• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008, 2009, Google Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are
6  * met:
7  *
8  *     * Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  *     * Redistributions in binary form must reproduce the above
11  * copyright notice, this list of conditions and the following disclaimer
12  * in the documentation and/or other materials provided with the
13  * distribution.
14  *     * Neither the name of Google Inc. nor the names of its
15  * contributors may be used to endorse or promote products derived from
16  * this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include "config.h"
32 #include "BMPImageReader.h"
33 
34 namespace WebCore {
35 
BMPImageReader(ImageDecoder * parent,size_t decodedAndHeaderOffset,size_t imgDataOffset,bool usesAndMask)36 BMPImageReader::BMPImageReader(ImageDecoder* parent, size_t decodedAndHeaderOffset, size_t imgDataOffset, bool usesAndMask)
37     : m_parent(parent)
38     , m_buffer(0)
39     , m_decodedOffset(decodedAndHeaderOffset)
40     , m_headerOffset(decodedAndHeaderOffset)
41     , m_imgDataOffset(imgDataOffset)
42     , m_isOS21x(false)
43     , m_isOS22x(false)
44     , m_isTopDown(false)
45     , m_needToProcessBitmasks(false)
46     , m_needToProcessColorTable(false)
47     , m_tableSizeInBytes(0)
48     , m_seenNonZeroAlphaPixel(false)
49     , m_seenZeroAlphaPixel(false)
50     , m_andMaskState(usesAndMask ? NotYetDecoded : None)
51 {
52     // Clue-in decodeBMP() that we need to detect the correct info header size.
53     memset(&m_infoHeader, 0, sizeof(m_infoHeader));
54 }
55 
decodeBMP(bool onlySize)56 bool BMPImageReader::decodeBMP(bool onlySize)
57 {
58     // Calculate size of info header.
59     if (!m_infoHeader.biSize && !readInfoHeaderSize())
60         return false;
61 
62     // Read and process info header.
63     if ((m_decodedOffset < (m_headerOffset + m_infoHeader.biSize)) && !processInfoHeader())
64         return false;
65 
66     // processInfoHeader() set the size, so if that's all we needed, we're done.
67     if (onlySize)
68         return true;
69 
70     // Read and process the bitmasks, if needed.
71     if (m_needToProcessBitmasks && !processBitmasks())
72         return false;
73 
74     // Read and process the color table, if needed.
75     if (m_needToProcessColorTable && !processColorTable())
76         return false;
77 
78     // Initialize the framebuffer if needed.
79     ASSERT(m_buffer);  // Parent should set this before asking us to decode!
80     if (m_buffer->status() == ImageFrame::FrameEmpty) {
81         if (!m_buffer->setSize(m_parent->size().width(), m_parent->size().height()))
82             return m_parent->setFailed(); // Unable to allocate.
83         m_buffer->setStatus(ImageFrame::FramePartial);
84         // setSize() calls eraseARGB(), which resets the alpha flag, so we force
85         // it back to false here.  We'll set it true below in all cases where
86         // these 0s could actually show through.
87         m_buffer->setHasAlpha(false);
88 
89         // For BMPs, the frame always fills the entire image.
90         m_buffer->setOriginalFrameRect(IntRect(IntPoint(), m_parent->size()));
91 
92         if (!m_isTopDown)
93             m_coord.setY(m_parent->size().height() - 1);
94     }
95 
96     // Decode the data.
97     if ((m_andMaskState != Decoding) && !pastEndOfImage(0)) {
98         if ((m_infoHeader.biCompression != RLE4) && (m_infoHeader.biCompression != RLE8) && (m_infoHeader.biCompression != RLE24)) {
99             const ProcessingResult result = processNonRLEData(false, 0);
100             if (result != Success)
101                 return (result == Failure) ? m_parent->setFailed() : false;
102         } else if (!processRLEData())
103             return false;
104     }
105 
106     // If the image has an AND mask and there was no alpha data, process the
107     // mask.
