• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the CFG and CFGBuilder classes for representing and
11 //  building Control-Flow Graphs (CFGs) from ASTs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_CFG_H
16 #define LLVM_CLANG_CFG_H
17 
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/ADT/OwningPtr.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/Analysis/Support/BumpVector.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include <cassert>
29 #include <iterator>
30 
31 namespace clang {
32   class CXXDestructorDecl;
33   class Decl;
34   class Stmt;
35   class Expr;
36   class FieldDecl;
37   class VarDecl;
38   class CXXCtorInitializer;
39   class CXXBaseSpecifier;
40   class CXXBindTemporaryExpr;
41   class CFG;
42   class PrinterHelper;
43   class LangOptions;
44   class ASTContext;
45 
46 /// CFGElement - Represents a top-level expression in a basic block.
47 class CFGElement {
48 public:
49   enum Kind {
50     // main kind
51     Invalid,
52     Statement,
53     Initializer,
54     // dtor kind
55     AutomaticObjectDtor,
56     BaseDtor,
57     MemberDtor,
58     TemporaryDtor,
59     DTOR_BEGIN = AutomaticObjectDtor,
60     DTOR_END = TemporaryDtor
61   };
62 
63 protected:
64   // The int bits are used to mark the kind.
65   llvm::PointerIntPair<void *, 2> Data1;
66   llvm::PointerIntPair<void *, 2> Data2;
67 
68   CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0)
69     : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
70       Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {}
71 
72 public:
CFGElement()73   CFGElement() {}
74 
getKind()75   Kind getKind() const {
76     unsigned x = Data2.getInt();
77     x <<= 2;
78     x |= Data1.getInt();
79     return (Kind) x;
80   }
81 
isValid()82   bool isValid() const { return getKind() != Invalid; }
83 
84   operator bool() const { return isValid(); }
85 
getAs()86   template<class ElemTy> const ElemTy *getAs() const {
87     if (llvm::isa<ElemTy>(this))
88       return static_cast<const ElemTy*>(this);
89     return 0;
90   }
91 
classof(const CFGElement * E)92   static bool classof(const CFGElement *E) { return true; }
93 };
94 
95 class CFGStmt : public CFGElement {
96 public:
CFGStmt(Stmt * S)97   CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
98 
getStmt()99   const Stmt *getStmt() const {
100     return static_cast<const Stmt *>(Data1.getPointer());
101   }
102 
classof(const CFGElement * E)103   static bool classof(const CFGElement *E) {
104     return E->getKind() == Statement;
105   }
106 };
107 
108 /// CFGInitializer - Represents C++ base or member initializer from
109 /// constructor's initialization list.
110 class CFGInitializer : public CFGElement {
111 public:
CFGInitializer(CXXCtorInitializer * initializer)112   CFGInitializer(CXXCtorInitializer *initializer)
113       : CFGElement(Initializer, initializer) {}
114 
getInitializer()115   CXXCtorInitializer* getInitializer() const {
116     return static_cast<CXXCtorInitializer*>(Data1.getPointer());
117   }
118 
classof(const CFGElement * E)119   static bool classof(const CFGElement *E) {
120     return E->getKind() == Initializer;
121   }
122 };
123 
124 /// CFGImplicitDtor - Represents C++ object destructor implicitly generated
125 /// by compiler on various occasions.
126 class CFGImplicitDtor : public CFGElement {
127 protected:
128   CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0)
CFGElement(kind,data1,data2)129     : CFGElement(kind, data1, data2) {
130     assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
131   }
132 
133 public:
134   const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
135   bool isNoReturn(ASTContext &astContext) const;
136 
classof(const CFGElement * E)137   static bool classof(const CFGElement *E) {
138     Kind kind = E->getKind();
139     return kind >= DTOR_BEGIN && kind <= DTOR_END;
140   }
141 };
142 
143 /// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
144 /// for automatic object or temporary bound to const reference at the point
145 /// of leaving its local scope.
146 class CFGAutomaticObjDtor: public CFGImplicitDtor {
147 public:
CFGAutomaticObjDtor(const VarDecl * var,const Stmt * stmt)148   CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
149       : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
150 
getVarDecl()151   const VarDecl *getVarDecl() const {
152     return static_cast<VarDecl*>(Data1.getPointer());
153   }
154 
155   // Get statement end of which triggered the destructor call.
getTriggerStmt()156   const Stmt *getTriggerStmt() const {
157     return static_cast<Stmt*>(Data2.getPointer());
158   }
159 
classof(const CFGElement * elem)160   static bool classof(const CFGElement *elem) {
161     return elem->getKind() == AutomaticObjectDtor;
162   }
163 };
164 
165 /// CFGBaseDtor - Represents C++ object destructor implicitly generated for
166 /// base object in destructor.
