1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "../include/v8stdint.h"
29 #include "utils.h"
30 #include "bignum.h"
31
32 namespace v8 {
33 namespace internal {
34
Bignum()35 Bignum::Bignum()
36 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
37 for (int i = 0; i < kBigitCapacity; ++i) {
38 bigits_[i] = 0;
39 }
40 }
41
42
43 template<typename S>
BitSize(S value)44 static int BitSize(S value) {
45 return 8 * sizeof(value);
46 }
47
48 // Guaranteed to lie in one Bigit.
AssignUInt16(uint16_t value)49 void Bignum::AssignUInt16(uint16_t value) {
50 ASSERT(kBigitSize >= BitSize(value));
51 Zero();
52 if (value == 0) return;
53
54 EnsureCapacity(1);
55 bigits_[0] = value;
56 used_digits_ = 1;
57 }
58
59
AssignUInt64(uint64_t value)60 void Bignum::AssignUInt64(uint64_t value) {
61 const int kUInt64Size = 64;
62
63 Zero();
64 if (value == 0) return;
65
66 int needed_bigits = kUInt64Size / kBigitSize + 1;
67 EnsureCapacity(needed_bigits);
68 for (int i = 0; i < needed_bigits; ++i) {
69 bigits_[i] = static_cast<Chunk>(value & kBigitMask);
70 value = value >> kBigitSize;
71 }
72 used_digits_ = needed_bigits;
73 Clamp();
74 }
75
76
AssignBignum(const Bignum & other)77 void Bignum::AssignBignum(const Bignum& other) {
78 exponent_ = other.exponent_;
79 for (int i = 0; i < other.used_digits_; ++i) {
80 bigits_[i] = other.bigits_[i];
81 }
82 // Clear the excess digits (if there were any).
83 for (int i = other.used_digits_; i < used_digits_; ++i) {
84 bigits_[i] = 0;
85 }
86 used_digits_ = other.used_digits_;
87 }
88
89
ReadUInt64(Vector<const char> buffer,int from,int digits_to_read)90 static uint64_t ReadUInt64(Vector<const char> buffer,
91 int from,
92 int digits_to_read) {
93 uint64_t result = 0;
94 for (int i = from; i < from + digits_to_read; ++i) {
95 int digit = buffer[i] - '0';
96 ASSERT(0 <= digit && digit <= 9);
97 result = result * 10 + digit;
98 }
99 return result;
100 }
101
102
AssignDecimalString(Vector<const char> value)103 void Bignum::AssignDecimalString(Vector<const char> value) {
104 // 2^64 = 18446744073709551616 > 10^19
105 const int kMaxUint64DecimalDigits = 19;
106 Zero();
107 int length = value.length();
108 int pos = 0;
109 // Let's just say that each digit needs 4 bits.
110 while (length >= kMaxUint64DecimalDigits) {
111 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
112 pos += kMaxUint64DecimalDigits;
113 length -= kMaxUint64DecimalDigits;
114 MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
115 AddUInt64(digits);
116 }
117 uint64_t digits = ReadUInt64(value, pos, length);
118 MultiplyByPowerOfTen(length);
119 AddUInt64(digits);
120 Clamp();
121 }
122
123
HexCharValue(char c)124 static int HexCharValue(char c) {
125 if ('0' <= c && c <= '9') return c - '0';
126 if ('a' <= c && c <= 'f') return 10 + c - 'a';
127 if ('A' <= c && c <= 'F') return 10 + c - 'A';
128 UNREACHABLE();
129 return 0; // To make compiler happy.
130 }
131
132
AssignHexString(Vector<const char> value)133 void Bignum::AssignHexString(Vector<const char> value) {
134 Zero();
135 int length = value.length();
136
137 int needed_bigits = length * 4 / kBigitSize + 1;
138 EnsureCapacity(needed_bigits);
139 int string_index = length - 1;
140 for (int i = 0; i < needed_bigits - 1; ++i) {
141 // These bigits are guaranteed to be "full".
