1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis member access expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/Sema/Lookup.h"
15 #include "clang/Sema/Scope.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/Lex/Preprocessor.h"
22
23 using namespace clang;
24 using namespace sema;
25
26 /// Determines if the given class is provably not derived from all of
27 /// the prospective base classes.
IsProvablyNotDerivedFrom(Sema & SemaRef,CXXRecordDecl * Record,const llvm::SmallPtrSet<CXXRecordDecl *,4> & Bases)28 static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
29 CXXRecordDecl *Record,
30 const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
31 if (Bases.count(Record->getCanonicalDecl()))
32 return false;
33
34 RecordDecl *RD = Record->getDefinition();
35 if (!RD) return false;
36 Record = cast<CXXRecordDecl>(RD);
37
38 for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
39 E = Record->bases_end(); I != E; ++I) {
40 CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
41 CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
42 if (!BaseRT) return false;
43
44 CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
45 if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
46 return false;
47 }
48
49 return true;
50 }
51
52 enum IMAKind {
53 /// The reference is definitely not an instance member access.
54 IMA_Static,
55
56 /// The reference may be an implicit instance member access.
57 IMA_Mixed,
58
59 /// The reference may be to an instance member, but it might be invalid if
60 /// so, because the context is not an instance method.
61 IMA_Mixed_StaticContext,
62
63 /// The reference may be to an instance member, but it is invalid if
64 /// so, because the context is from an unrelated class.
65 IMA_Mixed_Unrelated,
66
67 /// The reference is definitely an implicit instance member access.
68 IMA_Instance,
69
70 /// The reference may be to an unresolved using declaration.
71 IMA_Unresolved,
72
73 /// The reference may be to an unresolved using declaration and the
74 /// context is not an instance method.
75 IMA_Unresolved_StaticContext,
76
77 // The reference refers to a field which is not a member of the containing
78 // class, which is allowed because we're in C++11 mode and the context is
79 // unevaluated.
80 IMA_Field_Uneval_Context,
81
82 /// All possible referrents are instance members and the current
83 /// context is not an instance method.
84 IMA_Error_StaticContext,
85
86 /// All possible referrents are instance members of an unrelated
87 /// class.
88 IMA_Error_Unrelated
89 };
90
91 /// The given lookup names class member(s) and is not being used for
92 /// an address-of-member expression. Classify the type of access
93 /// according to whether it's possible that this reference names an
94 /// instance member. This is best-effort in dependent contexts; it is okay to
95 /// conservatively answer "yes", in which case some errors will simply
96 /// not be caught until template-instantiation.
ClassifyImplicitMemberAccess(Sema & SemaRef,Scope * CurScope,const LookupResult & R)97 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
98 Scope *CurScope,
99 const LookupResult &R) {
100 assert(!R.empty() && (*R.begin())->isCXXClassMember());
101
102 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
103
104 bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
105 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
106
107 if (R.isUnresolvableResult())
108 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
109
110 // Collect all the declaring classes of instance members we find.
111 bool hasNonInstance = false;
112 bool isField = false;
113 llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
114 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
115 NamedDecl *D = *I;
116
117 if (D->isCXXInstanceMember()) {
118 if (dyn_cast<FieldDecl>(D))
119 isField = true;
120
121 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
122 Classes.insert(R->getCanonicalDecl());
123 }
124 else
125 hasNonInstance = true;
126 }
127
128 // If we didn't find any instance members, it can't be an implicit
129 // member reference.
130 if (Classes.empty())
131 return IMA_Static;
132
133 bool IsCXX11UnevaluatedField = false;
134 if (SemaRef.getLangOpts().CPlusPlus0x && isField) {
135 // C++11 [expr.prim.general]p12:
136 // An id-expression that denotes a non-static data member or non-static
137 // member function of a class can only be used:
138 // (...)
139 // - if that id-expression denotes a non-static data member and it
140 // appears in an unevaluated operand.
141 const Sema::ExpressionEvaluationContextRecord& record
142 = SemaRef.ExprEvalContexts.back();
143 if (record.Context == Sema::Unevaluated)
144 IsCXX11UnevaluatedField = true;
145 }
146
147 // If the current context is not an instance method, it can't be
148 // an implicit member reference.
149 if (isStaticContext) {
150 if (hasNonInstance)
151 return IMA_Mixed_StaticContext;
152
153 return IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context
154 : IMA_Error_StaticContext;
155 }
156
157 CXXRecordDecl *contextClass;
158 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
159 contextClass = MD->getParent()->getCanonicalDecl();
160 else
161 contextClass = cast<CXXRecordDecl>(DC);
162
163 // [class.mfct.non-static]p3:
164 // ...is used in the body of a non-static member function of class X,
165 // if name lookup (3.4.1) resolves the name in the id-expression to a
166 // non-static non-type member of some class C [...]
167 // ...if C is not X or a base class of X, the class member access expression
168 // is ill-formed.
169 if (R.getNamingClass() &&
170 contextClass->getCanonicalDecl() !=
171 R.getNamingClass()->getCanonicalDecl() &&
172 contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
173 return hasNonInstance ? IMA_Mixed_Unrelated :
174 IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
175 IMA_Error_Unrelated;
176
177 // If we can prove that the current context is unrelated to all the
178 // declaring classes, it can't be an implicit member reference (in
179 // which case it's an error if any of those members are selected).
180 if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
181 return hasNonInstance ? IMA_Mixed_Unrelated :
182 IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
183 IMA_Error_Unrelated;
184
185 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
186 }
187
188 /// Diagnose a reference to a field with no object available.
diagnoseInstanceReference(Sema & SemaRef,const CXXScopeSpec & SS,NamedDecl * Rep,const DeclarationNameInfo & nameInfo)189 static void diagnoseInstanceReference(Sema &SemaRef,
190 const CXXScopeSpec &SS,
191 NamedDecl *Rep,
192 const DeclarationNameInfo &nameInfo) {
193 SourceLocation Loc = nameInfo.getLoc();
194 SourceRange Range(Loc);
195 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
196
197 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
198 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
199 CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
200 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
201
202 bool InStaticMethod = Method && Method->isStatic();
203 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
204
205 if (IsField && InStaticMethod)
206 // "invalid use of member 'x' in static member function"
207 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
208 << Range << nameInfo.getName();
209 else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
210 !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
211 // Unqualified lookup in a non-static member function found a member of an
212 // enclosing class.
213 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
214 << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
215 else if (IsField)
216 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
217 << nameInfo.getName() << Range;
218 else
219 SemaRef.Diag(Loc, diag::err_member_call_without_object)
220 << Range;
221 }
222
223 /// Builds an expression which might be an implicit member expression.
