• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * A service that exchanges time synchronization information between
19  * a master that defines a timeline and clients that follow the timeline.
20  */
21 
22 #define __STDC_LIMIT_MACROS
23 #define LOG_TAG "common_time"
24 #include <utils/Log.h>
25 #include <stdint.h>
26 
27 #include <common_time/local_clock.h>
28 #include <assert.h>
29 
30 #include "clock_recovery.h"
31 #include "common_clock.h"
32 #ifdef TIME_SERVICE_DEBUG
33 #include "diag_thread.h"
34 #endif
35 
36 // Define log macro so we can make LOGV into LOGE when we are exclusively
37 // debugging this code.
38 #ifdef TIME_SERVICE_DEBUG
39 #define LOG_TS ALOGE
40 #else
41 #define LOG_TS ALOGV
42 #endif
43 
44 namespace android {
45 
ClockRecoveryLoop(LocalClock * local_clock,CommonClock * common_clock)46 ClockRecoveryLoop::ClockRecoveryLoop(LocalClock* local_clock,
47                                      CommonClock* common_clock) {
48     assert(NULL != local_clock);
49     assert(NULL != common_clock);
50 
51     local_clock_  = local_clock;
52     common_clock_ = common_clock;
53 
54     local_clock_can_slew_ = local_clock_->initCheck() &&
55                            (local_clock_->setLocalSlew(0) == OK);
56 
57     reset(true, true);
58 
59 #ifdef TIME_SERVICE_DEBUG
60     diag_thread_ = new DiagThread(common_clock_, local_clock_);
61     if (diag_thread_ != NULL) {
62         status_t res = diag_thread_->startWorkThread();
63         if (res != OK)
64             ALOGW("Failed to start A@H clock recovery diagnostic thread.");
65     } else
66         ALOGW("Failed to allocate diagnostic thread.");
67 #endif
68 }
69 
~ClockRecoveryLoop()70 ClockRecoveryLoop::~ClockRecoveryLoop() {
71 #ifdef TIME_SERVICE_DEBUG
72     diag_thread_->stopWorkThread();
73 #endif
74 }
75 
76 // Constants.
77 const float ClockRecoveryLoop::dT = 1.0;
78 const float ClockRecoveryLoop::Kc = 1.0f;
79 const float ClockRecoveryLoop::Ti = 15.0f;
80 const float ClockRecoveryLoop::Tf = 0.05;
81 const float ClockRecoveryLoop::bias_Fc = 0.01;
82 const float ClockRecoveryLoop::bias_RC = (dT / (2 * 3.14159f * bias_Fc));
83 const float ClockRecoveryLoop::bias_Alpha = (dT / (bias_RC + dT));
84 const int64_t ClockRecoveryLoop::panic_thresh_ = 50000;
85 const int64_t ClockRecoveryLoop::control_thresh_ = 10000;
86 const float ClockRecoveryLoop::COmin = -100.0f;
87 const float ClockRecoveryLoop::COmax = 100.0f;
88 
reset(bool position,bool frequency)89 void ClockRecoveryLoop::reset(bool position, bool frequency) {
90     Mutex::Autolock lock(&lock_);
91     reset_l(position, frequency);
92 }
93 
findMinRTTNdx(DisciplineDataPoint * data,uint32_t count)94 uint32_t ClockRecoveryLoop::findMinRTTNdx(DisciplineDataPoint* data,
95                                           uint32_t count) {
96     uint32_t min_rtt = 0;
97     for (uint32_t i = 1; i < count; ++i)
98         if (data[min_rtt].rtt > data[i].rtt)
99             min_rtt = i;
100 
101     return min_rtt;
102 }
103 
pushDisciplineEvent(int64_t local_time,int64_t nominal_common_time,int64_t rtt)104 bool ClockRecoveryLoop::pushDisciplineEvent(int64_t local_time,
105                                             int64_t nominal_common_time,
106                                             int64_t rtt) {
107     Mutex::Autolock lock(&lock_);
108 
109     int64_t local_common_time = 0;
110     common_clock_->localToCommon(local_time, &local_common_time);
111     int64_t raw_delta = nominal_common_time - local_common_time;
112 
113 #ifdef TIME_SERVICE_DEBUG
114     ALOGE("local=%lld, common=%lld, delta=%lld, rtt=%lld\n",
115          local_common_time, nominal_common_time,
116          raw_delta, rtt);
117 #endif
118 
119     // If we have not defined a basis for common time, then we need to use these
120     // initial points to do so.  In order to avoid significant initial error
121     // from a particularly bad startup data point, we collect the first N data
122     // points and choose the best of them before moving on.