142 Chunk current_bigit = 0;
143 for (int j = 0; j < kBigitSize / 4; j++) {
144 current_bigit += HexCharValue(value[string_index--]) << (j * 4);
145 }
146 bigits_[i] = current_bigit;
147 }
148 used_digits_ = needed_bigits - 1;
149
150 Chunk most_significant_bigit = 0; // Could be = 0;
151 for (int j = 0; j <= string_index; ++j) {
152 most_significant_bigit <<= 4;
153 most_significant_bigit += HexCharValue(value[j]);
154 }
155 if (most_significant_bigit != 0) {
156 bigits_[used_digits_] = most_significant_bigit;
157 used_digits_++;
158 }
159 Clamp();
160 }
161
162
AddUInt64(uint64_t operand)163 void Bignum::AddUInt64(uint64_t operand) {
164 if (operand == 0) return;
165 Bignum other;
166 other.AssignUInt64(operand);
167 AddBignum(other);
168 }
169
170
AddBignum(const Bignum & other)171 void Bignum::AddBignum(const Bignum& other) {
172 ASSERT(IsClamped());
173 ASSERT(other.IsClamped());
174
175 // If this has a greater exponent than other append zero-bigits to this.
176 // After this call exponent_ <= other.exponent_.
177 Align(other);
178
179 // There are two possibilities:
180 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
181 // bbbbb 00000000
182 // ----------------
183 // ccccccccccc 0000
184 // or
185 // aaaaaaaaaa 0000
186 // bbbbbbbbb 0000000
187 // -----------------
188 // cccccccccccc 0000
189 // In both cases we might need a carry bigit.
190
191 EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
192 Chunk carry = 0;
193 int bigit_pos = other.exponent_ - exponent_;
194 ASSERT(bigit_pos >= 0);
195 for (int i = 0; i < other.used_digits_; ++i) {
196 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
197 bigits_[bigit_pos] = sum & kBigitMask;
198 carry = sum >> kBigitSize;
199 bigit_pos++;
200 }
201
202 while (carry != 0) {
203 Chunk sum = bigits_[bigit_pos] + carry;
204 bigits_[bigit_pos] = sum & kBigitMask;
205 carry = sum >> kBigitSize;
206 bigit_pos++;
207 }
208 used_digits_ = Max(bigit_pos, used_digits_);
209 ASSERT(IsClamped());
210 }
211
212
SubtractBignum(const Bignum & other)213 void Bignum::SubtractBignum(const Bignum& other) {
214 ASSERT(IsClamped());
215 ASSERT(other.IsClamped());
216 // We require this to be bigger than other.
217 ASSERT(LessEqual(other, *this));
218
219 Align(other);
220
221 int offset = other.exponent_ - exponent_;
222 Chunk borrow = 0;
223 int i;
224 for (i = 0; i < other.used_digits_; ++i) {
225 ASSERT((borrow == 0) || (borrow == 1));
226 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
227 bigits_[i + offset] = difference & kBigitMask;
228 borrow = difference >> (kChunkSize - 1);
229 }
230 while (borrow != 0) {
231 Chunk difference = bigits_[i + offset] - borrow;
232 bigits_[i + offset] = difference & kBigitMask;
233 borrow = difference >> (kChunkSize - 1);
234 ++i;
235 }
236 Clamp();
237 }
238
239
ShiftLeft(int shift_amount)240 void Bignum::ShiftLeft(int shift_amount) {
241 if (used_digits_ == 0) return;
242 exponent_ += shift_amount / kBigitSize;
243 int local_shift = shift_amount % kBigitSize;
244 EnsureCapacity(used_digits_ + 1);
245 BigitsShiftLeft(local_shift);
246 }
247
248
MultiplyByUInt32(uint32_t factor)249 void Bignum::MultiplyByUInt32(uint32_t factor) {
250 if (factor == 1) return;
251 if (factor == 0) {
252 Zero();
253 return;
254 }
255 if (used_digits_ == 0) return;
256
257 // The product of a bigit with the factor is of size kBigitSize + 32.
258 // Assert that this number + 1 (for the carry) fits into double chunk.