224 ExprResult
BuildPossibleImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)225 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
226 SourceLocation TemplateKWLoc,
227 LookupResult &R,
228 const TemplateArgumentListInfo *TemplateArgs) {
229 switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
230 case IMA_Instance:
231 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
232
233 case IMA_Mixed:
234 case IMA_Mixed_Unrelated:
235 case IMA_Unresolved:
236 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
237
238 case IMA_Field_Uneval_Context:
239 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
240 << R.getLookupNameInfo().getName();
241 // Fall through.
242 case IMA_Static:
243 case IMA_Mixed_StaticContext:
244 case IMA_Unresolved_StaticContext:
245 if (TemplateArgs || TemplateKWLoc.isValid())
246 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
247 return BuildDeclarationNameExpr(SS, R, false);
248
249 case IMA_Error_StaticContext:
250 case IMA_Error_Unrelated:
251 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
252 R.getLookupNameInfo());
253 return ExprError();
254 }
255
256 llvm_unreachable("unexpected instance member access kind");
257 }
258
259 /// Determine whether input char is from rgba component set.
260 static bool
IsRGBA(char c)261 IsRGBA(char c) {
262 switch (c) {
263 case 'r':
264 case 'g':
265 case 'b':
266 case 'a':
267 return true;
268 default:
269 return false;
270 }
271 }
272
273 /// Check an ext-vector component access expression.
274 ///
275 /// VK should be set in advance to the value kind of the base
276 /// expression.
277 static QualType
CheckExtVectorComponent(Sema & S,QualType baseType,ExprValueKind & VK,SourceLocation OpLoc,const IdentifierInfo * CompName,SourceLocation CompLoc)278 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
279 SourceLocation OpLoc, const IdentifierInfo *CompName,
280 SourceLocation CompLoc) {
281 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
282 // see FIXME there.
283 //
284 // FIXME: This logic can be greatly simplified by splitting it along
285 // halving/not halving and reworking the component checking.
286 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
287
288 // The vector accessor can't exceed the number of elements.
289 const char *compStr = CompName->getNameStart();
290
291 // This flag determines whether or not the component is one of the four
292 // special names that indicate a subset of exactly half the elements are
293 // to be selected.
294 bool HalvingSwizzle = false;
295
296 // This flag determines whether or not CompName has an 's' char prefix,
297 // indicating that it is a string of hex values to be used as vector indices.
298 bool HexSwizzle = *compStr == 's' || *compStr == 'S';
299
300 bool HasRepeated = false;
301 bool HasIndex[16] = {};
302
303 int Idx;
304
305 // Check that we've found one of the special components, or that the component
306 // names must come from the same set.
307 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
308 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
309 HalvingSwizzle = true;
310 } else if (!HexSwizzle &&
311 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
312 bool HasRGBA = IsRGBA(*compStr);
313 do {
314 // If we mix/match rgba with xyzw, break to signal that we encountered
315 // an illegal name.
316 if (HasRGBA != IsRGBA(*compStr))
317 break;
318 if (HasIndex[Idx]) HasRepeated = true;
319 HasIndex[Idx] = true;
320 compStr++;
321 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
322 } else {
323 if (HexSwizzle) compStr++;
324 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
325 if (HasIndex[Idx]) HasRepeated = true;
326 HasIndex[Idx] = true;
327 compStr++;
328 }
329 }
330
331 if (!HalvingSwizzle && *compStr) {
332 // We didn't get to the end of the string. This means the component names
333 // didn't come from the same set *or* we encountered an illegal name.
334 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
335 << StringRef(compStr, 1) << SourceRange(CompLoc);
336 return QualType();
337 }
338
339 // Ensure no component accessor exceeds the width of the vector type it
340 // operates on.
341 if (!HalvingSwizzle) {
342 compStr = CompName->getNameStart();
343
344 if (HexSwizzle)
345 compStr++;
346
347 while (*compStr) {
348 if (!vecType->isAccessorWithinNumElements(*compStr++)) {
349 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
350 << baseType << SourceRange(CompLoc);
351 return QualType();
352 }
353 }
354 }
355
356 // The component accessor looks fine - now we need to compute the actual type.
357 // The vector type is implied by the component accessor. For example,
358 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
359 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
360 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
361 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
362 : CompName->getLength();
363 if (HexSwizzle)
364 CompSize--;
365
366 if (CompSize == 1)
367 return vecType->getElementType();
368
369 if (HasRepeated) VK = VK_RValue;
370
371 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
372 // Now look up the TypeDefDecl from the vector type. Without this,
373 // diagostics look bad. We want extended vector types to appear built-in.
374 for (Sema::ExtVectorDeclsType::iterator
375 I = S.ExtVectorDecls.begin(S.ExternalSource),
376 E = S.ExtVectorDecls.end();
377 I != E; ++I) {
378 if ((*I)->getUnderlyingType() == VT)
379 return S.Context.getTypedefType(*I);
380 }
381
382 return VT; // should never get here (a typedef type should always be found).
383 }
384
FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl * PDecl,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)385 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
386 IdentifierInfo *Member,
387 const Selector &Sel,
388 ASTContext &Context) {
389 if (Member)
390 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
391 return PD;
392 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
393 return OMD;
394
395 for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
396 E = PDecl->protocol_end(); I != E; ++I) {
397 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
398 Context))
399 return D;
400 }
401 return 0;
402 }
403
FindGetterSetterNameDecl(const ObjCObjectPointerType * QIdTy,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)404 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
405 IdentifierInfo *Member,
406 const Selector &Sel,
407 ASTContext &Context) {
408 // Check protocols on qualified interfaces.
409 Decl *GDecl = 0;
410 for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
411 E = QIdTy->qual_end(); I != E; ++I) {
412 if (Member)
413 if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
414 GDecl = PD;
415 break;
416 }
417 // Also must look for a getter or setter name which uses property syntax.
418 if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
419 GDecl = OMD;
420 break;
421 }
422 }
423 if (!GDecl) {
424 for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
425 E = QIdTy->qual_end(); I != E; ++I) {
426 // Search in the protocol-qualifier list of current protocol.
427 GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
428 Context);
429 if (GDecl)
430 return GDecl;
431 }
432 }
433 return GDecl;
434 }
435
436 ExprResult
ActOnDependentMemberExpr(Expr * BaseExpr,QualType BaseType,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)437 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
438 bool IsArrow, SourceLocation OpLoc,
439 const CXXScopeSpec &SS,
440 SourceLocation TemplateKWLoc,
441 NamedDecl *FirstQualifierInScope,
442 const DeclarationNameInfo &NameInfo,
443 const TemplateArgumentListInfo *TemplateArgs) {
444 // Even in dependent contexts, try to diagnose base expressions with
445 // obviously wrong types, e.g.:
446 //
447 // T* t;
448 // t.f;
449 //
450 // In Obj-C++, however, the above expression is valid, since it could be
451 // accessing the 'f' property if T is an Obj-C interface. The extra check
452 // allows this, while still reporting an error if T is a struct pointer.
