = NewDeduced;
304     return Sema::TDK_Inconsistent;
305   }
306 
307   Deduced[NTTP->getIndex()] = Result;
308   return Sema::TDK_Success;
309 }
310 
311 /// \brief Deduce the value of the given non-type template parameter
312 /// from the given type- or value-dependent expression.
313 ///
314 /// \returns true if deduction succeeded, false otherwise.
315 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)316 DeduceNonTypeTemplateArgument(Sema &S,
317                               NonTypeTemplateParmDecl *NTTP,
318                               Expr *Value,
319                               TemplateDeductionInfo &Info,
320                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
321   assert(NTTP->getDepth() == 0 &&
322          "Cannot deduce non-type template argument with depth > 0");
323   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
324          "Expression template argument must be type- or value-dependent.");
325 
326   DeducedTemplateArgument NewDeduced(Value);
327   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
328                                                      Deduced[NTTP->getIndex()],
329                                                                  NewDeduced);
330 
331   if (Result.isNull()) {
332     Info.Param = NTTP;
333     Info.FirstArg = Deduced[NTTP->getIndex()];
334     Info.SecondArg = NewDeduced;
335     return Sema::TDK_Inconsistent;
336   }
337 
338   Deduced[NTTP->getIndex()] = Result;
339   return Sema::TDK_Success;
340 }
341 
342 /// \brief Deduce the value of the given non-type template parameter
343 /// from the given declaration.
344 ///
345 /// \returns true if deduction succeeded, false otherwise.
346 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Decl * D,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)347 DeduceNonTypeTemplateArgument(Sema &S,
348                               NonTypeTemplateParmDecl *NTTP,
349                               Decl *D,
350                               TemplateDeductionInfo &Info,
351                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
352   assert(NTTP->getDepth() == 0 &&
353          "Cannot deduce non-type template argument with depth > 0");
354 
355   DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
356   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
357                                                      Deduced[NTTP->getIndex()],
358                                                                  NewDeduced);
359   if (Result.isNull()) {
360     Info.Param = NTTP;
361     Info.FirstArg = Deduced[NTTP->getIndex()];
362     Info.SecondArg = NewDeduced;
363     return Sema::TDK_Inconsistent;
364   }
365 
366   Deduced[NTTP->getIndex()] = Result;
367   return Sema::TDK_Success;
368 }
369 
370 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)371 DeduceTemplateArguments(Sema &S,
372                         TemplateParameterList *TemplateParams,
373                         TemplateName Param,
374                         TemplateName Arg,
375                         TemplateDeductionInfo &Info,
376                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
377   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
378   if (!ParamDecl) {
379     // The parameter type is dependent and is not a template template parameter,
380     // so there is nothing that we can deduce.
381     return Sema::TDK_Success;
382   }
383 
384   if (TemplateTemplateParmDecl *TempParam
385         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
386     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
387     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
388                                                  Deduced[TempParam->getIndex()],
389                                                                    NewDeduced);
390     if (Result.isNull()) {
391       Info.Param = TempParam;
392       Info.FirstArg = Deduced[TempParam->getIndex()];
393       Info.SecondArg = NewDeduced;
394       return Sema::TDK_Inconsistent;
395     }
396 
397     Deduced[TempParam->getIndex()] = Result;
398     return Sema::TDK_Success;
399   }
400 
401   // Verify that the two template names are equivalent.
402   if (S.Context.hasSameTemplateName(Param, Arg))
403     return Sema::TDK_Success;
404 
405   // Mismatch of non-dependent template parameter to argument.
406   Info.FirstArg = TemplateArgument(Param);
407   Info.SecondArg = TemplateArgument(Arg);
408   return Sema::TDK_NonDeducedMismatch;
409 }
410 
411 /// \brief Deduce the template arguments by comparing the template parameter
412 /// type (which is a template-id) with the template argument type.
413 ///
414 /// \param S the Sema
415 ///
416 /// \param TemplateParams the template parameters that we are deducing
417 ///
418 /// \param Param the parameter type
419 ///
420 /// \param Arg the argument type
421 ///
422 /// \param Info information about the template argument deduction itself
423 ///
424 /// \param Deduced the deduced template arguments
425 ///
426 /// \returns the result of template argument deduction so far. Note that a
427 /// "success" result means that template argument deduction has not yet failed,
428 /// but it may still fail, later, for other reasons.
429 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)430 DeduceTemplateArguments(Sema &S,
431                         TemplateParameterList *TemplateParams,
432                         const TemplateSpecializationType *Param,
433                         QualType Arg,
434                         TemplateDeductionInfo &Info,
435                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
436   assert(Arg.isCanonical() && "Argument type must be canonical");
437 
438   // Check whether the template argument is a dependent template-id.
439   if (const TemplateSpecializationType *SpecArg
440         = dyn_cast<TemplateSpecializationType>(Arg)) {
441     // Perform template argument deduction for the template name.
442     if (Sema::TemplateDeductionResult Result
443           = DeduceTemplateArguments(S, TemplateParams,
444                                     Param->getTemplateName(),
445                                     SpecArg->getTemplateName(),
446                                     Info, Deduced))
447       return Result;
448 
449 
450     // Perform template argument deduction on each template
451     // argument. Ignore any missing/extra arguments, since they could be
452     // filled in by default arguments.
453     return DeduceTemplateArguments(S, TemplateParams,
454                                    Param->getArgs(), Param->getNumArgs(),
455                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
456                                    Info, Deduced,
457                                    /*NumberOfArgumentsMustMatch=*/false);
458   }
459 
460   // If the argument type is a class template specialization, we
461   // perform template argument deduction using its template
462   // arguments.
463   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
464   if (!RecordArg)
465     return Sema::TDK_NonDeducedMismatch;
466 
467   ClassTemplateSpecializationDecl *SpecArg
468     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
469   if (!SpecArg)
470     return Sema::TDK_NonDeducedMismatch;
471 
472   // Perform template argument deduction for the template name.
473   if (Sema::TemplateDeductionResult Result
474         = DeduceTemplateArguments(S,
475                                   TemplateParams,
476                                   Param->getTemplateName(),
477                                TemplateName(SpecArg->getSpecializedTemplate()),
478                                   Info, Deduced))
479     return Result;
480 
481   // Perform template argument deduction for the template arguments.
482   return DeduceTemplateArguments(S, TemplateParams,
483                                  Param->getArgs(), Param->getNumArgs(),
484                                  SpecArg->getTemplateArgs().data(),
485                                  SpecArg->getTemplateArgs().size(),
486                                  Info, Deduced);
487 }
488 
489 /// \brief Determines whether the given type is an opaque type that
490 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)491 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
492   switch (T->getTypeClass()) {
493   case Type::TypeOfExpr:
494   case Type::TypeOf:
495   case Type::DependentName:
496   case Type::Decltype:
497   case Type::UnresolvedUsing:
498   case Type::TemplateTypeParm:
499     return true;
500 
501   case Type::ConstantArray:
502   case Type::IncompleteArray:
503   case Type::VariableArray:
504   case Type::DependentSizedArray:
505     return IsPossiblyOpaquelyQualifiedType(
506                                       cast<ArrayType>(T)->getElementType());
507 
508   default:
509     return false;
510   }
511 }
512 
513 /// \brief Retrieve the depth and index of a template parameter.
514 static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl * ND)515 getDepthAndIndex(NamedDecl *ND) {
516   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
517     return std::make_pair(TTP->getDepth(), TTP->getIndex());
518 
519   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
520     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
521 
522   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
523   return std::make_pair(TTP->getDepth(), TTP->getIndex());
524 }
525 
526 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
527 static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP)528 getDepthAndIndex(UnexpandedParameterPack UPP) {
529   if (const TemplateTypeParmType *TTP
530                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
531     return std::make_pair(TTP->getDepth(), TTP->getIndex());
532 
533   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
534 }
535 
536 /// \brief Helper function to build a TemplateParameter when we don't
537 /// know its type statically.
makeTemplateParameter(Decl * D)538 static TemplateParameter makeTemplateParameter(Decl *D) {
539   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
540     return TemplateParameter(TTP);
541   else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
542     return TemplateParameter(NTTP);
543 
544   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
545 }
546 
547 /// \brief Prepare to perform template argument deduction for all of the
548 /// arguments in a set of argument packs.
PrepareArgumentPackDeduction(Sema & S,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,SmallVectorImpl<SmallVector<DeducedTemplateArgument,4>> & NewlyDeducedPacks)549 static void PrepareArgumentPackDeduction(Sema &S,
550                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
551                                            ArrayRef<unsigned> PackIndices,
552                      SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
553          SmallVectorImpl<
554            SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
555   // Save the deduced template arguments for each parameter pack expanded
556   // by this pack expansion, then clear out the deduction.
557   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
558     // Save the previously-deduced argument pack, then clear it out so that we
559     // can deduce a new argument pack.
560     SavedPacks[I] = Deduced[PackIndices[I]];
561     Deduced[PackIndices[I]] = TemplateArgument();
562 
563     // If the template arugment pack was explicitly specified, add that to
564     // the set of deduced arguments.
565     const TemplateArgument *ExplicitArgs;
566     unsigned NumExplicitArgs;
567     if (NamedDecl *PartiallySubstitutedPack
568         = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
569                                                            &ExplicitArgs,
570                                                            &NumExplicitArgs)) {
571       if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
572         NewlyDeducedPacks[I].append(ExplicitArgs,
573                                     ExplicitArgs + NumExplicitArgs);
574     }
575   }
576 }
577 
578 /// \brief Finish template argument deduction for a set of argument packs,
579 /// producing the argument packs and checking for consistency with prior
580 /// deductions.
581 static Sema::TemplateDeductionResult
FinishArgumentPackDeduction(Sema & S,TemplateParameterList * TemplateParams,bool HasAnyArguments,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,SmallVectorImpl<SmallVector<DeducedTemplateArgument,4>> & NewlyDeducedPacks,TemplateDeductionInfo & Info)582 FinishArgumentPackDeduction(Sema &S,
583                             TemplateParameterList *TemplateParams,
584                             bool HasAnyArguments,
585                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
586                             ArrayRef<unsigned> PackIndices,
587                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
588         SmallVectorImpl<
589           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
590                             TemplateDeductionInfo &Info) {
591   // Build argument packs for each of the parameter packs expanded by this
592   // pack expansion.
593   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
594     if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
595       // We were not able to deduce anything for this parameter pack,
596       // so just restore the saved argument pack.
597       Deduced[PackIndices[I]] = SavedPacks[I];
598       continue;
599     }
600 
601     DeducedTemplateArgument NewPack;
602 
603     if (NewlyDeducedPacks[I].empty()) {
604       // If we deduced an empty argument pack, create it now.
605       NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
606     } else {
607       TemplateArgument *ArgumentPack
608         = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
609       std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
610                 ArgumentPack);
611       NewPack
612         = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
613                                                    NewlyDeducedPacks[I].size()),
614                             NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
615     }
616 
617     DeducedTemplateArgument Result
618       = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
619     if (Result.isNull()) {
620       Info.Param
621         = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
622       Info.FirstArg = SavedPacks[I];
623       Info.SecondArg = NewPack;
624       return Sema::TDK_Inconsistent;
625     }
626 
627     Deduced[PackIndices[I]] = Result;
628   }
629 
630   return Sema::TDK_Success;
631 }
632 
633 /// \brief Deduce the template arguments by comparing the list of parameter
634 /// types to the list of argument types, as in the parameter-type-lists of
635 /// function types (C++ [temp.deduct.type]p10).
636 ///
637 /// \param S The semantic analysis object within which we are deducing
638 ///
639 /// \param TemplateParams The template parameters that we are deducing
640 ///
641 /// \param Params The list of parameter types
642 ///
643 /// \param NumParams The number of types in \c Params
644 ///
645 /// \param Args The list of argument types
646 ///
647 /// \param NumArgs The number of types in \c Args
648 ///
649 /// \param Info information about the template argument deduction itself
650 ///
651 /// \param Deduced the deduced template arguments
652 ///
653 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
654 /// how template argument deduction is performed.
655 ///
656 /// \param PartialOrdering If true, we are performing template argument
657 /// deduction for during partial ordering for a call
658 /// (C++0x [temp.deduct.partial]).
659 ///
660 /// \param RefParamComparisons If we're performing template argument deduction
661 /// in the context of partial ordering, the set of qualifier comparisons.
662 ///
663 /// \returns the result of template argument deduction so far. Note that a
664 /// "success" result means that template argument deduction has not yet failed,
665 /// but it may still fail, later, for other reasons.
666 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons=0)667 DeduceTemplateArguments(Sema &S,
668                         TemplateParameterList *TemplateParams,
669                         const QualType *Params, unsigned NumParams,
670                         const QualType *Args, unsigned NumArgs,
671                         TemplateDeductionInfo &Info,
672                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
673                         unsigned TDF,
674                         bool PartialOrdering = false,
675                         SmallVectorImpl<RefParamPartialOrderingComparison> *
676                                                      RefParamComparisons = 0) {
677   // Fast-path check to see if we have too many/too few arguments.
678   if (NumParams != NumArgs &&
679       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
680       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
681     return Sema::TDK_NonDeducedMismatch;
682 
683   // C++0x [temp.deduct.type]p10:
684   //   Similarly, if P has a form that contains (T), then each parameter type
685   //   Pi of the respective parameter-type- list of P is compared with the
686   //   corresponding parameter type Ai of the corresponding parameter-type-list
687   //   of A. [...]
688   unsigned ArgIdx = 0, ParamIdx = 0;
689   for (; ParamIdx != NumParams; ++ParamIdx) {
690     // Check argument types.
691     const PackExpansionType *Expansion
692                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
693     if (!Expansion) {
694       // Simple case: compare the parameter and argument types at this point.
695 
696       // Make sure we have an argument.
697       if (ArgIdx >= NumArgs)
698         return Sema::TDK_NonDeducedMismatch;
699 
700       if (isa<PackExpansionType>(Args[ArgIdx])) {
701         // C++0x [temp.deduct.type]p22:
702         //   If the original function parameter associated with A is a function
703         //   parameter pack and the function parameter associated with P is not
704         //   a function parameter pack, then template argument deduction fails.
705         return Sema::TDK_NonDeducedMismatch;
706       }
707 
708       if (Sema::TemplateDeductionResult Result
709             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
710                                                  Params[ParamIdx], Args[ArgIdx],
711                                                  Info, Deduced, TDF,
712                                                  PartialOrdering,
713                                                  RefParamComparisons))
714         return Result;
715 
716       ++ArgIdx;
717       continue;
718     }
719 
720     // C++0x [temp.deduct.type]p5:
721     //   The non-deduced contexts are:
722     //     - A function parameter pack that does not occur at the end of the
723     //       parameter-declaration-clause.
724     if (ParamIdx + 1 < NumParams)
725       return Sema::TDK_Success;
726 
727     // C++0x [temp.deduct.type]p10:
728     //   If the parameter-declaration corresponding to Pi is a function
729     //   parameter pack, then the type of its declarator- id is compared with
730     //   each remaining parameter type in the parameter-type-list of A. Each
731     //   comparison deduces template arguments for subsequent positions in the
732     //   template parameter packs expanded by the function parameter pack.
733 
734     // Compute the set of template parameter indices that correspond to
735     // parameter packs expanded by the pack expansion.
736     SmallVector<unsigned, 2> PackIndices;
737     QualType Pattern = Expansion->getPattern();
738     {
739       llvm::SmallBitVector SawIndices(TemplateParams->size());
740       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
741       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
742       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
743         unsigned Depth, Index;
744         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
745         if (Depth == 0 && !SawIndices[Index]) {
746           SawIndices[Index] = true;
747           PackIndices.push_back(Index);
748         }
749       }
750     }
751     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
752 
753     // Keep track of the deduced template arguments for each parameter pack
754     // expanded by this pack expansion (the outer index) and for each
755     // template argument (the inner SmallVectors).
756     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
757       NewlyDeducedPacks(PackIndices.size());
758     SmallVector<DeducedTemplateArgument, 2>
759       SavedPacks(PackIndices.size());
760     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
761                                  NewlyDeducedPacks);
762 
763     bool HasAnyArguments = false;
764     for (; ArgIdx < NumArgs; ++ArgIdx) {
765       HasAnyArguments = true;
766 
767       // Deduce template arguments from the pattern.
768       if (Sema::TemplateDeductionResult Result
769             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
770                                                  Args[ArgIdx], Info, Deduced,
771                                                  TDF, PartialOrdering,
772                                                  RefParamComparisons))
773         return Result;
774 
775       // Capture the deduced template arguments for each parameter pack expanded
776       // by this pack expansion, add them to the list of arguments we've deduced
777       // for that pack, then clear out the deduced argument.
778       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
779         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
780         if (!DeducedArg.isNull()) {
781           NewlyDeducedPacks[I].push_back(DeducedArg);
782           DeducedArg = DeducedTemplateArgument();
783         }
784       }
785     }
786 
787     // Build argument packs for each of the parameter packs expanded by this
788     // pack expansion.
789     if (Sema::TemplateDeductionResult Result
790           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
791                                         Deduced, PackIndices, SavedPacks,
792                                         NewlyDeducedPacks, Info))
793       return Result;
794   }
795 
796   // Make sure we don't have any extra arguments.
797   if (ArgIdx < NumArgs)
798     return Sema::TDK_NonDeducedMismatch;
799 
800   return Sema::TDK_Success;
801 }
802 
803 /// \brief Determine whether the parameter has qualifiers that are either
804 /// inconsistent with or a superset of the argument's qualifiers.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)805 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
806                                                   QualType ArgType) {
807   Qualifiers ParamQs = ParamType.getQualifiers();
808   Qualifiers ArgQs = ArgType.getQualifiers();
809 
810   if (ParamQs == ArgQs)
811     return false;
812 
813   // Mismatched (but not missing) Objective-C GC attributes.
814   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
815       ParamQs.hasObjCGCAttr())
816     return true;
817 
818   // Mismatched (but not missing) address spaces.
819   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
820       ParamQs.hasAddressSpace())
821     return true;
822 
823   // Mismatched (but not missing) Objective-C lifetime qualifiers.
824   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
825       ParamQs.hasObjCLifetime())
826     return true;
827 
828   // CVR qualifier superset.
829   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
830       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
831                                                 == ParamQs.getCVRQualifiers());
832 }
833 
834 /// \brief Deduce the template arguments by comparing the parameter type and
835 /// the argument type (C++ [temp.deduct.type]).
836 ///
837 /// \param S the semantic analysis object within which we are deducing
838 ///
839 /// \param TemplateParams the template parameters that we are deducing
840 ///
841 /// \param ParamIn the parameter type
842 ///
843 /// \param ArgIn the argument type
844 ///
845 /// \param Info information about the template argument deduction itself
846 ///
847 /// \param Deduced the deduced template arguments
848 ///
849 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
850 /// how template argument deduction is performed.