259 ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
260 DoubleChunk carry = 0;
261 for (int i = 0; i < used_digits_; ++i) {
262 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
263 bigits_[i] = static_cast<Chunk>(product & kBigitMask);
264 carry = (product >> kBigitSize);
265 }
266 while (carry != 0) {
267 EnsureCapacity(used_digits_ + 1);
268 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
269 used_digits_++;
270 carry >>= kBigitSize;
271 }
272 }
273
274
MultiplyByUInt64(uint64_t factor)275 void Bignum::MultiplyByUInt64(uint64_t factor) {
276 if (factor == 1) return;
277 if (factor == 0) {
278 Zero();
279 return;
280 }
281 ASSERT(kBigitSize < 32);
282 uint64_t carry = 0;
283 uint64_t low = factor & 0xFFFFFFFF;
284 uint64_t high = factor >> 32;
285 for (int i = 0; i < used_digits_; ++i) {
286 uint64_t product_low = low * bigits_[i];
287 uint64_t product_high = high * bigits_[i];
288 uint64_t tmp = (carry & kBigitMask) + product_low;
289 bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
290 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
291 (product_high << (32 - kBigitSize));
292 }
293 while (carry != 0) {
294 EnsureCapacity(used_digits_ + 1);
295 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
296 used_digits_++;
297 carry >>= kBigitSize;
298 }
299 }
300
301
MultiplyByPowerOfTen(int exponent)302 void Bignum::MultiplyByPowerOfTen(int exponent) {
303 const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
304 const uint16_t kFive1 = 5;
305 const uint16_t kFive2 = kFive1 * 5;
306 const uint16_t kFive3 = kFive2 * 5;
307 const uint16_t kFive4 = kFive3 * 5;
308 const uint16_t kFive5 = kFive4 * 5;
309 const uint16_t kFive6 = kFive5 * 5;
310 const uint32_t kFive7 = kFive6 * 5;
311 const uint32_t kFive8 = kFive7 * 5;
312 const uint32_t kFive9 = kFive8 * 5;
313 const uint32_t kFive10 = kFive9 * 5;
314 const uint32_t kFive11 = kFive10 * 5;
315 const uint32_t kFive12 = kFive11 * 5;
316 const uint32_t kFive13 = kFive12 * 5;
317 const uint32_t kFive1_to_12[] =
318 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
319 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
320
321 ASSERT(exponent >= 0);
322 if (exponent == 0) return;
323 if (used_digits_ == 0) return;
324
325 // We shift by exponent at the end just before returning.
326 int remaining_exponent = exponent;
327 while (remaining_exponent >= 27) {
328 MultiplyByUInt64(kFive27);
329 remaining_exponent -= 27;
330 }
331 while (remaining_exponent >= 13) {
332 MultiplyByUInt32(kFive13);
333 remaining_exponent -= 13;
334 }
335 if (remaining_exponent > 0) {
336 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
337 }
338 ShiftLeft(exponent);
339 }
340
341
Square()342 void Bignum::Square() {
343 ASSERT(IsClamped());
344 int product_length = 2 * used_digits_;
345 EnsureCapacity(product_length);
346
347 // Comba multiplication: compute each column separately.
348 // Example: r = a2a1a0 * b2b1b0.
349 // r = 1 * a0b0 +
350 // 10 * (a1b0 + a0b1) +
351 // 100 * (a2b0 + a1b1 + a0b2) +
352 // 1000 * (a2b1 + a1b2) +
353 // 10000 * a2b2
354 //
355 // In the worst case we have to accumulate nb-digits products of digit*digit.
356 //
357 // Assert that the additional number of bits in a DoubleChunk are enough to
358 // sum up used_digits of Bigit*Bigit.
359 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
360 UNIMPLEMENTED();
361 }
362 DoubleChunk accumulator = 0;
363 // First shift the digits so we don't overwrite them.
364 int copy_offset = used_digits_;
365 for (int i = 0; i < used_digits_; ++i) {
366 bigits_[copy_offset + i] = bigits_[i];
367 }
368 // We have two loops to avoid some 'if's in the loop.
369 for (int i = 0; i < used_digits_; ++i) {
370 // Process temporary digit i with power i.
371 // The sum of the two indices must be equal to i.
372 int bigit_index1 = i;
373 int bigit_index2 = 0;
374 // Sum all of the sub-products.