453 if (!IsArrow) {
454 const PointerType *PT = BaseType->getAs<PointerType>();
455 if (PT && (!getLangOpts().ObjC1 ||
456 PT->getPointeeType()->isRecordType())) {
457 assert(BaseExpr && "cannot happen with implicit member accesses");
458 Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
459 << BaseType << BaseExpr->getSourceRange();
460 return ExprError();
461 }
462 }
463
464 assert(BaseType->isDependentType() ||
465 NameInfo.getName().isDependentName() ||
466 isDependentScopeSpecifier(SS));
467
468 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
469 // must have pointer type, and the accessed type is the pointee.
470 return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
471 IsArrow, OpLoc,
472 SS.getWithLocInContext(Context),
473 TemplateKWLoc,
474 FirstQualifierInScope,
475 NameInfo, TemplateArgs));
476 }
477
478 /// We know that the given qualified member reference points only to
479 /// declarations which do not belong to the static type of the base
480 /// expression. Diagnose the problem.
DiagnoseQualifiedMemberReference(Sema & SemaRef,Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,NamedDecl * rep,const DeclarationNameInfo & nameInfo)481 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
482 Expr *BaseExpr,
483 QualType BaseType,
484 const CXXScopeSpec &SS,
485 NamedDecl *rep,
486 const DeclarationNameInfo &nameInfo) {
487 // If this is an implicit member access, use a different set of
488 // diagnostics.
489 if (!BaseExpr)
490 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
491
492 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
493 << SS.getRange() << rep << BaseType;
494 }
495
496 // Check whether the declarations we found through a nested-name
497 // specifier in a member expression are actually members of the base
498 // type. The restriction here is:
499 //
500 // C++ [expr.ref]p2:
501 // ... In these cases, the id-expression shall name a
502 // member of the class or of one of its base classes.
503 //
504 // So it's perfectly legitimate for the nested-name specifier to name
505 // an unrelated class, and for us to find an overload set including
506 // decls from classes which are not superclasses, as long as the decl
507 // we actually pick through overload resolution is from a superclass.
CheckQualifiedMemberReference(Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,const LookupResult & R)508 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
509 QualType BaseType,
510 const CXXScopeSpec &SS,
511 const LookupResult &R) {
512 const RecordType *BaseRT = BaseType->getAs<RecordType>();
513 if (!BaseRT) {
514 // We can't check this yet because the base type is still
515 // dependent.
516 assert(BaseType->isDependentType());
517 return false;
518 }
519 CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
520
521 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
522 // If this is an implicit member reference and we find a
523 // non-instance member, it's not an error.
524 if (!BaseExpr && !(*I)->isCXXInstanceMember())
525 return false;
526
527 // Note that we use the DC of the decl, not the underlying decl.
528 DeclContext *DC = (*I)->getDeclContext();
529 while (DC->isTransparentContext())
530 DC = DC->getParent();
531
532 if (!DC->isRecord())
533 continue;
534
535 llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
536 MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
537
538 if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
539 return false;
540 }
541
542 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
543 R.getRepresentativeDecl(),
544 R.getLookupNameInfo());
545 return true;
546 }
547
548 namespace {
549
550 // Callback to only accept typo corrections that are either a ValueDecl or a
551 // FunctionTemplateDecl.
552 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
553 public:
ValidateCandidate(const TypoCorrection & candidate)554 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
555 NamedDecl *ND = candidate.getCorrectionDecl();
556 return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
557 }
558 };
559
560 }
561
562 static bool
LookupMemberExprInRecord(Sema & SemaRef,LookupResult & R,SourceRange BaseRange,const RecordType * RTy,SourceLocation OpLoc,CXXScopeSpec & SS,bool HasTemplateArgs)563 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
564 SourceRange BaseRange, const RecordType *RTy,
565 SourceLocation OpLoc, CXXScopeSpec &SS,
566 bool HasTemplateArgs) {
567 RecordDecl *RDecl = RTy->getDecl();
568 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
569 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
570 SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
571 << BaseRange))
572 return true;
573
574 if (HasTemplateArgs) {
575 // LookupTemplateName doesn't expect these both to exist simultaneously.
576 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
577
578 bool MOUS;
579 SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
580 return false;
581 }
582
583 DeclContext *DC = RDecl;
584 if (SS.isSet()) {
585 // If the member name was a qualified-id, look into the
586 // nested-name-specifier.
587 DC = SemaRef.computeDeclContext(SS, false);
588
589 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
590 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
591 << SS.getRange() << DC;
592 return true;
593 }
594
595 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
596
597 if (!isa<TypeDecl>(DC)) {
598 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
599 << DC << SS.getRange();
600 return true;
601 }
602 }
603
604 // The record definition is complete, now look up the member.
605 SemaRef.LookupQualifiedName(R, DC);
606
607 if (!R.empty())
608 return false;
609
610 // We didn't find anything with the given name, so try to correct
611 // for typos.
612 DeclarationName Name = R.getLookupName();
613 RecordMemberExprValidatorCCC Validator;
614 TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
615 R.getLookupKind(), NULL,
616 &SS, Validator, DC);
617 R.clear();
618 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
619 std::string CorrectedStr(
620 Corrected.getAsString(SemaRef.getLangOpts()));
621 std::string CorrectedQuotedStr(
622 Corrected.getQuoted(SemaRef.getLangOpts()));
623 R.setLookupName(Corrected.getCorrection());
624 R.addDecl(ND);
625 SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
626 << Name << DC << CorrectedQuotedStr << SS.getRange()
627 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
628 SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
629 << ND->getDeclName();
630 }
631
632 return false;
633 }
634
635 ExprResult
BuildMemberReferenceExpr(Expr * Base,QualType BaseType,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)636 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
637 SourceLocation OpLoc, bool IsArrow,
638 CXXScopeSpec &SS,
639 SourceLocation TemplateKWLoc,
640 NamedDecl *FirstQualifierInScope,
641 const DeclarationNameInfo &NameInfo,
642 const TemplateArgumentListInfo *TemplateArgs) {
643 if (BaseType->isDependentType() ||
644 (SS.isSet() && isDependentScopeSpecifier(SS)))
645 return ActOnDependentMemberExpr(Base, BaseType,
646 IsArrow, OpLoc,
647 SS, TemplateKWLoc, FirstQualifierInScope,
648 NameInfo, TemplateArgs);
649
650 LookupResult R(*this, NameInfo, LookupMemberName);
651
652 // Implicit member accesses.
653 if (!Base) {
654 QualType RecordTy = BaseType;
655 if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
656 if (LookupMemberExprInRecord(*this, R, SourceRange(),
657 RecordTy->getAs<RecordType>(),
658 OpLoc, SS, TemplateArgs != 0))
659 return ExprError();
660
661 // Explicit member accesses.