167 class CFGBaseDtor : public CFGImplicitDtor {
168 public:
CFGBaseDtor(const CXXBaseSpecifier * base)169   CFGBaseDtor(const CXXBaseSpecifier *base)
170       : CFGImplicitDtor(BaseDtor, base) {}
171 
getBaseSpecifier()172   const CXXBaseSpecifier *getBaseSpecifier() const {
173     return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
174   }
175 
classof(const CFGElement * E)176   static bool classof(const CFGElement *E) {
177     return E->getKind() == BaseDtor;
178   }
179 };
180 
181 /// CFGMemberDtor - Represents C++ object destructor implicitly generated for
182 /// member object in destructor.
183 class CFGMemberDtor : public CFGImplicitDtor {
184 public:
CFGMemberDtor(const FieldDecl * field)185   CFGMemberDtor(const FieldDecl *field)
186       : CFGImplicitDtor(MemberDtor, field, 0) {}
187 
getFieldDecl()188   const FieldDecl *getFieldDecl() const {
189     return static_cast<const FieldDecl*>(Data1.getPointer());
190   }
191 
classof(const CFGElement * E)192   static bool classof(const CFGElement *E) {
193     return E->getKind() == MemberDtor;
194   }
195 };
196 
197 /// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
198 /// at the end of full expression for temporary object.
199 class CFGTemporaryDtor : public CFGImplicitDtor {
200 public:
CFGTemporaryDtor(CXXBindTemporaryExpr * expr)201   CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
202       : CFGImplicitDtor(TemporaryDtor, expr, 0) {}
203 
getBindTemporaryExpr()204   const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
205     return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
206   }
207 
classof(const CFGElement * E)208   static bool classof(const CFGElement *E) {
209     return E->getKind() == TemporaryDtor;
210   }
211 };
212 
213 /// CFGTerminator - Represents CFGBlock terminator statement.
214 ///
215 /// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
216 /// in control flow of destructors of temporaries. In this case terminator
217 /// statement is the same statement that branches control flow in evaluation
218 /// of matching full expression.
219 class CFGTerminator {
220   llvm::PointerIntPair<Stmt *, 1> Data;
221 public:
CFGTerminator()222   CFGTerminator() {}
223   CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
Data(S,TemporaryDtorsBranch)224       : Data(S, TemporaryDtorsBranch) {}
225 
getStmt()226   Stmt *getStmt() { return Data.getPointer(); }
getStmt()227   const Stmt *getStmt() const { return Data.getPointer(); }
228 
isTemporaryDtorsBranch()229   bool isTemporaryDtorsBranch() const { return Data.getInt(); }
230 
231   operator Stmt *() { return getStmt(); }
232   operator const Stmt *() const { return getStmt(); }
233 
234   Stmt *operator->() { return getStmt(); }
235   const Stmt *operator->() const { return getStmt(); }
236 
237   Stmt &operator*() { return *getStmt(); }
238   const Stmt &operator*() const { return *getStmt(); }
239 
240   operator bool() const { return getStmt(); }
241 };
242 
243 /// CFGBlock - Represents a single basic block in a source-level CFG.
244 ///  It consists of:
245 ///
246 ///  (1) A set of statements/expressions (which may contain subexpressions).
247 ///  (2) A "terminator" statement (not in the set of statements).
248 ///  (3) A list of successors and predecessors.
249 ///
250 /// Terminator: The terminator represents the type of control-flow that occurs
251 /// at the end of the basic block.  The terminator is a Stmt* referring to an
252 /// AST node that has control-flow: if-statements, breaks, loops, etc.
253 /// If the control-flow is conditional, the condition expression will appear
254 /// within the set of statements in the block (usually the last statement).
255 ///
256 /// Predecessors: the order in the set of predecessors is arbitrary.
257 ///
258 /// Successors: the order in the set of successors is NOT arbitrary.  We
259 ///  currently have the following orderings based on the terminator:
260 ///
261 ///     Terminator       Successor Ordering
262 ///  -----------------------------------------------------
263 ///       if            Then Block;  Else Block
264 ///     ? operator      LHS expression;  RHS expression
265 ///     &&, ||          expression that uses result of && or ||, RHS
266 ///
267 /// But note that any of that may be NULL in case of optimized-out edges.
