1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // TargetData information. These functions cannot go in VMCore due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLibraryInfo.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringMap.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/GetElementPtrTypeIterator.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/FEnv.h"
36 #include <cerrno>
37 #include <cmath>
38 using namespace llvm;
39
40 //===----------------------------------------------------------------------===//
41 // Constant Folding internal helper functions
42 //===----------------------------------------------------------------------===//
43
44 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
45 /// TargetData. This always returns a non-null constant, but it may be a
46 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const TargetData & TD)47 static Constant *FoldBitCast(Constant *C, Type *DestTy,
48 const TargetData &TD) {
49 // Catch the obvious splat cases.
50 if (C->isNullValue() && !DestTy->isX86_MMXTy())
51 return Constant::getNullValue(DestTy);
52 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
53 return Constant::getAllOnesValue(DestTy);
54
55 // Handle a vector->integer cast.
56 if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
57 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
58 if (CDV == 0)
59 return ConstantExpr::getBitCast(C, DestTy);
60
61 unsigned NumSrcElts = CDV->getType()->getNumElements();
62
63 Type *SrcEltTy = CDV->getType()->getElementType();
64
65 // If the vector is a vector of floating point, convert it to vector of int
66 // to simplify things.
67 if (SrcEltTy->isFloatingPointTy()) {
68 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69 Type *SrcIVTy =
70 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71 // Ask VMCore to do the conversion now that #elts line up.
72 C = ConstantExpr::getBitCast(C, SrcIVTy);
73 CDV = cast<ConstantDataVector>(C);
74 }
75
76 // Now that we know that the input value is a vector of integers, just shift
77 // and insert them into our result.
78 unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
79 APInt Result(IT->getBitWidth(), 0);
80 for (unsigned i = 0; i != NumSrcElts; ++i) {
81 Result <<= BitShift;
82 if (TD.isLittleEndian())
83 Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
84 else
85 Result |= CDV->getElementAsInteger(i);
86 }
87
88 return ConstantInt::get(IT, Result);
89 }
90
91 // The code below only handles casts to vectors currently.
92 VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
93 if (DestVTy == 0)
94 return ConstantExpr::getBitCast(C, DestTy);
95
96 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
97 // vector so the code below can handle it uniformly.
98 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
99 Constant *Ops = C; // don't take the address of C!
100 return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
101 }
102
103 // If this is a bitcast from constant vector -> vector, fold it.
104 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
105 return ConstantExpr::getBitCast(C, DestTy);
106
107 // If the element types match, VMCore can fold it.
108 unsigned NumDstElt = DestVTy->getNumElements();
109 unsigned NumSrcElt = C->getType()->getVectorNumElements();
110 if (NumDstElt == NumSrcElt)
111 return ConstantExpr::getBitCast(C, DestTy);
112
113 Type *SrcEltTy = C->getType()->getVectorElementType();
114 Type *DstEltTy = DestVTy->getElementType();
115
116 // Otherwise, we're changing the number of elements in a vector, which
117 // requires endianness information to do the right thing. For example,
118 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
119 // folds to (little endian):
120 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
121 // and to (big endian):
122 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
123
124 // First thing is first. We only want to think about integer here, so if
125 // we have something in FP form, recast it as integer.
126 if (DstEltTy->isFloatingPointTy()) {
127 // Fold to an vector of integers with same size as our FP type.
128 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
129 Type *DestIVTy =
130 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
131 // Recursively handle this integer conversion, if possible.
132 C = FoldBitCast(C, DestIVTy, TD);
133
134 // Finally, VMCore can handle this now that #elts line up.
135 return ConstantExpr::getBitCast(C, DestTy);
136 }
137
138 // Okay, we know the destination is integer, if the input is FP, convert
139 // it to integer first.
140 if (SrcEltTy->isFloatingPointTy()) {
141 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
142 Type *SrcIVTy =
143 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
144 // Ask VMCore to do the conversion now that #elts line up.
145 C = ConstantExpr::getBitCast(C, SrcIVTy);
146 // If VMCore wasn't able to fold it, bail out.
147 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
148 !isa<ConstantDataVector>(C))
149 return C;
150 }
151
152 // Now we know that the input and output vectors are both integer vectors
153 // of the same size, and that their #elements is not the same. Do the
154 // conversion here, which depends on whether the input or output has
155 // more elements.
156 bool isLittleEndian = TD.isLittleEndian();
157
158 SmallVector<Constant*, 32> Result;
159 if (NumDstElt < NumSrcElt) {
160 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
161 Constant *Zero = Constant::getNullValue(DstEltTy);
162 unsigned Ratio = NumSrcElt/NumDstElt;
163 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
164 unsigned SrcElt = 0;
165 for (unsigned i = 0; i != NumDstElt; ++i) {
166 // Build each element of the result.
167 Constant *Elt = Zero;
168 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
169 for (unsigned j = 0; j != Ratio; ++j) {
170 Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
171 if (!Src) // Reject constantexpr elements.
172 return ConstantExpr::getBitCast(C, DestTy);
173
174 // Zero extend the element to the right size.
175 Src = ConstantExpr::getZExt(Src, Elt->getType());
176
177 // Shift it to the right place, depending on endianness.
178 Src = ConstantExpr::getShl(Src,
179 ConstantInt::get(Src->getType(), ShiftAmt));
180 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
181
182 // Mix it in.
183 Elt = ConstantExpr::getOr(Elt, Src);
184 }
185 Result.push_back(Elt);
186 }
187 return ConstantVector::get(Result);
188 }
189
190 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
191 unsigned Ratio = NumDstElt/NumSrcElt;
192 unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
193
194 // Loop over each source value, expanding into multiple results.
195 for (unsigned i = 0; i != NumSrcElt; ++i) {
196 Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
197 if (!Src) // Reject constantexpr elements.