851 ///
852 /// \param PartialOrdering Whether we're performing template argument deduction
853 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
854 ///
855 /// \param RefParamComparisons If we're performing template argument deduction
856 /// in the context of partial ordering, the set of qualifier comparisons.
857 ///
858 /// \returns the result of template argument deduction so far. Note that a
859 /// "success" result means that template argument deduction has not yet failed,
860 /// but it may still fail, later, for other reasons.
861 static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)862 DeduceTemplateArgumentsByTypeMatch(Sema &S,
863                                    TemplateParameterList *TemplateParams,
864                                    QualType ParamIn, QualType ArgIn,
865                                    TemplateDeductionInfo &Info,
866                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
867                                    unsigned TDF,
868                                    bool PartialOrdering,
869                             SmallVectorImpl<RefParamPartialOrderingComparison> *
870                                                           RefParamComparisons) {
871   // We only want to look at the canonical types, since typedefs and
872   // sugar are not part of template argument deduction.
873   QualType Param = S.Context.getCanonicalType(ParamIn);
874   QualType Arg = S.Context.getCanonicalType(ArgIn);
875 
876   // If the argument type is a pack expansion, look at its pattern.
877   // This isn't explicitly called out
878   if (const PackExpansionType *ArgExpansion
879                                             = dyn_cast<PackExpansionType>(Arg))
880     Arg = ArgExpansion->getPattern();
881 
882   if (PartialOrdering) {
883     // C++0x [temp.deduct.partial]p5:
884     //   Before the partial ordering is done, certain transformations are
885     //   performed on the types used for partial ordering:
886     //     - If P is a reference type, P is replaced by the type referred to.
887     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
888     if (ParamRef)
889       Param = ParamRef->getPointeeType();
890 
891     //     - If A is a reference type, A is replaced by the type referred to.
892     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
893     if (ArgRef)
894       Arg = ArgRef->getPointeeType();
895 
896     if (RefParamComparisons && ParamRef && ArgRef) {
897       // C++0x [temp.deduct.partial]p6:
898       //   If both P and A were reference types (before being replaced with the
899       //   type referred to above), determine which of the two types (if any) is
900       //   more cv-qualified than the other; otherwise the types are considered
901       //   to be equally cv-qualified for partial ordering purposes. The result
902       //   of this determination will be used below.
903       //
904       // We save this information for later, using it only when deduction
905       // succeeds in both directions.
906       RefParamPartialOrderingComparison Comparison;
907       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
908       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
909       Comparison.Qualifiers = NeitherMoreQualified;
910 
911       Qualifiers ParamQuals = Param.getQualifiers();
912       Qualifiers ArgQuals = Arg.getQualifiers();
913       if (ParamQuals.isStrictSupersetOf(ArgQuals))
914         Comparison.Qualifiers = ParamMoreQualified;
915       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
916         Comparison.Qualifiers = ArgMoreQualified;
917       RefParamComparisons->push_back(Comparison);
918     }
919 
920     // C++0x [temp.deduct.partial]p7:
921     //   Remove any top-level cv-qualifiers:
922     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
923     //       version of P.
924     Param = Param.getUnqualifiedType();
925     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
926     //       version of A.
927     Arg = Arg.getUnqualifiedType();
928   } else {
929     // C++0x [temp.deduct.call]p4 bullet 1:
930     //   - If the original P is a reference type, the deduced A (i.e., the type
931     //     referred to by the reference) can be more cv-qualified than the
932     //     transformed A.
933     if (TDF & TDF_ParamWithReferenceType) {
934       Qualifiers Quals;
935       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
936       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
937                              Arg.getCVRQualifiers());
938       Param = S.Context.getQualifiedType(UnqualParam, Quals);
939     }
940 
941     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
942       // C++0x [temp.deduct.type]p10:
943       //   If P and A are function types that originated from deduction when
944       //   taking the address of a function template (14.8.2.2) or when deducing
945       //   template arguments from a function declaration (14.8.2.6) and Pi and
946       //   Ai are parameters of the top-level parameter-type-list of P and A,
947       //   respectively, Pi is adjusted if it is an rvalue reference to a
948       //   cv-unqualified template parameter and Ai is an lvalue reference, in
949       //   which case the type of Pi is changed to be the template parameter
950       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
951       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
952       //   deduced as X&. - end note ]
953       TDF &= ~TDF_TopLevelParameterTypeList;
954 
955       if (const RValueReferenceType *ParamRef
956                                         = Param->getAs<RValueReferenceType>()) {
957         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
958             !ParamRef->getPointeeType().getQualifiers())
959           if (Arg->isLValueReferenceType())
960             Param = ParamRef->getPointeeType();
961       }
962     }
963   }
964 
965   // C++ [temp.deduct.type]p9:
966   //   A template type argument T, a template template argument TT or a
967   //   template non-type argument i can be deduced if P and A have one of
968   //   the following forms:
969   //
970   //     T
971   //     cv-list T
972   if (const TemplateTypeParmType *TemplateTypeParm
973         = Param->getAs<TemplateTypeParmType>()) {
974     // Just skip any attempts to deduce from a placeholder type.
975     if (Arg->isPlaceholderType())
976       return Sema::TDK_Success;
977 
978     unsigned Index = TemplateTypeParm->getIndex();
979     bool RecanonicalizeArg = false;
980 
981     // If the argument type is an array type, move the qualifiers up to the
982     // top level, so they can be matched with the qualifiers on the parameter.
983     if (isa<ArrayType>(Arg)) {
984       Qualifiers Quals;
985       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
986       if (Quals) {
987         Arg = S.Context.getQualifiedType(Arg, Quals);
988         RecanonicalizeArg = true;
989       }
990     }
991 
992     // The argument type can not be less qualified than the parameter
993     // type.
994     if (!(TDF & TDF_IgnoreQualifiers) &&
995         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
996       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
997       Info.FirstArg = TemplateArgument(Param);
998       Info.SecondArg = TemplateArgument(Arg);
999       return Sema::TDK_Underqualified;
1000     }
1001 
1002     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1003     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1004     QualType DeducedType = Arg;
1005 
1006     // Remove any qualifiers on the parameter from the deduced type.
1007     // We checked the qualifiers for consistency above.
1008     Qualifiers DeducedQs = DeducedType.getQualifiers();
1009     Qualifiers ParamQs = Param.getQualifiers();
1010     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1011     if (ParamQs.hasObjCGCAttr())
1012       DeducedQs.removeObjCGCAttr();
1013     if (ParamQs.hasAddressSpace())
1014       DeducedQs.removeAddressSpace();
1015     if (ParamQs.hasObjCLifetime())
1016       DeducedQs.removeObjCLifetime();
1017 
1018     // Objective-C ARC:
1019     //   If template deduction would produce a lifetime qualifier on a type
1020     //   that is not a lifetime type, template argument deduction fails.
1021     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1022         !DeducedType->isDependentType()) {
1023       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1024       Info.FirstArg = TemplateArgument(Param);
1025       Info.SecondArg = TemplateArgument(Arg);
1026       return Sema::TDK_Underqualified;
1027     }
1028 
1029     // Objective-C ARC:
1030     //   If template deduction would produce an argument type with lifetime type
1031     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1032     if (S.getLangOpts().ObjCAutoRefCount &&
1033         DeducedType->isObjCLifetimeType() &&
1034         !DeducedQs.hasObjCLifetime())
1035       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1036 
1037     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1038                                              DeducedQs);
1039 
1040     if (RecanonicalizeArg)
1041       DeducedType = S.Context.getCanonicalType(DeducedType);
1042 
1043     DeducedTemplateArgument NewDeduced(DeducedType);
1044     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1045                                                                  Deduced[Index],
1046                                                                    NewDeduced);
1047     if (Result.isNull()) {
1048       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1049       Info.FirstArg = Deduced[Index];
1050       Info.SecondArg = NewDeduced;
1051       return Sema::TDK_Inconsistent;
1052     }
1053 
1054     Deduced[Index] = Result;
1055     return Sema::TDK_Success;
1056   }
1057 
1058   // Set up the template argument deduction information for a failure.
1059   Info.FirstArg = TemplateArgument(ParamIn);
1060   Info.SecondArg = TemplateArgument(ArgIn);
1061 
1062   // If the parameter is an already-substituted template parameter
1063   // pack, do nothing: we don't know which of its arguments to look
1064   // at, so we have to wait until all of the parameter packs in this
1065   // expansion have arguments.
1066   if (isa<SubstTemplateTypeParmPackType>(Param))
1067     return Sema::TDK_Success;
1068 
1069   // Check the cv-qualifiers on the parameter and argument types.
1070   if (!(TDF & TDF_IgnoreQualifiers)) {
1071     if (TDF & TDF_ParamWithReferenceType) {
1072       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1073         return Sema::TDK_NonDeducedMismatch;
1074     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1075       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1076         return Sema::TDK_NonDeducedMismatch;
1077     }
1078 
1079     // If the parameter type is not dependent, there is nothing to deduce.
1080     if (!Param->isDependentType()) {
1081       if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
1082         return Sema::TDK_NonDeducedMismatch;
1083 
1084       return Sema::TDK_Success;
1085     }
1086   } else if (!Param->isDependentType() &&
1087              Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
1088     return Sema::TDK_Success;
1089   }
1090 
1091   switch (Param->getTypeClass()) {
1092     // Non-canonical types cannot appear here.
1093 #define NON_CANONICAL_TYPE(Class, Base) \
1094   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1095 #define TYPE(Class, Base)
1096 #include "clang/AST/TypeNodes.def"
1097 
1098     case Type::TemplateTypeParm:
1099     case Type::SubstTemplateTypeParmPack:
1100       llvm_unreachable("Type nodes handled above");
1101 
1102     // These types cannot be dependent, so simply check whether the types are
1103     // the same.
1104     case Type::Builtin:
1105     case Type::VariableArray:
1106     case Type::Vector:
1107     case Type::FunctionNoProto:
1108     case Type::Record:
1109     case Type::Enum:
1110     case Type::ObjCObject:
1111     case Type::ObjCInterface:
1112     case Type::ObjCObjectPointer: {
1113       if (TDF & TDF_SkipNonDependent)
1114         return Sema::TDK_Success;
1115 
1116       if (TDF & TDF_IgnoreQualifiers) {
1117         Param = Param.getUnqualifiedType();
1118         Arg = Arg.getUnqualifiedType();
1119       }
1120 
1121       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1122     }
1123 
1124     //     _Complex T   [placeholder extension]
1125     case Type::Complex:
1126       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1127         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1128                                     cast<ComplexType>(Param)->getElementType(),
1129                                     ComplexArg->getElementType(),
1130                                     Info, Deduced, TDF);
1131 
1132       return Sema::TDK_NonDeducedMismatch;
1133 
1134     //     _Atomic T   [extension]
1135     case Type::Atomic:
1136       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1137         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1138                                        cast<AtomicType>(Param)->getValueType(),
1139                                        AtomicArg->getValueType(),
1140                                        Info, Deduced, TDF);
1141 
1142       return Sema::TDK_NonDeducedMismatch;
1143 
1144     //     T *
1145     case Type::Pointer: {
1146       QualType PointeeType;
1147       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1148         PointeeType = PointerArg->getPointeeType();
1149       } else if (const ObjCObjectPointerType *PointerArg
1150                    = Arg->getAs<ObjCObjectPointerType>()) {
1151         PointeeType = PointerArg->getPointeeType();
1152       } else {
1153         return Sema::TDK_NonDeducedMismatch;
1154       }
1155 
1156       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1157       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1158                                      cast<PointerType>(Param)->getPointeeType(),
1159                                      PointeeType,
1160                                      Info, Deduced, SubTDF);
1161     }
1162 
1163     //     T &
1164     case Type::LValueReference: {
1165       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1166       if (!ReferenceArg)
1167         return Sema::TDK_NonDeducedMismatch;
1168 
1169       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1170                            cast<LValueReferenceType>(Param)->getPointeeType(),
1171                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
1172     }
1173 
1174     //     T && [C++0x]
1175     case Type::RValueReference: {
1176       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1177       if (!ReferenceArg)
1178         return Sema::TDK_NonDeducedMismatch;
1179 
1180       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1181                              cast<RValueReferenceType>(Param)->getPointeeType(),
1182                              ReferenceArg->getPointeeType(),
1183                              Info, Deduced, 0);
1184     }
1185 
1186     //     T [] (implied, but not stated explicitly)
1187     case Type::IncompleteArray: {
1188       const IncompleteArrayType *IncompleteArrayArg =
1189         S.Context.getAsIncompleteArrayType(Arg);
1190       if (!IncompleteArrayArg)
1191         return Sema::TDK_NonDeducedMismatch;
1192 
1193       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1194       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1195                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1196                     IncompleteArrayArg->getElementType(),
1197                     Info, Deduced, SubTDF);
1198     }
1199 
1200     //     T [integer-constant]
1201     case Type::ConstantArray: {
1202       const ConstantArrayType *ConstantArrayArg =
1203         S.Context.getAsConstantArrayType(Arg);
1204       if (!ConstantArrayArg)
1205         return Sema::TDK_NonDeducedMismatch;
1206 
1207       const ConstantArrayType *ConstantArrayParm =
1208         S.Context.getAsConstantArrayType(Param);
1209       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1210         return Sema::TDK_NonDeducedMismatch;
1211 
1212       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1213       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1214                                            ConstantArrayParm->getElementType(),
1215                                            ConstantArrayArg->getElementType(),
1216                                            Info, Deduced, SubTDF);
1217     }
1218 
1219     //     type [i]
1220     case Type::DependentSizedArray: {
1221       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1222       if (!ArrayArg)
1223         return Sema::TDK_NonDeducedMismatch;
1224 
1225       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1226 
1227       // Check the element type of the arrays
1228       const DependentSizedArrayType *DependentArrayParm
1229         = S.Context.getAsDependentSizedArrayType(Param);
1230       if (Sema::TemplateDeductionResult Result
1231             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1232                                           DependentArrayParm->getElementType(),
1233                                           ArrayArg->getElementType(),
1234                                           Info, Deduced, SubTDF))
1235         return Result;
1236 
1237       // Determine the array bound is something we can deduce.
1238       NonTypeTemplateParmDecl *NTTP
1239         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1240       if (!NTTP)
1241         return Sema::TDK_Success;
1242 
1243       // We can perform template argument deduction for the given non-type
1244       // template parameter.
1245       assert(NTTP->getDepth() == 0 &&
1246              "Cannot deduce non-type template argument at depth > 0");
1247       if (const ConstantArrayType *ConstantArrayArg
1248             = dyn_cast<ConstantArrayType>(ArrayArg)) {
1249         llvm::APSInt Size(ConstantArrayArg->getSize());
1250         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1251                                              S.Context.getSizeType(),
1252                                              /*ArrayBound=*/true,
1253                                              Info, Deduced);
1254       }
1255       if (const DependentSizedArrayType *DependentArrayArg
1256             = dyn_cast<DependentSizedArrayType>(ArrayArg))
1257         if (DependentArrayArg->getSizeExpr())
1258           return DeduceNonTypeTemplateArgument(S, NTTP,
1259                                                DependentArrayArg->getSizeExpr(),
1260                                                Info, Deduced);
1261 
1262       // Incomplete type does not match a dependently-sized array type
1263       return Sema::TDK_NonDeducedMismatch;
1264     }
1265 
1266     //     type(*)(T)
1267     //     T(*)()
1268     //     T(*)(T)
1269     case Type::FunctionProto: {
1270       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1271       const FunctionProtoType *FunctionProtoArg =
1272         dyn_cast<FunctionProtoType>(Arg);
1273       if (!FunctionProtoArg)
1274         return Sema::TDK_NonDeducedMismatch;
1275 
1276       const FunctionProtoType *FunctionProtoParam =
1277         cast<FunctionProtoType>(Param);
1278 
1279       if (FunctionProtoParam->getTypeQuals()
1280             != FunctionProtoArg->getTypeQuals() ||
1281           FunctionProtoParam->getRefQualifier()
1282             != FunctionProtoArg->getRefQualifier() ||
1283           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1284         return Sema::TDK_NonDeducedMismatch;
1285 
1286       // Check return types.
1287       if (Sema::TemplateDeductionResult Result
1288             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1289                                             FunctionProtoParam->getResultType(),
1290                                             FunctionProtoArg->getResultType(),
1291                                             Info, Deduced, 0))
1292         return Result;
1293 
1294       return DeduceTemplateArguments(S, TemplateParams,
1295                                      FunctionProtoParam->arg_type_begin(),
1296                                      FunctionProtoParam->getNumArgs(),
1297                                      FunctionProtoArg->arg_type_begin(),
1298                                      FunctionProtoArg->getNumArgs(),
1299                                      Info, Deduced, SubTDF);
1300     }
1301 
1302     case Type::InjectedClassName: {
1303       // Treat a template's injected-class-name as if the template
1304       // specialization type had been used.
1305       Param = cast<InjectedClassNameType>(Param)
1306         ->getInjectedSpecializationType();
1307       assert(isa<TemplateSpecializationType>(Param) &&
1308              "injected class name is not a template specialization type");
1309       // fall through
1310     }
1311 
1312     //     template-name<T> (where template-name refers to a class template)
1313     //     template-name<i>
1314     //     TT<T>
1315     //     TT<i>
1316     //     TT<>
1317     case Type::TemplateSpecialization: {
1318       const TemplateSpecializationType *SpecParam
1319         = cast<TemplateSpecializationType>(Param);
1320 
1321       // Try to deduce template arguments from the template-id.
1322       Sema::TemplateDeductionResult Result
1323         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1324                                   Info, Deduced);
1325 
1326       if (Result && (TDF & TDF_DerivedClass)) {
1327         // C++ [temp.deduct.call]p3b3:
1328         //   If P is a class, and P has the form template-id, then A can be a
1329         //   derived class of the deduced A. Likewise, if P is a pointer to a
1330         //   class of the form template-id, A can be a pointer to a derived
1331         //   class pointed to by the deduced A.
1332         //
1333         // More importantly:
1334         //   These alternatives are considered only if type deduction would
1335         //   otherwise fail.
1336         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1337           // We cannot inspect base classes as part of deduction when the type
1338           // is incomplete, so either instantiate any templates necessary to
1339           // complete the type, or skip over it if it cannot be completed.
1340           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1341             return Result;
1342 
1343           // Use data recursion to crawl through the list of base classes.
1344           // Visited contains the set of nodes we have already visited, while
1345           // ToVisit is our stack of records that we still need to visit.
