• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "../include/v8stdint.h"
29 #include "utils.h"
30 #include "bignum.h"
31 
32 namespace v8 {
33 namespace internal {
34 
Bignum()35 Bignum::Bignum()
36     : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
37   for (int i = 0; i < kBigitCapacity; ++i) {
38     bigits_[i] = 0;
39   }
40 }
41 
42 
43 template<typename S>
BitSize(S value)44 static int BitSize(S value) {
45   return 8 * sizeof(value);
46 }
47 
48 // Guaranteed to lie in one Bigit.
AssignUInt16(uint16_t value)49 void Bignum::AssignUInt16(uint16_t value) {
50   ASSERT(kBigitSize >= BitSize(value));
51   Zero();
52   if (value == 0) return;
53 
54   EnsureCapacity(1);
55   bigits_[0] = value;
56   used_digits_ = 1;
57 }
58 
59 
AssignUInt64(uint64_t value)60 void Bignum::AssignUInt64(uint64_t value) {
61   const int kUInt64Size = 64;
62 
63   Zero();
64   if (value == 0) return;
65 
66   int needed_bigits = kUInt64Size / kBigitSize + 1;
67   EnsureCapacity(needed_bigits);
68   for (int i = 0; i < needed_bigits; ++i) {
69     bigits_[i] = static_cast<Chunk>(value & kBigitMask);
70     value = value >> kBigitSize;
71   }
72   used_digits_ = needed_bigits;
73   Clamp();
74 }
75 
76 
AssignBignum(const Bignum & other)77 void Bignum::AssignBignum(const Bignum& other) {
78   exponent_ = other.exponent_;
79   for (int i = 0; i < other.used_digits_; ++i) {
80     bigits_[i] = other.bigits_[i];
81   }
82   // Clear the excess digits (if there were any).
83   for (int i = other.used_digits_; i < used_digits_; ++i) {
84     bigits_[i] = 0;
85   }
86   used_digits_ = other.used_digits_;
87 }
88 
89 
ReadUInt64(Vector<const char> buffer,int from,int digits_to_read)90 static uint64_t ReadUInt64(Vector<const char> buffer,
91                            int from,
92                            int digits_to_read) {
93   uint64_t result = 0;
94   for (int i = from; i < from + digits_to_read; ++i) {
95     int digit = buffer[i] - '0';
96     ASSERT(0 <= digit && digit <= 9);
97     result = result * 10 + digit;
98   }
99   return result;
100 }
101 
102 
AssignDecimalString(Vector<const char> value)103 void Bignum::AssignDecimalString(Vector<const char> value) {
104   // 2^64 = 18446744073709551616 > 10^19
105   const int kMaxUint64DecimalDigits = 19;
106   Zero();
107   int length = value.length();
108   int pos = 0;
109   // Let's just say that each digit needs 4 bits.
110   while (length >= kMaxUint64DecimalDigits) {
111     uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
112     pos += kMaxUint64DecimalDigits;
113     length -= kMaxUint64DecimalDigits;
114     MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
115     AddUInt64(digits);
116   }
117   uint64_t digits = ReadUInt64(value, pos, length);
118   MultiplyByPowerOfTen(length);
119   AddUInt64(digits);
120   Clamp();
121 }
122 
123 
HexCharValue(char c)124 static int HexCharValue(char c) {
125   if ('0' <= c && c <= '9') return c - '0';
126   if ('a' <= c && c <= 'f') return 10 + c - 'a';
127   if ('A' <= c && c <= 'F') return 10 + c - 'A';
128   UNREACHABLE();
129   return 0;  // To make compiler happy.
130 }
131 
132 
AssignHexString(Vector<const char> value)133 void Bignum::AssignHexString(Vector<const char> value) {
134   Zero();
135   int length = value.length();
136 
137   int needed_bigits = length * 4 / kBigitSize + 1;
138   EnsureCapacity(needed_bigits);
139   int string_index = length - 1;
140   for (int i = 0; i < needed_bigits - 1; ++i) {
141     // These bigits are guaranteed to be "full".