198 return ConstantExpr::getBitCast(C, DestTy);
199
200 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
201 for (unsigned j = 0; j != Ratio; ++j) {
202 // Shift the piece of the value into the right place, depending on
203 // endianness.
204 Constant *Elt = ConstantExpr::getLShr(Src,
205 ConstantInt::get(Src->getType(), ShiftAmt));
206 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
207
208 // Truncate and remember this piece.
209 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
210 }
211 }
212
213 return ConstantVector::get(Result);
214 }
215
216
217 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
218 /// from a global, return the global and the constant. Because of
219 /// constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,int64_t & Offset,const TargetData & TD)220 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
221 int64_t &Offset, const TargetData &TD) {
222 // Trivial case, constant is the global.
223 if ((GV = dyn_cast<GlobalValue>(C))) {
224 Offset = 0;
225 return true;
226 }
227
228 // Otherwise, if this isn't a constant expr, bail out.
229 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
230 if (!CE) return false;
231
232 // Look through ptr->int and ptr->ptr casts.
233 if (CE->getOpcode() == Instruction::PtrToInt ||
234 CE->getOpcode() == Instruction::BitCast)
235 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
236
237 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
238 if (CE->getOpcode() == Instruction::GetElementPtr) {
239 // Cannot compute this if the element type of the pointer is missing size
240 // info.
241 if (!cast<PointerType>(CE->getOperand(0)->getType())
242 ->getElementType()->isSized())
243 return false;
244
245 // If the base isn't a global+constant, we aren't either.
246 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
247 return false;
248
249 // Otherwise, add any offset that our operands provide.
250 gep_type_iterator GTI = gep_type_begin(CE);
251 for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
252 i != e; ++i, ++GTI) {
253 ConstantInt *CI = dyn_cast<ConstantInt>(*i);
254 if (!CI) return false; // Index isn't a simple constant?
255 if (CI->isZero()) continue; // Not adding anything.
256
257 if (StructType *ST = dyn_cast<StructType>(*GTI)) {
258 // N = N + Offset
259 Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
260 } else {
261 SequentialType *SQT = cast<SequentialType>(*GTI);
262 Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
263 }
264 }
265 return true;
266 }
267
268 return false;
269 }
270
271 /// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
272 /// constant being copied out of. ByteOffset is an offset into C. CurPtr is the
273 /// pointer to copy results into and BytesLeft is the number of bytes left in
274 /// the CurPtr buffer. TD is the target data.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const TargetData & TD)275 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
276 unsigned char *CurPtr, unsigned BytesLeft,
277 const TargetData &TD) {
278 assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
279 "Out of range access");
280
281 // If this element is zero or undefined, we can just return since *CurPtr is
282 // zero initialized.
283 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
284 return true;
285
286 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
287 if (CI->getBitWidth() > 64 ||
288 (CI->getBitWidth() & 7) != 0)
289 return false;
290
291 uint64_t Val = CI->getZExtValue();
292 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
293
294 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
295 CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
296 ++ByteOffset;
297 }
298 return true;
299 }
300
301 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
302 if (CFP->getType()->isDoubleTy()) {
303 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
304 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
305 }
306 if (CFP->getType()->isFloatTy()){
307 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
308 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
309 }
310 return false;
311 }
312
313 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
314 const StructLayout *SL = TD.getStructLayout(CS->getType());
315 unsigned Index = SL->getElementContainingOffset(ByteOffset);
316 uint64_t CurEltOffset = SL->getElementOffset(Index);
317 ByteOffset -= CurEltOffset;
318
319 while (1) {
320 // If the element access is to the element itself and not to tail padding,
321 // read the bytes from the element.
322 uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
323
324 if (ByteOffset < EltSize &&
325 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
326 BytesLeft, TD))
327 return false;
328
329 ++Index;
330
331 // Check to see if we read from the last struct element, if so we're done.
332 if (Index == CS->getType()->getNumElements())
333 return true;
334
335 // If we read all of the bytes we needed from this element we're done.
336 uint64_t NextEltOffset = SL->getElementOffset(Index);
337
338 if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
339 return true;
340
341 // Move to the next element of the struct.
342 CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
343 BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
344 ByteOffset = 0;
345 CurEltOffset = NextEltOffset;
346 }
347 // not reached.
348 }
349
350 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
351 isa<ConstantDataSequential>(C)) {
352 Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
353 uint64_t EltSize = TD.getTypeAllocSize(EltTy);
354 uint64_t Index = ByteOffset / EltSize;
355 uint64_t Offset = ByteOffset - Index * EltSize;
356 uint64_t NumElts;
357 if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
358 NumElts = AT->getNumElements();
359 else
360 NumElts = cast<VectorType>(C->getType())->getNumElements();
361
362 for (; Index != NumElts; ++Index) {
363 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
364 BytesLeft, TD))
365 return false;
366 if (EltSize >= BytesLeft)
367 return true;
368
369 Offset = 0;
370 BytesLeft -= EltSize;
371 CurPtr += EltSize;
372 }
373 return true;
374 }
375
376 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
377 if (CE->getOpcode() == Instruction::IntToPtr &&
378 CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
379 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
380 BytesLeft, TD);
381 }
382
383 // Otherwise, unknown initializer type.
384 return false;
385 }
386
FoldReinterpretLoadFromConstPtr(Constant * C,const TargetData & TD)387 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
388 const TargetData &TD) {
389 Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
390 IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
391
392 // If this isn't an integer load we can't fold it directly.
393 if (!IntType) {
394 // If this is a float/double load, we can try folding it as an int32/64 load
395 // and then bitcast the result. This can be useful for union cases. Note
396 // that address spaces don't matter here since we're not going to result in
397 // an actual new load.