108     if ((m_andMaskState == NotYetDecoded) && !m_buffer->hasAlpha()) {
109         // Reset decoding coordinates to start of image.
110         m_coord.setX(0);
111         m_coord.setY(m_isTopDown ? 0 : (m_parent->size().height() - 1));
112 
113         // The AND mask is stored as 1-bit data.
114         m_infoHeader.biBitCount = 1;
115 
116         m_andMaskState = Decoding;
117     }
118     if (m_andMaskState == Decoding) {
119         const ProcessingResult result = processNonRLEData(false, 0);
120         if (result != Success)
121             return (result == Failure) ? m_parent->setFailed() : false;
122     }
123 
124     // Done!
125     m_buffer->setStatus(ImageFrame::FrameComplete);
126     return true;
127 }
128 
readInfoHeaderSize()129 bool BMPImageReader::readInfoHeaderSize()
130 {
131     // Get size of info header.
132     ASSERT(m_decodedOffset == m_headerOffset);
133     if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < 4))
134         return false;
135     m_infoHeader.biSize = readUint32(0);
136     // Don't increment m_decodedOffset here, it just makes the code in
137     // processInfoHeader() more confusing.
138 
139     // Don't allow the header to overflow (which would be harmless here, but
140     // problematic or at least confusing in other places), or to overrun the
141     // image data.
142     if (((m_headerOffset + m_infoHeader.biSize) < m_headerOffset) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize))))
143         return m_parent->setFailed();
144 
145     // See if this is a header size we understand:
146     // OS/2 1.x: 12
147     if (m_infoHeader.biSize == 12)
148         m_isOS21x = true;
149     // Windows V3: 40
150     else if ((m_infoHeader.biSize == 40) || isWindowsV4Plus())
151         ;
152     // OS/2 2.x: any multiple of 4 between 16 and 64, inclusive, or 42 or 46
153     else if ((m_infoHeader.biSize >= 16) && (m_infoHeader.biSize <= 64) && (!(m_infoHeader.biSize & 3) || (m_infoHeader.biSize == 42) || (m_infoHeader.biSize == 46)))
154         m_isOS22x = true;
155     else
156         return m_parent->setFailed();
157 
158     return true;
159 }
160 
processInfoHeader()161 bool BMPImageReader::processInfoHeader()
162 {
163     // Read info header.
164     ASSERT(m_decodedOffset == m_headerOffset);
165     if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_infoHeader.biSize) || !readInfoHeader())
166         return false;
167     m_decodedOffset += m_infoHeader.biSize;
168 
169     // Sanity-check header values.
170     if (!isInfoHeaderValid())
171         return m_parent->setFailed();
172 
173     // Set our size.
174     if (!m_parent->setSize(m_infoHeader.biWidth, m_infoHeader.biHeight))
175         return false;
176 
177     // For paletted images, bitmaps can set biClrUsed to 0 to mean "all
178     // colors", so set it to the maximum number of colors for this bit depth.
179     // Also do this for bitmaps that put too large a value here.
180     if (m_infoHeader.biBitCount < 16) {
181       const uint32_t maxColors = static_cast<uint32_t>(1) << m_infoHeader.biBitCount;
182       if (!m_infoHeader.biClrUsed || (m_infoHeader.biClrUsed > maxColors))
183           m_infoHeader.biClrUsed = maxColors;
184     }
185 
186     // For any bitmaps that set their BitCount to the wrong value, reset the
187     // counts now that we've calculated the number of necessary colors, since
188     // other code relies on this value being correct.
189     if (m_infoHeader.biCompression == RLE8)
190         m_infoHeader.biBitCount = 8;
191     else if (m_infoHeader.biCompression == RLE4)
192         m_infoHeader.biBitCount = 4;
193 
194     // Tell caller what still needs to be processed.
195     if (m_infoHeader.biBitCount >= 16)
196         m_needToProcessBitmasks = true;
197     else if (m_infoHeader.biBitCount)
198         m_needToProcessColorTable = true;
199 
200     return true;
201 }
202 
readInfoHeader()203 bool BMPImageReader::readInfoHeader()
204 {
205     // Pre-initialize some fields that not all headers set.