123     if (!common_clock_->isValid()) {
124         if (startup_filter_wr_ < kStartupFilterSize) {
125             DisciplineDataPoint& d =  startup_filter_data_[startup_filter_wr_];
126             d.local_time = local_time;
127             d.nominal_common_time = nominal_common_time;
128             d.rtt = rtt;
129             startup_filter_wr_++;
130         }
131 
132         if (startup_filter_wr_ == kStartupFilterSize) {
133             uint32_t min_rtt = findMinRTTNdx(startup_filter_data_,
134                     kStartupFilterSize);
135 
136             common_clock_->setBasis(
137                     startup_filter_data_[min_rtt].local_time,
138                     startup_filter_data_[min_rtt].nominal_common_time);
139         }
140 
141         return true;
142     }
143 
144     int64_t observed_common;
145     int64_t delta;
146     float delta_f, dCO;
147     int32_t correction_cur;
148 
149     if (OK != common_clock_->localToCommon(local_time, &observed_common)) {
150         // Since we just checked to make certain that this conversion was valid,
151         // and no one else in the system should be messing with it, if this
152         // conversion is suddenly invalid, it is a good reason to panic.
153         ALOGE("Failed to convert local time to common time in %s:%d",
154                 __PRETTY_FUNCTION__, __LINE__);
155         return false;
156     }
157 
158     // Implement a filter which should match NTP filtering behavior when a
159     // client is associated with only one peer of lower stratum.  Basically,
160     // always use the best of the N last data points, where best is defined as
161     // lowest round trip time.  NTP uses an N of 8; we use a value of 6.
162     //
163     // TODO(johngro) : experiment with other filter strategies.  The goal here
164     // is to mitigate the effects of high RTT data points which typically have
165     // large asymmetries in the TX/RX legs.  Downside of the existing NTP
166     // approach (particularly because of the PID controller we are using to
167     // produce the control signal from the filtered data) are that the rate at
168     // which discipline events are actually acted upon becomes irregular and can
169     // become drawn out (the time between actionable event can go way up).  If
170     // the system receives a strong high quality data point, the proportional
171     // component of the controller can produce a strong correction which is left
172     // in place for too long causing overshoot.  In addition, the integral
173     // component of the system currently is an approximation based on the
174     // assumption of a more or less homogeneous sampling of the error.  Its
175     // unclear what the effect of undermining this assumption would be right
176     // now.
177 
178     // Two ideas which come to mind immediately would be to...
179     // 1) Keep a history of more data points (32 or so) and ignore data points
180     //    whose RTT is more than a certain number of standard deviations outside
181     //    of the norm.
182     // 2) Eliminate the PID controller portion of this system entirely.
183     //    Instead, move to a system which uses a very wide filter (128 data
184     //    points or more) with a sum-of-least-squares line fitting approach to
185     //    tracking the long term drift.  This would take the place of the I
186     //    component in the current PID controller.  Also use a much more narrow
187     //    outlier-rejector filter (as described in #1) to drive a short term
188     //    correction factor similar to the P component of the PID controller.
189     assert(filter_wr_ < kFilterSize);
190     filter_data_[filter_wr_].local_time           = local_time;
191     filter_data_[filter_wr_].observed_common_time = observed_common;
192     filter_data_[filter_wr_].nominal_common_time  = nominal_common_time;
193     filter_data_[filter_wr_].rtt                  = rtt;
194     filter_data_[filter_wr_].point_used           = false;
195     uint32_t current_point = filter_wr_;
196     filter_wr_ = (filter_wr_ + 1) % kFilterSize;
197     if (!filter_wr_)
198         filter_full_ = true;
199 
200     uint32_t scan_end = filter_full_ ? kFilterSize : filter_wr_;
201     uint32_t min_rtt = findMinRTTNdx(filter_data_, scan_end);
202     // We only use packets with low RTTs for control. If the packet RTT
203     // is less than the panic threshold, we can probably eat the jitter with the
204     // control loop. Otherwise, take the packet only if it better than all
205     // of the packets we have in the history. That way we try to track
206     // something, even if it is noisy.