398 Type *MapTy;
399 if (LoadTy->isFloatTy())
400 MapTy = Type::getInt32PtrTy(C->getContext());
401 else if (LoadTy->isDoubleTy())
402 MapTy = Type::getInt64PtrTy(C->getContext());
403 else if (LoadTy->isVectorTy()) {
404 MapTy = IntegerType::get(C->getContext(),
405 TD.getTypeAllocSizeInBits(LoadTy));
406 MapTy = PointerType::getUnqual(MapTy);
407 } else
408 return 0;
409
410 C = FoldBitCast(C, MapTy, TD);
411 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
412 return FoldBitCast(Res, LoadTy, TD);
413 return 0;
414 }
415
416 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
417 if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
418
419 GlobalValue *GVal;
420 int64_t Offset;
421 if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
422 return 0;
423
424 GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
425 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
426 !GV->getInitializer()->getType()->isSized())
427 return 0;
428
429 // If we're loading off the beginning of the global, some bytes may be valid,
430 // but we don't try to handle this.
431 if (Offset < 0) return 0;
432
433 // If we're not accessing anything in this constant, the result is undefined.
434 if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
435 return UndefValue::get(IntType);
436
437 unsigned char RawBytes[32] = {0};
438 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
439 BytesLoaded, TD))
440 return 0;
441
442 APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
443 for (unsigned i = 1; i != BytesLoaded; ++i) {
444 ResultVal <<= 8;
445 ResultVal |= RawBytes[BytesLoaded-1-i];
446 }
447
448 return ConstantInt::get(IntType->getContext(), ResultVal);
449 }
450
451 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
452 /// produce if it is constant and determinable. If this is not determinable,
453 /// return null.
ConstantFoldLoadFromConstPtr(Constant * C,const TargetData * TD)454 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
455 const TargetData *TD) {
456 // First, try the easy cases:
457 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
458 if (GV->isConstant() && GV->hasDefinitiveInitializer())
459 return GV->getInitializer();
460
461 // If the loaded value isn't a constant expr, we can't handle it.
462 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
463 if (!CE) return 0;
464
465 if (CE->getOpcode() == Instruction::GetElementPtr) {
466 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
467 if (GV->isConstant() && GV->hasDefinitiveInitializer())
468 if (Constant *V =
469 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
470 return V;
471 }
472
473 // Instead of loading constant c string, use corresponding integer value
474 // directly if string length is small enough.
475 StringRef Str;
476 if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
477 unsigned StrLen = Str.size();
478 Type *Ty = cast<PointerType>(CE->getType())->getElementType();
479 unsigned NumBits = Ty->getPrimitiveSizeInBits();
480 // Replace load with immediate integer if the result is an integer or fp
481 // value.
482 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
483 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
484 APInt StrVal(NumBits, 0);
485 APInt SingleChar(NumBits, 0);
486 if (TD->isLittleEndian()) {
487 for (signed i = StrLen-1; i >= 0; i--) {
488 SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
489 StrVal = (StrVal << 8) | SingleChar;
490 }
491 } else {
492 for (unsigned i = 0; i < StrLen; i++) {
493 SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
494 StrVal = (StrVal << 8) | SingleChar;
495 }
496 // Append NULL at the end.
497 SingleChar = 0;
498 StrVal = (StrVal << 8) | SingleChar;
499 }
500
501 Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
502 if (Ty->isFloatingPointTy())
503 Res = ConstantExpr::getBitCast(Res, Ty);
504 return Res;
505 }
506 }
507
508 // If this load comes from anywhere in a constant global, and if the global
509 // is all undef or zero, we know what it loads.
510 if (GlobalVariable *GV =
511 dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
512 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
513 Type *ResTy = cast<PointerType>(C->getType())->getElementType();
514 if (GV->getInitializer()->isNullValue())
515 return Constant::getNullValue(ResTy);
516 if (isa<UndefValue>(GV->getInitializer()))
517 return UndefValue::get(ResTy);
518 }
519 }
520
521 // Try hard to fold loads from bitcasted strange and non-type-safe things. We
522 // currently don't do any of this for big endian systems. It can be
523 // generalized in the future if someone is interested.
524 if (TD && TD->isLittleEndian())
525 return FoldReinterpretLoadFromConstPtr(CE, *TD);
526 return 0;
527 }
528
ConstantFoldLoadInst(const LoadInst * LI,const TargetData * TD)529 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
530 if (LI->isVolatile()) return 0;
531
532 if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
533 return ConstantFoldLoadFromConstPtr(C, TD);
534
535 return 0;
536 }
537
538 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
539 /// Attempt to symbolically evaluate the result of a binary operator merging
540 /// these together. If target data info is available, it is provided as TD,
541 /// otherwise TD is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const TargetData * TD)542 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
543 Constant *Op1, const TargetData *TD){
544 // SROA
545
546 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
547 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
548 // bits.
549
550
551 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
552 // constant. This happens frequently when iterating over a global array.
553 if (Opc == Instruction::Sub && TD) {
554 GlobalValue *GV1, *GV2;
555 int64_t Offs1, Offs2;
556
557 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
558 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
559 GV1 == GV2) {
560 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
561 return ConstantInt::get(Op0->getType(), Offs1-Offs2);
562 }
563 }
564
565 return 0;
566 }
567
568 /// CastGEPIndices - If array indices are not pointer-sized integers,
569 /// explicitly cast them so that they aren't implicitly casted by the
570 /// getelementptr.
CastGEPIndices(ArrayRef<Constant * > Ops,Type * ResultTy,const TargetData * TD,const TargetLibraryInfo * TLI)571 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
572 Type *ResultTy, const TargetData *TD,
573 const TargetLibraryInfo *TLI) {
574 if (!TD) return 0;
575 Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
576
577 bool Any = false;
578 SmallVector<Constant*, 32> NewIdxs;
579 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
580 if ((i == 1 ||
581 !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
582 Ops.slice(1, i-1)))) &&
583 Ops[i]->getType() != IntPtrTy) {
584 Any = true;
585 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
586 true,
587 IntPtrTy,
588 true),
589 Ops[i], IntPtrTy));
590 } else
591 NewIdxs.push_back(Ops[i]);
592 }
593 if (!Any) return 0;
594
595 Constant *C =
596 ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
597 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
598 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
599 C = Folded;
600 return C;
601 }
602
603 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
604 /// constant expression, do so.