1346           llvm::SmallPtrSet<const RecordType *, 8> Visited;
1347           SmallVector<const RecordType *, 8> ToVisit;
1348           ToVisit.push_back(RecordT);
1349           bool Successful = false;
1350           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1351                                                               Deduced.end());
1352           while (!ToVisit.empty()) {
1353             // Retrieve the next class in the inheritance hierarchy.
1354             const RecordType *NextT = ToVisit.back();
1355             ToVisit.pop_back();
1356 
1357             // If we have already seen this type, skip it.
1358             if (!Visited.insert(NextT))
1359               continue;
1360 
1361             // If this is a base class, try to perform template argument
1362             // deduction from it.
1363             if (NextT != RecordT) {
1364               Sema::TemplateDeductionResult BaseResult
1365                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1366                                           QualType(NextT, 0), Info, Deduced);
1367 
1368               // If template argument deduction for this base was successful,
1369               // note that we had some success. Otherwise, ignore any deductions
1370               // from this base class.
1371               if (BaseResult == Sema::TDK_Success) {
1372                 Successful = true;
1373                 DeducedOrig.clear();
1374                 DeducedOrig.append(Deduced.begin(), Deduced.end());
1375               }
1376               else
1377                 Deduced = DeducedOrig;
1378             }
1379 
1380             // Visit base classes
1381             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1382             for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1383                                                  BaseEnd = Next->bases_end();
1384                  Base != BaseEnd; ++Base) {
1385               assert(Base->getType()->isRecordType() &&
1386                      "Base class that isn't a record?");
1387               ToVisit.push_back(Base->getType()->getAs<RecordType>());
1388             }
1389           }
1390 
1391           if (Successful)
1392             return Sema::TDK_Success;
1393         }
1394 
1395       }
1396 
1397       return Result;
1398     }
1399 
1400     //     T type::*
1401     //     T T::*
1402     //     T (type::*)()
1403     //     type (T::*)()
1404     //     type (type::*)(T)
1405     //     type (T::*)(T)
1406     //     T (type::*)(T)
1407     //     T (T::*)()
1408     //     T (T::*)(T)
1409     case Type::MemberPointer: {
1410       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1411       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1412       if (!MemPtrArg)
1413         return Sema::TDK_NonDeducedMismatch;
1414 
1415       if (Sema::TemplateDeductionResult Result
1416             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1417                                                  MemPtrParam->getPointeeType(),
1418                                                  MemPtrArg->getPointeeType(),
1419                                                  Info, Deduced,
1420                                                  TDF & TDF_IgnoreQualifiers))
1421         return Result;
1422 
1423       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1424                                            QualType(MemPtrParam->getClass(), 0),
1425                                            QualType(MemPtrArg->getClass(), 0),
1426                                            Info, Deduced,
1427                                            TDF & TDF_IgnoreQualifiers);
1428     }
1429 
1430     //     (clang extension)
1431     //
1432     //     type(^)(T)
1433     //     T(^)()
1434     //     T(^)(T)
1435     case Type::BlockPointer: {
1436       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1437       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1438 
1439       if (!BlockPtrArg)
1440         return Sema::TDK_NonDeducedMismatch;
1441 
1442       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1443                                                 BlockPtrParam->getPointeeType(),
1444                                                 BlockPtrArg->getPointeeType(),
1445                                                 Info, Deduced, 0);
1446     }
1447 
1448     //     (clang extension)
1449     //
1450     //     T __attribute__(((ext_vector_type(<integral constant>))))
1451     case Type::ExtVector: {
1452       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1453       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1454         // Make sure that the vectors have the same number of elements.
1455         if (VectorParam->getNumElements() != VectorArg->getNumElements())
1456           return Sema::TDK_NonDeducedMismatch;
1457 
1458         // Perform deduction on the element types.
1459         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1460                                                   VectorParam->getElementType(),
1461                                                   VectorArg->getElementType(),
1462                                                   Info, Deduced, TDF);
1463       }
1464 
1465       if (const DependentSizedExtVectorType *VectorArg
1466                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1467         // We can't check the number of elements, since the argument has a
1468         // dependent number of elements. This can only occur during partial
1469         // ordering.
1470 
1471         // Perform deduction on the element types.
1472         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1473                                                   VectorParam->getElementType(),
1474                                                   VectorArg->getElementType(),
1475                                                   Info, Deduced, TDF);
1476       }
1477 
1478       return Sema::TDK_NonDeducedMismatch;
1479     }
1480 
1481     //     (clang extension)
1482     //
1483     //     T __attribute__(((ext_vector_type(N))))
1484     case Type::DependentSizedExtVector: {
1485       const DependentSizedExtVectorType *VectorParam
1486         = cast<DependentSizedExtVectorType>(Param);
1487 
1488       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1489         // Perform deduction on the element types.
1490         if (Sema::TemplateDeductionResult Result
1491               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1492                                                   VectorParam->getElementType(),
1493                                                    VectorArg->getElementType(),
1494                                                    Info, Deduced, TDF))
1495           return Result;
1496 
1497         // Perform deduction on the vector size, if we can.
1498         NonTypeTemplateParmDecl *NTTP
1499           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1500         if (!NTTP)
1501           return Sema::TDK_Success;
1502 
1503         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1504         ArgSize = VectorArg->getNumElements();
1505         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1506                                              false, Info, Deduced);
1507       }
1508 
1509       if (const DependentSizedExtVectorType *VectorArg
1510                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1511         // Perform deduction on the element types.
1512         if (Sema::TemplateDeductionResult Result
1513             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1514                                                  VectorParam->getElementType(),
1515                                                  VectorArg->getElementType(),
1516                                                  Info, Deduced, TDF))
1517           return Result;
1518 
1519         // Perform deduction on the vector size, if we can.
1520         NonTypeTemplateParmDecl *NTTP
1521           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1522         if (!NTTP)
1523           return Sema::TDK_Success;
1524 
1525         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1526                                              Info, Deduced);
1527       }
1528 
1529       return Sema::TDK_NonDeducedMismatch;
1530     }
1531 
1532     case Type::TypeOfExpr:
1533     case Type::TypeOf:
1534     case Type::DependentName:
1535     case Type::UnresolvedUsing:
1536     case Type::Decltype:
1537     case Type::UnaryTransform:
1538     case Type::Auto:
1539     case Type::DependentTemplateSpecialization:
1540     case Type::PackExpansion:
1541       // No template argument deduction for these types
1542       return Sema::TDK_Success;
1543   }
1544 
1545   llvm_unreachable("Invalid Type Class!");
1546 }
1547 
1548 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1549 DeduceTemplateArguments(Sema &S,
1550                         TemplateParameterList *TemplateParams,
1551                         const TemplateArgument &Param,
1552                         TemplateArgument Arg,
1553                         TemplateDeductionInfo &Info,
1554                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1555   // If the template argument is a pack expansion, perform template argument
1556   // deduction against the pattern of that expansion. This only occurs during
1557   // partial ordering.
1558   if (Arg.isPackExpansion())
1559     Arg = Arg.getPackExpansionPattern();
1560 
1561   switch (Param.getKind()) {
1562   case TemplateArgument::Null:
1563     llvm_unreachable("Null template argument in parameter list");
1564 
1565   case TemplateArgument::Type:
1566     if (Arg.getKind() == TemplateArgument::Type)
1567       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1568                                                 Param.getAsType(),
1569                                                 Arg.getAsType(),
1570                                                 Info, Deduced, 0);
1571     Info.FirstArg = Param;
1572     Info.SecondArg = Arg;
1573     return Sema::TDK_NonDeducedMismatch;
1574 
1575   case TemplateArgument::Template:
1576     if (Arg.getKind() == TemplateArgument::Template)
1577       return DeduceTemplateArguments(S, TemplateParams,
1578                                      Param.getAsTemplate(),
1579                                      Arg.getAsTemplate(), Info, Deduced);
1580     Info.FirstArg = Param;
1581     Info.SecondArg = Arg;
1582     return Sema::TDK_NonDeducedMismatch;
1583 
1584   case TemplateArgument::TemplateExpansion:
1585     llvm_unreachable("caller should handle pack expansions");
1586 
1587   case TemplateArgument::Declaration:
1588     if (Arg.getKind() == TemplateArgument::Declaration &&
1589         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
1590       return Sema::TDK_Success;
1591 
1592     Info.FirstArg = Param;
1593     Info.SecondArg = Arg;
1594     return Sema::TDK_NonDeducedMismatch;
1595 
1596   case TemplateArgument::Integral:
1597     if (Arg.getKind() == TemplateArgument::Integral) {
1598       if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
1599         return Sema::TDK_Success;
1600 
1601       Info.FirstArg = Param;
1602       Info.SecondArg = Arg;
1603       return Sema::TDK_NonDeducedMismatch;
1604     }
1605 
1606     if (Arg.getKind() == TemplateArgument::Expression) {
1607       Info.FirstArg = Param;
1608       Info.SecondArg = Arg;
1609       return Sema::TDK_NonDeducedMismatch;
1610     }
1611 
1612     Info.FirstArg = Param;
1613     Info.SecondArg = Arg;
1614     return Sema::TDK_NonDeducedMismatch;
1615 
1616   case TemplateArgument::Expression: {
1617     if (NonTypeTemplateParmDecl *NTTP
1618           = getDeducedParameterFromExpr(Param.getAsExpr())) {
1619       if (Arg.getKind() == TemplateArgument::Integral)
1620         return DeduceNonTypeTemplateArgument(S, NTTP,
1621                                              *Arg.getAsIntegral(),
1622                                              Arg.getIntegralType(),
1623                                              /*ArrayBound=*/false,
1624                                              Info, Deduced);
1625       if (Arg.getKind() == TemplateArgument::Expression)
1626         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1627                                              Info, Deduced);
1628       if (Arg.getKind() == TemplateArgument::Declaration)
1629         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1630                                              Info, Deduced);
1631 
1632       Info.FirstArg = Param;
1633       Info.SecondArg = Arg;
1634       return Sema::TDK_NonDeducedMismatch;
1635     }
1636 
1637     // Can't deduce anything, but that's okay.
1638     return Sema::TDK_Success;
1639   }
1640   case TemplateArgument::Pack:
1641     llvm_unreachable("Argument packs should be expanded by the caller!");
1642   }
1643 
1644   llvm_unreachable("Invalid TemplateArgument Kind!");
1645 }
1646 
1647 /// \brief Determine whether there is a template argument to be used for
1648 /// deduction.
1649 ///
1650 /// This routine "expands" argument packs in-place, overriding its input
1651 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1652 ///
1653 /// \returns true if there is another template argument (which will be at
1654 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(const TemplateArgument * & Args,unsigned & ArgIdx,unsigned & NumArgs)1655 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1656                                             unsigned &ArgIdx,
1657                                             unsigned &NumArgs) {
1658   if (ArgIdx == NumArgs)
1659     return false;
1660 
1661   const TemplateArgument &Arg = Args[ArgIdx];
1662   if (Arg.getKind() != TemplateArgument::Pack)
1663     return true;
1664 
1665   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1666   Args = Arg.pack_begin();
1667   NumArgs = Arg.pack_size();
1668   ArgIdx = 0;
1669   return ArgIdx < NumArgs;
1670 }
1671 
1672 /// \brief Determine whether the given set of template arguments has a pack
1673 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(const TemplateArgument * Args,unsigned NumArgs)1674 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1675                                       unsigned NumArgs) {
1676   unsigned ArgIdx = 0;
1677   while (ArgIdx < NumArgs) {
1678     const TemplateArgument &Arg = Args[ArgIdx];
1679 
1680     // Unwrap argument packs.
1681     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1682       Args = Arg.pack_begin();
1683       NumArgs = Arg.pack_size();
1684       ArgIdx = 0;
1685       continue;
1686     }
1687 
1688     ++ArgIdx;
1689     if (ArgIdx == NumArgs)
1690       return false;
1691 
1692     if (Arg.isPackExpansion())
1693       return true;
1694   }
1695 
1696   return false;
1697 }
1698 
1699 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument * Params,unsigned NumParams,const TemplateArgument * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,bool NumberOfArgumentsMustMatch)1700 DeduceTemplateArguments(Sema &S,
1701                         TemplateParameterList *TemplateParams,
1702                         const TemplateArgument *Params, unsigned NumParams,
1703                         const TemplateArgument *Args, unsigned NumArgs,
1704                         TemplateDeductionInfo &Info,
1705                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1706                         bool NumberOfArgumentsMustMatch) {
1707   // C++0x [temp.deduct.type]p9:
1708   //   If the template argument list of P contains a pack expansion that is not
1709   //   the last template argument, the entire template argument list is a
1710   //   non-deduced context.
1711   if (hasPackExpansionBeforeEnd(Params, NumParams))
1712     return Sema::TDK_Success;
1713 
1714   // C++0x [temp.deduct.type]p9:
1715   //   If P has a form that contains <T> or <i>, then each argument Pi of the
1716   //   respective template argument list P is compared with the corresponding
1717   //   argument Ai of the corresponding template argument list of A.
1718   unsigned ArgIdx = 0, ParamIdx = 0;
1719   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1720        ++ParamIdx) {
1721     if (!Params[ParamIdx].isPackExpansion()) {
1722       // The simple case: deduce template arguments by matching Pi and Ai.
1723 
1724       // Check whether we have enough arguments.
1725       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1726         return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1727                                          : Sema::TDK_Success;
1728 
1729       if (Args[ArgIdx].isPackExpansion()) {
1730         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1731         // but applied to pack expansions that are template arguments.
1732         return Sema::TDK_NonDeducedMismatch;
1733       }
1734 
1735       // Perform deduction for this Pi/Ai pair.
1736       if (Sema::TemplateDeductionResult Result
1737             = DeduceTemplateArguments(S, TemplateParams,
1738                                       Params[ParamIdx], Args[ArgIdx],
1739                                       Info, Deduced))
1740         return Result;
1741 
1742       // Move to the next argument.
1743       ++ArgIdx;
1744       continue;
1745     }
1746 
1747     // The parameter is a pack expansion.
1748 
1749     // C++0x [temp.deduct.type]p9:
1750     //   If Pi is a pack expansion, then the pattern of Pi is compared with
1751     //   each remaining argument in the template argument list of A. Each
1752     //   comparison deduces template arguments for subsequent positions in the
1753     //   template parameter packs expanded by Pi.
1754     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1755 
1756     // Compute the set of template parameter indices that correspond to
1757     // parameter packs expanded by the pack expansion.
1758     SmallVector<unsigned, 2> PackIndices;
1759     {
1760       llvm::SmallBitVector SawIndices(TemplateParams->size());
1761       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1762       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1763       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1764         unsigned Depth, Index;
1765         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1766         if (Depth == 0 && !SawIndices[Index]) {
1767           SawIndices[Index] = true;
1768           PackIndices.push_back(Index);
1769         }
1770       }
1771     }
1772     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1773 
1774     // FIXME: If there are no remaining arguments, we can bail out early
1775     // and set any deduced parameter packs to an empty argument pack.
1776     // The latter part of this is a (minor) correctness issue.
1777 
1778     // Save the deduced template arguments for each parameter pack expanded
1779     // by this pack expansion, then clear out the deduction.
1780     SmallVector<DeducedTemplateArgument, 2>
1781       SavedPacks(PackIndices.size());
1782     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
1783       NewlyDeducedPacks(PackIndices.size());
1784     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1785                                  NewlyDeducedPacks);
1786 
1787     // Keep track of the deduced template arguments for each parameter pack
1788     // expanded by this pack expansion (the outer index) and for each
1789     // template argument (the inner SmallVectors).
1790     bool HasAnyArguments = false;
1791     while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1792       HasAnyArguments = true;
1793 
1794       // Deduce template arguments from the pattern.
1795       if (Sema::TemplateDeductionResult Result
1796             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1797                                       Info, Deduced))
1798         return Result;
1799 
1800       // Capture the deduced template arguments for each parameter pack expanded
1801       // by this pack expansion, add them to the list of arguments we've deduced
1802       // for that pack, then clear out the deduced argument.
1803       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1804         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1805         if (!DeducedArg.isNull()) {
1806           NewlyDeducedPacks[I].push_back(DeducedArg);
1807           DeducedArg = DeducedTemplateArgument();
1808         }
1809       }
1810 
1811       ++ArgIdx;
1812     }
1813 
1814     // Build argument packs for each of the parameter packs expanded by this
1815     // pack expansion.
1816     if (Sema::TemplateDeductionResult Result
1817           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1818                                         Deduced, PackIndices, SavedPacks,
1819                                         NewlyDeducedPacks, Info))
1820       return Result;
1821   }
1822 
1823   // If there is an argument remaining, then we had too many arguments.
1824   if (NumberOfArgumentsMustMatch &&
1825       hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1826     return Sema::TDK_NonDeducedMismatch;
1827 
1828   return Sema::TDK_Success;
1829 }
1830 
1831 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1832 DeduceTemplateArguments(Sema &S,
1833                         TemplateParameterList *TemplateParams,
1834                         const TemplateArgumentList &ParamList,
1835                         const TemplateArgumentList &ArgList,
1836                         TemplateDeductionInfo &Info,
1837                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1838   return DeduceTemplateArguments(S, TemplateParams,
1839                                  ParamList.data(), ParamList.size(),
1840                                  ArgList.data(), ArgList.size(),
1841                                  Info, Deduced);
1842 }
1843 
1844 /// \brief Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,const TemplateArgument & X,const TemplateArgument & Y)1845 static bool isSameTemplateArg(ASTContext &Context,
1846                               const TemplateArgument &X,
1847                               const TemplateArgument &Y) {
1848   if (X.getKind() != Y.getKind())
1849     return false;
1850 
1851   switch (X.getKind()) {
1852     case TemplateArgument::Null:
1853       llvm_unreachable("Comparing NULL template argument");
1854 
1855     case TemplateArgument::Type:
1856       return Context.getCanonicalType(X.getAsType()) ==
1857              Context.getCanonicalType(Y.getAsType());
1858 
1859     case TemplateArgument::Declaration:
1860       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
1861 
1862     case TemplateArgument::Template:
1863     case TemplateArgument::TemplateExpansion:
1864       return Context.getCanonicalTemplateName(
1865                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1866              Context.getCanonicalTemplateName(
1867                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1868 
1869     case TemplateArgument::Integral:
1870       return *X.getAsIntegral() == *Y.getAsIntegral();
1871 
1872     case TemplateArgument::Expression: {
1873       llvm::FoldingSetNodeID XID, YID;
1874       X.getAsExpr()->Profile(XID, Context, true);
1875       Y.getAsExpr()->Profile(YID, Context, true);
1876       return XID == YID;
1877     }
1878 
1879     case TemplateArgument::Pack:
1880       if (X.pack_size() != Y.pack_size())
1881         return false;
1882 
1883       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1884                                         XPEnd = X.pack_end(),
1885                                            YP = Y.pack_begin();
1886            XP != XPEnd; ++XP, ++YP)
1887         if (!isSameTemplateArg(Context, *XP, *YP))
1888           return false;
1889 
1890       return true;
1891   }
1892 
1893   llvm_unreachable("Invalid TemplateArgument Kind!");
1894 }
1895 
1896 /// \brief Allocate a TemplateArgumentLoc where all locations have
1897 /// been initialized to the given location.
