• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "SDNodeDbgValue.h"
17 #include "ScheduleDAGSDNodes.h"
18 #include "InstrEmitter.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/MC/MCInstrItineraries.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetLowering.h"
26 #include "llvm/Target/TargetRegisterInfo.h"
27 #include "llvm/Target/TargetSubtargetInfo.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37 
38 STATISTIC(LoadsClustered, "Number of loads clustered together");
39 
40 // This allows latency based scheduler to notice high latency instructions
41 // without a target itinerary. The choise if number here has more to do with
42 // balancing scheduler heursitics than with the actual machine latency.
43 static cl::opt<int> HighLatencyCycles(
44   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45   cl::desc("Roughly estimate the number of cycles that 'long latency'"
46            "instructions take for targets with no itinerary"));
47 
ScheduleDAGSDNodes(MachineFunction & mf)48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49   : ScheduleDAG(mf), BB(0), DAG(0),
50     InstrItins(mf.getTarget().getInstrItineraryData()) {}
51 
52 /// Run - perform scheduling.
53 ///
Run(SelectionDAG * dag,MachineBasicBlock * bb)54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55   BB = bb;
56   DAG = dag;
57 
58   // Clear the scheduler's SUnit DAG.
59   ScheduleDAG::clearDAG();
60   Sequence.clear();
61 
62   // Invoke the target's selection of scheduler.
63   Schedule();
64 }
65 
66 /// NewSUnit - Creates a new SUnit and return a ptr to it.
67 ///
newSUnit(SDNode * N)68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69 #ifndef NDEBUG
70   const SUnit *Addr = 0;
71   if (!SUnits.empty())
72     Addr = &SUnits[0];
73 #endif
74   SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
75   assert((Addr == 0 || Addr == &SUnits[0]) &&
76          "SUnits std::vector reallocated on the fly!");
77   SUnits.back().OrigNode = &SUnits.back();
78   SUnit *SU = &SUnits.back();
79   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80   if (!N ||
81       (N->isMachineOpcode() &&
82        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83     SU->SchedulingPref = Sched::None;
84   else
85     SU->SchedulingPref = TLI.getSchedulingPreference(N);
86   return SU;
87 }
88 
Clone(SUnit * Old)89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90   SUnit *SU = newSUnit(Old->getNode());
91   SU->OrigNode = Old->OrigNode;
92   SU->Latency = Old->Latency;
93   SU->isVRegCycle = Old->isVRegCycle;
94   SU->isCall = Old->isCall;
95   SU->isCallOp = Old->isCallOp;
96   SU->isTwoAddress = Old->isTwoAddress;
97   SU->isCommutable = Old->isCommutable;
98   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100   SU->isScheduleHigh = Old->isScheduleHigh;
101   SU->isScheduleLow = Old->isScheduleLow;
102   SU->SchedulingPref = Old->SchedulingPref;
103   Old->isCloned = true;
104   return SU;
105 }
106 
107 /// CheckForPhysRegDependency - Check if the dependency between def and use of
108 /// a specified operand is a physical register dependency. If so, returns the
109 /// register and the cost of copying the register.
CheckForPhysRegDependency(SDNode * Def,SDNode * User,unsigned Op,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII,unsigned & PhysReg,int & Cost)110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111                                       const TargetRegisterInfo *TRI,
112                                       const TargetInstrInfo *TII,
113                                       unsigned &PhysReg, int &Cost) {
114   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115     return;
116 
117   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118   if (TargetRegisterInfo::isVirtualRegister(Reg))
119     return;
120 
121   unsigned ResNo = User->getOperand(2).getResNo();
122   if (Def->isMachineOpcode()) {
123     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
124     if (ResNo >= II.getNumDefs() &&
125         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
126       PhysReg = Reg;
127       const TargetRegisterClass *RC =
128         TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
129       Cost = RC->getCopyCost();
130     }
131   }
132 }
133 
AddGlue(SDNode * N,SDValue Glue,bool AddGlue,SelectionDAG * DAG)134 static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
135   SmallVector<EVT, 4> VTs;
136   SDNode *GlueDestNode = Glue.getNode();
137 
138   // Don't add glue from a node to itself.