SymbolicallyEvaluateGEP(ArrayRef<Constant * > Ops,Type * ResultTy,const TargetData * TD,const TargetLibraryInfo * TLI)605 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
606 Type *ResultTy, const TargetData *TD,
607 const TargetLibraryInfo *TLI) {
608 Constant *Ptr = Ops[0];
609 if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
610 !Ptr->getType()->isPointerTy())
611 return 0;
612
613 Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
614
615 // If this is a constant expr gep that is effectively computing an
616 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
617 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
618 if (!isa<ConstantInt>(Ops[i])) {
619
620 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
621 // "inttoptr (sub (ptrtoint Ptr), V)"
622 if (Ops.size() == 2 &&
623 cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
624 ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
625 assert((CE == 0 || CE->getType() == IntPtrTy) &&
626 "CastGEPIndices didn't canonicalize index types!");
627 if (CE && CE->getOpcode() == Instruction::Sub &&
628 CE->getOperand(0)->isNullValue()) {
629 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
630 Res = ConstantExpr::getSub(Res, CE->getOperand(1));
631 Res = ConstantExpr::getIntToPtr(Res, ResultTy);
632 if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
633 Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
634 return Res;
635 }
636 }
637 return 0;
638 }
639
640 unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
641 APInt Offset =
642 APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
643 makeArrayRef((Value **)Ops.data() + 1,
644 Ops.size() - 1)));
645 Ptr = cast<Constant>(Ptr->stripPointerCasts());
646
647 // If this is a GEP of a GEP, fold it all into a single GEP.
648 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
649 SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
650
651 // Do not try the incorporate the sub-GEP if some index is not a number.
652 bool AllConstantInt = true;
653 for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
654 if (!isa<ConstantInt>(NestedOps[i])) {
655 AllConstantInt = false;
656 break;
657 }
658 if (!AllConstantInt)
659 break;
660
661 Ptr = cast<Constant>(GEP->getOperand(0));
662 Offset += APInt(BitWidth,
663 TD->getIndexedOffset(Ptr->getType(), NestedOps));
664 Ptr = cast<Constant>(Ptr->stripPointerCasts());
665 }
666
667 // If the base value for this address is a literal integer value, fold the
668 // getelementptr to the resulting integer value casted to the pointer type.
669 APInt BasePtr(BitWidth, 0);
670 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
671 if (CE->getOpcode() == Instruction::IntToPtr)
672 if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
673 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
674 if (Ptr->isNullValue() || BasePtr != 0) {
675 Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
676 return ConstantExpr::getIntToPtr(C, ResultTy);
677 }
678
679 // Otherwise form a regular getelementptr. Recompute the indices so that
680 // we eliminate over-indexing of the notional static type array bounds.
681 // This makes it easy to determine if the getelementptr is "inbounds".
682 // Also, this helps GlobalOpt do SROA on GlobalVariables.
683 Type *Ty = Ptr->getType();
684 SmallVector<Constant*, 32> NewIdxs;
685 do {
686 if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
687 if (ATy->isPointerTy()) {
688 // The only pointer indexing we'll do is on the first index of the GEP.
689 if (!NewIdxs.empty())
690 break;
691
692 // Only handle pointers to sized types, not pointers to functions.
693 if (!ATy->getElementType()->isSized())
694 return 0;
695 }
696
697 // Determine which element of the array the offset points into.
698 APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
699 IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
700 if (ElemSize == 0)
701 // The element size is 0. This may be [0 x Ty]*, so just use a zero
702 // index for this level and proceed to the next level to see if it can
703 // accommodate the offset.
704 NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
705 else {
706 // The element size is non-zero divide the offset by the element
707 // size (rounding down), to compute the index at this level.
708 APInt NewIdx = Offset.udiv(ElemSize);
709 Offset -= NewIdx * ElemSize;
710 NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
711 }
712 Ty = ATy->getElementType();
713 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
714 // Determine which field of the struct the offset points into. The
715 // getZExtValue is at least as safe as the StructLayout API because we
716 // know the offset is within the struct at this point.
717 const StructLayout &SL = *TD->getStructLayout(STy);
718 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
719 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
720 ElIdx));
721 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
722 Ty = STy->getTypeAtIndex(ElIdx);
723 } else {
724 // We've reached some non-indexable type.
725 break;
726 }
727 } while (Ty != cast<PointerType>(ResultTy)->getElementType());
728
729 // If we haven't used up the entire offset by descending the static
730 // type, then the offset is pointing into the middle of an indivisible
731 // member, so we can't simplify it.
732 if (Offset != 0)
733 return 0;
734
735 // Create a GEP.
736 Constant *C =
737 ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
738 assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
739 "Computed GetElementPtr has unexpected type!");
740
741 // If we ended up indexing a member with a type that doesn't match
742 // the type of what the original indices indexed, add a cast.
743 if (Ty != cast<PointerType>(ResultTy)->getElementType())
744 C = FoldBitCast(C, ResultTy, *TD);
745
746 return C;
747 }
748
749
750
751 //===----------------------------------------------------------------------===//
752 // Constant Folding public APIs
753 //===----------------------------------------------------------------------===//
754
755 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
756 /// If successful, the constant result is returned, if not, null is returned.
757 /// Note that this fails if not all of the operands are constant. Otherwise,
758 /// this function can only fail when attempting to fold instructions like loads
759 /// and stores, which have no constant expression form.
ConstantFoldInstruction(Instruction * I,const TargetData * TD,const TargetLibraryInfo * TLI)760 Constant *llvm::ConstantFoldInstruction(Instruction *I,
761 const TargetData *TD,
762 const TargetLibraryInfo *TLI) {
763 // Handle PHI nodes quickly here...