1898 ///
1899 /// \param S The semantic analysis object.
1900 ///
1901 /// \param The template argument we are producing template argument
1902 /// location information for.
1903 ///
1904 /// \param NTTPType For a declaration template argument, the type of
1905 /// the non-type template parameter that corresponds to this template
1906 /// argument.
1907 ///
1908 /// \param Loc The source location to use for the resulting template
1909 /// argument.
1910 static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema & S,const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)1911 getTrivialTemplateArgumentLoc(Sema &S,
1912                               const TemplateArgument &Arg,
1913                               QualType NTTPType,
1914                               SourceLocation Loc) {
1915   switch (Arg.getKind()) {
1916   case TemplateArgument::Null:
1917     llvm_unreachable("Can't get a NULL template argument here");
1918 
1919   case TemplateArgument::Type:
1920     return TemplateArgumentLoc(Arg,
1921                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1922 
1923   case TemplateArgument::Declaration: {
1924     Expr *E
1925       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1926           .takeAs<Expr>();
1927     return TemplateArgumentLoc(TemplateArgument(E), E);
1928   }
1929 
1930   case TemplateArgument::Integral: {
1931     Expr *E
1932       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1933     return TemplateArgumentLoc(TemplateArgument(E), E);
1934   }
1935 
1936     case TemplateArgument::Template:
1937     case TemplateArgument::TemplateExpansion: {
1938       NestedNameSpecifierLocBuilder Builder;
1939       TemplateName Template = Arg.getAsTemplate();
1940       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
1941         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
1942       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
1943         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
1944 
1945       if (Arg.getKind() == TemplateArgument::Template)
1946         return TemplateArgumentLoc(Arg,
1947                                    Builder.getWithLocInContext(S.Context),
1948                                    Loc);
1949 
1950 
1951       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
1952                                  Loc, Loc);
1953     }
1954 
1955   case TemplateArgument::Expression:
1956     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1957 
1958   case TemplateArgument::Pack:
1959     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1960   }
1961 
1962   llvm_unreachable("Invalid TemplateArgument Kind!");
1963 }
1964 
1965 
1966 /// \brief Convert the given deduced template argument and add it to the set of
1967 /// fully-converted template arguments.
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,QualType NTTPType,unsigned ArgumentPackIndex,TemplateDeductionInfo & Info,bool InFunctionTemplate,SmallVectorImpl<TemplateArgument> & Output)1968 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1969                                            DeducedTemplateArgument Arg,
1970                                            NamedDecl *Template,
1971                                            QualType NTTPType,
1972                                            unsigned ArgumentPackIndex,
1973                                            TemplateDeductionInfo &Info,
1974                                            bool InFunctionTemplate,
1975                              SmallVectorImpl<TemplateArgument> &Output) {
1976   if (Arg.getKind() == TemplateArgument::Pack) {
1977     // This is a template argument pack, so check each of its arguments against
1978     // the template parameter.
1979     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1980     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1981                                       PAEnd = Arg.pack_end();
1982          PA != PAEnd; ++PA) {
1983       // When converting the deduced template argument, append it to the
1984       // general output list. We need to do this so that the template argument
1985       // checking logic has all of the prior template arguments available.
1986       DeducedTemplateArgument InnerArg(*PA);
1987       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
1988       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
1989                                          NTTPType, PackedArgsBuilder.size(),
1990                                          Info, InFunctionTemplate, Output))
1991         return true;
1992 
1993       // Move the converted template argument into our argument pack.
1994       PackedArgsBuilder.push_back(Output.back());
1995       Output.pop_back();
1996     }
1997 
1998     // Create the resulting argument pack.
1999     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2000                                                       PackedArgsBuilder.data(),
2001                                                      PackedArgsBuilder.size()));
2002     return false;
2003   }
2004 
2005   // Convert the deduced template argument into a template
2006   // argument that we can check, almost as if the user had written
2007   // the template argument explicitly.
2008   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2009                                                              Info.getLocation());
2010 
2011   // Check the template argument, converting it as necessary.
2012   return S.CheckTemplateArgument(Param, ArgLoc,
2013                                  Template,
2014                                  Template->getLocation(),
2015                                  Template->getSourceRange().getEnd(),
2016                                  ArgumentPackIndex,
2017                                  Output,
2018                                  InFunctionTemplate
2019                                   ? (Arg.wasDeducedFromArrayBound()
2020                                        ? Sema::CTAK_DeducedFromArrayBound
2021                                        : Sema::CTAK_Deduced)
2022                                  : Sema::CTAK_Specified);
2023 }
2024 
2025 /// Complete template argument deduction for a class template partial
2026 /// specialization.
2027 static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema & S,ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2028 FinishTemplateArgumentDeduction(Sema &S,
2029                                 ClassTemplatePartialSpecializationDecl *Partial,
2030                                 const TemplateArgumentList &TemplateArgs,
2031                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2032                                 TemplateDeductionInfo &Info) {
2033   // Unevaluated SFINAE context.
2034   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2035   Sema::SFINAETrap Trap(S);
2036 
2037   Sema::ContextRAII SavedContext(S, Partial);
2038 
2039   // C++ [temp.deduct.type]p2:
2040   //   [...] or if any template argument remains neither deduced nor
2041   //   explicitly specified, template argument deduction fails.
2042   SmallVector<TemplateArgument, 4> Builder;
2043   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2044   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2045     NamedDecl *Param = PartialParams->getParam(I);
2046     if (Deduced[I].isNull()) {
2047       Info.Param = makeTemplateParameter(Param);
2048       return Sema::TDK_Incomplete;
2049     }
2050 
2051     // We have deduced this argument, so it still needs to be
2052     // checked and converted.
2053 
2054     // First, for a non-type template parameter type that is
2055     // initialized by a declaration, we need the type of the
2056     // corresponding non-type template parameter.
2057     QualType NTTPType;
2058     if (NonTypeTemplateParmDecl *NTTP
2059                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2060       NTTPType = NTTP->getType();
2061       if (NTTPType->isDependentType()) {
2062         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2063                                           Builder.data(), Builder.size());
2064         NTTPType = S.SubstType(NTTPType,
2065                                MultiLevelTemplateArgumentList(TemplateArgs),
2066                                NTTP->getLocation(),
2067                                NTTP->getDeclName());
2068         if (NTTPType.isNull()) {
2069           Info.Param = makeTemplateParameter(Param);
2070           // FIXME: These template arguments are temporary. Free them!
2071           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2072                                                       Builder.data(),
2073                                                       Builder.size()));
2074           return Sema::TDK_SubstitutionFailure;
2075         }
2076       }
2077     }
2078 
2079     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2080                                        Partial, NTTPType, 0, Info, false,
2081                                        Builder)) {
2082       Info.Param = makeTemplateParameter(Param);
2083       // FIXME: These template arguments are temporary. Free them!
2084       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2085                                                   Builder.size()));
2086       return Sema::TDK_SubstitutionFailure;
2087     }
2088   }
2089 
2090   // Form the template argument list from the deduced template arguments.
2091   TemplateArgumentList *DeducedArgumentList
2092     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2093                                        Builder.size());
2094 
2095   Info.reset(DeducedArgumentList);
2096 
2097   // Substitute the deduced template arguments into the template
2098   // arguments of the class template partial specialization, and
2099   // verify that the instantiated template arguments are both valid
2100   // and are equivalent to the template arguments originally provided
2101   // to the class template.
2102   LocalInstantiationScope InstScope(S);
2103   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2104   const TemplateArgumentLoc *PartialTemplateArgs
2105     = Partial->getTemplateArgsAsWritten();
2106 
2107   // Note that we don't provide the langle and rangle locations.
2108   TemplateArgumentListInfo InstArgs;
2109 
2110   if (S.Subst(PartialTemplateArgs,
2111               Partial->getNumTemplateArgsAsWritten(),
2112               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2113     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2114     if (ParamIdx >= Partial->getTemplateParameters()->size())
2115       ParamIdx = Partial->getTemplateParameters()->size() - 1;
2116 
2117     Decl *Param
2118       = const_cast<NamedDecl *>(
2119                           Partial->getTemplateParameters()->getParam(ParamIdx));
2120     Info.Param = makeTemplateParameter(Param);
2121     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2122     return Sema::TDK_SubstitutionFailure;
2123   }
2124 
2125   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2126   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2127                                   InstArgs, false, ConvertedInstArgs))
2128     return Sema::TDK_SubstitutionFailure;
2129 
2130   TemplateParameterList *TemplateParams
2131     = ClassTemplate->getTemplateParameters();
2132   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2133     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2134     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2135       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2136       Info.FirstArg = TemplateArgs[I];
2137       Info.SecondArg = InstArg;
2138       return Sema::TDK_NonDeducedMismatch;
2139     }
2140   }
2141 
2142   if (Trap.hasErrorOccurred())
2143     return Sema::TDK_SubstitutionFailure;
2144 
2145   return Sema::TDK_Success;
2146 }
2147 
2148 /// \brief Perform template argument deduction to determine whether
2149 /// the given template arguments match the given class template
2150 /// partial specialization per C++ [temp.class.spec.match].
2151 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2152 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2153                               const TemplateArgumentList &TemplateArgs,
2154                               TemplateDeductionInfo &Info) {
2155   // C++ [temp.class.spec.match]p2:
2156   //   A partial specialization matches a given actual template
2157   //   argument list if the template arguments of the partial
2158   //   specialization can be deduced from the actual template argument
2159   //   list (14.8.2).
2160 
2161   // Unevaluated SFINAE context.
2162   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2163   SFINAETrap Trap(*this);
2164 
2165   SmallVector<DeducedTemplateArgument, 4> Deduced;
2166   Deduced.resize(Partial->getTemplateParameters()->size());
2167   if (TemplateDeductionResult Result
2168         = ::DeduceTemplateArguments(*this,
2169                                     Partial->getTemplateParameters(),
2170                                     Partial->getTemplateArgs(),
2171                                     TemplateArgs, Info, Deduced))
2172     return Result;
2173 
2174   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2175                              Deduced.data(), Deduced.size(), Info);
2176   if (Inst)
2177     return TDK_InstantiationDepth;
2178 
2179   if (Trap.hasErrorOccurred())
2180     return Sema::TDK_SubstitutionFailure;
2181 
2182   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2183                                            Deduced, Info);
2184 }
2185 
2186 /// \brief Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)2187 static bool isSimpleTemplateIdType(QualType T) {
2188   if (const TemplateSpecializationType *Spec
2189         = T->getAs<TemplateSpecializationType>())
2190     return Spec->getTemplateName().getAsTemplateDecl() != 0;
2191 
2192   return false;
2193 }
2194 
2195 /// \brief Substitute the explicitly-provided template arguments into the
2196 /// given function template according to C++ [temp.arg.explicit].
2197 ///
2198 /// \param FunctionTemplate the function template into which the explicit
2199 /// template arguments will be substituted.
2200 ///
2201 /// \param ExplicitTemplateArguments the explicitly-specified template
2202 /// arguments.
2203 ///
2204 /// \param Deduced the deduced template arguments, which will be populated
2205 /// with the converted and checked explicit template arguments.
2206 ///
2207 /// \param ParamTypes will be populated with the instantiated function
2208 /// parameters.
2209 ///
2210 /// \param FunctionType if non-NULL, the result type of the function template
2211 /// will also be instantiated and the pointed-to value will be updated with
2212 /// the instantiated function type.
2213 ///
2214 /// \param Info if substitution fails for any reason, this object will be
2215 /// populated with more information about the failure.
2216 ///
2217 /// \returns TDK_Success if substitution was successful, or some failure
2218 /// condition.
2219 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)2220 Sema::SubstituteExplicitTemplateArguments(
2221                                       FunctionTemplateDecl *FunctionTemplate,
2222                                TemplateArgumentListInfo &ExplicitTemplateArgs,
2223                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2224                                  SmallVectorImpl<QualType> &ParamTypes,
2225                                           QualType *FunctionType,
2226                                           TemplateDeductionInfo &Info) {
2227   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2228   TemplateParameterList *TemplateParams
2229     = FunctionTemplate->getTemplateParameters();
2230 
2231   if (ExplicitTemplateArgs.size() == 0) {
2232     // No arguments to substitute; just copy over the parameter types and
2233     // fill in the function type.
2234     for (FunctionDecl::param_iterator P = Function->param_begin(),
2235                                    PEnd = Function->param_end();
2236          P != PEnd;
2237          ++P)
2238       ParamTypes.push_back((*P)->getType());
2239 
2240     if (FunctionType)
2241       *FunctionType = Function->getType();
2242     return TDK_Success;
2243   }
2244 
2245   // Unevaluated SFINAE context.
2246   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2247   SFINAETrap Trap(*this);
2248 
2249   // C++ [temp.arg.explicit]p3:
2250   //   Template arguments that are present shall be specified in the
2251   //   declaration order of their corresponding template-parameters. The
2252   //   template argument list shall not specify more template-arguments than
2253   //   there are corresponding template-parameters.
2254   SmallVector<TemplateArgument, 4> Builder;
2255 
2256   // Enter a new template instantiation context where we check the
2257   // explicitly-specified template arguments against this function template,
2258   // and then substitute them into the function parameter types.
2259   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2260                              FunctionTemplate, Deduced.data(), Deduced.size(),
2261            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2262                              Info);
2263   if (Inst)
2264     return TDK_InstantiationDepth;
2265 
2266   if (CheckTemplateArgumentList(FunctionTemplate,
2267                                 SourceLocation(),
2268                                 ExplicitTemplateArgs,
2269                                 true,
2270                                 Builder) || Trap.hasErrorOccurred()) {
2271     unsigned Index = Builder.size();
2272     if (Index >= TemplateParams->size())
2273       Index = TemplateParams->size() - 1;
2274     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2275     return TDK_InvalidExplicitArguments;
2276   }
2277 
2278   // Form the template argument list from the explicitly-specified
2279   // template arguments.
2280   TemplateArgumentList *ExplicitArgumentList
2281     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2282   Info.reset(ExplicitArgumentList);
2283 
2284   // Template argument deduction and the final substitution should be
2285   // done in the context of the templated declaration.  Explicit
2286   // argument substitution, on the other hand, needs to happen in the
2287   // calling context.
2288   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2289 
2290   // If we deduced template arguments for a template parameter pack,
2291   // note that the template argument pack is partially substituted and record
2292   // the explicit template arguments. They'll be used as part of deduction
2293   // for this template parameter pack.
2294   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2295     const TemplateArgument &Arg = Builder[I];
2296     if (Arg.getKind() == TemplateArgument::Pack) {
2297       CurrentInstantiationScope->SetPartiallySubstitutedPack(
2298                                                  TemplateParams->getParam(I),
2299                                                              Arg.pack_begin(),
2300                                                              Arg.pack_size());
2301       break;
2302     }
2303   }
2304 
2305   const FunctionProtoType *Proto
2306     = Function->getType()->getAs<FunctionProtoType>();
2307   assert(Proto && "Function template does not have a prototype?");
2308 
2309   // Instantiate the types of each of the function parameters given the
2310   // explicitly-specified template arguments. If the function has a trailing
2311   // return type, substitute it after the arguments to ensure we substitute
2312   // in lexical order.
2313   if (Proto->hasTrailingReturn()) {
2314     if (SubstParmTypes(Function->getLocation(),
2315                        Function->param_begin(), Function->getNumParams(),
2316                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2317                        ParamTypes))
2318       return TDK_SubstitutionFailure;
2319   }
2320 
2321   // Instantiate the return type.
2322   // FIXME: exception-specifications?
2323   QualType ResultType;
2324   {
2325     // C++11 [expr.prim.general]p3:
2326     //   If a declaration declares a member function or member function
2327     //   template of a class X, the expression this is a prvalue of type
2328     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2329     //   and the end of the function-definition, member-declarator, or
2330     //   declarator.
2331     unsigned ThisTypeQuals = 0;
2332     CXXRecordDecl *ThisContext = 0;
2333     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2334       ThisContext = Method->getParent();
2335       ThisTypeQuals = Method->getTypeQualifiers();
2336     }
2337 
2338     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2339                                getLangOpts().CPlusPlus0x);
2340 
2341     ResultType = SubstType(Proto->getResultType(),
2342                    MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2343                    Function->getTypeSpecStartLoc(),
2344                    Function->getDeclName());
2345     if (ResultType.isNull() || Trap.hasErrorOccurred())
2346       return TDK_SubstitutionFailure;
2347   }
2348 
2349   // Instantiate the types of each of the function parameters given the
2350   // explicitly-specified template arguments if we didn't do so earlier.
2351   if (!Proto->hasTrailingReturn() &&
2352       SubstParmTypes(Function->getLocation(),
2353                      Function->param_begin(), Function->getNumParams(),
2354                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2355                      ParamTypes))
2356     return TDK_SubstitutionFailure;
2357 
2358   if (FunctionType) {
2359     *FunctionType = BuildFunctionType(ResultType,
2360                                       ParamTypes.data(), ParamTypes.size(),
2361                                       Proto->isVariadic(),
2362                                       Proto->hasTrailingReturn(),
2363                                       Proto->getTypeQuals(),
2364                                       Proto->getRefQualifier(),
2365                                       Function->getLocation(),
2366                                       Function->getDeclName(),
2367                                       Proto->getExtInfo());
2368     if (FunctionType->isNull() || Trap.hasErrorOccurred())
2369       return TDK_SubstitutionFailure;
2370   }
2371 
2372   // C++ [temp.arg.explicit]p2:
2373   //   Trailing template arguments that can be deduced (14.8.2) may be
2374   //   omitted from the list of explicit template-arguments. If all of the
2375   //   template arguments can be deduced, they may all be omitted; in this
2376   //   case, the empty template argument list <> itself may also be omitted.
2377   //
2378   // Take all of the explicitly-specified arguments and put them into
2379   // the set of deduced template arguments. Explicitly-specified
2380   // parameter packs, however, will be set to NULL since the deduction
2381   // mechanisms handle explicitly-specified argument packs directly.