206     m_infoHeader.biCompression = RGB;
207     m_infoHeader.biClrUsed = 0;
208 
209     if (m_isOS21x) {
210         m_infoHeader.biWidth = readUint16(4);
211         m_infoHeader.biHeight = readUint16(6);
212         ASSERT(m_andMaskState == None);  // ICO is a Windows format, not OS/2!
213         m_infoHeader.biBitCount = readUint16(10);
214         return true;
215     }
216 
217     m_infoHeader.biWidth = readUint32(4);
218     m_infoHeader.biHeight = readUint32(8);
219     if (m_andMaskState != None)
220         m_infoHeader.biHeight /= 2;
221     m_infoHeader.biBitCount = readUint16(14);
222 
223     // Read compression type, if present.
224     if (m_infoHeader.biSize >= 20) {
225         uint32_t biCompression = readUint32(16);
226 
227         // Detect OS/2 2.x-specific compression types.
228         if ((biCompression == 3) && (m_infoHeader.biBitCount == 1)) {
229             m_infoHeader.biCompression = HUFFMAN1D;
230             m_isOS22x = true;
231         } else if ((biCompression == 4) && (m_infoHeader.biBitCount == 24)) {
232             m_infoHeader.biCompression = RLE24;
233             m_isOS22x = true;
234         } else if (biCompression > 5)
235             return m_parent->setFailed(); // Some type we don't understand.
236         else
237             m_infoHeader.biCompression = static_cast<CompressionType>(biCompression);
238     }
239 
240     // Read colors used, if present.
241     if (m_infoHeader.biSize >= 36)
242         m_infoHeader.biClrUsed = readUint32(32);
243 
244     // Windows V4+ can safely read the four bitmasks from 40-56 bytes in, so do
245     // that here.  If the bit depth is less than 16, these values will be
246     // ignored by the image data decoders.  If the bit depth is at least 16 but
247     // the compression format isn't BITFIELDS, these values will be ignored and
248     // overwritten* in processBitmasks().
249     // NOTE: We allow alpha here.  Microsoft doesn't really document this well,
250     // but some BMPs appear to use it.
251     //
252     // For non-Windows V4+, m_bitMasks[] et. al will be initialized later
253     // during processBitmasks().
254     //
255     // *Except the alpha channel.  Bizarrely, some RGB bitmaps expect decoders
256     // to pay attention to the alpha mask here, so there's a special case in
257     // processBitmasks() that doesn't always overwrite that value.
258     if (isWindowsV4Plus()) {
259         m_bitMasks[0] = readUint32(40);
260         m_bitMasks[1] = readUint32(44);
261         m_bitMasks[2] = readUint32(48);
262         m_bitMasks[3] = readUint32(52);
263     }
264 
265     // Detect top-down BMPs.
266     if (m_infoHeader.biHeight < 0) {
267         m_isTopDown = true;
268         m_infoHeader.biHeight = -m_infoHeader.biHeight;
269     }
270 
271     return true;
272 }
273 
isInfoHeaderValid() const274 bool BMPImageReader::isInfoHeaderValid() const
275 {
276     // Non-positive widths/heights are invalid.  (We've already flipped the
277     // sign of the height for top-down bitmaps.)
278     if ((m_infoHeader.biWidth <= 0) || !m_infoHeader.biHeight)
279         return false;
280 
281     // Only Windows V3+ has top-down bitmaps.
282     if (m_isTopDown && (m_isOS21x || m_isOS22x))
283         return false;
284 
285     // Only bit depths of 1, 4, 8, or 24 are universally supported.
286     if ((m_infoHeader.biBitCount != 1) && (m_infoHeader.biBitCount != 4) && (m_infoHeader.biBitCount != 8) && (m_infoHeader.biBitCount != 24)) {
287         // Windows V3+ additionally supports bit depths of 0 (for embedded
288         // JPEG/PNG images), 16, and 32.
