• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // TargetData information. These functions cannot go in VMCore due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLibraryInfo.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringMap.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/GetElementPtrTypeIterator.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/FEnv.h"
36 #include <cerrno>
37 #include <cmath>
38 using namespace llvm;
39 
40 //===----------------------------------------------------------------------===//
41 // Constant Folding internal helper functions
42 //===----------------------------------------------------------------------===//
43 
44 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
45 /// TargetData.  This always returns a non-null constant, but it may be a
46 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const TargetData & TD)47 static Constant *FoldBitCast(Constant *C, Type *DestTy,
48                              const TargetData &TD) {
49   // Catch the obvious splat cases.
50   if (C->isNullValue() && !DestTy->isX86_MMXTy())
51     return Constant::getNullValue(DestTy);
52   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
53     return Constant::getAllOnesValue(DestTy);
54 
55   // Handle a vector->integer cast.
56   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
57     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
58     if (CDV == 0)
59       return ConstantExpr::getBitCast(C, DestTy);
60 
61     unsigned NumSrcElts = CDV->getType()->getNumElements();
62 
63     Type *SrcEltTy = CDV->getType()->getElementType();
64 
65     // If the vector is a vector of floating point, convert it to vector of int
66     // to simplify things.
67     if (SrcEltTy->isFloatingPointTy()) {
68       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69       Type *SrcIVTy =
70         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71       // Ask VMCore to do the conversion now that #elts line up.
72       C = ConstantExpr::getBitCast(C, SrcIVTy);
73       CDV = cast<ConstantDataVector>(C);
74     }
75 
76     // Now that we know that the input value is a vector of integers, just shift
77     // and insert them into our result.
78     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
79     APInt Result(IT->getBitWidth(), 0);
80     for (unsigned i = 0; i != NumSrcElts; ++i) {
81       Result <<= BitShift;
82       if (TD.isLittleEndian())
83         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
84       else
85         Result |= CDV->getElementAsInteger(i);
86     }
87 
88     return ConstantInt::get(IT, Result);
89   }
90 
91   // The code below only handles casts to vectors currently.
92   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
93   if (DestVTy == 0)
94     return ConstantExpr::getBitCast(C, DestTy);
95 
96   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
97   // vector so the code below can handle it uniformly.
98   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
99     Constant *Ops = C; // don't take the address of C!
100     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
101   }
102 
103   // If this is a bitcast from constant vector -> vector, fold it.
104   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
105     return ConstantExpr::getBitCast(C, DestTy);
106 
107   // If the element types match, VMCore can fold it.
108   unsigned NumDstElt = DestVTy->getNumElements();
109   unsigned NumSrcElt = C->getType()->getVectorNumElements();
110   if (NumDstElt == NumSrcElt)
111     return ConstantExpr::getBitCast(C, DestTy);
112 
113   Type *SrcEltTy = C->getType()->getVectorElementType();
114   Type *DstEltTy = DestVTy->getElementType();
115 
116   // Otherwise, we're changing the number of elements in a vector, which
117   // requires endianness information to do the right thing.  For example,
118   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
119   // folds to (little endian):
120   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
121   // and to (big endian):
122   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
123 
124   // First thing is first.  We only want to think about integer here, so if
125   // we have something in FP form, recast it as integer.
126   if (DstEltTy->isFloatingPointTy()) {
127     // Fold to an vector of integers with same size as our FP type.
128     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
129     Type *DestIVTy =
130       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
131     // Recursively handle this integer conversion, if possible.
132     C = FoldBitCast(C, DestIVTy, TD);
133 
134     // Finally, VMCore can handle this now that #elts line up.
135     return ConstantExpr::getBitCast(C, DestTy);
136   }
137 
138   // Okay, we know the destination is integer, if the input is FP, convert
139   // it to integer first.
140   if (SrcEltTy->isFloatingPointTy()) {
141     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
142     Type *SrcIVTy =
143       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
144     // Ask VMCore to do the conversion now that #elts line up.
145     C = ConstantExpr::getBitCast(C, SrcIVTy);
146     // If VMCore wasn't able to fold it, bail out.
147     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
148         !isa<ConstantDataVector>(C))
149       return C;
150   }
151 
152   // Now we know that the input and output vectors are both integer vectors
153   // of the same size, and that their #elements is not the same.  Do the
154   // conversion here, which depends on whether the input or output has
155   // more elements.