139   if (GlueDestNode == N) return;
140 
141   // Don't add glue to something which already has glue.
142   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
143 
144   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
145     VTs.push_back(N->getValueType(I));
146 
147   if (AddGlue)
148     VTs.push_back(MVT::Glue);
149 
150   SmallVector<SDValue, 4> Ops;
151   for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
152     Ops.push_back(N->getOperand(I));
153 
154   if (GlueDestNode)
155     Ops.push_back(Glue);
156 
157   SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
158   MachineSDNode::mmo_iterator Begin = 0, End = 0;
159   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
160 
161   // Store memory references.
162   if (MN) {
163     Begin = MN->memoperands_begin();
164     End = MN->memoperands_end();
165   }
166 
167   DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
168 
169   // Reset the memory references
170   if (MN)
171     MN->setMemRefs(Begin, End);
172 }
173 
174 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
175 /// This function finds loads of the same base and different offsets. If the
176 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
177 /// outputs to ensure they are scheduled together and in order. This
178 /// optimization may benefit some targets by improving cache locality.
ClusterNeighboringLoads(SDNode * Node)179 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
180   SDNode *Chain = 0;
181   unsigned NumOps = Node->getNumOperands();
182   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
183     Chain = Node->getOperand(NumOps-1).getNode();
184   if (!Chain)
185     return;
186 
187   // Look for other loads of the same chain. Find loads that are loading from
188   // the same base pointer and different offsets.
189   SmallPtrSet<SDNode*, 16> Visited;
190   SmallVector<int64_t, 4> Offsets;
191   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
192   bool Cluster = false;
193   SDNode *Base = Node;
194   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
195        I != E; ++I) {
196     SDNode *User = *I;
197     if (User == Node || !Visited.insert(User))
198       continue;
199     int64_t Offset1, Offset2;
200     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
201         Offset1 == Offset2)
202       // FIXME: Should be ok if they addresses are identical. But earlier
203       // optimizations really should have eliminated one of the loads.
204       continue;
205     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
206       Offsets.push_back(Offset1);
207     O2SMap.insert(std::make_pair(Offset2, User));
208     Offsets.push_back(Offset2);
209     if (Offset2 < Offset1)
210       Base = User;
211     Cluster = true;
212   }
213 
214   if (!Cluster)
215     return;
216 
217   // Sort them in increasing order.
218   std::sort(Offsets.begin(), Offsets.end());
219 
220   // Check if the loads are close enough.
221   SmallVector<SDNode*, 4> Loads;
222   unsigned NumLoads = 0;
223   int64_t BaseOff = Offsets[0];
224   SDNode *BaseLoad = O2SMap[BaseOff];
225   Loads.push_back(BaseLoad);
226   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
227     int64_t Offset = Offsets[i];
228     SDNode *Load = O2SMap[Offset];
229     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
230       break; // Stop right here. Ignore loads that are further away.
231     Loads.push_back(Load);
232     ++NumLoads;
233   }
234 
235   if (NumLoads == 0)
236     return;
237 
238   // Cluster loads by adding MVT::Glue outputs and inputs. This also
239   // ensure they are scheduled in order of increasing addresses.
240   SDNode *Lead = Loads[0];
241   AddGlue(Lead, SDValue(0, 0), true, DAG);
242 
243   SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
244   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
245     bool OutGlue = I < E - 1;
246     SDNode *Load = Loads[I];
247 
248     AddGlue(Load, InGlue, OutGlue, DAG);
249 
250     if (OutGlue)
251       InGlue = SDValue(Load, Load->getNumValues() - 1);
252 
253     ++LoadsClustered;
254   }
255 }
256 
257 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
258 ///
ClusterNodes()259 void ScheduleDAGSDNodes::ClusterNodes() {
260   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
261        E = DAG->allnodes_end(); NI != E; ++NI) {
262     SDNode *Node = &*NI;
263     if (!Node || !Node->isMachineOpcode())
264       continue;
265 
266     unsigned Opc = Node->getMachineOpcode();
267     const MCInstrDesc &MCID = TII->get(Opc);
268     if (MCID.mayLoad())
269       // Cluster loads from "near" addresses into combined SUnits.