289         if (m_isOS21x || m_isOS22x || (m_infoHeader.biBitCount && (m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32)))
290             return false;
291     }
292 
293     // Each compression type is only valid with certain bit depths (except RGB,
294     // which can be used with any bit depth).  Also, some formats do not
295     // some compression types.
296     switch (m_infoHeader.biCompression) {
297     case RGB:
298         if (!m_infoHeader.biBitCount)
299             return false;
300         break;
301 
302     case RLE8:
303         // Supposedly there are undocumented formats like "BitCount = 1,
304         // Compression = RLE4" (which means "4 bit, but with a 2-color table"),
305         // so also allow the paletted RLE compression types to have too low a
306         // bit count; we'll correct this later.
307         if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 8))
308             return false;
309         break;
310 
311     case RLE4:
312         // See comments in RLE8.
313         if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 4))
314             return false;
315         break;
316 
317     case BITFIELDS:
318         // Only valid for Windows V3+.
319         if (m_isOS21x || m_isOS22x || ((m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32)))
320             return false;
321         break;
322 
323     case JPEG:
324     case PNG:
325         // Only valid for Windows V3+.
326         if (m_isOS21x || m_isOS22x || m_infoHeader.biBitCount)
327             return false;
328         break;
329 
330     case HUFFMAN1D:
331         // Only valid for OS/2 2.x.
332         if (!m_isOS22x || (m_infoHeader.biBitCount != 1))
333             return false;
334         break;
335 
336     case RLE24:
337         // Only valid for OS/2 2.x.
338         if (!m_isOS22x || (m_infoHeader.biBitCount != 24))
339             return false;
340         break;
341 
342     default:
343         // Some type we don't understand.  This should have been caught in
344         // readInfoHeader().
345         ASSERT_NOT_REACHED();
346         return false;
347     }
348 
349     // Top-down bitmaps cannot be compressed; they must be RGB or BITFIELDS.
350     if (m_isTopDown && (m_infoHeader.biCompression != RGB) && (m_infoHeader.biCompression != BITFIELDS))
351         return false;
352 
353     // Reject the following valid bitmap types that we don't currently bother
354     // decoding.  Few other people decode these either, they're unlikely to be
355     // in much use.
356     // TODO(pkasting): Consider supporting these someday.
357     //   * Bitmaps larger than 2^16 pixels in either dimension (Windows
358     //     probably doesn't draw these well anyway, and the decoded data would
359     //     take a lot of memory).
360     if ((m_infoHeader.biWidth >= (1 << 16)) || (m_infoHeader.biHeight >= (1 << 16)))
361         return false;
362     //   * Windows V3+ JPEG-in-BMP and PNG-in-BMP bitmaps (supposedly not found
363     //     in the wild, only used to send data to printers?).
364     if ((m_infoHeader.biCompression == JPEG) || (m_infoHeader.biCompression == PNG))
365         return false;
366     //   * OS/2 2.x Huffman-encoded monochrome bitmaps (see
367     //      http://www.fileformat.info/mirror/egff/ch09_05.htm , re: "G31D"
368     //      algorithm).
369     if (m_infoHeader.biCompression == HUFFMAN1D)
370         return false;
371 
372     return true;
373 }
374 
processBitmasks()375 bool BMPImageReader::processBitmasks()
376 {
377     // Create m_bitMasks[] values.
378     if (m_infoHeader.biCompression != BITFIELDS) {
379         // The format doesn't actually use bitmasks.  To simplify the decode
380         // logic later, create bitmasks for the RGB data.  For Windows V4+,
381         // this overwrites the masks we read from the header, which are
382         // supposed to be ignored in non-BITFIELDS cases.