375 while (bigit_index1 >= 0) {
376 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
377 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
378 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
379 bigit_index1--;
380 bigit_index2++;
381 }
382 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
383 accumulator >>= kBigitSize;
384 }
385 for (int i = used_digits_; i < product_length; ++i) {
386 int bigit_index1 = used_digits_ - 1;
387 int bigit_index2 = i - bigit_index1;
388 // Invariant: sum of both indices is again equal to i.
389 // Inner loop runs 0 times on last iteration, emptying accumulator.
390 while (bigit_index2 < used_digits_) {
391 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
392 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
393 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
394 bigit_index1--;
395 bigit_index2++;
396 }
397 // The overwritten bigits_[i] will never be read in further loop iterations,
398 // because bigit_index1 and bigit_index2 are always greater
399 // than i - used_digits_.
400 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
401 accumulator >>= kBigitSize;
402 }
403 // Since the result was guaranteed to lie inside the number the
404 // accumulator must be 0 now.
405 ASSERT(accumulator == 0);
406
407 // Don't forget to update the used_digits and the exponent.
408 used_digits_ = product_length;
409 exponent_ *= 2;
410 Clamp();
411 }
412
413
AssignPowerUInt16(uint16_t base,int power_exponent)414 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
415 ASSERT(base != 0);
416 ASSERT(power_exponent >= 0);
417 if (power_exponent == 0) {
418 AssignUInt16(1);
419 return;
420 }
421 Zero();
422 int shifts = 0;
423 // We expect base to be in range 2-32, and most often to be 10.
424 // It does not make much sense to implement different algorithms for counting
425 // the bits.
426 while ((base & 1) == 0) {
427 base >>= 1;
428 shifts++;
429 }
430 int bit_size = 0;
431 int tmp_base = base;
432 while (tmp_base != 0) {
433 tmp_base >>= 1;
434 bit_size++;
435 }
436 int final_size = bit_size * power_exponent;
437 // 1 extra bigit for the shifting, and one for rounded final_size.
438 EnsureCapacity(final_size / kBigitSize + 2);
439
440 // Left to Right exponentiation.
441 int mask = 1;
442 while (power_exponent >= mask) mask <<= 1;
443
444 // The mask is now pointing to the bit above the most significant 1-bit of
445 // power_exponent.
446 // Get rid of first 1-bit;
447 mask >>= 2;
448 uint64_t this_value = base;
449
450 bool delayed_multipliciation = false;
451 const uint64_t max_32bits = 0xFFFFFFFF;
452 while (mask != 0 && this_value <= max_32bits) {
453 this_value = this_value * this_value;
454 // Verify that there is enough space in this_value to perform the
455 // multiplication. The first bit_size bits must be 0.
456 if ((power_exponent & mask) != 0) {
457 uint64_t base_bits_mask =
458 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
459 bool high_bits_zero = (this_value & base_bits_mask) == 0;
460 if (high_bits_zero) {
461 this_value *= base;
462 } else {
463 delayed_multipliciation = true;
464 }
465 }
466 mask >>= 1;
467 }
468 AssignUInt64(this_value);
469 if (delayed_multipliciation) {
470 MultiplyByUInt32(base);
471 }
472
473 // Now do the same thing as a bignum.
474 while (mask != 0) {
475 Square();
476 if ((power_exponent & mask) != 0) {
477 MultiplyByUInt32(base);
478 }
479 mask >>= 1;
480 }
481
482 // And finally add the saved shifts.
483 ShiftLeft(shifts * power_exponent);
484 }
485
486
487 // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)488 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
489 ASSERT(IsClamped());
490 ASSERT(other.IsClamped());
491 ASSERT(other.used_digits_ > 0);
492
493 // Easy case: if we have less digits than the divisor than the result is 0.
494 // Note: this handles the case where this == 0, too.
495 if (BigitLength() < other.BigitLength()) {
496 return 0;
497 }
498
499 Align(other);
500
501 uint16_t result = 0;
502
503 // Start by removing multiples of 'other' until both numbers have the same
504 // number of digits.
505 while (BigitLength() > other.BigitLength()) {
506 // This naive approach is extremely inefficient if the this divided other
507 // might be big. This function is implemented for doubleToString where
508 // the result should be small (less than 10).
509 ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
510 // Remove the multiples of the first digit.
511 // Example this = 23 and other equals 9. -> Remove 2 multiples.