2382   Deduced.reserve(TemplateParams->size());
2383   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2384     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2385     if (Arg.getKind() == TemplateArgument::Pack)
2386       Deduced.push_back(DeducedTemplateArgument());
2387     else
2388       Deduced.push_back(Arg);
2389   }
2390 
2391   return TDK_Success;
2392 }
2393 
2394 /// \brief Check whether the deduced argument type for a call to a function
2395 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
2396 static bool
CheckOriginalCallArgDeduction(Sema & S,Sema::OriginalCallArg OriginalArg,QualType DeducedA)2397 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2398                               QualType DeducedA) {
2399   ASTContext &Context = S.Context;
2400 
2401   QualType A = OriginalArg.OriginalArgType;
2402   QualType OriginalParamType = OriginalArg.OriginalParamType;
2403 
2404   // Check for type equality (top-level cv-qualifiers are ignored).
2405   if (Context.hasSameUnqualifiedType(A, DeducedA))
2406     return false;
2407 
2408   // Strip off references on the argument types; they aren't needed for
2409   // the following checks.
2410   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2411     DeducedA = DeducedARef->getPointeeType();
2412   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2413     A = ARef->getPointeeType();
2414 
2415   // C++ [temp.deduct.call]p4:
2416   //   [...] However, there are three cases that allow a difference:
2417   //     - If the original P is a reference type, the deduced A (i.e., the
2418   //       type referred to by the reference) can be more cv-qualified than
2419   //       the transformed A.
2420   if (const ReferenceType *OriginalParamRef
2421       = OriginalParamType->getAs<ReferenceType>()) {
2422     // We don't want to keep the reference around any more.
2423     OriginalParamType = OriginalParamRef->getPointeeType();
2424 
2425     Qualifiers AQuals = A.getQualifiers();
2426     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2427     if (AQuals == DeducedAQuals) {
2428       // Qualifiers match; there's nothing to do.
2429     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2430       return true;
2431     } else {
2432       // Qualifiers are compatible, so have the argument type adopt the
2433       // deduced argument type's qualifiers as if we had performed the
2434       // qualification conversion.
2435       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2436     }
2437   }
2438 
2439   //    - The transformed A can be another pointer or pointer to member
2440   //      type that can be converted to the deduced A via a qualification
2441   //      conversion.
2442   //
2443   // Also allow conversions which merely strip [[noreturn]] from function types
2444   // (recursively) as an extension.
2445   // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2446   bool ObjCLifetimeConversion = false;
2447   QualType ResultTy;
2448   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2449       (S.IsQualificationConversion(A, DeducedA, false,
2450                                    ObjCLifetimeConversion) ||
2451        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2452     return false;
2453 
2454 
2455   //    - If P is a class and P has the form simple-template-id, then the
2456   //      transformed A can be a derived class of the deduced A. [...]
2457   //     [...] Likewise, if P is a pointer to a class of the form
2458   //      simple-template-id, the transformed A can be a pointer to a
2459   //      derived class pointed to by the deduced A.
2460   if (const PointerType *OriginalParamPtr
2461       = OriginalParamType->getAs<PointerType>()) {
2462     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2463       if (const PointerType *APtr = A->getAs<PointerType>()) {
2464         if (A->getPointeeType()->isRecordType()) {
2465           OriginalParamType = OriginalParamPtr->getPointeeType();
2466           DeducedA = DeducedAPtr->getPointeeType();
2467           A = APtr->getPointeeType();
2468         }
2469       }
2470     }
2471   }
2472 
2473   if (Context.hasSameUnqualifiedType(A, DeducedA))
2474     return false;
2475 
2476   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2477       S.IsDerivedFrom(A, DeducedA))
2478     return false;
2479 
2480   return true;
2481 }
2482 
2483 /// \brief Finish template argument deduction for a function template,
2484 /// checking the deduced template arguments for completeness and forming
2485 /// the function template specialization.
2486 ///
2487 /// \param OriginalCallArgs If non-NULL, the original call arguments against
2488 /// which the deduced argument types should be compared.
2489 Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs)2490 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2491                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2492                                       unsigned NumExplicitlySpecified,
2493                                       FunctionDecl *&Specialization,
2494                                       TemplateDeductionInfo &Info,
2495         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2496   TemplateParameterList *TemplateParams
2497     = FunctionTemplate->getTemplateParameters();
2498 
2499   // Unevaluated SFINAE context.
2500   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2501   SFINAETrap Trap(*this);
2502 
2503   // Enter a new template instantiation context while we instantiate the
2504   // actual function declaration.
2505   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2506                              FunctionTemplate, Deduced.data(), Deduced.size(),
2507               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2508                              Info);
2509   if (Inst)
2510     return TDK_InstantiationDepth;
2511 
2512   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2513 
2514   // C++ [temp.deduct.type]p2:
2515   //   [...] or if any template argument remains neither deduced nor
2516   //   explicitly specified, template argument deduction fails.
2517   SmallVector<TemplateArgument, 4> Builder;
2518   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2519     NamedDecl *Param = TemplateParams->getParam(I);
2520 
2521     if (!Deduced[I].isNull()) {
2522       if (I < NumExplicitlySpecified) {
2523         // We have already fully type-checked and converted this
2524         // argument, because it was explicitly-specified. Just record the
2525         // presence of this argument.
2526         Builder.push_back(Deduced[I]);
2527         continue;
2528       }
2529 
2530       // We have deduced this argument, so it still needs to be
2531       // checked and converted.
2532 
2533       // First, for a non-type template parameter type that is
2534       // initialized by a declaration, we need the type of the
2535       // corresponding non-type template parameter.
2536       QualType NTTPType;
2537       if (NonTypeTemplateParmDecl *NTTP
2538                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2539         NTTPType = NTTP->getType();
2540         if (NTTPType->isDependentType()) {
2541           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2542                                             Builder.data(), Builder.size());
2543           NTTPType = SubstType(NTTPType,
2544                                MultiLevelTemplateArgumentList(TemplateArgs),
2545                                NTTP->getLocation(),
2546                                NTTP->getDeclName());
2547           if (NTTPType.isNull()) {
2548             Info.Param = makeTemplateParameter(Param);
2549             // FIXME: These template arguments are temporary. Free them!
2550             Info.reset(TemplateArgumentList::CreateCopy(Context,
2551                                                         Builder.data(),
2552                                                         Builder.size()));
2553             return TDK_SubstitutionFailure;
2554           }
2555         }
2556       }
2557 
2558       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2559                                          FunctionTemplate, NTTPType, 0, Info,
2560                                          true, Builder)) {
2561         Info.Param = makeTemplateParameter(Param);
2562         // FIXME: These template arguments are temporary. Free them!
2563         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2564                                                     Builder.size()));
2565         return TDK_SubstitutionFailure;
2566       }
2567 
2568       continue;
2569     }
2570 
2571     // C++0x [temp.arg.explicit]p3:
2572     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2573     //    be deduced to an empty sequence of template arguments.
2574     // FIXME: Where did the word "trailing" come from?
2575     if (Param->isTemplateParameterPack()) {
2576       // We may have had explicitly-specified template arguments for this
2577       // template parameter pack. If so, our empty deduction extends the
2578       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2579       const TemplateArgument *ExplicitArgs;
2580       unsigned NumExplicitArgs;
2581       if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2582                                                              &NumExplicitArgs)
2583           == Param)
2584         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2585       else
2586         Builder.push_back(TemplateArgument(0, 0));
2587 
2588       continue;
2589     }
2590 
2591     // Substitute into the default template argument, if available.
2592     TemplateArgumentLoc DefArg
2593       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2594                                               FunctionTemplate->getLocation(),
2595                                   FunctionTemplate->getSourceRange().getEnd(),
2596                                                 Param,
2597                                                 Builder);
2598 
2599     // If there was no default argument, deduction is incomplete.
2600     if (DefArg.getArgument().isNull()) {
2601       Info.Param = makeTemplateParameter(
2602                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2603       return TDK_Incomplete;
2604     }
2605 
2606     // Check whether we can actually use the default argument.
2607     if (CheckTemplateArgument(Param, DefArg,
2608                               FunctionTemplate,
2609                               FunctionTemplate->getLocation(),
2610                               FunctionTemplate->getSourceRange().getEnd(),
2611                               0, Builder,
2612                               CTAK_Specified)) {
2613       Info.Param = makeTemplateParameter(
2614                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2615       // FIXME: These template arguments are temporary. Free them!
2616       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2617                                                   Builder.size()));
2618       return TDK_SubstitutionFailure;
2619     }
2620 
2621     // If we get here, we successfully used the default template argument.
2622   }
2623 
2624   // Form the template argument list from the deduced template arguments.
2625   TemplateArgumentList *DeducedArgumentList
2626     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2627   Info.reset(DeducedArgumentList);
2628 
2629   // Substitute the deduced template arguments into the function template
2630   // declaration to produce the function template specialization.
2631   DeclContext *Owner = FunctionTemplate->getDeclContext();
2632   if (FunctionTemplate->getFriendObjectKind())
2633     Owner = FunctionTemplate->getLexicalDeclContext();
2634   Specialization = cast_or_null<FunctionDecl>(
2635                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2636                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2637   if (!Specialization || Specialization->isInvalidDecl())
2638     return TDK_SubstitutionFailure;
2639 
2640   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2641          FunctionTemplate->getCanonicalDecl());
2642 
2643   // If the template argument list is owned by the function template
2644   // specialization, release it.
2645   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2646       !Trap.hasErrorOccurred())
2647     Info.take();
2648 
2649   // There may have been an error that did not prevent us from constructing a
2650   // declaration. Mark the declaration invalid and return with a substitution
2651   // failure.
2652   if (Trap.hasErrorOccurred()) {
2653     Specialization->setInvalidDecl(true);
2654     return TDK_SubstitutionFailure;
2655   }
2656 
2657   if (OriginalCallArgs) {
2658     // C++ [temp.deduct.call]p4:
2659     //   In general, the deduction process attempts to find template argument
2660     //   values that will make the deduced A identical to A (after the type A
2661     //   is transformed as described above). [...]
2662     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2663       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2664       unsigned ParamIdx = OriginalArg.ArgIdx;
2665 
2666       if (ParamIdx >= Specialization->getNumParams())
2667         continue;
2668 
2669       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2670       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2671         return Sema::TDK_SubstitutionFailure;
2672     }
2673   }
2674 
2675   // If we suppressed any diagnostics while performing template argument
2676   // deduction, and if we haven't already instantiated this declaration,
2677   // keep track of these diagnostics. They'll be emitted if this specialization
2678   // is actually used.
2679   if (Info.diag_begin() != Info.diag_end()) {
2680     llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
2681       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2682     if (Pos == SuppressedDiagnostics.end())
2683         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2684           .append(Info.diag_begin(), Info.diag_end());
2685   }
2686 
2687   return TDK_Success;
2688 }
2689 
2690 /// Gets the type of a function for template-argument-deducton
2691 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(ASTContext & Context,const OverloadExpr::FindResult & R,FunctionDecl * Fn)2692 static QualType GetTypeOfFunction(ASTContext &Context,
2693                                   const OverloadExpr::FindResult &R,
2694                                   FunctionDecl *Fn) {
2695   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2696     if (Method->isInstance()) {
2697       // An instance method that's referenced in a form that doesn't
2698       // look like a member pointer is just invalid.
2699       if (!R.HasFormOfMemberPointer) return QualType();
2700 
2701       return Context.getMemberPointerType(Fn->getType(),
2702                Context.getTypeDeclType(Method->getParent()).getTypePtr());
2703     }
2704 
2705   if (!R.IsAddressOfOperand) return Fn->getType();
2706   return Context.getPointerType(Fn->getType());
2707 }
2708 
2709 /// Apply the deduction rules for overload sets.
2710 ///
2711 /// \return the null type if this argument should be treated as an
2712 /// undeduced context
2713 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)2714 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2715                             Expr *Arg, QualType ParamType,
2716                             bool ParamWasReference) {
2717 
2718   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2719 
2720   OverloadExpr *Ovl = R.Expression;
2721 
2722   // C++0x [temp.deduct.call]p4
2723   unsigned TDF = 0;
2724   if (ParamWasReference)
2725     TDF |= TDF_ParamWithReferenceType;
2726   if (R.IsAddressOfOperand)
2727     TDF |= TDF_IgnoreQualifiers;
2728 
2729   // C++0x [temp.deduct.call]p6:
2730   //   When P is a function type, pointer to function type, or pointer
2731   //   to member function type:
2732 
2733   if (!ParamType->isFunctionType() &&
2734       !ParamType->isFunctionPointerType() &&
2735       !ParamType->isMemberFunctionPointerType()) {
2736     if (Ovl->hasExplicitTemplateArgs()) {
2737       // But we can still look for an explicit specialization.
2738       if (FunctionDecl *ExplicitSpec
2739             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2740         return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2741     }
2742 
2743     return QualType();
2744   }
2745 
2746   // Gather the explicit template arguments, if any.
2747   TemplateArgumentListInfo ExplicitTemplateArgs;
2748   if (Ovl->hasExplicitTemplateArgs())
2749     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
2750   QualType Match;
2751   for (UnresolvedSetIterator I = Ovl->decls_begin(),
2752          E = Ovl->decls_end(); I != E; ++I) {
2753     NamedDecl *D = (*I)->getUnderlyingDecl();
2754 
2755     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
2756       //   - If the argument is an overload set containing one or more
2757       //     function templates, the parameter is treated as a
2758       //     non-deduced context.
2759       if (!Ovl->hasExplicitTemplateArgs())
2760         return QualType();
2761 
2762       // Otherwise, see if we can resolve a function type
2763       FunctionDecl *Specialization = 0;
2764       TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2765       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
2766                                     Specialization, Info))
2767         continue;
2768 
2769       D = Specialization;
2770     }
2771 
2772     FunctionDecl *Fn = cast<FunctionDecl>(D);
2773     QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2774     if (ArgType.isNull()) continue;
2775 
2776     // Function-to-pointer conversion.
2777     if (!ParamWasReference && ParamType->isPointerType() &&
2778         ArgType->isFunctionType())
2779       ArgType = S.Context.getPointerType(ArgType);
2780 
2781     //   - If the argument is an overload set (not containing function
2782     //     templates), trial argument deduction is attempted using each
2783     //     of the members of the set. If deduction succeeds for only one
2784     //     of the overload set members, that member is used as the
2785     //     argument value for the deduction. If deduction succeeds for
2786     //     more than one member of the overload set the parameter is
2787     //     treated as a non-deduced context.
2788 
2789     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2790     //   Type deduction is done independently for each P/A pair, and
2791     //   the deduced template argument values are then combined.
2792     // So we do not reject deductions which were made elsewhere.
2793     SmallVector<DeducedTemplateArgument, 8>
2794       Deduced(TemplateParams->size());
2795     TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2796     Sema::TemplateDeductionResult Result
2797       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2798                                            ArgType, Info, Deduced, TDF);
2799     if (Result) continue;
2800     if (!Match.isNull()) return QualType();
2801     Match = ArgType;
2802   }
2803 
2804   return Match;
2805 }
2806 
2807 /// \brief Perform the adjustments to the parameter and argument types
2808 /// described in C++ [temp.deduct.call].
2809 ///
2810 /// \returns true if the caller should not attempt to perform any template
2811 /// argument deduction based on this P/A pair.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)2812 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2813                                           TemplateParameterList *TemplateParams,
2814                                                       QualType &ParamType,
2815                                                       QualType &ArgType,
2816                                                       Expr *Arg,
2817                                                       unsigned &TDF) {
2818   // C++0x [temp.deduct.call]p3:
2819   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
2820   //   are ignored for type deduction.
2821   if (ParamType.hasQualifiers())
2822     ParamType = ParamType.getUnqualifiedType();
2823   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2824   if (ParamRefType) {
2825     QualType PointeeType = ParamRefType->getPointeeType();
2826 
2827     // If the argument has incomplete array type, try to complete it's type.
2828     if (ArgType->isIncompleteArrayType() &&
2829         !S.RequireCompleteExprType(Arg, S.PDiag(),
2830                                    std::make_pair(SourceLocation(), S.PDiag())))
2831       ArgType = Arg->getType();
2832 
2833     //   [C++0x] If P is an rvalue reference to a cv-unqualified
2834     //   template parameter and the argument is an lvalue, the type
2835     //   "lvalue reference to A" is used in place of A for type
2836     //   deduction.
2837     if (isa<RValueReferenceType>(ParamType)) {
2838       if (!PointeeType.getQualifiers() &&
2839           isa<TemplateTypeParmType>(PointeeType) &&
2840           Arg->Classify(S.Context).isLValue() &&
2841           Arg->getType() != S.Context.OverloadTy &&
2842           Arg->getType() != S.Context.BoundMemberTy)
2843         ArgType = S.Context.getLValueReferenceType(ArgType);
2844     }
2845 
2846     //   [...] If P is a reference type, the type referred to by P is used
2847     //   for type deduction.
2848     ParamType = PointeeType;
2849   }
2850 
2851   // Overload sets usually make this parameter an undeduced
2852   // context, but there are sometimes special circumstances.
2853   if (ArgType == S.Context.OverloadTy) {
2854     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2855                                           Arg, ParamType,
2856                                           ParamRefType != 0);
2857     if (ArgType.isNull())
2858       return true;
2859   }
2860 
2861   if (ParamRefType) {
2862     // C++0x [temp.deduct.call]p3:
2863     //   [...] If P is of the form T&&, where T is a template parameter, and
2864     //   the argument is an lvalue, the type A& is used in place of A for
2865     //   type deduction.
2866     if (ParamRefType->isRValueReferenceType() &&
2867         ParamRefType->getAs<TemplateTypeParmType>() &&
2868         Arg->isLValue())
2869       ArgType = S.Context.getLValueReferenceType(ArgType);
2870   } else {
2871     // C++ [temp.deduct.call]p2:
2872     //   If P is not a reference type:
2873     //   - If A is an array type, the pointer type produced by the
2874     //     array-to-pointer standard conversion (4.2) is used in place of
2875     //     A for type deduction; otherwise,
2876     if (ArgType->isArrayType())
2877       ArgType = S.Context.getArrayDecayedType(ArgType);
2878     //   - If A is a function type, the pointer type produced by the
2879     //     function-to-pointer standard conversion (4.3) is used in place
2880     //     of A for type deduction; otherwise,
2881     else if (ArgType->isFunctionType())
2882       ArgType = S.Context.getPointerType(ArgType);
2883     else {
2884       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
2885       //   type are ignored for type deduction.
2886       ArgType = ArgType.getUnqualifiedType();
2887     }
2888   }
2889 
2890   // C++0x [temp.deduct.call]p4:
2891   //   In general, the deduction process attempts to find template argument
2892   //   values that will make the deduced A identical to A (after the type A
2893   //   is transformed as described above). [...]
2894   TDF = TDF_SkipNonDependent;
2895 
2896   //     - If the original P is a reference type, the deduced A (i.e., the
2897   //       type referred to by the reference) can be more cv-qualified than
2898   //       the transformed A.