764 if (PHINode *PN = dyn_cast<PHINode>(I)) {
765 Constant *CommonValue = 0;
766
767 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
768 Value *Incoming = PN->getIncomingValue(i);
769 // If the incoming value is undef then skip it. Note that while we could
770 // skip the value if it is equal to the phi node itself we choose not to
771 // because that would break the rule that constant folding only applies if
772 // all operands are constants.
773 if (isa<UndefValue>(Incoming))
774 continue;
775 // If the incoming value is not a constant, or is a different constant to
776 // the one we saw previously, then give up.
777 Constant *C = dyn_cast<Constant>(Incoming);
778 if (!C || (CommonValue && C != CommonValue))
779 return 0;
780 CommonValue = C;
781 }
782
783 // If we reach here, all incoming values are the same constant or undef.
784 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
785 }
786
787 // Scan the operand list, checking to see if they are all constants, if so,
788 // hand off to ConstantFoldInstOperands.
789 SmallVector<Constant*, 8> Ops;
790 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
791 if (Constant *Op = dyn_cast<Constant>(*i))
792 Ops.push_back(Op);
793 else
794 return 0; // All operands not constant!
795
796 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
797 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
798 TD, TLI);
799
800 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
801 return ConstantFoldLoadInst(LI, TD);
802
803 if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
804 return ConstantExpr::getInsertValue(
805 cast<Constant>(IVI->getAggregateOperand()),
806 cast<Constant>(IVI->getInsertedValueOperand()),
807 IVI->getIndices());
808
809 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
810 return ConstantExpr::getExtractValue(
811 cast<Constant>(EVI->getAggregateOperand()),
812 EVI->getIndices());
813
814 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
815 }
816
817 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
818 /// using the specified TargetData. If successful, the constant result is
819 /// result is returned, if not, null is returned.
ConstantFoldConstantExpression(const ConstantExpr * CE,const TargetData * TD,const TargetLibraryInfo * TLI)820 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
821 const TargetData *TD,
822 const TargetLibraryInfo *TLI) {
823 SmallVector<Constant*, 8> Ops;
824 for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
825 i != e; ++i) {
826 Constant *NewC = cast<Constant>(*i);
827 // Recursively fold the ConstantExpr's operands.
828 if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
829 NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
830 Ops.push_back(NewC);
831 }
832
833 if (CE->isCompare())
834 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
835 TD, TLI);
836 return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
837 }
838
839 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
840 /// specified opcode and operands. If successful, the constant result is
841 /// returned, if not, null is returned. Note that this function can fail when
842 /// attempting to fold instructions like loads and stores, which have no
843 /// constant expression form.
844 ///
845 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
846 /// information, due to only being passed an opcode and operands. Constant
847 /// folding using this function strips this information.
848 ///
ConstantFoldInstOperands(unsigned Opcode,Type * DestTy,ArrayRef<Constant * > Ops,const TargetData * TD,const TargetLibraryInfo * TLI)849 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
850 ArrayRef<Constant *> Ops,
851 const TargetData *TD,
852 const TargetLibraryInfo *TLI) {
853 // Handle easy binops first.
854 if (Instruction::isBinaryOp(Opcode)) {
855 if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
856 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
857 return C;
858
859 return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
860 }
861
862 switch (Opcode) {
863 default: return 0;
864 case Instruction::ICmp:
865 case Instruction::FCmp: llvm_unreachable("Invalid for compares");
866 case Instruction::Call:
867 if (Function *F = dyn_cast<Function>(Ops.back()))
868 if (canConstantFoldCallTo(F))
869 return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
870 return 0;
871 case Instruction::PtrToInt:
872 // If the input is a inttoptr, eliminate the pair. This requires knowing
873 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
874 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
875 if (TD && CE->getOpcode() == Instruction::IntToPtr) {
876 Constant *Input = CE->getOperand(0);
877 unsigned InWidth = Input->getType()->getScalarSizeInBits();
878 if (TD->getPointerSizeInBits() < InWidth) {
879 Constant *Mask =
880 ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
881 TD->getPointerSizeInBits()));
882 Input = ConstantExpr::getAnd(Input, Mask);
883 }
884 // Do a zext or trunc to get to the dest size.
885 return ConstantExpr::getIntegerCast(Input, DestTy, false);
886 }
887 }
888 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
889 case Instruction::IntToPtr:
890 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
891 // the int size is >= the ptr size. This requires knowing the width of a
892 // pointer, so it can't be done in ConstantExpr::getCast.
893 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
894 if (TD &&
895 TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
896 CE->getOpcode() == Instruction::PtrToInt)
897 return FoldBitCast(CE->getOperand(0), DestTy, *TD);
898
899 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
900 case Instruction::Trunc:
901 case Instruction::ZExt:
902 case Instruction::SExt:
903 case Instruction::FPTrunc:
904 case Instruction::FPExt:
905 case Instruction::UIToFP:
906 case Instruction::SIToFP:
907 case Instruction::FPToUI:
908 case Instruction::FPToSI:
909 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
910 case Instruction::BitCast:
911 if (TD)
912 return FoldBitCast(Ops[0], DestTy, *TD);
913 return ConstantExpr::getBitCast(Ops[0], DestTy);
914 case Instruction::Select:
915 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
916 case Instruction::ExtractElement:
917 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
918 case Instruction::InsertElement:
919 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
920 case Instruction::ShuffleVector:
921 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
922 case Instruction::GetElementPtr:
923 if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
924 return C;
925 if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
926 return C;
927
928 return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
929 }
930 }
931
932 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
933 /// instruction (icmp/fcmp) with the specified operands. If it fails, it
934 /// returns a constant expression of the specified operands.