207     if (current_point == min_rtt || rtt < control_thresh_) {
208         delta_f = delta = nominal_common_time - observed_common;
209 
210         // Compute the error then clamp to the panic threshold.  If we ever
211         // exceed this amt of error, its time to panic and reset the system.
212         // Given that the error in the measurement of the error could be as
213         // high as the RTT of the data point, we don't actually panic until
214         // the implied error (delta) is greater than the absolute panic
215         // threashold plus the RTT.  IOW - we don't panic until we are
216         // absoluely sure that our best case sync is worse than the absolute
217         // panic threshold.
218         int64_t effective_panic_thresh = panic_thresh_ + rtt;
219         if ((delta > effective_panic_thresh) ||
220             (delta < -effective_panic_thresh)) {
221             // PANIC!!!
222             reset_l(false, true);
223             return false;
224         }
225 
226     } else {
227         // We do not have a good packet to look at, but we also do not want to
228         // free-run the clock at some crazy slew rate. So we guess the
229         // trajectory of the clock based on the last controller output and the
230         // estimated bias of our clock against the master.
231         // The net effect of this is that CO == CObias after some extended
232         // period of no feedback.
233         delta_f = last_delta_f_ - dT*(CO - CObias);
234         delta = delta_f;
235     }
236 
237     // Velocity form PI control equation.
238     dCO = Kc * (1.0f + dT/Ti) * delta_f - Kc * last_delta_f_;
239     CO += dCO * Tf; // Filter CO by applying gain <1 here.
240 
241     // Save error terms for later.
242     last_delta_f_ = delta_f;
243     last_delta_ = delta;
244 
245     // Clamp CO to +/- 100ppm.
246     if (CO < COmin)
247         CO = COmin;
248     else if (CO > COmax)
249         CO = COmax;
250 
251     // Update the controller bias.
252     CObias = bias_Alpha * CO + (1.0f - bias_Alpha) * lastCObias;
253     lastCObias = CObias;
254 
255     // Convert PPM to 16-bit int range. Add some guard band (-0.01) so we
256     // don't get fp weirdness.
257     correction_cur = CO * 327.66;
258 
259     // If there was a change in the amt of correction to use, update the
260     // system.
261     if (correction_cur_ != correction_cur) {
262         correction_cur_ = correction_cur;
263         applySlew();
264     }
265 
266     LOG_TS("clock_loop %lld %f %f %f %d\n", raw_delta, delta_f, CO, CObias, correction_cur);
267 
268 #ifdef TIME_SERVICE_DEBUG
269     diag_thread_->pushDisciplineEvent(
270             local_time,
271             observed_common,
272             nominal_common_time,
273             correction_cur,
274             rtt);
275 #endif
276 
277     return true;
278 }
279 
getLastErrorEstimate()280 int32_t ClockRecoveryLoop::getLastErrorEstimate() {
281     Mutex::Autolock lock(&lock_);
282 
283     if (last_delta_valid_)
284         return last_delta_;
285     else
286         return ICommonClock::kErrorEstimateUnknown;
287 }
288 
reset_l(bool position,bool frequency)289 void ClockRecoveryLoop::reset_l(bool position, bool frequency) {
290     assert(NULL != common_clock_);
291 
292     if (position) {
293         common_clock_->resetBasis();
294         startup_filter_wr_ = 0;
295     }
296 
297     if (frequency) {
298         last_delta_valid_ = false;
299         last_delta_ = 0;
300         last_delta_f_ = 0.0;
301         correction_cur_ = 0x0;
302         CO = 0.0f;
303         lastCObias = CObias = 0.0f;
304         applySlew();
305     }
306 
307     filter_wr_   = 0;
308     filter_full_ = false;
309 }
310 
applySlew()311 void ClockRecoveryLoop::applySlew() {
312     if (local_clock_can_slew_) {
313         local_clock_->setLocalSlew(correction_cur_);
314     } else {
315         // The SW clock recovery implemented by the common clock class expects
316         // values expressed in PPM. CO is in ppm.
317         common_clock_->setSlew(local_clock_->getLocalTime(), CO);
318     }
319 }
320 
321 }  // namespace android
322