2899   if (ParamRefType)
2900     TDF |= TDF_ParamWithReferenceType;
2901   //     - The transformed A can be another pointer or pointer to member
2902   //       type that can be converted to the deduced A via a qualification
2903   //       conversion (4.4).
2904   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2905       ArgType->isObjCObjectPointerType())
2906     TDF |= TDF_IgnoreQualifiers;
2907   //     - If P is a class and P has the form simple-template-id, then the
2908   //       transformed A can be a derived class of the deduced A. Likewise,
2909   //       if P is a pointer to a class of the form simple-template-id, the
2910   //       transformed A can be a pointer to a derived class pointed to by
2911   //       the deduced A.
2912   if (isSimpleTemplateIdType(ParamType) ||
2913       (isa<PointerType>(ParamType) &&
2914        isSimpleTemplateIdType(
2915                               ParamType->getAs<PointerType>()->getPointeeType())))
2916     TDF |= TDF_DerivedClass;
2917 
2918   return false;
2919 }
2920 
2921 static bool hasDeducibleTemplateParameters(Sema &S,
2922                                            FunctionTemplateDecl *FunctionTemplate,
2923                                            QualType T);
2924 
2925 /// \brief Perform template argument deduction by matching a parameter type
2926 ///        against a single expression, where the expression is an element of
2927 ///        an initializer list that was originally matched against the argument
2928 ///        type.
2929 static Sema::TemplateDeductionResult
DeduceTemplateArgumentByListElement(Sema & S,TemplateParameterList * TemplateParams,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF)2930 DeduceTemplateArgumentByListElement(Sema &S,
2931                                     TemplateParameterList *TemplateParams,
2932                                     QualType ParamType, Expr *Arg,
2933                                     TemplateDeductionInfo &Info,
2934                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2935                                     unsigned TDF) {
2936   // Handle the case where an init list contains another init list as the
2937   // element.
2938   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
2939     QualType X;
2940     if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
2941       return Sema::TDK_Success; // Just ignore this expression.
2942 
2943     // Recurse down into the init list.
2944     for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
2945       if (Sema::TemplateDeductionResult Result =
2946             DeduceTemplateArgumentByListElement(S, TemplateParams, X,
2947                                                  ILE->getInit(i),
2948                                                  Info, Deduced, TDF))
2949         return Result;
2950     }
2951     return Sema::TDK_Success;
2952   }
2953 
2954   // For all other cases, just match by type.
2955   QualType ArgType = Arg->getType();
2956   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
2957                                                 ArgType, Arg, TDF))
2958     return Sema::TDK_FailedOverloadResolution;
2959   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2960                                             ArgType, Info, Deduced, TDF);
2961 }
2962 
2963 /// \brief Perform template argument deduction from a function call
2964 /// (C++ [temp.deduct.call]).
2965 ///
2966 /// \param FunctionTemplate the function template for which we are performing
2967 /// template argument deduction.
2968 ///
2969 /// \param ExplicitTemplateArguments the explicit template arguments provided
2970 /// for this call.
2971 ///
2972 /// \param Args the function call arguments
2973 ///
2974 /// \param NumArgs the number of arguments in Args
2975 ///
2976 /// \param Name the name of the function being called. This is only significant
2977 /// when the function template is a conversion function template, in which
2978 /// case this routine will also perform template argument deduction based on
2979 /// the function to which
2980 ///
2981 /// \param Specialization if template argument deduction was successful,
2982 /// this will be set to the function template specialization produced by
2983 /// template argument deduction.
2984 ///
2985 /// \param Info the argument will be updated to provide additional information
2986 /// about template argument deduction.
2987 ///
2988 /// \returns the result of template argument deduction.
2989 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)2990 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2991                               TemplateArgumentListInfo *ExplicitTemplateArgs,
2992                               llvm::ArrayRef<Expr *> Args,
2993                               FunctionDecl *&Specialization,
2994                               TemplateDeductionInfo &Info) {
2995   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2996 
2997   // C++ [temp.deduct.call]p1:
2998   //   Template argument deduction is done by comparing each function template
2999   //   parameter type (call it P) with the type of the corresponding argument
3000   //   of the call (call it A) as described below.
3001   unsigned CheckArgs = Args.size();
3002   if (Args.size() < Function->getMinRequiredArguments())
3003     return TDK_TooFewArguments;
3004   else if (Args.size() > Function->getNumParams()) {
3005     const FunctionProtoType *Proto
3006       = Function->getType()->getAs<FunctionProtoType>();
3007     if (Proto->isTemplateVariadic())
3008       /* Do nothing */;
3009     else if (Proto->isVariadic())
3010       CheckArgs = Function->getNumParams();
3011     else
3012       return TDK_TooManyArguments;
3013   }
3014 
3015   // The types of the parameters from which we will perform template argument
3016   // deduction.
3017   LocalInstantiationScope InstScope(*this);
3018   TemplateParameterList *TemplateParams
3019     = FunctionTemplate->getTemplateParameters();
3020   SmallVector<DeducedTemplateArgument, 4> Deduced;
3021   SmallVector<QualType, 4> ParamTypes;
3022   unsigned NumExplicitlySpecified = 0;
3023   if (ExplicitTemplateArgs) {
3024     TemplateDeductionResult Result =
3025       SubstituteExplicitTemplateArguments(FunctionTemplate,
3026                                           *ExplicitTemplateArgs,
3027                                           Deduced,
3028                                           ParamTypes,
3029                                           0,
3030                                           Info);
3031     if (Result)
3032       return Result;
3033 
3034     NumExplicitlySpecified = Deduced.size();
3035   } else {
3036     // Just fill in the parameter types from the function declaration.
3037     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3038       ParamTypes.push_back(Function->getParamDecl(I)->getType());
3039   }
3040 
3041   // Deduce template arguments from the function parameters.
3042   Deduced.resize(TemplateParams->size());
3043   unsigned ArgIdx = 0;
3044   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3045   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3046        ParamIdx != NumParams; ++ParamIdx) {
3047     QualType OrigParamType = ParamTypes[ParamIdx];
3048     QualType ParamType = OrigParamType;
3049 
3050     const PackExpansionType *ParamExpansion
3051       = dyn_cast<PackExpansionType>(ParamType);
3052     if (!ParamExpansion) {
3053       // Simple case: matching a function parameter to a function argument.
3054       if (ArgIdx >= CheckArgs)
3055         break;
3056 
3057       Expr *Arg = Args[ArgIdx++];
3058       QualType ArgType = Arg->getType();
3059 
3060       unsigned TDF = 0;
3061       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3062                                                     ParamType, ArgType, Arg,
3063                                                     TDF))
3064         continue;
3065 
3066       // If we have nothing to deduce, we're done.
3067       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3068         continue;
3069 
3070       // If the argument is an initializer list ...
3071       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3072         // ... then the parameter is an undeduced context, unless the parameter
3073         // type is (reference to cv) std::initializer_list<P'>, in which case
3074         // deduction is done for each element of the initializer list, and the
3075         // result is the deduced type if it's the same for all elements.
3076         QualType X;
3077         // Removing references was already done.
3078         if (!isStdInitializerList(ParamType, &X))
3079           continue;
3080 
3081         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3082           if (TemplateDeductionResult Result =
3083                 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3084                                                      ILE->getInit(i),
3085                                                      Info, Deduced, TDF))
3086             return Result;
3087         }
3088         // Don't track the argument type, since an initializer list has none.
3089         continue;
3090       }
3091 
3092       // Keep track of the argument type and corresponding parameter index,
3093       // so we can check for compatibility between the deduced A and A.
3094       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3095                                                  ArgType));
3096 
3097       if (TemplateDeductionResult Result
3098             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3099                                                  ParamType, ArgType,
3100                                                  Info, Deduced, TDF))
3101         return Result;
3102 
3103       continue;
3104     }
3105 
3106     // C++0x [temp.deduct.call]p1:
3107     //   For a function parameter pack that occurs at the end of the
3108     //   parameter-declaration-list, the type A of each remaining argument of
3109     //   the call is compared with the type P of the declarator-id of the
3110     //   function parameter pack. Each comparison deduces template arguments
3111     //   for subsequent positions in the template parameter packs expanded by
3112     //   the function parameter pack. For a function parameter pack that does
3113     //   not occur at the end of the parameter-declaration-list, the type of
3114     //   the parameter pack is a non-deduced context.
3115     if (ParamIdx + 1 < NumParams)
3116       break;
3117 
3118     QualType ParamPattern = ParamExpansion->getPattern();
3119     SmallVector<unsigned, 2> PackIndices;
3120     {
3121       llvm::SmallBitVector SawIndices(TemplateParams->size());
3122       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3123       collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3124       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3125         unsigned Depth, Index;
3126         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3127         if (Depth == 0 && !SawIndices[Index]) {
3128           SawIndices[Index] = true;
3129           PackIndices.push_back(Index);
3130         }
3131       }
3132     }
3133     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3134 
3135     // Keep track of the deduced template arguments for each parameter pack
3136     // expanded by this pack expansion (the outer index) and for each
3137     // template argument (the inner SmallVectors).
3138     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
3139       NewlyDeducedPacks(PackIndices.size());
3140     SmallVector<DeducedTemplateArgument, 2>
3141       SavedPacks(PackIndices.size());
3142     PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3143                                  NewlyDeducedPacks);
3144     bool HasAnyArguments = false;
3145     for (; ArgIdx < Args.size(); ++ArgIdx) {
3146       HasAnyArguments = true;
3147 
3148       QualType OrigParamType = ParamPattern;
3149       ParamType = OrigParamType;
3150       Expr *Arg = Args[ArgIdx];
3151       QualType ArgType = Arg->getType();
3152 
3153       unsigned TDF = 0;
3154       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3155                                                     ParamType, ArgType, Arg,
3156                                                     TDF)) {
3157         // We can't actually perform any deduction for this argument, so stop
3158         // deduction at this point.
3159         ++ArgIdx;
3160         break;
3161       }
3162 
3163       // As above, initializer lists need special handling.
3164       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3165         QualType X;
3166         if (!isStdInitializerList(ParamType, &X)) {
3167           ++ArgIdx;
3168           break;
3169         }
3170 
3171         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3172           if (TemplateDeductionResult Result =
3173                 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3174                                                    ILE->getInit(i)->getType(),
3175                                                    Info, Deduced, TDF))
3176             return Result;
3177         }
3178       } else {
3179 
3180         // Keep track of the argument type and corresponding argument index,
3181         // so we can check for compatibility between the deduced A and A.
3182         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3183           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3184                                                      ArgType));
3185 
3186         if (TemplateDeductionResult Result
3187             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3188                                                  ParamType, ArgType, Info,
3189                                                  Deduced, TDF))
3190           return Result;
3191       }
3192 
3193       // Capture the deduced template arguments for each parameter pack expanded
3194       // by this pack expansion, add them to the list of arguments we've deduced
3195       // for that pack, then clear out the deduced argument.
3196       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3197         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3198         if (!DeducedArg.isNull()) {
3199           NewlyDeducedPacks[I].push_back(DeducedArg);
3200           DeducedArg = DeducedTemplateArgument();
3201         }
3202       }
3203     }
3204 
3205     // Build argument packs for each of the parameter packs expanded by this
3206     // pack expansion.
3207     if (Sema::TemplateDeductionResult Result
3208           = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3209                                         Deduced, PackIndices, SavedPacks,
3210                                         NewlyDeducedPacks, Info))
3211       return Result;
3212 
3213     // After we've matching against a parameter pack, we're done.
3214     break;
3215   }
3216 
3217   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3218                                          NumExplicitlySpecified,
3219                                          Specialization, Info, &OriginalCallArgs);
3220 }
3221 
3222 /// \brief Deduce template arguments when taking the address of a function
3223 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3224 /// a template.
3225 ///
3226 /// \param FunctionTemplate the function template for which we are performing
3227 /// template argument deduction.
3228 ///
3229 /// \param ExplicitTemplateArguments the explicitly-specified template
3230 /// arguments.
3231 ///
3232 /// \param ArgFunctionType the function type that will be used as the
3233 /// "argument" type (A) when performing template argument deduction from the
3234 /// function template's function type. This type may be NULL, if there is no
3235 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3236 ///
3237 /// \param Specialization if template argument deduction was successful,
3238 /// this will be set to the function template specialization produced by
3239 /// template argument deduction.
3240 ///
3241 /// \param Info the argument will be updated to provide additional information
3242 /// about template argument deduction.
3243 ///
3244 /// \returns the result of template argument deduction.
3245 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3246 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3247                               TemplateArgumentListInfo *ExplicitTemplateArgs,
3248                               QualType ArgFunctionType,
3249                               FunctionDecl *&Specialization,
3250                               TemplateDeductionInfo &Info) {
3251   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3252   TemplateParameterList *TemplateParams
3253     = FunctionTemplate->getTemplateParameters();
3254   QualType FunctionType = Function->getType();
3255 
3256   // Substitute any explicit template arguments.
3257   LocalInstantiationScope InstScope(*this);
3258   SmallVector<DeducedTemplateArgument, 4> Deduced;
3259   unsigned NumExplicitlySpecified = 0;
3260   SmallVector<QualType, 4> ParamTypes;
3261   if (ExplicitTemplateArgs) {
3262     if (TemplateDeductionResult Result
3263           = SubstituteExplicitTemplateArguments(FunctionTemplate,
3264                                                 *ExplicitTemplateArgs,
3265                                                 Deduced, ParamTypes,
3266                                                 &FunctionType, Info))
3267       return Result;
3268 
3269     NumExplicitlySpecified = Deduced.size();
3270   }
3271 
3272   // Unevaluated SFINAE context.
3273   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3274   SFINAETrap Trap(*this);
3275 
3276   Deduced.resize(TemplateParams->size());
3277 
3278   if (!ArgFunctionType.isNull()) {
3279     // Deduce template arguments from the function type.
3280     if (TemplateDeductionResult Result
3281           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3282                                       FunctionType, ArgFunctionType, Info,
3283                                       Deduced, TDF_TopLevelParameterTypeList))
3284       return Result;
3285   }
3286 
3287   if (TemplateDeductionResult Result
3288         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3289                                           NumExplicitlySpecified,
3290                                           Specialization, Info))
3291     return Result;
3292 
3293   // If the requested function type does not match the actual type of the
3294   // specialization, template argument deduction fails.
3295   if (!ArgFunctionType.isNull() &&
3296       !Context.hasSameType(ArgFunctionType, Specialization->getType()))
3297     return TDK_NonDeducedMismatch;
3298 
3299   return TDK_Success;
3300 }
3301 
3302 /// \brief Deduce template arguments for a templated conversion
3303 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
3304 /// conversion function template specialization.
3305 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)3306 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3307                               QualType ToType,
3308                               CXXConversionDecl *&Specialization,
3309                               TemplateDeductionInfo &Info) {
3310   CXXConversionDecl *Conv
3311     = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3312   QualType FromType = Conv->getConversionType();
3313 
3314   // Canonicalize the types for deduction.
3315   QualType P = Context.getCanonicalType(FromType);
3316   QualType A = Context.getCanonicalType(ToType);
3317 
3318   // C++0x [temp.deduct.conv]p2:
3319   //   If P is a reference type, the type referred to by P is used for
3320   //   type deduction.
3321   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3322     P = PRef->getPointeeType();
3323 
3324   // C++0x [temp.deduct.conv]p4:
3325   //   [...] If A is a reference type, the type referred to by A is used
3326   //   for type deduction.
3327   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3328     A = ARef->getPointeeType().getUnqualifiedType();
3329   // C++ [temp.deduct.conv]p3:
3330   //
3331   //   If A is not a reference type:
3332   else {
3333     assert(!A->isReferenceType() && "Reference types were handled above");
3334 
3335     //   - If P is an array type, the pointer type produced by the
3336     //     array-to-pointer standard conversion (4.2) is used in place
3337     //     of P for type deduction; otherwise,
3338     if (P->isArrayType())
3339       P = Context.getArrayDecayedType(P);
3340     //   - If P is a function type, the pointer type produced by the
3341     //     function-to-pointer standard conversion (4.3) is used in
3342     //     place of P for type deduction; otherwise,
3343     else if (P->isFunctionType())
3344       P = Context.getPointerType(P);
3345     //   - If P is a cv-qualified type, the top level cv-qualifiers of
3346     //     P's type are ignored for type deduction.
3347     else
3348       P = P.getUnqualifiedType();
3349 
3350     // C++0x [temp.deduct.conv]p4:
3351     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
3352     //   type are ignored for type deduction. If A is a reference type, the type
3353     //   referred to by A is used for type deduction.
3354     A = A.getUnqualifiedType();
3355   }
3356 
3357   // Unevaluated SFINAE context.
3358   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3359   SFINAETrap Trap(*this);
3360 
3361   // C++ [temp.deduct.conv]p1:
3362   //   Template argument deduction is done by comparing the return
3363   //   type of the template conversion function (call it P) with the
3364   //   type that is required as the result of the conversion (call it
3365   //   A) as described in 14.8.2.4.
3366   TemplateParameterList *TemplateParams
3367     = FunctionTemplate->getTemplateParameters();
3368   SmallVector<DeducedTemplateArgument, 4> Deduced;
3369   Deduced.resize(TemplateParams->size());
3370 
3371   // C++0x [temp.deduct.conv]p4:
3372   //   In general, the deduction process attempts to find template
3373   //   argument values that will make the deduced A identical to
3374   //   A. However, there are two cases that allow a difference:
3375   unsigned TDF = 0;
3376   //     - If the original A is a reference type, A can be more
3377   //       cv-qualified than the deduced A (i.e., the type referred to
3378   //       by the reference)
3379   if (ToType->isReferenceType())
3380     TDF |= TDF_ParamWithReferenceType;
3381   //     - The deduced A can be another pointer or pointer to member
3382   //       type that can be converted to A via a qualification
3383   //       conversion.
3384   //
3385   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3386   // both P and A are pointers or member pointers. In this case, we
3387   // just ignore cv-qualifiers completely).
3388   if ((P->isPointerType() && A->isPointerType()) ||
3389       (P->isMemberPointerType() && A->isMemberPointerType()))
3390     TDF |= TDF_IgnoreQualifiers;
3391   if (TemplateDeductionResult Result
3392         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3393                                              P, A, Info, Deduced, TDF))
3394     return Result;
3395 
3396   // Finish template argument deduction.
3397   LocalInstantiationScope InstScope(*this);
3398   FunctionDecl *Spec = 0;
3399   TemplateDeductionResult Result
3400     = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3401                                       Info);
3402   Specialization = cast_or_null<CXXConversionDecl>(Spec);
3403   return Result;
3404 }
3405 
3406 /// \brief Deduce template arguments for a function template when there is
3407 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3408 ///
3409 /// \param FunctionTemplate the function template for which we are performing
3410 /// template argument deduction.