935 ///
ConstantFoldCompareInstOperands(unsigned Predicate,Constant * Ops0,Constant * Ops1,const TargetData * TD,const TargetLibraryInfo * TLI)936 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
937 Constant *Ops0, Constant *Ops1,
938 const TargetData *TD,
939 const TargetLibraryInfo *TLI) {
940 // fold: icmp (inttoptr x), null -> icmp x, 0
941 // fold: icmp (ptrtoint x), 0 -> icmp x, null
942 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
943 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
944 //
945 // ConstantExpr::getCompare cannot do this, because it doesn't have TD
946 // around to know if bit truncation is happening.
947 if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
948 if (TD && Ops1->isNullValue()) {
949 Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
950 if (CE0->getOpcode() == Instruction::IntToPtr) {
951 // Convert the integer value to the right size to ensure we get the
952 // proper extension or truncation.
953 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
954 IntPtrTy, false);
955 Constant *Null = Constant::getNullValue(C->getType());
956 return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
957 }
958
959 // Only do this transformation if the int is intptrty in size, otherwise
960 // there is a truncation or extension that we aren't modeling.
961 if (CE0->getOpcode() == Instruction::PtrToInt &&
962 CE0->getType() == IntPtrTy) {
963 Constant *C = CE0->getOperand(0);
964 Constant *Null = Constant::getNullValue(C->getType());
965 return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
966 }
967 }
968
969 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
970 if (TD && CE0->getOpcode() == CE1->getOpcode()) {
971 Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
972
973 if (CE0->getOpcode() == Instruction::IntToPtr) {
974 // Convert the integer value to the right size to ensure we get the
975 // proper extension or truncation.
976 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
977 IntPtrTy, false);
978 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
979 IntPtrTy, false);
980 return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
981 }
982
983 // Only do this transformation if the int is intptrty in size, otherwise
984 // there is a truncation or extension that we aren't modeling.
985 if ((CE0->getOpcode() == Instruction::PtrToInt &&
986 CE0->getType() == IntPtrTy &&
987 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
988 return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
989 CE1->getOperand(0), TD, TLI);
990 }
991 }
992
993 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
994 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
995 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
996 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
997 Constant *LHS =
998 ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
999 TD, TLI);
1000 Constant *RHS =
1001 ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1002 TD, TLI);
1003 unsigned OpC =
1004 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1005 Constant *Ops[] = { LHS, RHS };
1006 return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1007 }
1008 }
1009
1010 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1011 }
1012
1013
1014 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1015 /// getelementptr constantexpr, return the constant value being addressed by the
1016 /// constant expression, or null if something is funny and we can't decide.
ConstantFoldLoadThroughGEPConstantExpr(Constant * C,ConstantExpr * CE)1017 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1018 ConstantExpr *CE) {
1019 if (!CE->getOperand(1)->isNullValue())
1020 return 0; // Do not allow stepping over the value!
1021
1022 // Loop over all of the operands, tracking down which value we are
1023 // addressing.
1024 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1025 C = C->getAggregateElement(CE->getOperand(i));
1026 if (C == 0) return 0;
1027 }
1028 return C;
1029 }
1030
1031 /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1032 /// indices (with an *implied* zero pointer index that is not in the list),
1033 /// return the constant value being addressed by a virtual load, or null if
1034 /// something is funny and we can't decide.
ConstantFoldLoadThroughGEPIndices(Constant * C,ArrayRef<Constant * > Indices)1035 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1036 ArrayRef<Constant*> Indices) {
1037 // Loop over all of the operands, tracking down which value we are
1038 // addressing.
1039 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1040 C = C->getAggregateElement(Indices[i]);
1041 if (C == 0) return 0;
1042 }
1043 return C;
1044 }
1045
1046
1047 //===----------------------------------------------------------------------===//
1048 // Constant Folding for Calls
1049 //
1050
1051 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
1052 /// the specified function.
1053 bool
canConstantFoldCallTo(const Function * F)1054 llvm::canConstantFoldCallTo(const Function *F) {
1055 switch (F->getIntrinsicID()) {
1056 case Intrinsic::sqrt:
1057 case Intrinsic::pow:
1058 case Intrinsic::powi:
1059 case Intrinsic::bswap:
1060 case Intrinsic::ctpop:
1061 case Intrinsic::ctlz:
1062 case Intrinsic::cttz:
1063 case Intrinsic::sadd_with_overflow:
1064 case Intrinsic::uadd_with_overflow:
1065 case Intrinsic::ssub_with_overflow:
1066 case Intrinsic::usub_with_overflow:
1067 case Intrinsic::smul_with_overflow:
1068 case Intrinsic::umul_with_overflow:
1069 case Intrinsic::convert_from_fp16:
1070 case Intrinsic::convert_to_fp16:
1071 case Intrinsic::x86_sse_cvtss2si:
1072 case Intrinsic::x86_sse_cvtss2si64:
1073 case Intrinsic::x86_sse_cvttss2si:
1074 case Intrinsic::x86_sse_cvttss2si64:
1075 case Intrinsic::x86_sse2_cvtsd2si:
1076 case Intrinsic::x86_sse2_cvtsd2si64:
1077 case Intrinsic::x86_sse2_cvttsd2si:
1078 case Intrinsic::x86_sse2_cvttsd2si64:
1079 return true;
1080 default:
1081 return false;
1082 case 0: break;
1083 }
1084
1085 if (!F->hasName()) return false;
1086 StringRef Name = F->getName();
1087
1088 // In these cases, the check of the length is required. We don't want to
1089 // return true for a name like "cos\0blah" which strcmp would return equal to
1090 // "cos", but has length 8.