662 } else {
663 ExprResult BaseResult = Owned(Base);
664 ExprResult Result =
665 LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
666 SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
667
668 if (BaseResult.isInvalid())
669 return ExprError();
670 Base = BaseResult.take();
671
672 if (Result.isInvalid()) {
673 Owned(Base);
674 return ExprError();
675 }
676
677 if (Result.get())
678 return move(Result);
679
680 // LookupMemberExpr can modify Base, and thus change BaseType
681 BaseType = Base->getType();
682 }
683
684 return BuildMemberReferenceExpr(Base, BaseType,
685 OpLoc, IsArrow, SS, TemplateKWLoc,
686 FirstQualifierInScope, R, TemplateArgs);
687 }
688
689 static ExprResult
690 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
691 const CXXScopeSpec &SS, FieldDecl *Field,
692 DeclAccessPair FoundDecl,
693 const DeclarationNameInfo &MemberNameInfo);
694
695 ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec & SS,SourceLocation loc,IndirectFieldDecl * indirectField,Expr * baseObjectExpr,SourceLocation opLoc)696 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
697 SourceLocation loc,
698 IndirectFieldDecl *indirectField,
699 Expr *baseObjectExpr,
700 SourceLocation opLoc) {
701 // First, build the expression that refers to the base object.
702
703 bool baseObjectIsPointer = false;
704 Qualifiers baseQuals;
705
706 // Case 1: the base of the indirect field is not a field.
707 VarDecl *baseVariable = indirectField->getVarDecl();
708 CXXScopeSpec EmptySS;
709 if (baseVariable) {
710 assert(baseVariable->getType()->isRecordType());
711
712 // In principle we could have a member access expression that
713 // accesses an anonymous struct/union that's a static member of
714 // the base object's class. However, under the current standard,
715 // static data members cannot be anonymous structs or unions.
716 // Supporting this is as easy as building a MemberExpr here.
717 assert(!baseObjectExpr && "anonymous struct/union is static data member?");
718
719 DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
720
721 ExprResult result
722 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
723 if (result.isInvalid()) return ExprError();
724
725 baseObjectExpr = result.take();
726 baseObjectIsPointer = false;
727 baseQuals = baseObjectExpr->getType().getQualifiers();
728
729 // Case 2: the base of the indirect field is a field and the user
730 // wrote a member expression.
731 } else if (baseObjectExpr) {
732 // The caller provided the base object expression. Determine
733 // whether its a pointer and whether it adds any qualifiers to the
734 // anonymous struct/union fields we're looking into.
735 QualType objectType = baseObjectExpr->getType();
736
737 if (const PointerType *ptr = objectType->getAs<PointerType>()) {
738 baseObjectIsPointer = true;
739 objectType = ptr->getPointeeType();
740 } else {
741 baseObjectIsPointer = false;
742 }
743 baseQuals = objectType.getQualifiers();
744
745 // Case 3: the base of the indirect field is a field and we should
746 // build an implicit member access.
747 } else {
748 // We've found a member of an anonymous struct/union that is
749 // inside a non-anonymous struct/union, so in a well-formed
750 // program our base object expression is "this".
751 QualType ThisTy = getCurrentThisType();
752 if (ThisTy.isNull()) {
753 Diag(loc, diag::err_invalid_member_use_in_static_method)
754 << indirectField->getDeclName();
755 return ExprError();
756 }
757
758 // Our base object expression is "this".
759 CheckCXXThisCapture(loc);
760 baseObjectExpr
761 = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
762 baseObjectIsPointer = true;
763 baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
764 }
765
766 // Build the implicit member references to the field of the
767 // anonymous struct/union.
768 Expr *result = baseObjectExpr;
769 IndirectFieldDecl::chain_iterator
770 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
771
772 // Build the first member access in the chain with full information.
773 if (!baseVariable) {
774 FieldDecl *field = cast<FieldDecl>(*FI);
775
776 // FIXME: use the real found-decl info!
777 DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
778
779 // Make a nameInfo that properly uses the anonymous name.
780 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
781
782 result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
783 EmptySS, field, foundDecl,
784 memberNameInfo).take();
785 baseObjectIsPointer = false;
786
787 // FIXME: check qualified member access
788 }
789
790 // In all cases, we should now skip the first declaration in the chain.
791 ++FI;
792
793 while (FI != FEnd) {
794 FieldDecl *field = cast<FieldDecl>(*FI++);
795
796 // FIXME: these are somewhat meaningless
797 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
798 DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
799
800 result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
801 (FI == FEnd? SS : EmptySS), field,
802 foundDecl, memberNameInfo).take();
803 }
804
805 return Owned(result);
806 }
807
808 /// \brief Build a MemberExpr AST node.
BuildMemberExpr(Sema & SemaRef,ASTContext & C,Expr * Base,bool isArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs=0)809 static MemberExpr *BuildMemberExpr(Sema &SemaRef,
810 ASTContext &C, Expr *Base, bool isArrow,
811 const CXXScopeSpec &SS,
812 SourceLocation TemplateKWLoc,
813 ValueDecl *Member,
814 DeclAccessPair FoundDecl,
815 const DeclarationNameInfo &MemberNameInfo,
816 QualType Ty,
817 ExprValueKind VK, ExprObjectKind OK,
818 const TemplateArgumentListInfo *TemplateArgs = 0) {
819 assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
820 MemberExpr *E =
821 MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
822 TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
823 TemplateArgs, Ty, VK, OK);
824 SemaRef.MarkMemberReferenced(E);
825 return E;
826 }
827
828 ExprResult
BuildMemberReferenceExpr(Expr * BaseExpr,QualType BaseExprType,SourceLocation OpLoc,bool IsArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool SuppressQualifierCheck)829 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
830 SourceLocation OpLoc, bool IsArrow,
831 const CXXScopeSpec &SS,
832 SourceLocation TemplateKWLoc,
833 NamedDecl *FirstQualifierInScope,
834 LookupResult &R,
835 const TemplateArgumentListInfo *TemplateArgs,
836 bool SuppressQualifierCheck) {
837 QualType BaseType = BaseExprType;
838 if (IsArrow) {
839 assert(BaseType->isPointerType());
840 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
841 }
842 R.setBaseObjectType(BaseType);
843
844 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
845 DeclarationName MemberName = MemberNameInfo.getName();
846 SourceLocation MemberLoc = MemberNameInfo.getLoc();
847
848 if (R.isAmbiguous())
849 return ExprError();
850
851 if (R.empty()) {
852 // Rederive where we looked up.
853 DeclContext *DC = (SS.isSet()
854 ? computeDeclContext(SS, false)
855 : BaseType->getAs<RecordType>()->getDecl());
856
857 Diag(R.getNameLoc(), diag::err_no_member)
858 << MemberName << DC
859 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
860 return ExprError();
861 }
862
863 // Diagnose lookups that find only declarations from a non-base
864 // type. This is possible for either qualified lookups (which may
865 // have been qualified with an unrelated type) or implicit member
866 // expressions (which were found with unqualified lookup and thus
867 // may have come from an enclosing scope). Note that it's okay for
868 // lookup to find declarations from a non-base type as long as those
869 // aren't the ones picked by overload resolution.