3411 ///
3412 /// \param ExplicitTemplateArguments the explicitly-specified template
3413 /// arguments.
3414 ///
3415 /// \param Specialization if template argument deduction was successful,
3416 /// this will be set to the function template specialization produced by
3417 /// template argument deduction.
3418 ///
3419 /// \param Info the argument will be updated to provide additional information
3420 /// about template argument deduction.
3421 ///
3422 /// \returns the result of template argument deduction.
3423 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3424 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3425                               TemplateArgumentListInfo *ExplicitTemplateArgs,
3426                               FunctionDecl *&Specialization,
3427                               TemplateDeductionInfo &Info) {
3428   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3429                                  QualType(), Specialization, Info);
3430 }
3431 
3432 namespace {
3433   /// Substitute the 'auto' type specifier within a type for a given replacement
3434   /// type.
3435   class SubstituteAutoTransform :
3436     public TreeTransform<SubstituteAutoTransform> {
3437     QualType Replacement;
3438   public:
SubstituteAutoTransform(Sema & SemaRef,QualType Replacement)3439     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3440       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3441     }
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)3442     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3443       // If we're building the type pattern to deduce against, don't wrap the
3444       // substituted type in an AutoType. Certain template deduction rules
3445       // apply only when a template type parameter appears directly (and not if
3446       // the parameter is found through desugaring). For instance:
3447       //   auto &&lref = lvalue;
3448       // must transform into "rvalue reference to T" not "rvalue reference to
3449       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3450       if (isa<TemplateTypeParmType>(Replacement)) {
3451         QualType Result = Replacement;
3452         TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
3453         NewTL.setNameLoc(TL.getNameLoc());
3454         return Result;
3455       } else {
3456         QualType Result = RebuildAutoType(Replacement);
3457         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3458         NewTL.setNameLoc(TL.getNameLoc());
3459         return Result;
3460       }
3461     }
3462 
TransformLambdaExpr(LambdaExpr * E)3463     ExprResult TransformLambdaExpr(LambdaExpr *E) {
3464       // Lambdas never need to be transformed.
3465       return E;
3466     }
3467   };
3468 }
3469 
3470 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
3471 ///
3472 /// \param Type the type pattern using the auto type-specifier.
3473 ///
3474 /// \param Init the initializer for the variable whose type is to be deduced.
3475 ///
3476 /// \param Result if type deduction was successful, this will be set to the
3477 /// deduced type. This may still contain undeduced autos if the type is
3478 /// dependent. This will be set to null if deduction succeeded, but auto
3479 /// substitution failed; the appropriate diagnostic will already have been
3480 /// produced in that case.
3481 Sema::DeduceAutoResult
DeduceAutoType(TypeSourceInfo * Type,Expr * & Init,TypeSourceInfo * & Result)3482 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
3483                      TypeSourceInfo *&Result) {
3484   if (Init->getType()->isNonOverloadPlaceholderType()) {
3485     ExprResult result = CheckPlaceholderExpr(Init);
3486     if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
3487     Init = result.take();
3488   }
3489 
3490   if (Init->isTypeDependent()) {
3491     Result = Type;
3492     return DAR_Succeeded;
3493   }
3494 
3495   SourceLocation Loc = Init->getExprLoc();
3496 
3497   LocalInstantiationScope InstScope(*this);
3498 
3499   // Build template<class TemplParam> void Func(FuncParam);
3500   TemplateTypeParmDecl *TemplParam =
3501     TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3502                                  false, false);
3503   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3504   NamedDecl *TemplParamPtr = TemplParam;
3505   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3506                                                    Loc);
3507 
3508   TypeSourceInfo *FuncParamInfo =
3509     SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
3510   assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
3511   QualType FuncParam = FuncParamInfo->getType();
3512 
3513   // Deduce type of TemplParam in Func(Init)
3514   SmallVector<DeducedTemplateArgument, 1> Deduced;
3515   Deduced.resize(1);
3516   QualType InitType = Init->getType();
3517   unsigned TDF = 0;
3518 
3519   TemplateDeductionInfo Info(Context, Loc);
3520 
3521   InitListExpr * InitList = dyn_cast<InitListExpr>(Init);
3522   if (InitList) {
3523     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3524       if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3525                                               TemplArg,
3526                                               InitList->getInit(i),
3527                                               Info, Deduced, TDF))
3528         return DAR_Failed;
3529     }
3530   } else {
3531     if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3532                                                   FuncParam, InitType, Init,
3533                                                   TDF))
3534       return DAR_Failed;
3535 
3536     if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3537                                            InitType, Info, Deduced, TDF))
3538       return DAR_Failed;
3539   }
3540 
3541   QualType DeducedType = Deduced[0].getAsType();
3542   if (DeducedType.isNull())
3543     return DAR_Failed;
3544 
3545   if (InitList) {
3546     DeducedType = BuildStdInitializerList(DeducedType, Loc);
3547     if (DeducedType.isNull())
3548       return DAR_FailedAlreadyDiagnosed;
3549   }
3550 
3551   Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
3552 
3553   // Check that the deduced argument type is compatible with the original
3554   // argument type per C++ [temp.deduct.call]p4.
3555   if (!InitList && Result &&
3556       CheckOriginalCallArgDeduction(*this,
3557                                     Sema::OriginalCallArg(FuncParam,0,InitType),
3558                                     Result->getType())) {
3559     Result = 0;
3560     return DAR_Failed;
3561   }
3562 
3563   return DAR_Succeeded;
3564 }
3565 
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)3566 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3567   if (isa<InitListExpr>(Init))
3568     Diag(VDecl->getLocation(),
3569          diag::err_auto_var_deduction_failure_from_init_list)
3570       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3571   else
3572     Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3573       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3574       << Init->getSourceRange();
3575 }
3576 
3577 static void
3578 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3579                            bool OnlyDeduced,
3580                            unsigned Level,
3581                            llvm::SmallBitVector &Deduced);
3582 
3583 /// \brief If this is a non-static member function,
MaybeAddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)3584 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
3585                                                 CXXMethodDecl *Method,
3586                                  SmallVectorImpl<QualType> &ArgTypes) {
3587   if (Method->isStatic())
3588     return;
3589 
3590   // C++ [over.match.funcs]p4:
3591   //
3592   //   For non-static member functions, the type of the implicit
3593   //   object parameter is
3594   //     - "lvalue reference to cv X" for functions declared without a
3595   //       ref-qualifier or with the & ref-qualifier
3596   //     - "rvalue reference to cv X" for functions declared with the
3597   //       && ref-qualifier
3598   //
3599   // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
3600   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3601   ArgTy = Context.getQualifiedType(ArgTy,
3602                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3603   ArgTy = Context.getLValueReferenceType(ArgTy);
3604   ArgTypes.push_back(ArgTy);
3605 }
3606 
3607 /// \brief Determine whether the function template \p FT1 is at least as
3608 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)3609 static bool isAtLeastAsSpecializedAs(Sema &S,
3610                                      SourceLocation Loc,
3611                                      FunctionTemplateDecl *FT1,
3612                                      FunctionTemplateDecl *FT2,
3613                                      TemplatePartialOrderingContext TPOC,
3614                                      unsigned NumCallArguments,
3615     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3616   FunctionDecl *FD1 = FT1->getTemplatedDecl();
3617   FunctionDecl *FD2 = FT2->getTemplatedDecl();
3618   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3619   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3620 
3621   assert(Proto1 && Proto2 && "Function templates must have prototypes");
3622   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3623   SmallVector<DeducedTemplateArgument, 4> Deduced;
3624   Deduced.resize(TemplateParams->size());
3625 
3626   // C++0x [temp.deduct.partial]p3:
3627   //   The types used to determine the ordering depend on the context in which
3628   //   the partial ordering is done:
3629   TemplateDeductionInfo Info(S.Context, Loc);
3630   CXXMethodDecl *Method1 = 0;
3631   CXXMethodDecl *Method2 = 0;
3632   bool IsNonStatic2 = false;
3633   bool IsNonStatic1 = false;
3634   unsigned Skip2 = 0;
3635   switch (TPOC) {
3636   case TPOC_Call: {
3637     //   - In the context of a function call, the function parameter types are
3638     //     used.
3639     Method1 = dyn_cast<CXXMethodDecl>(FD1);
3640     Method2 = dyn_cast<CXXMethodDecl>(FD2);
3641     IsNonStatic1 = Method1 && !Method1->isStatic();
3642     IsNonStatic2 = Method2 && !Method2->isStatic();
3643 
3644     // C++0x [temp.func.order]p3:
3645     //   [...] If only one of the function templates is a non-static
3646     //   member, that function template is considered to have a new
3647     //   first parameter inserted in its function parameter list. The
3648     //   new parameter is of type "reference to cv A," where cv are
3649     //   the cv-qualifiers of the function template (if any) and A is
3650     //   the class of which the function template is a member.
3651     //
3652     // C++98/03 doesn't have this provision, so instead we drop the
3653     // first argument of the free function or static member, which
3654     // seems to match existing practice.
3655     SmallVector<QualType, 4> Args1;
3656     unsigned Skip1 = !S.getLangOpts().CPlusPlus0x &&
3657       IsNonStatic2 && !IsNonStatic1;
3658     if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
3659       MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
3660     Args1.insert(Args1.end(),
3661                  Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3662 
3663     SmallVector<QualType, 4> Args2;
3664     Skip2 = !S.getLangOpts().CPlusPlus0x &&
3665       IsNonStatic1 && !IsNonStatic2;
3666     if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3667       MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
3668     Args2.insert(Args2.end(),
3669                  Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3670 
3671     // C++ [temp.func.order]p5:
3672     //   The presence of unused ellipsis and default arguments has no effect on
3673     //   the partial ordering of function templates.
3674     if (Args1.size() > NumCallArguments)
3675       Args1.resize(NumCallArguments);
3676     if (Args2.size() > NumCallArguments)
3677       Args2.resize(NumCallArguments);
3678     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3679                                 Args1.data(), Args1.size(), Info, Deduced,
3680                                 TDF_None, /*PartialOrdering=*/true,
3681                                 RefParamComparisons))
3682         return false;
3683 
3684     break;
3685   }
3686 
3687   case TPOC_Conversion:
3688     //   - In the context of a call to a conversion operator, the return types
3689     //     of the conversion function templates are used.
3690     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3691                                            Proto2->getResultType(),
3692                                            Proto1->getResultType(),
3693                                            Info, Deduced, TDF_None,
3694                                            /*PartialOrdering=*/true,
3695                                            RefParamComparisons))
3696       return false;
3697     break;
3698 
3699   case TPOC_Other:
3700     //   - In other contexts (14.6.6.2) the function template's function type
3701     //     is used.
3702     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3703                                            FD2->getType(), FD1->getType(),
3704                                            Info, Deduced, TDF_None,
3705                                            /*PartialOrdering=*/true,
3706                                            RefParamComparisons))
3707       return false;
3708     break;
3709   }
3710 
3711   // C++0x [temp.deduct.partial]p11:
3712   //   In most cases, all template parameters must have values in order for
3713   //   deduction to succeed, but for partial ordering purposes a template
3714   //   parameter may remain without a value provided it is not used in the
3715   //   types being used for partial ordering. [ Note: a template parameter used
3716   //   in a non-deduced context is considered used. -end note]
3717   unsigned ArgIdx = 0, NumArgs = Deduced.size();
3718   for (; ArgIdx != NumArgs; ++ArgIdx)
3719     if (Deduced[ArgIdx].isNull())
3720       break;
3721 
3722   if (ArgIdx == NumArgs) {
3723     // All template arguments were deduced. FT1 is at least as specialized
3724     // as FT2.
3725     return true;
3726   }
3727 
3728   // Figure out which template parameters were used.
3729   llvm::SmallBitVector UsedParameters(TemplateParams->size());
3730   switch (TPOC) {
3731   case TPOC_Call: {
3732     unsigned NumParams = std::min(NumCallArguments,
3733                                   std::min(Proto1->getNumArgs(),
3734                                            Proto2->getNumArgs()));
3735     if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3736       ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
3737                                    false,
3738                                    TemplateParams->getDepth(), UsedParameters);
3739     for (unsigned I = Skip2; I < NumParams; ++I)
3740       ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
3741                                    TemplateParams->getDepth(),
3742                                    UsedParameters);
3743     break;
3744   }
3745 
3746   case TPOC_Conversion:
3747     ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
3748                                  TemplateParams->getDepth(),
3749                                  UsedParameters);
3750     break;
3751 
3752   case TPOC_Other:
3753     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
3754                                  TemplateParams->getDepth(),
3755                                  UsedParameters);
3756     break;
3757   }
3758 
3759   for (; ArgIdx != NumArgs; ++ArgIdx)
3760     // If this argument had no value deduced but was used in one of the types
3761     // used for partial ordering, then deduction fails.
3762     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3763       return false;
3764 
3765   return true;
3766 }
3767 
3768 /// \brief Determine whether this a function template whose parameter-type-list
3769 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)3770 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3771   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3772   unsigned NumParams = Function->getNumParams();
3773   if (NumParams == 0)
3774     return false;
3775 
3776   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3777   if (!Last->isParameterPack())
3778     return false;
3779 
3780   // Make sure that no previous parameter is a parameter pack.
3781   while (--NumParams > 0) {
3782     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3783       return false;
3784   }
3785 
3786   return true;
3787 }
3788 
3789 /// \brief Returns the more specialized function template according
3790 /// to the rules of function template partial ordering (C++ [temp.func.order]).
3791 ///
3792 /// \param FT1 the first function template
3793 ///
3794 /// \param FT2 the second function template
3795 ///
3796 /// \param TPOC the context in which we are performing partial ordering of
3797 /// function templates.
3798 ///
3799 /// \param NumCallArguments The number of arguments in a call, used only
3800 /// when \c TPOC is \c TPOC_Call.
3801 ///
3802 /// \returns the more specialized function template. If neither
3803 /// template is more specialized, returns NULL.
3804 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments)3805 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3806                                  FunctionTemplateDecl *FT2,
3807                                  SourceLocation Loc,
3808                                  TemplatePartialOrderingContext TPOC,
3809                                  unsigned NumCallArguments) {
3810   SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
3811   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3812                                           NumCallArguments, 0);
3813   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3814                                           NumCallArguments,
3815                                           &RefParamComparisons);
3816 
3817   if (Better1 != Better2) // We have a clear winner
3818     return Better1? FT1 : FT2;
3819 
3820   if (!Better1 && !Better2) // Neither is better than the other
3821     return 0;
3822 
3823   // C++0x [temp.deduct.partial]p10:
3824   //   If for each type being considered a given template is at least as
3825   //   specialized for all types and more specialized for some set of types and
3826   //   the other template is not more specialized for any types or is not at
3827   //   least as specialized for any types, then the given template is more
3828   //   specialized than the other template. Otherwise, neither template is more
3829   //   specialized than the other.
3830   Better1 = false;
3831   Better2 = false;
3832   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
3833     // C++0x [temp.deduct.partial]p9:
3834     //   If, for a given type, deduction succeeds in both directions (i.e., the
3835     //   types are identical after the transformations above) and both P and A
3836     //   were reference types (before being replaced with the type referred to
3837     //   above):
3838 
3839     //     -- if the type from the argument template was an lvalue reference
3840     //        and the type from the parameter template was not, the argument
3841     //        type is considered to be more specialized than the other;
3842     //        otherwise,
3843     if (!RefParamComparisons[I].ArgIsRvalueRef &&
3844         RefParamComparisons[I].ParamIsRvalueRef) {
3845       Better2 = true;
3846       if (Better1)
3847         return 0;
3848       continue;
3849     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
3850                RefParamComparisons[I].ArgIsRvalueRef) {
3851       Better1 = true;
3852       if (Better2)
3853         return 0;
3854       continue;
3855     }
3856 
3857     //     -- if the type from the argument template is more cv-qualified than
3858     //        the type from the parameter template (as described above), the
3859     //        argument type is considered to be more specialized than the
3860     //        other; otherwise,
3861     switch (RefParamComparisons[I].Qualifiers) {
3862     case NeitherMoreQualified:
3863       break;
3864 
3865     case ParamMoreQualified:
3866       Better1 = true;
3867       if (Better2)
3868         return 0;
3869       continue;
3870 
3871     case ArgMoreQualified:
3872       Better2 = true;
3873       if (Better1)
3874         return 0;
3875       continue;
3876     }
3877 
3878     //     -- neither type is more specialized than the other.
3879   }
3880 
3881   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3882   if (Better1)
3883     return FT1;
3884   else if (Better2)
3885     return FT2;
3886 
3887   // FIXME: This mimics what GCC implements, but doesn't match up with the
3888   // proposed resolution for core issue 692. This area needs to be sorted out,
3889   // but for now we attempt to maintain compatibility.
3890   bool Variadic1 = isVariadicFunctionTemplate(FT1);
3891   bool Variadic2 = isVariadicFunctionTemplate(FT2);
3892   if (Variadic1 != Variadic2)
3893     return Variadic1? FT2 : FT1;
3894 
3895   return 0;
3896 }
3897 
3898 /// \brief Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)3899 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3900   if (T1 == T2)
3901     return true;
3902 
3903   if (!T1 || !T2)
3904     return false;
3905 
3906   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3907 }
3908 
3909 /// \brief Retrieve the most specialized of the given function template
3910 /// specializations.
3911 ///
3912 /// \param SpecBegin the start iterator of the function template
3913 /// specializations that we will be comparing.
3914 ///
3915 /// \param SpecEnd the end iterator of the function template
3916 /// specializations, paired with \p SpecBegin.
3917 ///
3918 /// \param TPOC the partial ordering context to use to compare the function
3919 /// template specializations.
3920 ///
3921 /// \param NumCallArguments The number of arguments in a call, used only
3922 /// when \c TPOC is \c TPOC_Call.
3923 ///
3924 /// \param Loc the location where the ambiguity or no-specializations
3925 /// diagnostic should occur.
3926 ///
3927 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
3928 /// no matching candidates.
3929 ///
3930 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3931 /// occurs.
3932 ///
3933 /// \param CandidateDiag partial diagnostic used for each function template
3934 /// specialization that is a candidate in the ambiguous ordering. One parameter
3935 /// in this diagnostic should be unbound, which will correspond to the string
3936 /// describing the template arguments for the function template specialization.
3937 ///
3938 /// \param Index if non-NULL and the result of this function is non-nULL,
3939 /// receives the index corresponding to the resulting function template
3940 /// specialization.
3941 ///
3942 /// \returns the most specialized function template specialization, if
3943 /// found. Otherwise, returns SpecEnd.
3944 ///
3945 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
3946 /// template argument deduction.