1091 switch (Name[0]) {
1092 default: return false;
1093 case 'a':
1094 return Name == "acos" || Name == "asin" ||
1095 Name == "atan" || Name == "atan2";
1096 case 'c':
1097 return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1098 case 'e':
1099 return Name == "exp" || Name == "exp2";
1100 case 'f':
1101 return Name == "fabs" || Name == "fmod" || Name == "floor";
1102 case 'l':
1103 return Name == "log" || Name == "log10";
1104 case 'p':
1105 return Name == "pow";
1106 case 's':
1107 return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1108 Name == "sinf" || Name == "sqrtf";
1109 case 't':
1110 return Name == "tan" || Name == "tanh";
1111 }
1112 }
1113
ConstantFoldFP(double (* NativeFP)(double),double V,Type * Ty)1114 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1115 Type *Ty) {
1116 sys::llvm_fenv_clearexcept();
1117 V = NativeFP(V);
1118 if (sys::llvm_fenv_testexcept()) {
1119 sys::llvm_fenv_clearexcept();
1120 return 0;
1121 }
1122
1123 if (Ty->isFloatTy())
1124 return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1125 if (Ty->isDoubleTy())
1126 return ConstantFP::get(Ty->getContext(), APFloat(V));
1127 llvm_unreachable("Can only constant fold float/double");
1128 }
1129
ConstantFoldBinaryFP(double (* NativeFP)(double,double),double V,double W,Type * Ty)1130 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1131 double V, double W, Type *Ty) {
1132 sys::llvm_fenv_clearexcept();
1133 V = NativeFP(V, W);
1134 if (sys::llvm_fenv_testexcept()) {
1135 sys::llvm_fenv_clearexcept();
1136 return 0;
1137 }
1138
1139 if (Ty->isFloatTy())
1140 return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1141 if (Ty->isDoubleTy())
1142 return ConstantFP::get(Ty->getContext(), APFloat(V));
1143 llvm_unreachable("Can only constant fold float/double");
1144 }
1145
1146 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1147 /// conversion of a constant floating point. If roundTowardZero is false, the
1148 /// default IEEE rounding is used (toward nearest, ties to even). This matches
1149 /// the behavior of the non-truncating SSE instructions in the default rounding
1150 /// mode. The desired integer type Ty is used to select how many bits are
1151 /// available for the result. Returns null if the conversion cannot be
1152 /// performed, otherwise returns the Constant value resulting from the
1153 /// conversion.
ConstantFoldConvertToInt(const APFloat & Val,bool roundTowardZero,Type * Ty)1154 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1155 bool roundTowardZero, Type *Ty) {
1156 // All of these conversion intrinsics form an integer of at most 64bits.
1157 unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1158 assert(ResultWidth <= 64 &&
1159 "Can only constant fold conversions to 64 and 32 bit ints");
1160
1161 uint64_t UIntVal;
1162 bool isExact = false;
1163 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1164 : APFloat::rmNearestTiesToEven;
1165 APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1166 /*isSigned=*/true, mode,
1167 &isExact);
1168 if (status != APFloat::opOK && status != APFloat::opInexact)
1169 return 0;
1170 return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1171 }
1172
1173 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
1174 /// with the specified arguments, returning null if unsuccessful.
1175 Constant *
ConstantFoldCall(Function * F,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1176 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1177 const TargetLibraryInfo *TLI) {
1178 if (!F->hasName()) return 0;
1179 StringRef Name = F->getName();
1180
1181 Type *Ty = F->getReturnType();
1182 if (Operands.size() == 1) {
1183 if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1184 if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1185 APFloat Val(Op->getValueAPF());
1186
1187 bool lost = false;
1188 Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1189
1190 return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1191 }
1192 if (!TLI)
1193 return 0;
1194
1195 if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1196 return 0;
1197
1198 /// We only fold functions with finite arguments. Folding NaN and inf is
1199 /// likely to be aborted with an exception anyway, and some host libms
1200 /// have known errors raising exceptions.
1201 if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1202 return 0;
1203
1204 /// Currently APFloat versions of these functions do not exist, so we use
1205 /// the host native double versions. Float versions are not called
1206 /// directly but for all these it is true (float)(f((double)arg)) ==
1207 /// f(arg). Long double not supported yet.
1208 double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1209 Op->getValueAPF().convertToDouble();
1210 switch (Name[0]) {
1211 case 'a':
1212 if (Name == "acos" && TLI->has(LibFunc::acos))
1213 return ConstantFoldFP(acos, V, Ty);
1214 else if (Name == "asin" && TLI->has(LibFunc::asin))
1215 return ConstantFoldFP(asin, V, Ty);
1216 else if (Name == "atan" && TLI->has(LibFunc::atan))
1217 return ConstantFoldFP(atan, V, Ty);
1218 break;
1219 case 'c':
1220 if (Name == "ceil" && TLI->has(LibFunc::ceil))
1221 return ConstantFoldFP(ceil, V, Ty);
1222 else if (Name == "cos" && TLI->has(LibFunc::cos))
1223 return ConstantFoldFP(cos, V, Ty);
1224 else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1225 return ConstantFoldFP(cosh, V, Ty);
1226 else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1227 return ConstantFoldFP(cos, V, Ty);
1228 break;
1229 case 'e':
1230 if (Name == "exp" && TLI->has(LibFunc::exp))
1231 return ConstantFoldFP(exp, V, Ty);
1232
1233 if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1234 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1235 // C99 library.