383         // 16 bits:    MSB <-                     xRRRRRGG GGGBBBBB -> LSB
384         // 24/32 bits: MSB <- [AAAAAAAA] RRRRRRRR GGGGGGGG BBBBBBBB -> LSB
385         const int numBits = (m_infoHeader.biBitCount == 16) ? 5 : 8;
386         for (int i = 0; i <= 2; ++i)
387             m_bitMasks[i] = ((static_cast<uint32_t>(1) << (numBits * (3 - i))) - 1) ^ ((static_cast<uint32_t>(1) << (numBits * (2 - i))) - 1);
388 
389         // For Windows V4+ 32-bit RGB, don't overwrite the alpha mask from the
390         // header (see note in readInfoHeader()).
391         if (m_infoHeader.biBitCount < 32)
392             m_bitMasks[3] = 0;
393         else if (!isWindowsV4Plus())
394             m_bitMasks[3] = static_cast<uint32_t>(0xff000000);
395     } else if (!isWindowsV4Plus()) {
396         // For Windows V4+ BITFIELDS mode bitmaps, this was already done when
397         // we read the info header.
398 
399         // Fail if we don't have enough file space for the bitmasks.
400         static const size_t SIZEOF_BITMASKS = 12;
401         if (((m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS))))
402             return m_parent->setFailed();
403 
404         // Read bitmasks.
405         if ((m_data->size() - m_decodedOffset) < SIZEOF_BITMASKS)
406             return false;
407         m_bitMasks[0] = readUint32(0);
408         m_bitMasks[1] = readUint32(4);
409         m_bitMasks[2] = readUint32(8);
410         // No alpha in anything other than Windows V4+.
411         m_bitMasks[3] = 0;
412 
413         m_decodedOffset += SIZEOF_BITMASKS;
414     }
415 
416     // We've now decoded all the non-image data we care about.  Skip anything
417     // else before the actual raster data.
418     if (m_imgDataOffset)
419         m_decodedOffset = m_imgDataOffset;
420     m_needToProcessBitmasks = false;
421 
422     // Check masks and set shift values.
423     for (int i = 0; i < 4; ++i) {
424         // Trim the mask to the allowed bit depth.  Some Windows V4+ BMPs
425         // specify a bogus alpha channel in bits that don't exist in the pixel
426         // data (for example, bits 25-31 in a 24-bit RGB format).
427         if (m_infoHeader.biBitCount < 32)
428             m_bitMasks[i] &= ((static_cast<uint32_t>(1) << m_infoHeader.biBitCount) - 1);
429 
430         // For empty masks (common on the alpha channel, especially after the
431         // trimming above), quickly clear the shifts and continue, to avoid an
432         // infinite loop in the counting code below.
433         uint32_t tempMask = m_bitMasks[i];
434         if (!tempMask) {
435             m_bitShiftsRight[i] = m_bitShiftsLeft[i] = 0;
436             continue;
437         }
438 
439         // Make sure bitmask does not overlap any other bitmasks.
440         for (int j = 0; j < i; ++j) {
441             if (tempMask & m_bitMasks[j])
442                 return m_parent->setFailed();
443         }
444 
445         // Count offset into pixel data.
446         for (m_bitShiftsRight[i] = 0; !(tempMask & 1); tempMask >>= 1)
447             ++m_bitShiftsRight[i];
448 
449         // Count size of mask.
450         for (m_bitShiftsLeft[i] = 8; tempMask & 1; tempMask >>= 1)
451             --m_bitShiftsLeft[i];
452 
453         // Make sure bitmask is contiguous.
454         if (tempMask)
455             return m_parent->setFailed();
456 
457         // Since RGBABuffer tops out at 8 bits per channel, adjust the shift
458         // amounts to use the most significant 8 bits of the channel.
459         if (m_bitShiftsLeft[i] < 0) {
460             m_bitShiftsRight[i] -= m_bitShiftsLeft[i];
461             m_bitShiftsLeft[i] = 0;
462         }
463     }
464 
465     return true;
466 }
467 
processColorTable()468 bool BMPImageReader::processColorTable()
469 {
470     m_tableSizeInBytes = m_infoHeader.biClrUsed * (m_isOS21x ? 3 : 4);
471 
472     // Fail if we don't have enough file space for the color table.