270       ClusterNeighboringLoads(Node);
271   }
272 }
273 
BuildSchedUnits()274 void ScheduleDAGSDNodes::BuildSchedUnits() {
275   // During scheduling, the NodeId field of SDNode is used to map SDNodes
276   // to their associated SUnits by holding SUnits table indices. A value
277   // of -1 means the SDNode does not yet have an associated SUnit.
278   unsigned NumNodes = 0;
279   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
280        E = DAG->allnodes_end(); NI != E; ++NI) {
281     NI->setNodeId(-1);
282     ++NumNodes;
283   }
284 
285   // Reserve entries in the vector for each of the SUnits we are creating.  This
286   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
287   // invalidated.
288   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
289   // This is a temporary workaround.
290   SUnits.reserve(NumNodes * 2);
291 
292   // Add all nodes in depth first order.
293   SmallVector<SDNode*, 64> Worklist;
294   SmallPtrSet<SDNode*, 64> Visited;
295   Worklist.push_back(DAG->getRoot().getNode());
296   Visited.insert(DAG->getRoot().getNode());
297 
298   SmallVector<SUnit*, 8> CallSUnits;
299   while (!Worklist.empty()) {
300     SDNode *NI = Worklist.pop_back_val();
301 
302     // Add all operands to the worklist unless they've already been added.
303     for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
304       if (Visited.insert(NI->getOperand(i).getNode()))
305         Worklist.push_back(NI->getOperand(i).getNode());
306 
307     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
308       continue;
309 
310     // If this node has already been processed, stop now.
311     if (NI->getNodeId() != -1) continue;
312 
313     SUnit *NodeSUnit = newSUnit(NI);
314 
315     // See if anything is glued to this node, if so, add them to glued
316     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
317     // is required to be the last operand and result of a node.
318 
319     // Scan up to find glued preds.
320     SDNode *N = NI;
321     while (N->getNumOperands() &&
322            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
323       N = N->getOperand(N->getNumOperands()-1).getNode();
324       assert(N->getNodeId() == -1 && "Node already inserted!");
325       N->setNodeId(NodeSUnit->NodeNum);
326       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
327         NodeSUnit->isCall = true;
328     }
329 
330     // Scan down to find any glued succs.
331     N = NI;
332     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
333       SDValue GlueVal(N, N->getNumValues()-1);
334 
335       // There are either zero or one users of the Glue result.
336       bool HasGlueUse = false;
337       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
338            UI != E; ++UI)
339         if (GlueVal.isOperandOf(*UI)) {
340           HasGlueUse = true;
341           assert(N->getNodeId() == -1 && "Node already inserted!");
342           N->setNodeId(NodeSUnit->NodeNum);
343           N = *UI;
344           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
345             NodeSUnit->isCall = true;
346           break;
347         }
348       if (!HasGlueUse) break;
349     }
350 
351     if (NodeSUnit->isCall)
352       CallSUnits.push_back(NodeSUnit);
353 
354     // Schedule zero-latency TokenFactor below any nodes that may increase the
355     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
356     // have false stalls.
357     if (NI->getOpcode() == ISD::TokenFactor)
358       NodeSUnit->isScheduleLow = true;
359 
360     // If there are glue operands involved, N is now the bottom-most node
361     // of the sequence of nodes that are glued together.
362     // Update the SUnit.
363     NodeSUnit->setNode(N);
364     assert(N->getNodeId() == -1 && "Node already inserted!");
365     N->setNodeId(NodeSUnit->NodeNum);
366 
367     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
368     InitNumRegDefsLeft(NodeSUnit);
369 
370     // Assign the Latency field of NodeSUnit using target-provided information.
371     computeLatency(NodeSUnit);
372   }
373 
374   // Find all call operands.
375   while (!CallSUnits.empty()) {
376     SUnit *SU = CallSUnits.pop_back_val();
377     for (const SDNode *SUNode = SU->getNode(); SUNode;
378          SUNode = SUNode->getGluedNode()) {
379       if (SUNode->getOpcode() != ISD::CopyToReg)
380         continue;
381       SDNode *SrcN = SUNode->getOperand(2).getNode();
382       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
383       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
384       SrcSU->isCallOp = true;
385     }
386   }
387 }
388 
AddSchedEdges()389 void ScheduleDAGSDNodes::AddSchedEdges() {
390   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
391 
392   // Check to see if the scheduler cares about latencies.