268 ///
269 class CFGBlock {
270   class ElementList {
271     typedef BumpVector<CFGElement> ImplTy;
272     ImplTy Impl;
273   public:
ElementList(BumpVectorContext & C)274     ElementList(BumpVectorContext &C) : Impl(C, 4) {}
275 
276     typedef std::reverse_iterator<ImplTy::iterator>       iterator;
277     typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
278     typedef ImplTy::iterator                              reverse_iterator;
279     typedef ImplTy::const_iterator                       const_reverse_iterator;
280 
push_back(CFGElement e,BumpVectorContext & C)281     void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
insert(reverse_iterator I,size_t Cnt,CFGElement E,BumpVectorContext & C)282     reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
283         BumpVectorContext &C) {
284       return Impl.insert(I, Cnt, E, C);
285     }
286 
front()287     CFGElement front() const { return Impl.back(); }
back()288     CFGElement back() const { return Impl.front(); }
289 
begin()290     iterator begin() { return Impl.rbegin(); }
end()291     iterator end() { return Impl.rend(); }
begin()292     const_iterator begin() const { return Impl.rbegin(); }
end()293     const_iterator end() const { return Impl.rend(); }
rbegin()294     reverse_iterator rbegin() { return Impl.begin(); }
rend()295     reverse_iterator rend() { return Impl.end(); }
rbegin()296     const_reverse_iterator rbegin() const { return Impl.begin(); }
rend()297     const_reverse_iterator rend() const { return Impl.end(); }
298 
299    CFGElement operator[](size_t i) const  {
300      assert(i < Impl.size());
301      return Impl[Impl.size() - 1 - i];
302    }
303 
size()304     size_t size() const { return Impl.size(); }
empty()305     bool empty() const { return Impl.empty(); }
306   };
307 
308   /// Stmts - The set of statements in the basic block.
309   ElementList Elements;
310 
311   /// Label - An (optional) label that prefixes the executable
312   ///  statements in the block.  When this variable is non-NULL, it is
313   ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
314   Stmt *Label;
315 
316   /// Terminator - The terminator for a basic block that
317   ///  indicates the type of control-flow that occurs between a block
318   ///  and its successors.
319   CFGTerminator Terminator;
320 
321   /// LoopTarget - Some blocks are used to represent the "loop edge" to
322   ///  the start of a loop from within the loop body.  This Stmt* will be
323   ///  refer to the loop statement for such blocks (and be null otherwise).
324   const Stmt *LoopTarget;
325 
326   /// BlockID - A numerical ID assigned to a CFGBlock during construction
327   ///   of the CFG.
328   unsigned BlockID;
329 
330   /// Predecessors/Successors - Keep track of the predecessor / successor
331   /// CFG blocks.
332   typedef BumpVector<CFGBlock*> AdjacentBlocks;
333   AdjacentBlocks Preds;
334   AdjacentBlocks Succs;
335 
336   /// NoReturn - This bit is set when the basic block contains a function call
337   /// or implicit destructor that is attributed as 'noreturn'. In that case,
338   /// control cannot technically ever proceed past this block. All such blocks
339   /// will have a single immediate successor: the exit block. This allows them
340   /// to be easily reached from the exit block and using this bit quickly
341   /// recognized without scanning the contents of the block.
342   ///
343   /// Optimization Note: This bit could be profitably folded with Terminator's
344   /// storage if the memory usage of CFGBlock becomes an issue.
345   unsigned HasNoReturnElement : 1;
346 
347   /// Parent - The parent CFG that owns this CFGBlock.