473     if (((m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes))))
474         return m_parent->setFailed();
475 
476     // Read color table.
477     if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_tableSizeInBytes))
478         return false;
479     m_colorTable.resize(m_infoHeader.biClrUsed);
480     for (size_t i = 0; i < m_infoHeader.biClrUsed; ++i) {
481         m_colorTable[i].rgbBlue = m_data->data()[m_decodedOffset++];
482         m_colorTable[i].rgbGreen = m_data->data()[m_decodedOffset++];
483         m_colorTable[i].rgbRed = m_data->data()[m_decodedOffset++];
484         // Skip padding byte (not present on OS/2 1.x).
485         if (!m_isOS21x)
486             ++m_decodedOffset;
487     }
488 
489     // We've now decoded all the non-image data we care about.  Skip anything
490     // else before the actual raster data.
491     if (m_imgDataOffset)
492         m_decodedOffset = m_imgDataOffset;
493     m_needToProcessColorTable = false;
494 
495     return true;
496 }
497 
processRLEData()498 bool BMPImageReader::processRLEData()
499 {
500     if (m_decodedOffset > m_data->size())
501         return false;
502 
503     // RLE decoding is poorly specified.  Two main problems:
504     // (1) Are EOL markers necessary?  What happens when we have too many
505     //     pixels for one row?
506     //     http://www.fileformat.info/format/bmp/egff.htm says extra pixels
507     //     should wrap to the next line.  Real BMPs I've encountered seem to
508     //     instead expect extra pixels to be ignored until the EOL marker is
509     //     seen, although this has only happened in a few cases and I suspect
510     //     those BMPs may be invalid.  So we only change lines on EOL (or Delta
511     //     with dy > 0), and fail in most cases when pixels extend past the end
512     //     of the line.
513     // (2) When Delta, EOL, or EOF are seen, what happens to the "skipped"
514     //     pixels?
515     //     http://www.daubnet.com/formats/BMP.html says these should be filled
516     //     with color 0.  However, the "do nothing" and "don't care" comments
517     //     of other references suggest leaving these alone, i.e. letting them
518     //     be transparent to the background behind the image.  This seems to
519     //     match how MSPAINT treats BMPs, so we do that.  Note that when we
520     //     actually skip pixels for a case like this, we need to note on the
521     //     framebuffer that we have alpha.
522 
523     // Impossible to decode row-at-a-time, so just do things as a stream of
524     // bytes.
525     while (true) {
526         // Every entry takes at least two bytes; bail if there isn't enough
527         // data.
528         if ((m_data->size() - m_decodedOffset) < 2)
529             return false;
530 
531         // For every entry except EOF, we'd better not have reached the end of
532         // the image.
533         const uint8_t count = m_data->data()[m_decodedOffset];
534         const uint8_t code = m_data->data()[m_decodedOffset + 1];
535         if ((count || (code != 1)) && pastEndOfImage(0))
536             return m_parent->setFailed();
537 
538         // Decode.
539         if (!count) {
540             switch (code) {
541             case 0:  // Magic token: EOL
542                 // Skip any remaining pixels in this row.
543                 if (m_coord.x() < m_parent->size().width())
544                     m_buffer->setHasAlpha(true);
545                 moveBufferToNextRow();
546 
547                 m_decodedOffset += 2;
548                 break;
549 
550             case 1:  // Magic token: EOF
551                 // Skip any remaining pixels in the image.
552                 if ((m_coord.x() < m_parent->size().width()) || (m_isTopDown ? (m_coord.y() < (m_parent->size().height() - 1)) : (m_coord.y() > 0)))
553                     m_buffer->setHasAlpha(true);
554                 return true;
555 
556             case 2: {  // Magic token: Delta
557                 // The next two bytes specify dx and dy.  Bail if there isn't
558                 // enough data.
559                 if ((m_data->size() - m_decodedOffset) < 4)
560                     return false;
561 
562                 // Fail if this takes us past the end of the desired row or
563                 // past the end of the image.