393   bool UnitLatencies = forceUnitLatencies();
394 
395   // Pass 2: add the preds, succs, etc.
396   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
397     SUnit *SU = &SUnits[su];
398     SDNode *MainNode = SU->getNode();
399 
400     if (MainNode->isMachineOpcode()) {
401       unsigned Opc = MainNode->getMachineOpcode();
402       const MCInstrDesc &MCID = TII->get(Opc);
403       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
404         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
405           SU->isTwoAddress = true;
406           break;
407         }
408       }
409       if (MCID.isCommutable())
410         SU->isCommutable = true;
411     }
412 
413     // Find all predecessors and successors of the group.
414     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
415       if (N->isMachineOpcode() &&
416           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
417         SU->hasPhysRegClobbers = true;
418         unsigned NumUsed = InstrEmitter::CountResults(N);
419         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
420           --NumUsed;    // Skip over unused values at the end.
421         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
422           SU->hasPhysRegDefs = true;
423       }
424 
425       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
426         SDNode *OpN = N->getOperand(i).getNode();
427         if (isPassiveNode(OpN)) continue;   // Not scheduled.
428         SUnit *OpSU = &SUnits[OpN->getNodeId()];
429         assert(OpSU && "Node has no SUnit!");
430         if (OpSU == SU) continue;           // In the same group.
431 
432         EVT OpVT = N->getOperand(i).getValueType();
433         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
434         bool isChain = OpVT == MVT::Other;
435 
436         unsigned PhysReg = 0;
437         int Cost = 1;
438         // Determine if this is a physical register dependency.
439         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
440         assert((PhysReg == 0 || !isChain) &&
441                "Chain dependence via physreg data?");
442         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
443         // emits a copy from the physical register to a virtual register unless
444         // it requires a cross class copy (cost < 0). That means we are only
445         // treating "expensive to copy" register dependency as physical register
446         // dependency. This may change in the future though.
447         if (Cost >= 0 && !StressSched)
448           PhysReg = 0;
449 
450         // If this is a ctrl dep, latency is 1.
451         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
452         // Special-case TokenFactor chains as zero-latency.
453         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
454           OpLatency = 0;
455 
456         const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
457                                OpLatency, PhysReg);
458         if (!isChain && !UnitLatencies) {
459           computeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
460           ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
461         }
462 
463         if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
464           // Multiple register uses are combined in the same SUnit. For example,
465           // we could have a set of glued nodes with all their defs consumed by
466           // another set of glued nodes. Register pressure tracking sees this as
467           // a single use, so to keep pressure balanced we reduce the defs.
468           //
469           // We can't tell (without more book-keeping) if this results from
470           // glued nodes or duplicate operands. As long as we don't reduce
471           // NumRegDefsLeft to zero, we handle the common cases well.
472           --OpSU->NumRegDefsLeft;
473         }
474       }
475     }
476   }
477 }
478 
479 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
480 /// are input.  This SUnit graph is similar to the SelectionDAG, but
481 /// excludes nodes that aren't interesting to scheduling, and represents
482 /// glued together nodes with a single SUnit.
BuildSchedGraph(AliasAnalysis * AA)483 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
484   // Cluster certain nodes which should be scheduled together.
485   ClusterNodes();
486   // Populate the SUnits array.
487   BuildSchedUnits();
488   // Compute all the scheduling dependencies between nodes.
489   AddSchedEdges();
490 }
491 
492 // Initialize NumNodeDefs for the current Node's opcode.
InitNodeNumDefs()493 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
494   // Check for phys reg copy.
495   if (!Node)
496     return;
497 
498   if (!Node->isMachineOpcode()) {
499     if (Node->getOpcode() == ISD::CopyFromReg)
500       NodeNumDefs = 1;
501     else
502       NodeNumDefs = 0;
503     return;
504   }
505   unsigned POpc = Node->getMachineOpcode();
506   if (POpc == TargetOpcode::IMPLICIT_DEF) {
507     // No register need be allocated for this.