348   CFG *Parent;
349 
350 public:
CFGBlock(unsigned blockid,BumpVectorContext & C,CFG * parent)351   explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
352     : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
353       BlockID(blockid), Preds(C, 1), Succs(C, 1), HasNoReturnElement(false),
354       Parent(parent) {}
~CFGBlock()355   ~CFGBlock() {}
356 
357   // Statement iterators
358   typedef ElementList::iterator                      iterator;
359   typedef ElementList::const_iterator                const_iterator;
360   typedef ElementList::reverse_iterator              reverse_iterator;
361   typedef ElementList::const_reverse_iterator        const_reverse_iterator;
362 
front()363   CFGElement                 front()       const { return Elements.front();   }
back()364   CFGElement                 back()        const { return Elements.back();    }
365 
begin()366   iterator                   begin()             { return Elements.begin();   }
end()367   iterator                   end()               { return Elements.end();     }
begin()368   const_iterator             begin()       const { return Elements.begin();   }
end()369   const_iterator             end()         const { return Elements.end();     }
370 
rbegin()371   reverse_iterator           rbegin()            { return Elements.rbegin();  }
rend()372   reverse_iterator           rend()              { return Elements.rend();    }
rbegin()373   const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
rend()374   const_reverse_iterator     rend()        const { return Elements.rend();    }
375 
size()376   unsigned                   size()        const { return Elements.size();    }
empty()377   bool                       empty()       const { return Elements.empty();   }
378 
379   CFGElement operator[](size_t i) const  { return Elements[i]; }
380 
381   // CFG iterators
382   typedef AdjacentBlocks::iterator                              pred_iterator;
383   typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
384   typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
385   typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
386 
387   typedef AdjacentBlocks::iterator                              succ_iterator;
388   typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
389   typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
390   typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
391 
pred_begin()392   pred_iterator                pred_begin()        { return Preds.begin();   }
pred_end()393   pred_iterator                pred_end()          { return Preds.end();     }
pred_begin()394   const_pred_iterator          pred_begin()  const { return Preds.begin();   }
pred_end()395   const_pred_iterator          pred_end()    const { return Preds.end();     }
396 
pred_rbegin()397   pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
pred_rend()398   pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
pred_rbegin()399   const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
pred_rend()400   const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
401 
succ_begin()402   succ_iterator                succ_begin()        { return Succs.begin();   }
succ_end()403   succ_iterator                succ_end()          { return Succs.end();     }
succ_begin()404   const_succ_iterator          succ_begin()  const { return Succs.begin();   }
succ_end()405   const_succ_iterator          succ_end()    const { return Succs.end();     }
406 
succ_rbegin()407   succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
succ_rend()408   succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
succ_rbegin()409   const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
succ_rend()410   const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
411 
succ_size()412   unsigned                     succ_size()   const { return Succs.size();    }
succ_empty()413   bool                         succ_empty()  const { return Succs.empty();   }
414 
pred_size()415   unsigned                     pred_size()   const { return Preds.size();    }
pred_empty()416   bool                         pred_empty()  const { return Preds.empty();   }
417 
418 
419   class FilterOptions {
420   public:
FilterOptions()421     FilterOptions() {
422       IgnoreDefaultsWithCoveredEnums = 0;
423     }
424 
425     unsigned IgnoreDefaultsWithCoveredEnums : 1;
426   };
427 
428   static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
429        const CFGBlock *Dst);
430 
431   template <typename IMPL, bool IsPred>
432   class FilteredCFGBlockIterator {
433   private:
434     IMPL I, E;
435     const FilterOptions F;
436     const CFGBlock *From;
437    public:
FilteredCFGBlockIterator(const IMPL & i,const IMPL & e,const CFGBlock * from,const FilterOptions & f)438     explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
439               const CFGBlock *from,
440               const FilterOptions &f)
441       : I(i), E(e), F(f), From(from) {}
442 
hasMore()443     bool hasMore() const { return I != E; }
444 
445     FilteredCFGBlockIterator &operator++() {
446       do { ++I; } while (hasMore() && Filter(*I));
447       return *this;
448     }
449 
450     const CFGBlock *operator*() const { return *I; }
451   private:
Filter(const CFGBlock * To)452     bool Filter(const CFGBlock *To) {
453       return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
454     }
455   };
456 
457   typedef FilteredCFGBlockIterator<const_pred_iterator, true>
458           filtered_pred_iterator;
459 
460   typedef FilteredCFGBlockIterator<const_succ_iterator, false>
461           filtered_succ_iterator;
462 
filtered_pred_start_end(const FilterOptions & f)463   filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