564                 const uint8_t dx = m_data->data()[m_decodedOffset + 2];
565                 const uint8_t dy = m_data->data()[m_decodedOffset + 3];
566                 if (dx || dy)
567                     m_buffer->setHasAlpha(true);
568                 if (((m_coord.x() + dx) > m_parent->size().width()) || pastEndOfImage(dy))
569                     return m_parent->setFailed();
570 
571                 // Skip intervening pixels.
572                 m_coord.move(dx, m_isTopDown ? dy : -dy);
573 
574                 m_decodedOffset += 4;
575                 break;
576             }
577 
578             default: { // Absolute mode
579                 // |code| pixels specified as in BI_RGB, zero-padded at the end
580                 // to a multiple of 16 bits.
581                 // Because processNonRLEData() expects m_decodedOffset to
582                 // point to the beginning of the pixel data, bump it past
583                 // the escape bytes and then reset if decoding failed.
584                 m_decodedOffset += 2;
585                 const ProcessingResult result = processNonRLEData(true, code);
586                 if (result == Failure)
587                     return m_parent->setFailed();
588                 if (result == InsufficientData) {
589                     m_decodedOffset -= 2;
590                     return false;
591                 }
592                 break;
593             }
594             }
595         } else {  // Encoded mode
596             // The following color data is repeated for |count| total pixels.
597             // Strangely, some BMPs seem to specify excessively large counts
598             // here; ignore pixels past the end of the row.
599             const int endX = std::min(m_coord.x() + count, m_parent->size().width());
600 
601             if (m_infoHeader.biCompression == RLE24) {
602                 // Bail if there isn't enough data.
603                 if ((m_data->size() - m_decodedOffset) < 4)
604                     return false;
605 
606                 // One BGR triple that we copy |count| times.
607                 fillRGBA(endX, m_data->data()[m_decodedOffset + 3], m_data->data()[m_decodedOffset + 2], code, 0xff);
608                 m_decodedOffset += 4;
609             } else {
610                 // RLE8 has one color index that gets repeated; RLE4 has two
611                 // color indexes in the upper and lower 4 bits of the byte,
612                 // which are alternated.
613                 size_t colorIndexes[2] = {code, code};
614                 if (m_infoHeader.biCompression == RLE4) {
615                     colorIndexes[0] = (colorIndexes[0] >> 4) & 0xf;
616                     colorIndexes[1] &= 0xf;
617                 }
618                 if ((colorIndexes[0] >= m_infoHeader.biClrUsed) || (colorIndexes[1] >= m_infoHeader.biClrUsed))
619                     return m_parent->setFailed();
620                 for (int which = 0; m_coord.x() < endX; ) {
621                     setI(colorIndexes[which]);
622                     which = !which;
623                 }
624 
625                 m_decodedOffset += 2;
626             }
627         }
628     }
629 }
630 
processNonRLEData(bool inRLE,int numPixels)631 BMPImageReader::ProcessingResult BMPImageReader::processNonRLEData(bool inRLE, int numPixels)
632 {
633     if (m_decodedOffset > m_data->size())
634         return InsufficientData;
635 
636     if (!inRLE)
637         numPixels = m_parent->size().width();
638 
639     // Fail if we're being asked to decode more pixels than remain in the row.
640     const int endX = m_coord.x() + numPixels;
641     if (endX > m_parent->size().width())
642         return Failure;
643 
644     // Determine how many bytes of data the requested number of pixels
645     // requires.
646     const size_t pixelsPerByte = 8 / m_infoHeader.biBitCount;
647     const size_t bytesPerPixel = m_infoHeader.biBitCount / 8;
648     const size_t unpaddedNumBytes = (m_infoHeader.biBitCount < 16) ? ((numPixels + pixelsPerByte - 1) / pixelsPerByte) : (numPixels * bytesPerPixel);
649     // RLE runs are zero-padded at the end to a multiple of 16 bits.  Non-RLE
650     // data is in rows and is zero-padded to a multiple of 32 bits.