508     NodeNumDefs = 0;
509     return;
510   }
511   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
512   // Some instructions define regs that are not represented in the selection DAG
513   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
514   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
515   DefIdx = 0;
516 }
517 
518 // Construct a RegDefIter for this SUnit and find the first valid value.
RegDefIter(const SUnit * SU,const ScheduleDAGSDNodes * SD)519 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
520                                            const ScheduleDAGSDNodes *SD)
521   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
522   InitNodeNumDefs();
523   Advance();
524 }
525 
526 // Advance to the next valid value defined by the SUnit.
Advance()527 void ScheduleDAGSDNodes::RegDefIter::Advance() {
528   for (;Node;) { // Visit all glued nodes.
529     for (;DefIdx < NodeNumDefs; ++DefIdx) {
530       if (!Node->hasAnyUseOfValue(DefIdx))
531         continue;
532       ValueType = Node->getValueType(DefIdx);
533       ++DefIdx;
534       return; // Found a normal regdef.
535     }
536     Node = Node->getGluedNode();
537     if (Node == NULL) {
538       return; // No values left to visit.
539     }
540     InitNodeNumDefs();
541   }
542 }
543 
InitNumRegDefsLeft(SUnit * SU)544 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
545   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
546   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
547     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
548     ++SU->NumRegDefsLeft;
549   }
550 }
551 
computeLatency(SUnit * SU)552 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
553   SDNode *N = SU->getNode();
554 
555   // TokenFactor operands are considered zero latency, and some schedulers
556   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
557   // whenever node latency is nonzero.
558   if (N && N->getOpcode() == ISD::TokenFactor) {
559     SU->Latency = 0;
560     return;
561   }
562 
563   // Check to see if the scheduler cares about latencies.
564   if (forceUnitLatencies()) {
565     SU->Latency = 1;
566     return;
567   }
568 
569   if (!InstrItins || InstrItins->isEmpty()) {
570     if (N && N->isMachineOpcode() &&
571         TII->isHighLatencyDef(N->getMachineOpcode()))
572       SU->Latency = HighLatencyCycles;
573     else
574       SU->Latency = 1;
575     return;
576   }
577 
578   // Compute the latency for the node.  We use the sum of the latencies for
579   // all nodes glued together into this SUnit.
580   SU->Latency = 0;
581   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
582     if (N->isMachineOpcode())
583       SU->Latency += TII->getInstrLatency(InstrItins, N);
584 }
585 
computeOperandLatency(SDNode * Def,SDNode * Use,unsigned OpIdx,SDep & dep) const586 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
587                                                unsigned OpIdx, SDep& dep) const{
588   // Check to see if the scheduler cares about latencies.
589   if (forceUnitLatencies())
590     return;
591 
592   if (dep.getKind() != SDep::Data)
593     return;
594 
595   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
596   if (Use->isMachineOpcode())
597     // Adjust the use operand index by num of defs.
598     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
599   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
600   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
601       !BB->succ_empty()) {
602     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
603     if (TargetRegisterInfo::isVirtualRegister(Reg))
604       // This copy is a liveout value. It is likely coalesced, so reduce the
605       // latency so not to penalize the def.
606       // FIXME: need target specific adjustment here?
607       Latency = (Latency > 1) ? Latency - 1 : 1;
608   }
609   if (Latency >= 0)
610     dep.setLatency(Latency);
611 }
612 
dumpNode(const SUnit * SU) const613 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
614   if (!SU->getNode()) {
615     dbgs() << "PHYS REG COPY\n";
616     return;
617   }
618 
619   SU->getNode()->dump(DAG);
620   dbgs() << "\n";
621   SmallVector<SDNode *, 4> GluedNodes;
622   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
623     GluedNodes.push_back(N);
624   while (!GluedNodes.empty()) {
625     dbgs() << "    ";
626     GluedNodes.back()->dump(DAG);
627     dbgs() << "\n";
628     GluedNodes.pop_back();
629   }
630 }
631 
dumpSchedule() const632 void ScheduleDAGSDNodes::dumpSchedule() const {
633   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
634     if (SUnit *SU = Sequence[i])
635       SU->dump(this);
636     else
637       dbgs() << "**** NOOP ****\n";
638   }
639 }
640 
641 #ifndef NDEBUG
642 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
643 /// their state is consistent with the nodes listed in Sequence.