464     return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
465   }
466 
filtered_succ_start_end(const FilterOptions & f)467   filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
468     return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
469   }
470 
471   // Manipulation of block contents
472 
setTerminator(Stmt * Statement)473   void setTerminator(Stmt *Statement) { Terminator = Statement; }
setLabel(Stmt * Statement)474   void setLabel(Stmt *Statement) { Label = Statement; }
setLoopTarget(const Stmt * loopTarget)475   void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
setHasNoReturnElement()476   void setHasNoReturnElement() { HasNoReturnElement = true; }
477 
getTerminator()478   CFGTerminator getTerminator() { return Terminator; }
getTerminator()479   const CFGTerminator getTerminator() const { return Terminator; }
480 
481   Stmt *getTerminatorCondition();
482 
getTerminatorCondition()483   const Stmt *getTerminatorCondition() const {
484     return const_cast<CFGBlock*>(this)->getTerminatorCondition();
485   }
486 
getLoopTarget()487   const Stmt *getLoopTarget() const { return LoopTarget; }
488 
getLabel()489   Stmt *getLabel() { return Label; }
getLabel()490   const Stmt *getLabel() const { return Label; }
491 
hasNoReturnElement()492   bool hasNoReturnElement() const { return HasNoReturnElement; }
493 
getBlockID()494   unsigned getBlockID() const { return BlockID; }
495 
getParent()496   CFG *getParent() const { return Parent; }
497 
498   void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
499   void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
500              bool ShowColors) const;
501   void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
502 
addSuccessor(CFGBlock * Block,BumpVectorContext & C)503   void addSuccessor(CFGBlock *Block, BumpVectorContext &C) {
504     if (Block)
505       Block->Preds.push_back(this, C);
506     Succs.push_back(Block, C);
507   }
508 
appendStmt(Stmt * statement,BumpVectorContext & C)509   void appendStmt(Stmt *statement, BumpVectorContext &C) {
510     Elements.push_back(CFGStmt(statement), C);
511   }
512 
appendInitializer(CXXCtorInitializer * initializer,BumpVectorContext & C)513   void appendInitializer(CXXCtorInitializer *initializer,
514                         BumpVectorContext &C) {
515     Elements.push_back(CFGInitializer(initializer), C);
516   }
517 
appendBaseDtor(const CXXBaseSpecifier * BS,BumpVectorContext & C)518   void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
519     Elements.push_back(CFGBaseDtor(BS), C);
520   }
521 
appendMemberDtor(FieldDecl * FD,BumpVectorContext & C)522   void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
523     Elements.push_back(CFGMemberDtor(FD), C);
524   }
525 
appendTemporaryDtor(CXXBindTemporaryExpr * E,BumpVectorContext & C)526   void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
527     Elements.push_back(CFGTemporaryDtor(E), C);
528   }
529 
appendAutomaticObjDtor(VarDecl * VD,Stmt * S,BumpVectorContext & C)530   void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
531     Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
532   }
533 
534   // Destructors must be inserted in reversed order. So insertion is in two
535   // steps. First we prepare space for some number of elements, then we insert
536   // the elements beginning at the last position in prepared space.
beginAutomaticObjDtorsInsert(iterator I,size_t Cnt,BumpVectorContext & C)537   iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
538       BumpVectorContext &C) {
539     return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
540   }
insertAutomaticObjDtor(iterator I,VarDecl * VD,Stmt * S)541   iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
542     *I = CFGAutomaticObjDtor(VD, S);
543     return ++I;
544   }
545 };
546 
547 /// CFG - Represents a source-level, intra-procedural CFG that represents the
548 ///  control-flow of a Stmt.  The Stmt can represent an entire function body,
549 ///  or a single expression.  A CFG will always contain one empty block that
550 ///  represents the Exit point of the CFG.  A CFG will also contain a designated
551 ///  Entry block.  The CFG solely represents control-flow; it consists of
552 ///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
553 ///  was constructed from.
554 class CFG {
555 public:
556   //===--------------------------------------------------------------------===//
557   // CFG Construction & Manipulation.
558   //===--------------------------------------------------------------------===//
559 
560   class BuildOptions {
561     llvm::BitVector alwaysAddMask;
562   public:
563     typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
564     ForcedBlkExprs **forcedBlkExprs;
565 
566     bool PruneTriviallyFalseEdges;
567     bool AddEHEdges;
568     bool AddInitializers;
569     bool AddImplicitDtors;
570 
alwaysAdd(const Stmt * stmt)571     bool alwaysAdd(const Stmt *stmt) const {
572       return alwaysAddMask[stmt->getStmtClass()];
573     }
574 
575     BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
576       alwaysAddMask[stmtClass] = val;
577       return *this;
578     }
579 
setAllAlwaysAdd()580     BuildOptions &setAllAlwaysAdd() {
581       alwaysAddMask.set();
582       return *this;
583     }
584 
BuildOptions()585     BuildOptions()
586     : alwaysAddMask(Stmt::lastStmtConstant, false)
587       ,forcedBlkExprs(0), PruneTriviallyFalseEdges(true)
588       ,AddEHEdges(false)
589       ,AddInitializers(false)
590       ,AddImplicitDtors(false) {}
591   };
592 
593   /// \brief Provides a custom implementation of the iterator class to have the
594   /// same interface as Function::iterator - iterator returns CFGBlock
595   /// (not a pointer to CFGBlock).