870 if ((SS.isSet() || !BaseExpr ||
871 (isa<CXXThisExpr>(BaseExpr) &&
872 cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
873 !SuppressQualifierCheck &&
874 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
875 return ExprError();
876
877 // Construct an unresolved result if we in fact got an unresolved
878 // result.
879 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
880 // Suppress any lookup-related diagnostics; we'll do these when we
881 // pick a member.
882 R.suppressDiagnostics();
883
884 UnresolvedMemberExpr *MemExpr
885 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
886 BaseExpr, BaseExprType,
887 IsArrow, OpLoc,
888 SS.getWithLocInContext(Context),
889 TemplateKWLoc, MemberNameInfo,
890 TemplateArgs, R.begin(), R.end());
891
892 return Owned(MemExpr);
893 }
894
895 assert(R.isSingleResult());
896 DeclAccessPair FoundDecl = R.begin().getPair();
897 NamedDecl *MemberDecl = R.getFoundDecl();
898
899 // FIXME: diagnose the presence of template arguments now.
900
901 // If the decl being referenced had an error, return an error for this
902 // sub-expr without emitting another error, in order to avoid cascading
903 // error cases.
904 if (MemberDecl->isInvalidDecl())
905 return ExprError();
906
907 // Handle the implicit-member-access case.
908 if (!BaseExpr) {
909 // If this is not an instance member, convert to a non-member access.
910 if (!MemberDecl->isCXXInstanceMember())
911 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
912
913 SourceLocation Loc = R.getNameLoc();
914 if (SS.getRange().isValid())
915 Loc = SS.getRange().getBegin();
916 CheckCXXThisCapture(Loc);
917 BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
918 }
919
920 bool ShouldCheckUse = true;
921 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
922 // Don't diagnose the use of a virtual member function unless it's
923 // explicitly qualified.
924 if (MD->isVirtual() && !SS.isSet())
925 ShouldCheckUse = false;
926 }
927
928 // Check the use of this member.
929 if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
930 Owned(BaseExpr);
931 return ExprError();
932 }
933
934 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
935 return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
936 SS, FD, FoundDecl, MemberNameInfo);
937
938 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
939 // We may have found a field within an anonymous union or struct
940 // (C++ [class.union]).
941 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
942 BaseExpr, OpLoc);
943
944 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
945 return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
946 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
947 Var->getType().getNonReferenceType(),
948 VK_LValue, OK_Ordinary));
949 }
950
951 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
952 ExprValueKind valueKind;
953 QualType type;
954 if (MemberFn->isInstance()) {
955 valueKind = VK_RValue;
956 type = Context.BoundMemberTy;
957 } else {
958 valueKind = VK_LValue;
959 type = MemberFn->getType();
960 }
961
962 return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
963 TemplateKWLoc, MemberFn, FoundDecl,
964 MemberNameInfo, type, valueKind,
965 OK_Ordinary));
966 }
967 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
968
969 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
970 return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
971 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
972 Enum->getType(), VK_RValue, OK_Ordinary));
973 }
974
975 Owned(BaseExpr);
976
977 // We found something that we didn't expect. Complain.
978 if (isa<TypeDecl>(MemberDecl))
979 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
980 << MemberName << BaseType << int(IsArrow);
981 else
982 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
983 << MemberName << BaseType << int(IsArrow);
984
985 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
986 << MemberName;
987 R.suppressDiagnostics();
988 return ExprError();
989 }
990
991 /// Given that normal member access failed on the given expression,
992 /// and given that the expression's type involves builtin-id or
993 /// builtin-Class, decide whether substituting in the redefinition
994 /// types would be profitable. The redefinition type is whatever
995 /// this translation unit tried to typedef to id/Class; we store
996 /// it to the side and then re-use it in places like this.
ShouldTryAgainWithRedefinitionType(Sema & S,ExprResult & base)997 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
998 const ObjCObjectPointerType *opty
999 = base.get()->getType()->getAs<ObjCObjectPointerType>();
1000 if (!opty) return false;
1001
1002 const ObjCObjectType *ty = opty->getObjectType();
1003
1004 QualType redef;
1005 if (ty->isObjCId()) {
1006 redef = S.Context.getObjCIdRedefinitionType();
1007 } else if (ty->isObjCClass()) {
1008 redef = S.Context.getObjCClassRedefinitionType();
1009 } else {
1010 return false;
1011 }
1012
1013 // Do the substitution as long as the redefinition type isn't just a
1014 // possibly-qualified pointer to builtin-id or builtin-Class again.
1015 opty = redef->getAs<ObjCObjectPointerType>();
1016 if (opty && !opty->getObjectType()->getInterface() != 0)
1017 return false;
1018
1019 base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
1020 return true;
1021 }
1022
isRecordType(QualType T)1023 static bool isRecordType(QualType T) {
1024 return T->isRecordType();
1025 }
isPointerToRecordType(QualType T)1026 static bool isPointerToRecordType(QualType T) {
1027 if (const PointerType *PT = T->getAs<PointerType>())
1028 return PT->getPointeeType()->isRecordType();
1029 return false;
1030 }
1031
1032 /// Perform conversions on the LHS of a member access expression.
1033 ExprResult
PerformMemberExprBaseConversion(Expr * Base,bool IsArrow)1034 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1035 if (IsArrow && !Base->getType()->isFunctionType())
1036 return DefaultFunctionArrayLvalueConversion(Base);
1037
1038 return CheckPlaceholderExpr(Base);
1039 }
1040
1041 /// Look up the given member of the given non-type-dependent
1042 /// expression. This can return in one of two ways:
1043 /// * If it returns a sentinel null-but-valid result, the caller will
1044 /// assume that lookup was performed and the results written into
1045 /// the provided structure. It will take over from there.
1046 /// * Otherwise, the returned expression will be produced in place of
1047 /// an ordinary member expression.
1048 ///
1049 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1050 /// fixed for ObjC++.
1051 ExprResult
LookupMemberExpr(LookupResult & R,ExprResult & BaseExpr,bool & IsArrow,SourceLocation OpLoc,CXXScopeSpec & SS,Decl * ObjCImpDecl,bool HasTemplateArgs)1052 Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
1053 bool &IsArrow, SourceLocation OpLoc,
1054 CXXScopeSpec &SS,
1055 Decl *ObjCImpDecl, bool HasTemplateArgs) {
1056 assert(BaseExpr.get() && "no base expression");
1057
1058 // Perform default conversions.