644 ///
VerifyScheduledSequence(bool isBottomUp)645 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
646   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
647   unsigned Noops = 0;
648   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
649     if (!Sequence[i])
650       ++Noops;
651   assert(Sequence.size() - Noops == ScheduledNodes &&
652          "The number of nodes scheduled doesn't match the expected number!");
653 }
654 #endif // NDEBUG
655 
656 namespace {
657   struct OrderSorter {
operator ()__anonaa2b62a40111::OrderSorter658     bool operator()(const std::pair<unsigned, MachineInstr*> &A,
659                     const std::pair<unsigned, MachineInstr*> &B) {
660       return A.first < B.first;
661     }
662   };
663 }
664 
665 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
ProcessSDDbgValues(SDNode * N,SelectionDAG * DAG,InstrEmitter & Emitter,SmallVector<std::pair<unsigned,MachineInstr * >,32> & Orders,DenseMap<SDValue,unsigned> & VRBaseMap,unsigned Order)666 static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
667                                InstrEmitter &Emitter,
668                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
669                             DenseMap<SDValue, unsigned> &VRBaseMap,
670                             unsigned Order) {
671   if (!N->getHasDebugValue())
672     return;
673 
674   // Opportunistically insert immediate dbg_value uses, i.e. those with source
675   // order number right after the N.
676   MachineBasicBlock *BB = Emitter.getBlock();
677   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
678   ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
679   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
680     if (DVs[i]->isInvalidated())
681       continue;
682     unsigned DVOrder = DVs[i]->getOrder();
683     if (!Order || DVOrder == ++Order) {
684       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
685       if (DbgMI) {
686         Orders.push_back(std::make_pair(DVOrder, DbgMI));
687         BB->insert(InsertPos, DbgMI);
688       }
689       DVs[i]->setIsInvalidated();
690     }
691   }
692 }
693 
694 // ProcessSourceNode - Process nodes with source order numbers. These are added
695 // to a vector which EmitSchedule uses to determine how to insert dbg_value
696 // instructions in the right order.
ProcessSourceNode(SDNode * N,SelectionDAG * DAG,InstrEmitter & Emitter,DenseMap<SDValue,unsigned> & VRBaseMap,SmallVector<std::pair<unsigned,MachineInstr * >,32> & Orders,SmallSet<unsigned,8> & Seen)697 static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
698                            InstrEmitter &Emitter,
699                            DenseMap<SDValue, unsigned> &VRBaseMap,
700                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
701                            SmallSet<unsigned, 8> &Seen) {
702   unsigned Order = DAG->GetOrdering(N);
703   if (!Order || !Seen.insert(Order)) {
704     // Process any valid SDDbgValues even if node does not have any order
705     // assigned.
706     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
707     return;
708   }
709 
710   MachineBasicBlock *BB = Emitter.getBlock();
711   if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
712     // Did not insert any instruction.
713     Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
714     return;
715   }
716 
717   Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
718   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
719 }
720 
721 void ScheduleDAGSDNodes::
EmitPhysRegCopy(SUnit * SU,DenseMap<SUnit *,unsigned> & VRBaseMap,MachineBasicBlock::iterator InsertPos)722 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
723                 MachineBasicBlock::iterator InsertPos) {
724   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
725        I != E; ++I) {
726     if (I->isCtrl()) continue;  // ignore chain preds
727     if (I->getSUnit()->CopyDstRC) {
728       // Copy to physical register.
729       DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
730       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
731       // Find the destination physical register.
732       unsigned Reg = 0;
733       for (SUnit::const_succ_iterator II = SU->Succs.begin(),
734              EE = SU->Succs.end(); II != EE; ++II) {
735         if (II->isCtrl()) continue;  // ignore chain preds
736         if (II->getReg()) {
737           Reg = II->getReg();
738           break;
739         }
740       }
741       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
742         .addReg(VRI->second);
743     } else {
744       // Copy from physical register.