3947 UnresolvedSetIterator
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)3948 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
3949                         UnresolvedSetIterator SpecEnd,
3950                          TemplatePartialOrderingContext TPOC,
3951                          unsigned NumCallArguments,
3952                          SourceLocation Loc,
3953                          const PartialDiagnostic &NoneDiag,
3954                          const PartialDiagnostic &AmbigDiag,
3955                          const PartialDiagnostic &CandidateDiag,
3956                          bool Complain,
3957                          QualType TargetType) {
3958   if (SpecBegin == SpecEnd) {
3959     if (Complain)
3960       Diag(Loc, NoneDiag);
3961     return SpecEnd;
3962   }
3963 
3964   if (SpecBegin + 1 == SpecEnd)
3965     return SpecBegin;
3966 
3967   // Find the function template that is better than all of the templates it
3968   // has been compared to.
3969   UnresolvedSetIterator Best = SpecBegin;
3970   FunctionTemplateDecl *BestTemplate
3971     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
3972   assert(BestTemplate && "Not a function template specialization?");
3973   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
3974     FunctionTemplateDecl *Challenger
3975       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3976     assert(Challenger && "Not a function template specialization?");
3977     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3978                                                   Loc, TPOC, NumCallArguments),
3979                        Challenger)) {
3980       Best = I;
3981       BestTemplate = Challenger;
3982     }
3983   }
3984 
3985   // Make sure that the "best" function template is more specialized than all
3986   // of the others.
3987   bool Ambiguous = false;
3988   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
3989     FunctionTemplateDecl *Challenger
3990       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3991     if (I != Best &&
3992         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3993                                                    Loc, TPOC, NumCallArguments),
3994                         BestTemplate)) {
3995       Ambiguous = true;
3996       break;
3997     }
3998   }
3999 
4000   if (!Ambiguous) {
4001     // We found an answer. Return it.
4002     return Best;
4003   }
4004 
4005   // Diagnose the ambiguity.
4006   if (Complain)
4007     Diag(Loc, AmbigDiag);
4008 
4009   if (Complain)
4010   // FIXME: Can we order the candidates in some sane way?
4011     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4012       PartialDiagnostic PD = CandidateDiag;
4013       PD << getTemplateArgumentBindingsText(
4014           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4015                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4016       if (!TargetType.isNull())
4017         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4018                                    TargetType);
4019       Diag((*I)->getLocation(), PD);
4020     }
4021 
4022   return SpecEnd;
4023 }
4024 
4025 /// \brief Returns the more specialized class template partial specialization
4026 /// according to the rules of partial ordering of class template partial
4027 /// specializations (C++ [temp.class.order]).
4028 ///
4029 /// \param PS1 the first class template partial specialization
4030 ///
4031 /// \param PS2 the second class template partial specialization
4032 ///
4033 /// \returns the more specialized class template partial specialization. If
4034 /// neither partial specialization is more specialized, returns NULL.
4035 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4036 Sema::getMoreSpecializedPartialSpecialization(
4037                                   ClassTemplatePartialSpecializationDecl *PS1,
4038                                   ClassTemplatePartialSpecializationDecl *PS2,
4039                                               SourceLocation Loc) {
4040   // C++ [temp.class.order]p1:
4041   //   For two class template partial specializations, the first is at least as
4042   //   specialized as the second if, given the following rewrite to two
4043   //   function templates, the first function template is at least as
4044   //   specialized as the second according to the ordering rules for function
4045   //   templates (14.6.6.2):
4046   //     - the first function template has the same template parameters as the
4047   //       first partial specialization and has a single function parameter
4048   //       whose type is a class template specialization with the template
4049   //       arguments of the first partial specialization, and
4050   //     - the second function template has the same template parameters as the
4051   //       second partial specialization and has a single function parameter
4052   //       whose type is a class template specialization with the template
4053   //       arguments of the second partial specialization.
4054   //
4055   // Rather than synthesize function templates, we merely perform the
4056   // equivalent partial ordering by performing deduction directly on
4057   // the template arguments of the class template partial
4058   // specializations. This computation is slightly simpler than the
4059   // general problem of function template partial ordering, because
4060   // class template partial specializations are more constrained. We
4061   // know that every template parameter is deducible from the class
4062   // template partial specialization's template arguments, for
4063   // example.
4064   SmallVector<DeducedTemplateArgument, 4> Deduced;
4065   TemplateDeductionInfo Info(Context, Loc);
4066 
4067   QualType PT1 = PS1->getInjectedSpecializationType();
4068   QualType PT2 = PS2->getInjectedSpecializationType();
4069 
4070   // Determine whether PS1 is at least as specialized as PS2
4071   Deduced.resize(PS2->getTemplateParameters()->size());
4072   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4073                                             PS2->getTemplateParameters(),
4074                                             PT2, PT1, Info, Deduced, TDF_None,
4075                                             /*PartialOrdering=*/true,
4076                                             /*RefParamComparisons=*/0);
4077   if (Better1) {
4078     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4079                                Deduced.data(), Deduced.size(), Info);
4080     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4081                                                  PS1->getTemplateArgs(),
4082                                                  Deduced, Info);
4083   }
4084 
4085   // Determine whether PS2 is at least as specialized as PS1
4086   Deduced.clear();
4087   Deduced.resize(PS1->getTemplateParameters()->size());
4088   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4089                                             PS1->getTemplateParameters(),
4090                                             PT1, PT2, Info, Deduced, TDF_None,
4091                                             /*PartialOrdering=*/true,
4092                                             /*RefParamComparisons=*/0);
4093   if (Better2) {
4094     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4095                                Deduced.data(), Deduced.size(), Info);
4096     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4097                                                  PS2->getTemplateArgs(),
4098                                                  Deduced, Info);
4099   }
4100 
4101   if (Better1 == Better2)
4102     return 0;
4103 
4104   return Better1? PS1 : PS2;
4105 }
4106 
4107 static void
4108 MarkUsedTemplateParameters(ASTContext &Ctx,
4109                            const TemplateArgument &TemplateArg,
4110                            bool OnlyDeduced,
4111                            unsigned Depth,
4112                            llvm::SmallBitVector &Used);
4113 
4114 /// \brief Mark the template parameters that are used by the given
4115 /// expression.
4116 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4117 MarkUsedTemplateParameters(ASTContext &Ctx,
4118                            const Expr *E,
4119                            bool OnlyDeduced,
4120                            unsigned Depth,
4121                            llvm::SmallBitVector &Used) {
4122   // We can deduce from a pack expansion.
4123   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4124     E = Expansion->getPattern();
4125 
4126   // Skip through any implicit casts we added while type-checking.
4127   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4128     E = ICE->getSubExpr();
4129 
4130   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4131   // find other occurrences of template parameters.
4132   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4133   if (!DRE)
4134     return;
4135 
4136   const NonTypeTemplateParmDecl *NTTP
4137     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4138   if (!NTTP)
4139     return;
4140 
4141   if (NTTP->getDepth() == Depth)
4142     Used[NTTP->getIndex()] = true;
4143 }
4144 
4145 /// \brief Mark the template parameters that are used by the given
4146 /// nested name specifier.
4147 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4148 MarkUsedTemplateParameters(ASTContext &Ctx,
4149                            NestedNameSpecifier *NNS,
4150                            bool OnlyDeduced,
4151                            unsigned Depth,
4152                            llvm::SmallBitVector &Used) {
4153   if (!NNS)
4154     return;
4155 
4156   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4157                              Used);
4158   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4159                              OnlyDeduced, Depth, Used);
4160 }
4161 
4162 /// \brief Mark the template parameters that are used by the given
4163 /// template name.
4164 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4165 MarkUsedTemplateParameters(ASTContext &Ctx,
4166                            TemplateName Name,
4167                            bool OnlyDeduced,
4168                            unsigned Depth,
4169                            llvm::SmallBitVector &Used) {
4170   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4171     if (TemplateTemplateParmDecl *TTP
4172           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4173       if (TTP->getDepth() == Depth)
4174         Used[TTP->getIndex()] = true;
4175     }
4176     return;
4177   }
4178 
4179   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4180     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4181                                Depth, Used);
4182   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4183     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4184                                Depth, Used);
4185 }
4186 
4187 /// \brief Mark the template parameters that are used by the given
4188 /// type.
4189 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4190 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4191                            bool OnlyDeduced,
4192                            unsigned Depth,
4193                            llvm::SmallBitVector &Used) {
4194   if (T.isNull())
4195     return;
4196 
4197   // Non-dependent types have nothing deducible
4198   if (!T->isDependentType())
4199     return;
4200 
4201   T = Ctx.getCanonicalType(T);
4202   switch (T->getTypeClass()) {
4203   case Type::Pointer:
4204     MarkUsedTemplateParameters(Ctx,
4205                                cast<PointerType>(T)->getPointeeType(),
4206                                OnlyDeduced,
4207                                Depth,
4208                                Used);
4209     break;
4210 
4211   case Type::BlockPointer:
4212     MarkUsedTemplateParameters(Ctx,
4213                                cast<BlockPointerType>(T)->getPointeeType(),
4214                                OnlyDeduced,
4215                                Depth,
4216                                Used);
4217     break;
4218 
4219   case Type::LValueReference:
4220   case Type::RValueReference:
4221     MarkUsedTemplateParameters(Ctx,
4222                                cast<ReferenceType>(T)->getPointeeType(),
4223                                OnlyDeduced,
4224                                Depth,
4225                                Used);
4226     break;
4227 
4228   case Type::MemberPointer: {
4229     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4230     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4231                                Depth, Used);
4232     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4233                                OnlyDeduced, Depth, Used);
4234     break;
4235   }
4236 
4237   case Type::DependentSizedArray:
4238     MarkUsedTemplateParameters(Ctx,
4239                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
4240                                OnlyDeduced, Depth, Used);
4241     // Fall through to check the element type
4242 
4243   case Type::ConstantArray:
4244   case Type::IncompleteArray:
4245     MarkUsedTemplateParameters(Ctx,
4246                                cast<ArrayType>(T)->getElementType(),
4247                                OnlyDeduced, Depth, Used);
4248     break;
4249 
4250   case Type::Vector:
4251   case Type::ExtVector:
4252     MarkUsedTemplateParameters(Ctx,
4253                                cast<VectorType>(T)->getElementType(),
4254                                OnlyDeduced, Depth, Used);
4255     break;
4256 
4257   case Type::DependentSizedExtVector: {
4258     const DependentSizedExtVectorType *VecType
4259       = cast<DependentSizedExtVectorType>(T);
4260     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4261                                Depth, Used);
4262     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4263                                Depth, Used);
4264     break;
4265   }
4266 
4267   case Type::FunctionProto: {
4268     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4269     MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4270                                Depth, Used);
4271     for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4272       MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4273                                  Depth, Used);
4274     break;
4275   }
4276 
4277   case Type::TemplateTypeParm: {
4278     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4279     if (TTP->getDepth() == Depth)
4280       Used[TTP->getIndex()] = true;
4281     break;
4282   }
4283 
4284   case Type::SubstTemplateTypeParmPack: {
4285     const SubstTemplateTypeParmPackType *Subst
4286       = cast<SubstTemplateTypeParmPackType>(T);
4287     MarkUsedTemplateParameters(Ctx,
4288                                QualType(Subst->getReplacedParameter(), 0),
4289                                OnlyDeduced, Depth, Used);
4290     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4291                                OnlyDeduced, Depth, Used);
4292     break;
4293   }
4294 
4295   case Type::InjectedClassName:
4296     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4297     // fall through
4298 
4299   case Type::TemplateSpecialization: {
4300     const TemplateSpecializationType *Spec
4301       = cast<TemplateSpecializationType>(T);
4302     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4303                                Depth, Used);
4304 
4305     // C++0x [temp.deduct.type]p9:
4306     //   If the template argument list of P contains a pack expansion that is not
4307     //   the last template argument, the entire template argument list is a
4308     //   non-deduced context.
4309     if (OnlyDeduced &&
4310         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4311       break;
4312 
4313     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4314       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4315                                  Used);
4316     break;
4317   }
4318 
4319   case Type::Complex:
4320     if (!OnlyDeduced)
4321       MarkUsedTemplateParameters(Ctx,
4322                                  cast<ComplexType>(T)->getElementType(),
4323                                  OnlyDeduced, Depth, Used);
4324     break;
4325 
4326   case Type::Atomic:
4327     if (!OnlyDeduced)
4328       MarkUsedTemplateParameters(Ctx,
4329                                  cast<AtomicType>(T)->getValueType(),
4330                                  OnlyDeduced, Depth, Used);
4331     break;
4332 
4333   case Type::DependentName:
4334     if (!OnlyDeduced)
4335       MarkUsedTemplateParameters(Ctx,
4336                                  cast<DependentNameType>(T)->getQualifier(),
4337                                  OnlyDeduced, Depth, Used);
4338     break;
4339 
4340   case Type::DependentTemplateSpecialization: {
4341     const DependentTemplateSpecializationType *Spec
4342       = cast<DependentTemplateSpecializationType>(T);
4343     if (!OnlyDeduced)
4344       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4345                                  OnlyDeduced, Depth, Used);
4346 
4347     // C++0x [temp.deduct.type]p9:
4348     //   If the template argument list of P contains a pack expansion that is not
4349     //   the last template argument, the entire template argument list is a
4350     //   non-deduced context.
4351     if (OnlyDeduced &&
4352         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4353       break;
4354 
4355     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4356       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4357                                  Used);
4358     break;
4359   }
4360 
4361   case Type::TypeOf:
4362     if (!OnlyDeduced)
4363       MarkUsedTemplateParameters(Ctx,
4364                                  cast<TypeOfType>(T)->getUnderlyingType(),
4365                                  OnlyDeduced, Depth, Used);
4366     break;
4367 
4368   case Type::TypeOfExpr:
4369     if (!OnlyDeduced)
4370       MarkUsedTemplateParameters(Ctx,
4371                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4372                                  OnlyDeduced, Depth, Used);
4373     break;
4374 
4375   case Type::Decltype:
4376     if (!OnlyDeduced)
4377       MarkUsedTemplateParameters(Ctx,
4378                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
4379                                  OnlyDeduced, Depth, Used);
4380     break;
4381 
4382   case Type::UnaryTransform:
4383     if (!OnlyDeduced)
4384       MarkUsedTemplateParameters(Ctx,
4385                                cast<UnaryTransformType>(T)->getUnderlyingType(),
4386                                  OnlyDeduced, Depth, Used);
4387     break;
4388 
4389   case Type::PackExpansion:
4390     MarkUsedTemplateParameters(Ctx,
4391                                cast<PackExpansionType>(T)->getPattern(),
4392                                OnlyDeduced, Depth, Used);
4393     break;
4394 
4395   case Type::Auto:
4396     MarkUsedTemplateParameters(Ctx,
4397                                cast<AutoType>(T)->getDeducedType(),
4398                                OnlyDeduced, Depth, Used);
4399 
4400   // None of these types have any template parameters in them.
4401   case Type::Builtin:
4402   case Type::VariableArray:
4403   case Type::FunctionNoProto:
4404   case Type::Record:
4405   case Type::Enum:
4406   case Type::ObjCInterface:
4407   case Type::ObjCObject:
4408   case Type::ObjCObjectPointer:
4409   case Type::UnresolvedUsing:
4410 #define TYPE(Class, Base)
4411 #define ABSTRACT_TYPE(Class, Base)
4412 #define DEPENDENT_TYPE(Class, Base)
4413 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4414 #include "clang/AST/TypeNodes.def"
4415     break;
4416   }
4417 }
4418 
4419 /// \brief Mark the template parameters that are used by this
4420 /// template argument.
4421 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4422 MarkUsedTemplateParameters(ASTContext &Ctx,
4423                            const TemplateArgument &TemplateArg,
4424                            bool OnlyDeduced,
4425                            unsigned Depth,
4426                            llvm::SmallBitVector &Used) {
4427   switch (TemplateArg.getKind()) {
4428   case TemplateArgument::Null:
4429   case TemplateArgument::Integral:
4430   case TemplateArgument::Declaration:
4431     break;
4432 
4433   case TemplateArgument::Type:
4434     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4435                                Depth, Used);
4436     break;
4437 
4438   case TemplateArgument::Template:
4439   case TemplateArgument::TemplateExpansion:
4440     MarkUsedTemplateParameters(Ctx,
4441                                TemplateArg.getAsTemplateOrTemplatePattern(),
4442                                OnlyDeduced, Depth, Used);
4443     break;
4444 
4445   case TemplateArgument::Expression:
4446     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4447                                Depth, Used);
4448     break;
4449 
4450   case TemplateArgument::Pack:
4451     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4452                                       PEnd = TemplateArg.pack_end();
4453          P != PEnd; ++P)
4454       MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4455     break;
4456   }
4457 }
4458 
4459 /// \brief Mark the template parameters can be deduced by the given
4460 /// template argument list.
4461 ///
4462 /// \param TemplateArgs the template argument list from which template
4463 /// parameters will be deduced.
4464 ///
4465 /// \param Deduced a bit vector whose elements will be set to \c true
4466 /// to indicate when the corresponding template parameter will be
4467 /// deduced.
4468 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4469 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4470                                  bool OnlyDeduced, unsigned Depth,
4471                                  llvm::SmallBitVector &Used) {
4472   // C++0x [temp.deduct.type]p9:
4473   //   If the template argument list of P contains a pack expansion that is not
4474   //   the last template argument, the entire template argument list is a
4475   //   non-deduced context.
4476   if (OnlyDeduced &&
4477       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4478     return;
4479 
4480   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4481     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4482                                  Depth, Used);
4483 }
4484 
4485 /// \brief Marks all of the template parameters that will be deduced by a
4486 /// call to the given function template.
4487 void
MarkDeducedTemplateParameters(ASTContext & Ctx,FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)4488 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4489                                     FunctionTemplateDecl *FunctionTemplate,
4490                                     llvm::SmallBitVector &Deduced) {
4491   TemplateParameterList *TemplateParams
4492     = FunctionTemplate->getTemplateParameters();
4493   Deduced.clear();
4494   Deduced.resize(TemplateParams->size());
4495 
4496   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4497   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4498     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4499                                  true, TemplateParams->getDepth(), Deduced);
4500 }
4501 
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)4502 bool hasDeducibleTemplateParameters(Sema &S,
4503                                     FunctionTemplateDecl *FunctionTemplate,
4504                                     QualType T) {
4505   if (!T->isDependentType())
4506     return false;
4507 
4508   TemplateParameterList *TemplateParams
4509     = FunctionTemplate->getTemplateParameters();
4510   llvm::SmallBitVector Deduced(TemplateParams->size());
4511   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4512                                Deduced);
4513 
4514   return Deduced.any();
4515 }
4516