1059 BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
1060 if (BaseExpr.isInvalid())
1061 return ExprError();
1062
1063 QualType BaseType = BaseExpr.get()->getType();
1064 assert(!BaseType->isDependentType());
1065
1066 DeclarationName MemberName = R.getLookupName();
1067 SourceLocation MemberLoc = R.getNameLoc();
1068
1069 // For later type-checking purposes, turn arrow accesses into dot
1070 // accesses. The only access type we support that doesn't follow
1071 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1072 // and those never use arrows, so this is unaffected.
1073 if (IsArrow) {
1074 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1075 BaseType = Ptr->getPointeeType();
1076 else if (const ObjCObjectPointerType *Ptr
1077 = BaseType->getAs<ObjCObjectPointerType>())
1078 BaseType = Ptr->getPointeeType();
1079 else if (BaseType->isRecordType()) {
1080 // Recover from arrow accesses to records, e.g.:
1081 // struct MyRecord foo;
1082 // foo->bar
1083 // This is actually well-formed in C++ if MyRecord has an
1084 // overloaded operator->, but that should have been dealt with
1085 // by now.
1086 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1087 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1088 << FixItHint::CreateReplacement(OpLoc, ".");
1089 IsArrow = false;
1090 } else if (BaseType->isFunctionType()) {
1091 goto fail;
1092 } else {
1093 Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1094 << BaseType << BaseExpr.get()->getSourceRange();
1095 return ExprError();
1096 }
1097 }
1098
1099 // Handle field access to simple records.
1100 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1101 if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1102 RTy, OpLoc, SS, HasTemplateArgs))
1103 return ExprError();
1104
1105 // Returning valid-but-null is how we indicate to the caller that
1106 // the lookup result was filled in.
1107 return Owned((Expr*) 0);
1108 }
1109
1110 // Handle ivar access to Objective-C objects.
1111 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1112 if (!SS.isEmpty() && !SS.isInvalid()) {
1113 Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1114 << 1 << SS.getScopeRep()
1115 << FixItHint::CreateRemoval(SS.getRange());
1116 SS.clear();
1117 }
1118
1119 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1120
1121 // There are three cases for the base type:
1122 // - builtin id (qualified or unqualified)
1123 // - builtin Class (qualified or unqualified)
1124 // - an interface
1125 ObjCInterfaceDecl *IDecl = OTy->getInterface();
1126 if (!IDecl) {
1127 if (getLangOpts().ObjCAutoRefCount &&
1128 (OTy->isObjCId() || OTy->isObjCClass()))
1129 goto fail;
1130 // There's an implicit 'isa' ivar on all objects.
1131 // But we only actually find it this way on objects of type 'id',
1132 // apparently.ghjg
1133 if (OTy->isObjCId() && Member->isStr("isa")) {
1134 Diag(MemberLoc, diag::warn_objc_isa_use);
1135 return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1136 Context.getObjCClassType()));
1137 }
1138
1139 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1140 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1141 ObjCImpDecl, HasTemplateArgs);
1142 goto fail;
1143 }
1144
1145 if (RequireCompleteType(OpLoc, BaseType,
1146 PDiag(diag::err_typecheck_incomplete_tag)
1147 << BaseExpr.get()->getSourceRange()))
1148 return ExprError();
1149
1150 ObjCInterfaceDecl *ClassDeclared = 0;
1151 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1152
1153 if (!IV) {
1154 // Attempt to correct for typos in ivar names.
1155 DeclFilterCCC<ObjCIvarDecl> Validator;
1156 Validator.IsObjCIvarLookup = IsArrow;
1157 if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
1158 LookupMemberName, NULL, NULL,
1159 Validator, IDecl)) {
1160 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1161 Diag(R.getNameLoc(),
1162 diag::err_typecheck_member_reference_ivar_suggest)
1163 << IDecl->getDeclName() << MemberName << IV->getDeclName()
1164 << FixItHint::CreateReplacement(R.getNameLoc(),
1165 IV->getNameAsString());
1166 Diag(IV->getLocation(), diag::note_previous_decl)
1167 << IV->getDeclName();
1168
1169 // Figure out the class that declares the ivar.
1170 assert(!ClassDeclared);
1171 Decl *D = cast<Decl>(IV->getDeclContext());
1172 if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1173 D = CAT->getClassInterface();
1174 ClassDeclared = cast<ObjCInterfaceDecl>(D);
1175 } else {
1176 if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1177 Diag(MemberLoc,
1178 diag::err_property_found_suggest)
1179 << Member << BaseExpr.get()->getType()
1180 << FixItHint::CreateReplacement(OpLoc, ".");
1181 return ExprError();
1182 }
1183
1184 Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1185 << IDecl->getDeclName() << MemberName
1186 << BaseExpr.get()->getSourceRange();
1187 return ExprError();
1188 }
1189 }
1190
1191 assert(ClassDeclared);
1192
1193 // If the decl being referenced had an error, return an error for this
1194 // sub-expr without emitting another error, in order to avoid cascading
1195 // error cases.
1196 if (IV->isInvalidDecl())
1197 return ExprError();
1198
1199 // Check whether we can reference this field.
1200 if (DiagnoseUseOfDecl(IV, MemberLoc))
1201 return ExprError();
1202 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1203 IV->getAccessControl() != ObjCIvarDecl::Package) {
1204 ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1205 if (ObjCMethodDecl *MD = getCurMethodDecl())
1206 ClassOfMethodDecl = MD->getClassInterface();
1207 else if (ObjCImpDecl && getCurFunctionDecl()) {
1208 // Case of a c-function declared inside an objc implementation.
1209 // FIXME: For a c-style function nested inside an objc implementation
1210 // class, there is no implementation context available, so we pass
1211 // down the context as argument to this routine. Ideally, this context
1212 // need be passed down in the AST node and somehow calculated from the
1213 // AST for a function decl.
1214 if (ObjCImplementationDecl *IMPD =
1215 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1216 ClassOfMethodDecl = IMPD->getClassInterface();
1217 else if (ObjCCategoryImplDecl* CatImplClass =
1218 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1219 ClassOfMethodDecl = CatImplClass->getClassInterface();
1220 }
1221 if (!getLangOpts().DebuggerSupport) {
1222 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1223 if (!declaresSameEntity(ClassDeclared, IDecl) ||
1224 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1225 Diag(MemberLoc, diag::error_private_ivar_access)
1226 << IV->getDeclName();
1227 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1228 // @protected
1229 Diag(MemberLoc, diag::error_protected_ivar_access)
1230 << IV->getDeclName();
1231 }
1232 }
1233 if (getLangOpts().ObjCAutoRefCount) {
1234 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1235 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1236 if (UO->getOpcode() == UO_Deref)
1237 BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1238
1239 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1240 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
1241 Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1242 }
1243
1244 return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1245 MemberLoc, BaseExpr.take(),
1246 IsArrow));
1247 }
1248
1249 // Objective-C property access.