512 result += bigits_[used_digits_ - 1];
513 SubtractTimes(other, bigits_[used_digits_ - 1]);
514 }
515
516 ASSERT(BigitLength() == other.BigitLength());
517
518 // Both bignums are at the same length now.
519 // Since other has more than 0 digits we know that the access to
520 // bigits_[used_digits_ - 1] is safe.
521 Chunk this_bigit = bigits_[used_digits_ - 1];
522 Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
523
524 if (other.used_digits_ == 1) {
525 // Shortcut for easy (and common) case.
526 int quotient = this_bigit / other_bigit;
527 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
528 result += quotient;
529 Clamp();
530 return result;
531 }
532
533 int division_estimate = this_bigit / (other_bigit + 1);
534 result += division_estimate;
535 SubtractTimes(other, division_estimate);
536
537 if (other_bigit * (division_estimate + 1) > this_bigit) {
538 // No need to even try to subtract. Even if other's remaining digits were 0
539 // another subtraction would be too much.
540 return result;
541 }
542
543 while (LessEqual(other, *this)) {
544 SubtractBignum(other);
545 result++;
546 }
547 return result;
548 }
549
550
551 template<typename S>
SizeInHexChars(S number)552 static int SizeInHexChars(S number) {
553 ASSERT(number > 0);
554 int result = 0;
555 while (number != 0) {
556 number >>= 4;
557 result++;
558 }
559 return result;
560 }
561
562
HexCharOfValue(int value)563 static char HexCharOfValue(int value) {
564 ASSERT(0 <= value && value <= 16);
565 if (value < 10) return value + '0';
566 return value - 10 + 'A';
567 }
568
569
ToHexString(char * buffer,int buffer_size) const570 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
571 ASSERT(IsClamped());
572 // Each bigit must be printable as separate hex-character.
573 ASSERT(kBigitSize % 4 == 0);
574 const int kHexCharsPerBigit = kBigitSize / 4;
575
576 if (used_digits_ == 0) {
577 if (buffer_size < 2) return false;
578 buffer[0] = '0';
579 buffer[1] = '\0';
580 return true;
581 }
582 // We add 1 for the terminating '\0' character.
583 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
584 SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
585 if (needed_chars > buffer_size) return false;
586 int string_index = needed_chars - 1;
587 buffer[string_index--] = '\0';
588 for (int i = 0; i < exponent_; ++i) {
589 for (int j = 0; j < kHexCharsPerBigit; ++j) {
590 buffer[string_index--] = '0';
591 }
592 }
593 for (int i = 0; i < used_digits_ - 1; ++i) {
594 Chunk current_bigit = bigits_[i];
595 for (int j = 0; j < kHexCharsPerBigit; ++j) {
596 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
597 current_bigit >>= 4;
598 }
599 }
600 // And finally the last bigit.
601 Chunk most_significant_bigit = bigits_[used_digits_ - 1];
602 while (most_significant_bigit != 0) {
603 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
604 most_significant_bigit >>= 4;
605 }
606 return true;
607 }
608
609
BigitAt(int index) const610 Bignum::Chunk Bignum::BigitAt(int index) const {
611 if (index >= BigitLength()) return 0;
612 if (index < exponent_) return 0;
613 return bigits_[index - exponent_];
614 }
615
616
Compare(const Bignum & a,const Bignum & b)617 int Bignum::Compare(const Bignum& a, const Bignum& b) {
618 ASSERT(a.IsClamped());
619 ASSERT(b.IsClamped());
620 int bigit_length_a = a.BigitLength();
621 int bigit_length_b = b.BigitLength();
622 if (bigit_length_a < bigit_length_b) return -1;
623 if (bigit_length_a > bigit_length_b) return +1;
624 for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
625 Chunk bigit_a = a.BigitAt(i);
626 Chunk bigit_b = b.BigitAt(i);
627 if (bigit_a < bigit_b) return -1;
628 if (bigit_a > bigit_b) return +1;
629 // Otherwise they are equal up to this digit. Try the next digit.