596   class graph_iterator {
597   public:
598     typedef const CFGBlock                  value_type;
599     typedef value_type&                     reference;
600     typedef value_type*                     pointer;
601     typedef BumpVector<CFGBlock*>::iterator ImplTy;
602 
graph_iterator(const ImplTy & i)603     graph_iterator(const ImplTy &i) : I(i) {}
604 
605     bool operator==(const graph_iterator &X) const { return I == X.I; }
606     bool operator!=(const graph_iterator &X) const { return I != X.I; }
607 
608     reference operator*()    const { return **I; }
609     pointer operator->()     const { return  *I; }
610     operator CFGBlock* ()          { return  *I; }
611 
612     graph_iterator &operator++() { ++I; return *this; }
613     graph_iterator &operator--() { --I; return *this; }
614 
615   private:
616     ImplTy I;
617   };
618 
619   class const_graph_iterator {
620   public:
621     typedef const CFGBlock                  value_type;
622     typedef value_type&                     reference;
623     typedef value_type*                     pointer;
624     typedef BumpVector<CFGBlock*>::const_iterator ImplTy;
625 
const_graph_iterator(const ImplTy & i)626     const_graph_iterator(const ImplTy &i) : I(i) {}
627 
628     bool operator==(const const_graph_iterator &X) const { return I == X.I; }
629     bool operator!=(const const_graph_iterator &X) const { return I != X.I; }
630 
631     reference operator*() const { return **I; }
632     pointer operator->()  const { return  *I; }
633     operator CFGBlock* () const { return  *I; }
634 
635     const_graph_iterator &operator++() { ++I; return *this; }
636     const_graph_iterator &operator--() { --I; return *this; }
637 
638   private:
639     ImplTy I;
640   };
641 
642   /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
643   ///   constructed CFG belongs to the caller.
644   static CFG* buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
645                        const BuildOptions &BO);
646 
647   /// createBlock - Create a new block in the CFG.  The CFG owns the block;
648   ///  the caller should not directly free it.
649   CFGBlock *createBlock();
650 
651   /// setEntry - Set the entry block of the CFG.  This is typically used
652   ///  only during CFG construction.  Most CFG clients expect that the
653   ///  entry block has no predecessors and contains no statements.
setEntry(CFGBlock * B)654   void setEntry(CFGBlock *B) { Entry = B; }
655 
656   /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
657   ///  This is typically used only during CFG construction.
setIndirectGotoBlock(CFGBlock * B)658   void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
659 
660   //===--------------------------------------------------------------------===//
661   // Block Iterators
662   //===--------------------------------------------------------------------===//
663 
664   typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
665   typedef CFGBlockListTy::iterator                 iterator;
666   typedef CFGBlockListTy::const_iterator           const_iterator;
667   typedef std::reverse_iterator<iterator>          reverse_iterator;
668   typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
669 
front()670   CFGBlock &                front()                { return *Blocks.front(); }
back()671   CFGBlock &                back()                 { return *Blocks.back(); }
672 
begin()673   iterator                  begin()                { return Blocks.begin(); }
end()674   iterator                  end()                  { return Blocks.end(); }
begin()675   const_iterator            begin()       const    { return Blocks.begin(); }
end()676   const_iterator            end()         const    { return Blocks.end(); }
677 
nodes_begin()678   graph_iterator nodes_begin() { return graph_iterator(Blocks.begin()); }
nodes_end()679   graph_iterator nodes_end() { return graph_iterator(Blocks.end()); }
nodes_begin()680   const_graph_iterator nodes_begin() const {
681     return const_graph_iterator(Blocks.begin());
682   }
nodes_end()683   const_graph_iterator nodes_end() const {
684     return const_graph_iterator(Blocks.end());
685   }
686 
rbegin()687   reverse_iterator          rbegin()               { return Blocks.rbegin(); }
rend()688   reverse_iterator          rend()                 { return Blocks.rend(); }
rbegin()689   const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
rend()690   const_reverse_iterator    rend()        const    { return Blocks.rend(); }
691 
getEntry()692   CFGBlock &                getEntry()             { return *Entry; }
getEntry()693   const CFGBlock &          getEntry()    const    { return *Entry; }
getExit()694   CFGBlock &                getExit()              { return *Exit; }
getExit()695   const CFGBlock &          getExit()     const    { return *Exit; }
696 
getIndirectGotoBlock()697   CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
getIndirectGotoBlock()698   const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
699 
700   typedef std::vector<const CFGBlock*>::const_iterator try_block_iterator;
try_blocks_begin()701   try_block_iterator try_blocks_begin() const {
702     return TryDispatchBlocks.begin();
703   }
try_blocks_end()704   try_block_iterator try_blocks_end() const {
705     return TryDispatchBlocks.end();
706   }
707 
addTryDispatchBlock(const CFGBlock * block)708   void addTryDispatchBlock(const CFGBlock *block) {
709     TryDispatchBlocks.push_back(block);
710   }
711 
712   //===--------------------------------------------------------------------===//
713   // Member templates useful for various batch operations over CFGs.