1250 const ObjCObjectPointerType *OPT;
1251 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1252 if (!SS.isEmpty() && !SS.isInvalid()) {
1253 Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1254 << 0 << SS.getScopeRep()
1255 << FixItHint::CreateRemoval(SS.getRange());
1256 SS.clear();
1257 }
1258
1259 // This actually uses the base as an r-value.
1260 BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1261 if (BaseExpr.isInvalid())
1262 return ExprError();
1263
1264 assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1265
1266 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1267
1268 const ObjCObjectType *OT = OPT->getObjectType();
1269
1270 // id, with and without qualifiers.
1271 if (OT->isObjCId()) {
1272 // Check protocols on qualified interfaces.
1273 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1274 if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1275 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1276 // Check the use of this declaration
1277 if (DiagnoseUseOfDecl(PD, MemberLoc))
1278 return ExprError();
1279
1280 return Owned(new (Context) ObjCPropertyRefExpr(PD,
1281 Context.PseudoObjectTy,
1282 VK_LValue,
1283 OK_ObjCProperty,
1284 MemberLoc,
1285 BaseExpr.take()));
1286 }
1287
1288 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1289 // Check the use of this method.
1290 if (DiagnoseUseOfDecl(OMD, MemberLoc))
1291 return ExprError();
1292 Selector SetterSel =
1293 SelectorTable::constructSetterName(PP.getIdentifierTable(),
1294 PP.getSelectorTable(), Member);
1295 ObjCMethodDecl *SMD = 0;
1296 if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1297 SetterSel, Context))
1298 SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1299
1300 return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
1301 Context.PseudoObjectTy,
1302 VK_LValue, OK_ObjCProperty,
1303 MemberLoc, BaseExpr.take()));
1304 }
1305 }
1306 // Use of id.member can only be for a property reference. Do not
1307 // use the 'id' redefinition in this case.
1308 if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1309 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1310 ObjCImpDecl, HasTemplateArgs);
1311
1312 return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1313 << MemberName << BaseType);
1314 }
1315
1316 // 'Class', unqualified only.
1317 if (OT->isObjCClass()) {
1318 // Only works in a method declaration (??!).
1319 ObjCMethodDecl *MD = getCurMethodDecl();
1320 if (!MD) {
1321 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1322 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1323 ObjCImpDecl, HasTemplateArgs);
1324
1325 goto fail;
1326 }
1327
1328 // Also must look for a getter name which uses property syntax.
1329 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1330 ObjCInterfaceDecl *IFace = MD->getClassInterface();
1331 ObjCMethodDecl *Getter;
1332 if ((Getter = IFace->lookupClassMethod(Sel))) {
1333 // Check the use of this method.
1334 if (DiagnoseUseOfDecl(Getter, MemberLoc))
1335 return ExprError();
1336 } else
1337 Getter = IFace->lookupPrivateMethod(Sel, false);
1338 // If we found a getter then this may be a valid dot-reference, we
1339 // will look for the matching setter, in case it is needed.
1340 Selector SetterSel =
1341 SelectorTable::constructSetterName(PP.getIdentifierTable(),
1342 PP.getSelectorTable(), Member);
1343 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1344 if (!Setter) {
1345 // If this reference is in an @implementation, also check for 'private'
1346 // methods.
1347 Setter = IFace->lookupPrivateMethod(SetterSel, false);
1348 }
1349 // Look through local category implementations associated with the class.
1350 if (!Setter)
1351 Setter = IFace->getCategoryClassMethod(SetterSel);
1352
1353 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1354 return ExprError();
1355
1356 if (Getter || Setter) {
1357 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1358 Context.PseudoObjectTy,
1359 VK_LValue, OK_ObjCProperty,
1360 MemberLoc, BaseExpr.take()));
1361 }
1362
1363 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1364 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1365 ObjCImpDecl, HasTemplateArgs);
1366
1367 return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1368 << MemberName << BaseType);
1369 }
1370
1371 // Normal property access.
1372 return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1373 MemberName, MemberLoc,
1374 SourceLocation(), QualType(), false);
1375 }
1376
1377 // Handle 'field access' to vectors, such as 'V.xx'.
1378 if (BaseType->isExtVectorType()) {
1379 // FIXME: this expr should store IsArrow.
1380 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1381 ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1382 QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1383 Member, MemberLoc);
1384 if (ret.isNull())
1385 return ExprError();
1386
1387 return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1388 *Member, MemberLoc));
1389 }
1390
1391 // Adjust builtin-sel to the appropriate redefinition type if that's
1392 // not just a pointer to builtin-sel again.
1393 if (IsArrow &&
1394 BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1395 !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1396 BaseExpr = ImpCastExprToType(BaseExpr.take(),
1397 Context.getObjCSelRedefinitionType(),
1398 CK_BitCast);
1399 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1400 ObjCImpDecl, HasTemplateArgs);
1401 }
1402
1403 // Failure cases.
1404 fail:
1405
1406 // Recover from dot accesses to pointers, e.g.:
1407 // type *foo;
1408 // foo.bar
1409 // This is actually well-formed in two cases:
1410 // - 'type' is an Objective C type
1411 // - 'bar' is a pseudo-destructor name which happens to refer to
1412 // the appropriate pointer type
1413 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1414 if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1415 MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1416 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1417 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1418 << FixItHint::CreateReplacement(OpLoc, "->");
1419
1420 // Recurse as an -> access.
1421 IsArrow = true;
1422 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1423 ObjCImpDecl, HasTemplateArgs);
1424 }
1425 }
1426
1427 // If the user is trying to apply -> or . to a function name, it's probably
1428 // because they forgot parentheses to call that function.
1429 if (tryToRecoverWithCall(BaseExpr,
1430 PDiag(diag::err_member_reference_needs_call),
1431 /*complain*/ false,
1432 IsArrow ? &isPointerToRecordType : &isRecordType)) {
1433 if (BaseExpr.isInvalid())
1434 return ExprError();
1435 BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1436 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1437 ObjCImpDecl, HasTemplateArgs);
1438 }
1439
1440 Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1441 << BaseType << BaseExpr.get()->getSourceRange();
1442
1443 return ExprError();
1444 }
1445
1446 /// The main callback when the parser finds something like
1447 /// expression . [nested-name-specifier] identifier
1448 /// expression -> [nested-name-specifier] identifier
1449 /// where 'identifier' encompasses a fairly broad spectrum of
1450 /// possibilities, including destructor and operator references.
1451 ///
1452 /// \param OpKind either tok::arrow or tok::period
1453 /// \param HasTrailingLParen whether the next token is '(', which
1454 /// is used to diagnose mis-uses of special members that can
1455 /// only be called
1456 /// \param ObjCImpDecl the current ObjC @implementation decl;
1457 /// this is an ugly hack around the fact that ObjC @implementations
1458 /// aren't properly put in the context chain
ActOnMemberAccessExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,Decl * ObjCImpDecl,bool HasTrailingLParen)1459 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1460 SourceLocation OpLoc,
1461 tok::TokenKind OpKind,
1462 CXXScopeSpec &SS,
1463 SourceLocation TemplateKWLoc,
1464 UnqualifiedId &Id,
1465 Decl *ObjCImpDecl,
1466 bool HasTrailingLParen) {
1467 if (SS.isSet() && SS.isInvalid())
1468 return ExprError();
1469
1470 // Warn about the explicit constructor calls Microsoft extension.