142     Chunk current_bigit = 0;
143     for (int j = 0; j < kBigitSize / 4; j++) {
144       current_bigit += HexCharValue(value[string_index--]) << (j * 4);
145     }
146     bigits_[i] = current_bigit;
147   }
148   used_digits_ = needed_bigits - 1;
149 
150   Chunk most_significant_bigit = 0;  // Could be = 0;
151   for (int j = 0; j <= string_index; ++j) {
152     most_significant_bigit <<= 4;
153     most_significant_bigit += HexCharValue(value[j]);
154   }
155   if (most_significant_bigit != 0) {
156     bigits_[used_digits_] = most_significant_bigit;
157     used_digits_++;
158   }
159   Clamp();
160 }
161 
162 
AddUInt64(uint64_t operand)163 void Bignum::AddUInt64(uint64_t operand) {
164   if (operand == 0) return;
165   Bignum other;
166   other.AssignUInt64(operand);
167   AddBignum(other);
168 }
169 
170 
AddBignum(const Bignum & other)171 void Bignum::AddBignum(const Bignum& other) {
172   ASSERT(IsClamped());
173   ASSERT(other.IsClamped());
174 
175   // If this has a greater exponent than other append zero-bigits to this.
176   // After this call exponent_ <= other.exponent_.
177   Align(other);
178 
179   // There are two possibilities:
180   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
181   //     bbbbb 00000000
182   //   ----------------
183   //   ccccccccccc 0000
184   // or
185   //    aaaaaaaaaa 0000
186   //  bbbbbbbbb 0000000
187   //  -----------------
188   //  cccccccccccc 0000
189   // In both cases we might need a carry bigit.
190 
191   EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
192   Chunk carry = 0;
193   int bigit_pos = other.exponent_ - exponent_;
194   ASSERT(bigit_pos >= 0);
195   for (int i = 0; i < other.used_digits_; ++i) {
196     Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
197     bigits_[bigit_pos] = sum & kBigitMask;
198     carry = sum >> kBigitSize;
199     bigit_pos++;
200   }
201 
202   while (carry != 0) {
203     Chunk sum = bigits_[bigit_pos] + carry;
204     bigits_[bigit_pos] = sum & kBigitMask;
205     carry = sum >> kBigitSize;
206     bigit_pos++;
207   }
208   used_digits_ = Max(bigit_pos, used_digits_);
209   ASSERT(IsClamped());
210 }
211 
212 
SubtractBignum(const Bignum & other)213 void Bignum::SubtractBignum(const Bignum& other) {
214   ASSERT(IsClamped());
215   ASSERT(other.IsClamped());
216   // We require this to be bigger than other.
217   ASSERT(LessEqual(other, *this));
218 
219   Align(other);
220 
221   int offset = other.exponent_ - exponent_;
222   Chunk borrow = 0;
223   int i;
224   for (i = 0; i < other.used_digits_; ++i) {
225     ASSERT((borrow == 0) || (borrow == 1));
226     Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
227     bigits_[i + offset] = difference & kBigitMask;
228     borrow = difference >> (kChunkSize - 1);
229   }
230   while (borrow != 0) {
231     Chunk difference = bigits_[i + offset] - borrow;
232     bigits_[i + offset] = difference & kBigitMask;
233     borrow = difference >> (kChunkSize - 1);
234     ++i;
235   }
236   Clamp();
237 }
238 
239 
ShiftLeft(int shift_amount)240 void Bignum::ShiftLeft(int shift_amount) {
241   if (used_digits_ == 0) return;
242   exponent_ += shift_amount / kBigitSize;
243   int local_shift = shift_amount % kBigitSize;
244   EnsureCapacity(used_digits_ + 1);
245   BigitsShiftLeft(local_shift);
246 }
247 
248 
MultiplyByUInt32(uint32_t factor)249 void Bignum::MultiplyByUInt32(uint32_t factor) {
250   if (factor == 1) return;
251   if (factor == 0) {
252     Zero();
253     return;
254   }
255   if (used_digits_ == 0) return;
256 
257   // The product of a bigit with the factor is of size kBigitSize + 32.
258   // Assert that this number + 1 (for the carry) fits into double chunk.