714   //===--------------------------------------------------------------------===//
715 
716   template <typename CALLBACK>
VisitBlockStmts(CALLBACK & O)717   void VisitBlockStmts(CALLBACK& O) const {
718     for (const_iterator I=begin(), E=end(); I != E; ++I)
719       for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
720            BI != BE; ++BI) {
721         if (const CFGStmt *stmt = BI->getAs<CFGStmt>())
722           O(const_cast<Stmt*>(stmt->getStmt()));
723       }
724   }
725 
726   //===--------------------------------------------------------------------===//
727   // CFG Introspection.
728   //===--------------------------------------------------------------------===//
729 
730   struct   BlkExprNumTy {
731     const signed Idx;
BlkExprNumTyBlkExprNumTy732     explicit BlkExprNumTy(signed idx) : Idx(idx) {}
BlkExprNumTyBlkExprNumTy733     explicit BlkExprNumTy() : Idx(-1) {}
734     operator bool() const { return Idx >= 0; }
735     operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
736   };
737 
isBlkExpr(const Stmt * S)738   bool isBlkExpr(const Stmt *S) { return getBlkExprNum(S); }
isBlkExpr(const Stmt * S)739   bool isBlkExpr(const Stmt *S) const {
740     return const_cast<CFG*>(this)->isBlkExpr(S);
741   }
742   BlkExprNumTy  getBlkExprNum(const Stmt *S);
743   unsigned      getNumBlkExprs();
744 
745   /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
746   /// start at 0).
getNumBlockIDs()747   unsigned getNumBlockIDs() const { return NumBlockIDs; }
748 
749   /// size - Return the total number of CFGBlocks within the CFG
750   /// This is simply a renaming of the getNumBlockIDs(). This is necessary
751   /// because the dominator implementation needs such an interface.
size()752   unsigned size() const { return NumBlockIDs; }
753 
754   //===--------------------------------------------------------------------===//
755   // CFG Debugging: Pretty-Printing and Visualization.
756   //===--------------------------------------------------------------------===//
757 
758   void viewCFG(const LangOptions &LO) const;
759   void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
760   void dump(const LangOptions &LO, bool ShowColors) const;
761 
762   //===--------------------------------------------------------------------===//
763   // Internal: constructors and data.
764   //===--------------------------------------------------------------------===//
765 
CFG()766   CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
767           BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
768 
769   ~CFG();
770 
getAllocator()771   llvm::BumpPtrAllocator& getAllocator() {
772     return BlkBVC.getAllocator();
773   }
774 
getBumpVectorContext()775   BumpVectorContext &getBumpVectorContext() {
776     return BlkBVC;
777   }
778 
779 private:
780   CFGBlock *Entry;
781   CFGBlock *Exit;
782   CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
783                                 // for indirect gotos
784   unsigned  NumBlockIDs;
785 
786   // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
787   //  It represents a map from Expr* to integers to record the set of
788   //  block-level expressions and their "statement number" in the CFG.
789   void *    BlkExprMap;
790 
791   BumpVectorContext BlkBVC;
792 
793   CFGBlockListTy Blocks;
794 
795   /// C++ 'try' statements are modeled with an indirect dispatch block.
796   /// This is the collection of such blocks present in the CFG.