1471 if (getLangOpts().MicrosoftExt &&
1472 Id.getKind() == UnqualifiedId::IK_ConstructorName)
1473 Diag(Id.getSourceRange().getBegin(),
1474 diag::ext_ms_explicit_constructor_call);
1475
1476 TemplateArgumentListInfo TemplateArgsBuffer;
1477
1478 // Decompose the name into its component parts.
1479 DeclarationNameInfo NameInfo;
1480 const TemplateArgumentListInfo *TemplateArgs;
1481 DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1482 NameInfo, TemplateArgs);
1483
1484 DeclarationName Name = NameInfo.getName();
1485 bool IsArrow = (OpKind == tok::arrow);
1486
1487 NamedDecl *FirstQualifierInScope
1488 = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1489 static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1490
1491 // This is a postfix expression, so get rid of ParenListExprs.
1492 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1493 if (Result.isInvalid()) return ExprError();
1494 Base = Result.take();
1495
1496 if (Base->getType()->isDependentType() || Name.isDependentName() ||
1497 isDependentScopeSpecifier(SS)) {
1498 Result = ActOnDependentMemberExpr(Base, Base->getType(),
1499 IsArrow, OpLoc,
1500 SS, TemplateKWLoc, FirstQualifierInScope,
1501 NameInfo, TemplateArgs);
1502 } else {
1503 LookupResult R(*this, NameInfo, LookupMemberName);
1504 ExprResult BaseResult = Owned(Base);
1505 Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1506 SS, ObjCImpDecl, TemplateArgs != 0);
1507 if (BaseResult.isInvalid())
1508 return ExprError();
1509 Base = BaseResult.take();
1510
1511 if (Result.isInvalid()) {
1512 Owned(Base);
1513 return ExprError();
1514 }
1515
1516 if (Result.get()) {
1517 // The only way a reference to a destructor can be used is to
1518 // immediately call it, which falls into this case. If the
1519 // next token is not a '(', produce a diagnostic and build the
1520 // call now.
1521 if (!HasTrailingLParen &&
1522 Id.getKind() == UnqualifiedId::IK_DestructorName)
1523 return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1524
1525 return move(Result);
1526 }
1527
1528 Result = BuildMemberReferenceExpr(Base, Base->getType(),
1529 OpLoc, IsArrow, SS, TemplateKWLoc,
1530 FirstQualifierInScope, R, TemplateArgs);
1531 }
1532
1533 return move(Result);
1534 }
1535
1536 static ExprResult
BuildFieldReferenceExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,FieldDecl * Field,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo)1537 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1538 const CXXScopeSpec &SS, FieldDecl *Field,
1539 DeclAccessPair FoundDecl,
1540 const DeclarationNameInfo &MemberNameInfo) {
1541 // x.a is an l-value if 'a' has a reference type. Otherwise:
1542 // x.a is an l-value/x-value/pr-value if the base is (and note
1543 // that *x is always an l-value), except that if the base isn't
1544 // an ordinary object then we must have an rvalue.
1545 ExprValueKind VK = VK_LValue;
1546 ExprObjectKind OK = OK_Ordinary;
1547 if (!IsArrow) {
1548 if (BaseExpr->getObjectKind() == OK_Ordinary)
1549 VK = BaseExpr->getValueKind();
1550 else
1551 VK = VK_RValue;
1552 }
1553 if (VK != VK_RValue && Field->isBitField())
1554 OK = OK_BitField;
1555
1556 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1557 QualType MemberType = Field->getType();
1558 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1559 MemberType = Ref->getPointeeType();
1560 VK = VK_LValue;
1561 } else {
1562 QualType BaseType = BaseExpr->getType();
1563 if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1564
1565 Qualifiers BaseQuals = BaseType.getQualifiers();
1566
1567 // GC attributes are never picked up by members.
1568 BaseQuals.removeObjCGCAttr();
1569
1570 // CVR attributes from the base are picked up by members,
1571 // except that 'mutable' members don't pick up 'const'.
1572 if (Field->isMutable()) BaseQuals.removeConst();
1573
1574 Qualifiers MemberQuals
1575 = S.Context.getCanonicalType(MemberType).getQualifiers();
1576
1577 // TR 18037 does not allow fields to be declared with address spaces.
1578 assert(!MemberQuals.hasAddressSpace());
1579
1580 Qualifiers Combined = BaseQuals + MemberQuals;
1581 if (Combined != MemberQuals)
1582 MemberType = S.Context.getQualifiedType(MemberType, Combined);
1583 }
1584
1585 ExprResult Base =
1586 S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1587 FoundDecl, Field);
1588 if (Base.isInvalid())
1589 return ExprError();
1590 return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
1591 /*TemplateKWLoc=*/SourceLocation(),
1592 Field, FoundDecl, MemberNameInfo,
1593 MemberType, VK, OK));
1594 }
1595
1596 /// Builds an implicit member access expression. The current context
1597 /// is known to be an instance method, and the given unqualified lookup
1598 /// set is known to contain only instance members, at least one of which
1599 /// is from an appropriate type.
1600 ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool IsKnownInstance)1601 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1602 SourceLocation TemplateKWLoc,
1603 LookupResult &R,
1604 const TemplateArgumentListInfo *TemplateArgs,
1605 bool IsKnownInstance) {
1606 assert(!R.empty() && !R.isAmbiguous());
1607
1608 SourceLocation loc = R.getNameLoc();
1609
1610 // We may have found a field within an anonymous union or struct
1611 // (C++ [class.union]).
1612 // FIXME: template-ids inside anonymous structs?
1613 if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1614 return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
1615
1616 // If this is known to be an instance access, go ahead and build an
1617 // implicit 'this' expression now.
1618 // 'this' expression now.
1619 QualType ThisTy = getCurrentThisType();
1620 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1621
1622 Expr *baseExpr = 0; // null signifies implicit access
1623 if (IsKnownInstance) {
1624 SourceLocation Loc = R.getNameLoc();
1625 if (SS.getRange().isValid())
1626 Loc = SS.getRange().getBegin();
1627 CheckCXXThisCapture(Loc);
1628 baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1629 }
1630
1631 return BuildMemberReferenceExpr(baseExpr, ThisTy,
1632 /*OpLoc*/ SourceLocation(),
1633 /*IsArrow*/ true,
1634 SS, TemplateKWLoc,
1635 /*FirstQualifierInScope*/ 0,
1636 R, TemplateArgs);
1637 }
1638