630 }
631 return 0;
632 }
633
634
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)635 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
636 ASSERT(a.IsClamped());
637 ASSERT(b.IsClamped());
638 ASSERT(c.IsClamped());
639 if (a.BigitLength() < b.BigitLength()) {
640 return PlusCompare(b, a, c);
641 }
642 if (a.BigitLength() + 1 < c.BigitLength()) return -1;
643 if (a.BigitLength() > c.BigitLength()) return +1;
644 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
645 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
646 // of 'a'.
647 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
648 return -1;
649 }
650
651 Chunk borrow = 0;
652 // Starting at min_exponent all digits are == 0. So no need to compare them.
653 int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
654 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
655 Chunk chunk_a = a.BigitAt(i);
656 Chunk chunk_b = b.BigitAt(i);
657 Chunk chunk_c = c.BigitAt(i);
658 Chunk sum = chunk_a + chunk_b;
659 if (sum > chunk_c + borrow) {
660 return +1;
661 } else {
662 borrow = chunk_c + borrow - sum;
663 if (borrow > 1) return -1;
664 borrow <<= kBigitSize;
665 }
666 }
667 if (borrow == 0) return 0;
668 return -1;
669 }
670
671
Clamp()672 void Bignum::Clamp() {
673 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
674 used_digits_--;
675 }
676 if (used_digits_ == 0) {
677 // Zero.
678 exponent_ = 0;
679 }
680 }
681
682
IsClamped() const683 bool Bignum::IsClamped() const {
684 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
685 }
686
687
Zero()688 void Bignum::Zero() {
689 for (int i = 0; i < used_digits_; ++i) {
690 bigits_[i] = 0;
691 }
692 used_digits_ = 0;
693 exponent_ = 0;
694 }
695
696
Align(const Bignum & other)697 void Bignum::Align(const Bignum& other) {
698 if (exponent_ > other.exponent_) {
699 // If "X" represents a "hidden" digit (by the exponent) then we are in the
700 // following case (a == this, b == other):
701 // a: aaaaaaXXXX or a: aaaaaXXX
702 // b: bbbbbbX b: bbbbbbbbXX
703 // We replace some of the hidden digits (X) of a with 0 digits.
704 // a: aaaaaa000X or a: aaaaa0XX
705 int zero_digits = exponent_ - other.exponent_;
706 EnsureCapacity(used_digits_ + zero_digits);
707 for (int i = used_digits_ - 1; i >= 0; --i) {
708 bigits_[i + zero_digits] = bigits_[i];
709 }
710 for (int i = 0; i < zero_digits; ++i) {
711 bigits_[i] = 0;
712 }
713 used_digits_ += zero_digits;
714 exponent_ -= zero_digits;
715 ASSERT(used_digits_ >= 0);
716 ASSERT(exponent_ >= 0);
717 }
718 }
719
720
BigitsShiftLeft(int shift_amount)721 void Bignum::BigitsShiftLeft(int shift_amount) {
722 ASSERT(shift_amount < kBigitSize);
723 ASSERT(shift_amount >= 0);
724 Chunk carry = 0;
725 for (int i = 0; i < used_digits_; ++i) {
726 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
727 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
728 carry = new_carry;
729 }
730 if (carry != 0) {
731 bigits_[used_digits_] = carry;
732 used_digits_++;
733 }
734 }
735
736
SubtractTimes(const Bignum & other,int factor)737 void Bignum::SubtractTimes(const Bignum& other, int factor) {
738 ASSERT(exponent_ <= other.exponent_);
739 if (factor < 3) {
740 for (int i = 0; i < factor; ++i) {
741 SubtractBignum(other);
742 }
743 return;
744 }
745 Chunk borrow = 0;
746 int exponent_diff = other.exponent_ - exponent_;
747 for (int i = 0; i < other.used_digits_; ++i) {
748 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
749 DoubleChunk remove = borrow + product;
750 Chunk difference =
751 bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
752 bigits_[i + exponent_diff] = difference & kBigitMask;
753 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
754 (remove >> kBigitSize));
755 }
756 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
757 if (borrow == 0) return;
758 Chunk difference = bigits_[i] - borrow;
759 bigits_[i] = difference & kBigitMask;
760 borrow = difference >> (kChunkSize - 1);
761 ++i;
762 }
763 Clamp();
764 }
765
766
767 } } // namespace v8::internal
768