259   ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
260   DoubleChunk carry = 0;
261   for (int i = 0; i < used_digits_; ++i) {
262     DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
263     bigits_[i] = static_cast<Chunk>(product & kBigitMask);
264     carry = (product >> kBigitSize);
265   }
266   while (carry != 0) {
267     EnsureCapacity(used_digits_ + 1);
268     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
269     used_digits_++;
270     carry >>= kBigitSize;
271   }
272 }
273 
274 
MultiplyByUInt64(uint64_t factor)275 void Bignum::MultiplyByUInt64(uint64_t factor) {
276   if (factor == 1) return;
277   if (factor == 0) {
278     Zero();
279     return;
280   }
281   ASSERT(kBigitSize < 32);
282   uint64_t carry = 0;
283   uint64_t low = factor & 0xFFFFFFFF;
284   uint64_t high = factor >> 32;
285   for (int i = 0; i < used_digits_; ++i) {
286     uint64_t product_low = low * bigits_[i];
287     uint64_t product_high = high * bigits_[i];
288     uint64_t tmp = (carry & kBigitMask) + product_low;
289     bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
290     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
291         (product_high << (32 - kBigitSize));
292   }
293   while (carry != 0) {
294     EnsureCapacity(used_digits_ + 1);
295     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
296     used_digits_++;
297     carry >>= kBigitSize;
298   }
299 }
300 
301 
MultiplyByPowerOfTen(int exponent)302 void Bignum::MultiplyByPowerOfTen(int exponent) {
303   const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
304   const uint16_t kFive1 = 5;
305   const uint16_t kFive2 = kFive1 * 5;
306   const uint16_t kFive3 = kFive2 * 5;
307   const uint16_t kFive4 = kFive3 * 5;
308   const uint16_t kFive5 = kFive4 * 5;
309   const uint16_t kFive6 = kFive5 * 5;
310   const uint32_t kFive7 = kFive6 * 5;
311   const uint32_t kFive8 = kFive7 * 5;
312   const uint32_t kFive9 = kFive8 * 5;
313   const uint32_t kFive10 = kFive9 * 5;
314   const uint32_t kFive11 = kFive10 * 5;
315   const uint32_t kFive12 = kFive11 * 5;
316   const uint32_t kFive13 = kFive12 * 5;
317   const uint32_t kFive1_to_12[] =
318       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
319         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
320 
321   ASSERT(exponent >= 0);
322   if (exponent == 0) return;
323   if (used_digits_ == 0) return;
324 
325   // We shift by exponent at the end just before returning.
326   int remaining_exponent = exponent;
327   while (remaining_exponent >= 27) {
328     MultiplyByUInt64(kFive27);
329     remaining_exponent -= 27;
330   }
331   while (remaining_exponent >= 13) {
332     MultiplyByUInt32(kFive13);
333     remaining_exponent -= 13;
334   }
335   if (remaining_exponent > 0) {
336     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
337   }
338   ShiftLeft(exponent);
339 }
340 
341 
Square()342 void Bignum::Square() {
343   ASSERT(IsClamped());
344   int product_length = 2 * used_digits_;
345   EnsureCapacity(product_length);
346 
347   // Comba multiplication: compute each column separately.
348   // Example: r = a2a1a0 * b2b1b0.
349   //    r =  1    * a0b0 +
350   //        10    * (a1b0 + a0b1) +
351   //        100   * (a2b0 + a1b1 + a0b2) +
352   //        1000  * (a2b1 + a1b2) +
353   //        10000 * a2b2
354   //
355   // In the worst case we have to accumulate nb-digits products of digit*digit.
356   //
357   // Assert that the additional number of bits in a DoubleChunk are enough to
358   // sum up used_digits of Bigit*Bigit.
359   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
360     UNIMPLEMENTED();
361   }
362   DoubleChunk accumulator = 0;
363   // First shift the digits so we don't overwrite them.
364   int copy_offset = used_digits_;
365   for (int i = 0; i < used_digits_; ++i) {
366     bigits_[copy_offset + i] = bigits_[i];
367   }
368   // We have two loops to avoid some 'if's in the loop.
369   for (int i = 0; i < used_digits_; ++i) {
370     // Process temporary digit i with power i.
371     // The sum of the two indices must be equal to i.
372     int bigit_index1 = i;
373     int bigit_index2 = 0;
374     // Sum all of the sub-products.