651     const size_t alignBits = inRLE ? 1 : 3;
652     const size_t paddedNumBytes = (unpaddedNumBytes + alignBits) & ~alignBits;
653 
654     // Decode as many rows as we can.  (For RLE, where we only want to decode
655     // one row, we've already checked that this condition is true.)
656     while (!pastEndOfImage(0)) {
657         // Bail if we don't have enough data for the desired number of pixels.
658         if ((m_data->size() - m_decodedOffset) < paddedNumBytes)
659             return InsufficientData;
660 
661         if (m_infoHeader.biBitCount < 16) {
662             // Paletted data.  Pixels are stored little-endian within bytes.
663             // Decode pixels one byte at a time, left to right (so, starting at
664             // the most significant bits in the byte).
665             const uint8_t mask = (1 << m_infoHeader.biBitCount) - 1;
666             for (size_t byte = 0; byte < unpaddedNumBytes; ++byte) {
667                 uint8_t pixelData = m_data->data()[m_decodedOffset + byte];
668                 for (size_t pixel = 0; (pixel < pixelsPerByte) && (m_coord.x() < endX); ++pixel) {
669                     const size_t colorIndex = (pixelData >> (8 - m_infoHeader.biBitCount)) & mask;
670                     if (m_andMaskState == Decoding) {
671                         // There's no way to accurately represent an AND + XOR
672                         // operation as an RGBA image, so where the AND values
673                         // are 1, we simply set the framebuffer pixels to fully
674                         // transparent, on the assumption that most ICOs on the
675                         // web will not be doing a lot of inverting.
676                         if (colorIndex) {
677                             setRGBA(0, 0, 0, 0);
678                             m_buffer->setHasAlpha(true);
679                         } else
680                             m_coord.move(1, 0);
681                     } else {
682                         if (colorIndex >= m_infoHeader.biClrUsed)
683                             return Failure;
684                         setI(colorIndex);
685                     }
686                     pixelData <<= m_infoHeader.biBitCount;
687                 }
688             }
689         } else {
690             // RGB data.  Decode pixels one at a time, left to right.
691             while (m_coord.x() < endX) {
692                 const uint32_t pixel = readCurrentPixel(bytesPerPixel);
693 
694                 // Some BMPs specify an alpha channel but don't actually use it
695                 // (it contains all 0s).  To avoid displaying these images as
696                 // fully-transparent, decode as if images are fully opaque
697                 // until we actually see a non-zero alpha value; at that point,
698                 // reset any previously-decoded pixels to fully transparent and
699                 // continue decoding based on the real alpha channel values.
700                 // As an optimization, avoid setting "hasAlpha" to true for
701                 // images where all alpha values are 255; opaque images are
702                 // faster to draw.
703                 int alpha = getAlpha(pixel);
704                 if (!m_seenNonZeroAlphaPixel && !alpha) {
705                     m_seenZeroAlphaPixel = true;
706                     alpha = 255;
707                 } else {
708                     m_seenNonZeroAlphaPixel = true;
709                     if (m_seenZeroAlphaPixel) {
710                         m_buffer->zeroFillPixelData();
711                         m_seenZeroAlphaPixel = false;
712                     } else if (alpha != 255)
713                         m_buffer->setHasAlpha(true);
714                 }
715 
716                 setRGBA(getComponent(pixel, 0), getComponent(pixel, 1),
717                         getComponent(pixel, 2), alpha);
718             }
719         }
720 
721         // Success, keep going.
722         m_decodedOffset += paddedNumBytes;
723         if (inRLE)
724             return Success;
725         moveBufferToNextRow();
726     }
727 
728     // Finished decoding whole image.
729     return Success;
730 }
731 
moveBufferToNextRow()732 void BMPImageReader::moveBufferToNextRow()
733 {
734     m_coord.move(-m_coord.x(), m_isTopDown ? 1 : -1);
735 }
736 
737 } // namespace WebCore
738