797   std::vector<const CFGBlock *> TryDispatchBlocks;
798 
799 };
800 } // end namespace clang
801 
802 //===----------------------------------------------------------------------===//
803 // GraphTraits specializations for CFG basic block graphs (source-level CFGs)
804 //===----------------------------------------------------------------------===//
805 
806 namespace llvm {
807 
808 /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
809 /// CFGTerminator to a specific Stmt class.
810 template <> struct simplify_type<const ::clang::CFGTerminator> {
811   typedef const ::clang::Stmt *SimpleType;
812   static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
813     return Val.getStmt();
814   }
815 };
816 
817 template <> struct simplify_type< ::clang::CFGTerminator> {
818   typedef ::clang::Stmt *SimpleType;
819   static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
820     return const_cast<SimpleType>(Val.getStmt());
821   }
822 };
823 
824 // Traits for: CFGBlock
825 
826 template <> struct GraphTraits< ::clang::CFGBlock *> {
827   typedef ::clang::CFGBlock NodeType;
828   typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
829 
830   static NodeType* getEntryNode(::clang::CFGBlock *BB)
831   { return BB; }
832 
833   static inline ChildIteratorType child_begin(NodeType* N)
834   { return N->succ_begin(); }
835 
836   static inline ChildIteratorType child_end(NodeType* N)
837   { return N->succ_end(); }
838 };
839 
840 template <> struct GraphTraits< const ::clang::CFGBlock *> {
841   typedef const ::clang::CFGBlock NodeType;
842   typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
843 
844   static NodeType* getEntryNode(const clang::CFGBlock *BB)
845   { return BB; }
846 
847   static inline ChildIteratorType child_begin(NodeType* N)
848   { return N->succ_begin(); }
849 
850   static inline ChildIteratorType child_end(NodeType* N)
851   { return N->succ_end(); }
852 };
853 
854 template <> struct GraphTraits<Inverse< ::clang::CFGBlock*> > {
855   typedef ::clang::CFGBlock NodeType;
856   typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
857 
858   static NodeType *getEntryNode(Inverse< ::clang::CFGBlock*> G)
859   { return G.Graph; }
860 
861   static inline ChildIteratorType child_begin(NodeType* N)
862   { return N->pred_begin(); }
863 
864   static inline ChildIteratorType child_end(NodeType* N)
865   { return N->pred_end(); }
866 };
867 
868 template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
869   typedef const ::clang::CFGBlock NodeType;
870   typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
871 
872   static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
873   { return G.Graph; }
874 
875   static inline ChildIteratorType child_begin(NodeType* N)
876   { return N->pred_begin(); }
877 
878   static inline ChildIteratorType child_end(NodeType* N)
879   { return N->pred_end(); }
880 };
881 
882 // Traits for: CFG
883 
884 template <> struct GraphTraits< ::clang::CFG* >
885     : public GraphTraits< ::clang::CFGBlock *>  {
886 
887   typedef ::clang::CFG::graph_iterator nodes_iterator;
888 
889   static NodeType     *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
890   static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
891   static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
892   static unsigned              size(::clang::CFG* F) { return F->size(); }
893 };
894 
895 template <> struct GraphTraits<const ::clang::CFG* >
896     : public GraphTraits<const ::clang::CFGBlock *>  {
897 
898   typedef ::clang::CFG::const_graph_iterator nodes_iterator;
899 
900   static NodeType *getEntryNode( const ::clang::CFG* F) {
901     return &F->getEntry();
902   }
903   static nodes_iterator nodes_begin( const ::clang::CFG* F) {
904     return F->nodes_begin();
905   }
906   static nodes_iterator nodes_end( const ::clang::CFG* F) {
907     return F->nodes_end();
908   }
909   static unsigned size(const ::clang::CFG* F) {
910     return F->size();
911   }
912 };
913 
914 template <> struct GraphTraits<Inverse< ::clang::CFG*> >
915   : public GraphTraits<Inverse< ::clang::CFGBlock*> > {
916 
917   typedef ::clang::CFG::graph_iterator nodes_iterator;
918 
919   static NodeType *getEntryNode( ::clang::CFG* F) { return &F->getExit(); }
920   static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
921   static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
922 };
923 
924 template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
925   : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
926 
927   typedef ::clang::CFG::const_graph_iterator nodes_iterator;
928 
929   static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
930   static nodes_iterator nodes_begin(const ::clang::CFG* F) {
931     return F->nodes_begin();
932   }
933   static nodes_iterator nodes_end(const ::clang::CFG* F) {
934     return F->nodes_end();
935   }
936 };
937 } // end llvm namespace
938 #endif
939