375     while (bigit_index1 >= 0) {
376       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
377       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
378       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
379       bigit_index1--;
380       bigit_index2++;
381     }
382     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
383     accumulator >>= kBigitSize;
384   }
385   for (int i = used_digits_; i < product_length; ++i) {
386     int bigit_index1 = used_digits_ - 1;
387     int bigit_index2 = i - bigit_index1;
388     // Invariant: sum of both indices is again equal to i.
389     // Inner loop runs 0 times on last iteration, emptying accumulator.
390     while (bigit_index2 < used_digits_) {
391       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
392       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
393       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
394       bigit_index1--;
395       bigit_index2++;
396     }
397     // The overwritten bigits_[i] will never be read in further loop iterations,
398     // because bigit_index1 and bigit_index2 are always greater
399     // than i - used_digits_.
400     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
401     accumulator >>= kBigitSize;
402   }
403   // Since the result was guaranteed to lie inside the number the
404   // accumulator must be 0 now.
405   ASSERT(accumulator == 0);
406 
407   // Don't forget to update the used_digits and the exponent.
408   used_digits_ = product_length;
409   exponent_ *= 2;
410   Clamp();
411 }
412 
413 
AssignPowerUInt16(uint16_t base,int power_exponent)414 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
415   ASSERT(base != 0);
416   ASSERT(power_exponent >= 0);
417   if (power_exponent == 0) {
418     AssignUInt16(1);
419     return;
420   }
421   Zero();
422   int shifts = 0;
423   // We expect base to be in range 2-32, and most often to be 10.
424   // It does not make much sense to implement different algorithms for counting
425   // the bits.
426   while ((base & 1) == 0) {
427     base >>= 1;
428     shifts++;
429   }
430   int bit_size = 0;
431   int tmp_base = base;
432   while (tmp_base != 0) {
433     tmp_base >>= 1;
434     bit_size++;
435   }
436   int final_size = bit_size * power_exponent;
437   // 1 extra bigit for the shifting, and one for rounded final_size.
438   EnsureCapacity(final_size / kBigitSize + 2);
439 
440   // Left to Right exponentiation.
441   int mask = 1;
442   while (power_exponent >= mask) mask <<= 1;
443 
444   // The mask is now pointing to the bit above the most significant 1-bit of
445   // power_exponent.
446   // Get rid of first 1-bit;
447   mask >>= 2;
448   uint64_t this_value = base;
449 
450   bool delayed_multipliciation = false;
451   const uint64_t max_32bits = 0xFFFFFFFF;
452   while (mask != 0 && this_value <= max_32bits) {
453     this_value = this_value * this_value;
454     // Verify that there is enough space in this_value to perform the
455     // multiplication.  The first bit_size bits must be 0.
456     if ((power_exponent & mask) != 0) {
457       uint64_t base_bits_mask =
458           ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
459       bool high_bits_zero = (this_value & base_bits_mask) == 0;
460       if (high_bits_zero) {
461         this_value *= base;
462       } else {
463         delayed_multipliciation = true;
464       }
465     }
466     mask >>= 1;
467   }
468   AssignUInt64(this_value);
469   if (delayed_multipliciation) {
470     MultiplyByUInt32(base);
471   }
472 
473   // Now do the same thing as a bignum.
474   while (mask != 0) {
475     Square();
476     if ((power_exponent & mask) != 0) {
477       MultiplyByUInt32(base);
478     }
479     mask >>= 1;
480   }
481 
482   // And finally add the saved shifts.
483   ShiftLeft(shifts * power_exponent);
484 }
485 
486 
487 // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)488 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
489   ASSERT(IsClamped());
490   ASSERT(other.IsClamped());
491   ASSERT(other.used_digits_ > 0);
492 
493   // Easy case: if we have less digits than the divisor than the result is 0.
494   // Note: this handles the case where this == 0, too.
495   if (BigitLength() < other.BigitLength()) {
496     return 0;
497   }
498 
499   Align(other);
500 
501   uint16_t result = 0;
502 
503   // Start by removing multiples of 'other' until both numbers have the same
504   // number of digits.
505   while (BigitLength() > other.BigitLength()) {
506     // This naive approach is extremely inefficient if the this divided other
507     // might be big. This function is implemented for doubleToString where
508     // the result should be small (less than 10).
509     ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
510     // Remove the multiples of the first digit.
511     // Example this = 23 and other equals 9. -> Remove 2 multiples.