745       assert(I->getReg() && "Unknown physical register!");
746       unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
747       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
748       (void)isNew; // Silence compiler warning.
749       assert(isNew && "Node emitted out of order - early");
750       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
751         .addReg(I->getReg());
752     }
753     break;
754   }
755 }
756 
757 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
758 /// InsertPos and MachineBasicBlock that contains this insertion
759 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
760 /// not necessarily refer to returned BB. The emitter may split blocks.
761 MachineBasicBlock *ScheduleDAGSDNodes::
EmitSchedule(MachineBasicBlock::iterator & InsertPos)762 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
763   InstrEmitter Emitter(BB, InsertPos);
764   DenseMap<SDValue, unsigned> VRBaseMap;
765   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
766   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
767   SmallSet<unsigned, 8> Seen;
768   bool HasDbg = DAG->hasDebugValues();
769 
770   // If this is the first BB, emit byval parameter dbg_value's.
771   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
772     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
773     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
774     for (; PDI != PDE; ++PDI) {
775       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
776       if (DbgMI)
777         BB->insert(InsertPos, DbgMI);
778     }
779   }
780 
781   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
782     SUnit *SU = Sequence[i];
783     if (!SU) {
784       // Null SUnit* is a noop.
785       TII->insertNoop(*Emitter.getBlock(), InsertPos);
786       continue;
787     }
788 
789     // For pre-regalloc scheduling, create instructions corresponding to the
790     // SDNode and any glued SDNodes and append them to the block.
791     if (!SU->getNode()) {
792       // Emit a copy.
793       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
794       continue;
795     }
796 
797     SmallVector<SDNode *, 4> GluedNodes;
798     for (SDNode *N = SU->getNode()->getGluedNode(); N;
799          N = N->getGluedNode())
800       GluedNodes.push_back(N);
801     while (!GluedNodes.empty()) {
802       SDNode *N = GluedNodes.back();
803       Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
804                        VRBaseMap);
805       // Remember the source order of the inserted instruction.
806       if (HasDbg)
807         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
808       GluedNodes.pop_back();
809     }
810     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
811                      VRBaseMap);
812     // Remember the source order of the inserted instruction.
813     if (HasDbg)
814       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
815                         Seen);
816   }
817 
818   // Insert all the dbg_values which have not already been inserted in source
819   // order sequence.
820   if (HasDbg) {
821     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
822 
823     // Sort the source order instructions and use the order to insert debug
824     // values.
825     std::sort(Orders.begin(), Orders.end(), OrderSorter());
826 
827     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
828     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
829     // Now emit the rest according to source order.
830     unsigned LastOrder = 0;
831     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
832       unsigned Order = Orders[i].first;
833       MachineInstr *MI = Orders[i].second;
834       // Insert all SDDbgValue's whose order(s) are before "Order".
835       if (!MI)
836         continue;
837       for (; DI != DE &&
838              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
839         if ((*DI)->isInvalidated())
840           continue;
841         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
842         if (DbgMI) {
843           if (!LastOrder)
844             // Insert to start of the BB (after PHIs).
845             BB->insert(BBBegin, DbgMI);
846           else {
847             // Insert at the instruction, which may be in a different
848             // block, if the block was split by a custom inserter.
849             MachineBasicBlock::iterator Pos = MI;
850             MI->getParent()->insert(llvm::next(Pos), DbgMI);
851           }
852         }
853       }
854       LastOrder = Order;
855     }
856     // Add trailing DbgValue's before the terminator. FIXME: May want to add
857     // some of them before one or more conditional branches?
858     SmallVector<MachineInstr*, 8> DbgMIs;
859     while (DI != DE) {
860       if (!(*DI)->isInvalidated())
861         if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
862           DbgMIs.push_back(DbgMI);
863       ++DI;
864     }
865 
866     MachineBasicBlock *InsertBB = Emitter.getBlock();
867     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
868     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
869   }
870 
871   InsertPos = Emitter.getInsertPos();
872   return Emitter.getBlock();
873 }
874 
875 /// Return the basic block label.
getDAGName() const876 std::string ScheduleDAGSDNodes::getDAGName() const {
877   return "sunit-dag." + BB->getFullName();
878 }
879