1236 return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1237 }
1238 break;
1239 case 'f':
1240 if (Name == "fabs" && TLI->has(LibFunc::fabs))
1241 return ConstantFoldFP(fabs, V, Ty);
1242 else if (Name == "floor" && TLI->has(LibFunc::floor))
1243 return ConstantFoldFP(floor, V, Ty);
1244 break;
1245 case 'l':
1246 if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1247 return ConstantFoldFP(log, V, Ty);
1248 else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1249 return ConstantFoldFP(log10, V, Ty);
1250 else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1251 (Ty->isFloatTy() || Ty->isDoubleTy())) {
1252 if (V >= -0.0)
1253 return ConstantFoldFP(sqrt, V, Ty);
1254 else // Undefined
1255 return Constant::getNullValue(Ty);
1256 }
1257 break;
1258 case 's':
1259 if (Name == "sin" && TLI->has(LibFunc::sin))
1260 return ConstantFoldFP(sin, V, Ty);
1261 else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1262 return ConstantFoldFP(sinh, V, Ty);
1263 else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1264 return ConstantFoldFP(sqrt, V, Ty);
1265 else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1266 return ConstantFoldFP(sqrt, V, Ty);
1267 else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1268 return ConstantFoldFP(sin, V, Ty);
1269 break;
1270 case 't':
1271 if (Name == "tan" && TLI->has(LibFunc::tan))
1272 return ConstantFoldFP(tan, V, Ty);
1273 else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1274 return ConstantFoldFP(tanh, V, Ty);
1275 break;
1276 default:
1277 break;
1278 }
1279 return 0;
1280 }
1281
1282 if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1283 switch (F->getIntrinsicID()) {
1284 case Intrinsic::bswap:
1285 return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1286 case Intrinsic::ctpop:
1287 return ConstantInt::get(Ty, Op->getValue().countPopulation());
1288 case Intrinsic::convert_from_fp16: {
1289 APFloat Val(Op->getValue());
1290
1291 bool lost = false;
1292 APFloat::opStatus status =
1293 Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1294
1295 // Conversion is always precise.
1296 (void)status;
1297 assert(status == APFloat::opOK && !lost &&
1298 "Precision lost during fp16 constfolding");
1299
1300 return ConstantFP::get(F->getContext(), Val);
1301 }
1302 default:
1303 return 0;
1304 }
1305 }
1306
1307 // Support ConstantVector in case we have an Undef in the top.
1308 if (isa<ConstantVector>(Operands[0]) ||
1309 isa<ConstantDataVector>(Operands[0])) {
1310 Constant *Op = cast<Constant>(Operands[0]);
1311 switch (F->getIntrinsicID()) {
1312 default: break;
1313 case Intrinsic::x86_sse_cvtss2si:
1314 case Intrinsic::x86_sse_cvtss2si64:
1315 case Intrinsic::x86_sse2_cvtsd2si:
1316 case Intrinsic::x86_sse2_cvtsd2si64:
1317 if (ConstantFP *FPOp =
1318 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1319 return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1320 /*roundTowardZero=*/false, Ty);
1321 case Intrinsic::x86_sse_cvttss2si:
1322 case Intrinsic::x86_sse_cvttss2si64:
1323 case Intrinsic::x86_sse2_cvttsd2si:
1324 case Intrinsic::x86_sse2_cvttsd2si64:
1325 if (ConstantFP *FPOp =
1326 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1327 return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1328 /*roundTowardZero=*/true, Ty);
1329 }
1330 }
1331
1332 if (isa<UndefValue>(Operands[0])) {
1333 if (F->getIntrinsicID() == Intrinsic::bswap)
1334 return Operands[0];
1335 return 0;
1336 }
1337
1338 return 0;
1339 }
1340
1341 if (Operands.size() == 2) {
1342 if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1343 if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1344 return 0;
1345 double Op1V = Ty->isFloatTy() ?
1346 (double)Op1->getValueAPF().convertToFloat() :
1347 Op1->getValueAPF().convertToDouble();
1348 if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1349 if (Op2->getType() != Op1->getType())
1350 return 0;
1351
1352 double Op2V = Ty->isFloatTy() ?
1353 (double)Op2->getValueAPF().convertToFloat():
1354 Op2->getValueAPF().convertToDouble();
1355
1356 if (F->getIntrinsicID() == Intrinsic::pow) {
1357 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1358 }
1359 if (!TLI)
1360 return 0;
1361 if (Name == "pow" && TLI->has(LibFunc::pow))
1362 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1363 if (Name == "fmod" && TLI->has(LibFunc::fmod))
1364 return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1365 if (Name == "atan2" && TLI->has(LibFunc::atan2))
1366 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1367 } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1368 if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1369 return ConstantFP::get(F->getContext(),
1370 APFloat((float)std::pow((float)Op1V,
1371 (int)Op2C->getZExtValue())));
1372 if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1373 return ConstantFP::get(F->getContext(),
1374 APFloat((double)std::pow((double)Op1V,
1375 (int)Op2C->getZExtValue())));
1376 }
1377 return 0;
1378 }
1379
1380 if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1381 if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1382 switch (F->getIntrinsicID()) {
1383 default: break;
1384 case Intrinsic::sadd_with_overflow:
1385 case Intrinsic::uadd_with_overflow:
1386 case Intrinsic::ssub_with_overflow:
1387 case Intrinsic::usub_with_overflow:
1388 case Intrinsic::smul_with_overflow:
1389 case Intrinsic::umul_with_overflow: {
1390 APInt Res;
1391 bool Overflow;
1392 switch (F->getIntrinsicID()) {
1393 default: llvm_unreachable("Invalid case");
1394 case Intrinsic::sadd_with_overflow:
1395 Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1396 break;
1397 case Intrinsic::uadd_with_overflow:
1398 Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1399 break;
1400 case Intrinsic::ssub_with_overflow:
1401 Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1402 break;
1403 case Intrinsic::usub_with_overflow:
1404 Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1405 break;
1406 case Intrinsic::smul_with_overflow:
1407 Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1408 break;
1409 case Intrinsic::umul_with_overflow:
1410 Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1411 break;
1412 }
1413 Constant *Ops[] = {
1414 ConstantInt::get(F->getContext(), Res),
1415 ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1416 };
1417 return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1418 }
1419 case Intrinsic::cttz:
1420 // FIXME: This should check for Op2 == 1, and become unreachable if
1421 // Op1 == 0.
1422 return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1423 case Intrinsic::ctlz:
1424 // FIXME: This should check for Op2 == 1, and become unreachable if
1425 // Op1 == 0.
1426 return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1427 }
1428 }
1429
1430 return 0;
1431 }
1432 return 0;
1433 }
1434 return 0;
1435 }
1436