512     result += bigits_[used_digits_ - 1];
513     SubtractTimes(other, bigits_[used_digits_ - 1]);
514   }
515 
516   ASSERT(BigitLength() == other.BigitLength());
517 
518   // Both bignums are at the same length now.
519   // Since other has more than 0 digits we know that the access to
520   // bigits_[used_digits_ - 1] is safe.
521   Chunk this_bigit = bigits_[used_digits_ - 1];
522   Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
523 
524   if (other.used_digits_ == 1) {
525     // Shortcut for easy (and common) case.
526     int quotient = this_bigit / other_bigit;
527     bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
528     result += quotient;
529     Clamp();
530     return result;
531   }
532 
533   int division_estimate = this_bigit / (other_bigit + 1);
534   result += division_estimate;
535   SubtractTimes(other, division_estimate);
536 
537   if (other_bigit * (division_estimate + 1) > this_bigit) {
538     // No need to even try to subtract. Even if other's remaining digits were 0
539     // another subtraction would be too much.
540     return result;
541   }
542 
543   while (LessEqual(other, *this)) {
544     SubtractBignum(other);
545     result++;
546   }
547   return result;
548 }
549 
550 
551 template<typename S>
SizeInHexChars(S number)552 static int SizeInHexChars(S number) {
553   ASSERT(number > 0);
554   int result = 0;
555   while (number != 0) {
556     number >>= 4;
557     result++;
558   }
559   return result;
560 }
561 
562 
HexCharOfValue(int value)563 static char HexCharOfValue(int value) {
564   ASSERT(0 <= value && value <= 16);
565   if (value < 10) return value + '0';
566   return value - 10 + 'A';
567 }
568 
569 
ToHexString(char * buffer,int buffer_size) const570 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
571   ASSERT(IsClamped());
572   // Each bigit must be printable as separate hex-character.
573   ASSERT(kBigitSize % 4 == 0);
574   const int kHexCharsPerBigit = kBigitSize / 4;
575 
576   if (used_digits_ == 0) {
577     if (buffer_size < 2) return false;
578     buffer[0] = '0';
579     buffer[1] = '\0';
580     return true;
581   }
582   // We add 1 for the terminating '\0' character.
583   int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
584       SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
585   if (needed_chars > buffer_size) return false;
586   int string_index = needed_chars - 1;
587   buffer[string_index--] = '\0';
588   for (int i = 0; i < exponent_; ++i) {
589     for (int j = 0; j < kHexCharsPerBigit; ++j) {
590       buffer[string_index--] = '0';
591     }
592   }
593   for (int i = 0; i < used_digits_ - 1; ++i) {
594     Chunk current_bigit = bigits_[i];
595     for (int j = 0; j < kHexCharsPerBigit; ++j) {
596       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
597       current_bigit >>= 4;
598     }
599   }
600   // And finally the last bigit.
601   Chunk most_significant_bigit = bigits_[used_digits_ - 1];
602   while (most_significant_bigit != 0) {
603     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
604     most_significant_bigit >>= 4;
605   }
606   return true;
607 }
608 
609 
BigitAt(int index) const610 Bignum::Chunk Bignum::BigitAt(int index) const {
611   if (index >= BigitLength()) return 0;
612   if (index < exponent_) return 0;
613   return bigits_[index - exponent_];
614 }
615 
616 
Compare(const Bignum & a,const Bignum & b)617 int Bignum::Compare(const Bignum& a, const Bignum& b) {
618   ASSERT(a.IsClamped());
619   ASSERT(b.IsClamped());
620   int bigit_length_a = a.BigitLength();
621   int bigit_length_b = b.BigitLength();
622   if (bigit_length_a < bigit_length_b) return -1;
623   if (bigit_length_a > bigit_length_b) return +1;
624   for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
625     Chunk bigit_a = a.BigitAt(i);
626     Chunk bigit_b = b.BigitAt(i);
627     if (bigit_a < bigit_b) return -1;
628     if (bigit_a > bigit_b) return +1;
629     // Otherwise they are equal up to this digit. Try the next digit.
630   }
631   return 0;
632 }
633 
634 
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)635 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
636   ASSERT(a.IsClamped());
637   ASSERT(b.IsClamped());
638   ASSERT(c.IsClamped());
639   if (a.BigitLength() < b.BigitLength()) {
640     return PlusCompare(b, a, c);
641   }
642   if (a.BigitLength() + 1 < c.BigitLength()) return -1;
643   if (a.BigitLength() > c.BigitLength()) return +1;
644   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
645   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
646   // of 'a'.
647   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
648     return -1;
649   }
650 
651   Chunk borrow = 0;
652   // Starting at min_exponent all digits are == 0. So no need to compare them.
653   int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
654   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
655     Chunk chunk_a = a.BigitAt(i);
656     Chunk chunk_b = b.BigitAt(i);
657     Chunk chunk_c = c.BigitAt(i);
658     Chunk sum = chunk_a + chunk_b;
659     if (sum > chunk_c + borrow) {
660       return +1;
661     } else {
662       borrow = chunk_c + borrow - sum;
663       if (borrow > 1) return -1;
664       borrow <<= kBigitSize;
665     }
666   }
667   if (borrow == 0) return 0;
668   return -1;
669 }
670 
671 
Clamp()672 void Bignum::Clamp() {
673   while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
674     used_digits_--;
675   }
676   if (used_digits_ == 0) {
677     // Zero.
678     exponent_ = 0;
679   }
680 }
681 
682 
IsClamped() const683 bool Bignum::IsClamped() const {
684   return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
685 }
686 
687 
Zero()688 void Bignum::Zero() {
689   for (int i = 0; i < used_digits_; ++i) {
690     bigits_[i] = 0;
691   }
692   used_digits_ = 0;
693   exponent_ = 0;
694 }
695 
696 
Align(const Bignum & other)697 void Bignum::Align(const Bignum& other) {
698   if (exponent_ > other.exponent_) {
699     // If "X" represents a "hidden" digit (by the exponent) then we are in the
700     // following case (a == this, b == other):
701     // a:  aaaaaaXXXX   or a:   aaaaaXXX
702     // b:     bbbbbbX      b: bbbbbbbbXX
703     // We replace some of the hidden digits (X) of a with 0 digits.
704     // a:  aaaaaa000X   or a:   aaaaa0XX
705     int zero_digits = exponent_ - other.exponent_;
706     EnsureCapacity(used_digits_ + zero_digits);
707     for (int i = used_digits_ - 1; i >= 0; --i) {
708       bigits_[i + zero_digits] = bigits_[i];
709     }
710     for (int i = 0; i < zero_digits; ++i) {
711       bigits_[i] = 0;
712     }
713     used_digits_ += zero_digits;
714     exponent_ -= zero_digits;
715     ASSERT(used_digits_ >= 0);
716     ASSERT(exponent_ >= 0);
717   }
718 }
719 
720 
BigitsShiftLeft(int shift_amount)721 void Bignum::BigitsShiftLeft(int shift_amount) {
722   ASSERT(shift_amount < kBigitSize);
723   ASSERT(shift_amount >= 0);
724   Chunk carry = 0;
725   for (int i = 0; i < used_digits_; ++i) {
726     Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
727     bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
728     carry = new_carry;
729   }
730   if (carry != 0) {
731     bigits_[used_digits_] = carry;
732     used_digits_++;
733   }
734 }
735 
736 
SubtractTimes(const Bignum & other,int factor)737 void Bignum::SubtractTimes(const Bignum& other, int factor) {
738   ASSERT(exponent_ <= other.exponent_);
739   if (factor < 3) {
740     for (int i = 0; i < factor; ++i) {
741       SubtractBignum(other);
742     }
743     return;
744   }
745   Chunk borrow = 0;
746   int exponent_diff = other.exponent_ - exponent_;
747   for (int i = 0; i < other.used_digits_; ++i) {
748     DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
749     DoubleChunk remove = borrow + product;
750     Chunk difference =
751         bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
752     bigits_[i + exponent_diff] = difference & kBigitMask;
753     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
754                                 (remove >> kBigitSize));
755   }
756   for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
757     if (borrow == 0) return;
758     Chunk difference = bigits_[i] - borrow;
759     bigits_[i] = difference & kBigitMask;
760     borrow = difference >> (kChunkSize - 1);
761     ++i;
762   }
763   Clamp();
764 }
765 
766 
767 } }  // namespace v8::internal
768