156   bool isLittleEndian = TD.isLittleEndian();
157 
158   SmallVector<Constant*, 32> Result;
159   if (NumDstElt < NumSrcElt) {
160     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
161     Constant *Zero = Constant::getNullValue(DstEltTy);
162     unsigned Ratio = NumSrcElt/NumDstElt;
163     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
164     unsigned SrcElt = 0;
165     for (unsigned i = 0; i != NumDstElt; ++i) {
166       // Build each element of the result.
167       Constant *Elt = Zero;
168       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
169       for (unsigned j = 0; j != Ratio; ++j) {
170         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
171         if (!Src)  // Reject constantexpr elements.
172           return ConstantExpr::getBitCast(C, DestTy);
173 
174         // Zero extend the element to the right size.
175         Src = ConstantExpr::getZExt(Src, Elt->getType());
176 
177         // Shift it to the right place, depending on endianness.
178         Src = ConstantExpr::getShl(Src,
179                                    ConstantInt::get(Src->getType(), ShiftAmt));
180         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
181 
182         // Mix it in.
183         Elt = ConstantExpr::getOr(Elt, Src);
184       }
185       Result.push_back(Elt);
186     }
187     return ConstantVector::get(Result);
188   }
189 
190   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
191   unsigned Ratio = NumDstElt/NumSrcElt;
192   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
193 
194   // Loop over each source value, expanding into multiple results.
195   for (unsigned i = 0; i != NumSrcElt; ++i) {
196     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
197     if (!Src)  // Reject constantexpr elements.
198       return ConstantExpr::getBitCast(C, DestTy);
199 
200     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
201     for (unsigned j = 0; j != Ratio; ++j) {
202       // Shift the piece of the value into the right place, depending on
203       // endianness.
204       Constant *Elt = ConstantExpr::getLShr(Src,
205                                   ConstantInt::get(Src->getType(), ShiftAmt));
206       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
207 
208       // Truncate and remember this piece.
209       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
210     }
211   }
212 
213   return ConstantVector::get(Result);
214 }
215 
216 
217 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
218 /// from a global, return the global and the constant.  Because of
219 /// constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,int64_t & Offset,const TargetData & TD)220 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
221                                        int64_t &Offset, const TargetData &TD) {
222   // Trivial case, constant is the global.
223   if ((GV = dyn_cast<GlobalValue>(C))) {
224     Offset = 0;
225     return true;
226   }
227 
228   // Otherwise, if this isn't a constant expr, bail out.
229   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
230   if (!CE) return false;
231 
232   // Look through ptr->int and ptr->ptr casts.
233   if (CE->getOpcode() == Instruction::PtrToInt ||
234       CE->getOpcode() == Instruction::BitCast)
235     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
236 
237   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
238   if (CE->getOpcode() == Instruction::GetElementPtr) {
239     // Cannot compute this if the element type of the pointer is missing size
240     // info.
241     if (!cast<PointerType>(CE->getOperand(0)->getType())
242                  ->getElementType()->isSized())
243       return false;
244 
245     // If the base isn't a global+constant, we aren't either.
246     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
247       return false;
248 
249     // Otherwise, add any offset that our operands provide.
250     gep_type_iterator GTI = gep_type_begin(CE);
251     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
252          i != e; ++i, ++GTI) {
253       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
254       if (!CI) return false;  // Index isn't a simple constant?
255       if (CI->isZero()) continue;  // Not adding anything.
256 
257       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
258         // N = N + Offset
259         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
260       } else {
261         SequentialType *SQT = cast<SequentialType>(*GTI);
262         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
263       }
264     }
265     return true;
266   }
267 
268   return false;
269 }
270 
271 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
272 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
273 /// pointer to copy results into and BytesLeft is the number of bytes left in
274 /// the CurPtr buffer.  TD is the target data.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const TargetData & TD)275 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
276                                unsigned char *CurPtr, unsigned BytesLeft,
277                                const TargetData &TD) {
278   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
279          "Out of range access");
280 
281   // If this element is zero or undefined, we can just return since *CurPtr is
282   // zero initialized.
283   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
284     return true;
285 
286   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
287     if (CI->getBitWidth() > 64 ||
288         (CI->getBitWidth() & 7) != 0)
289       return false;
290 
291     uint64_t Val = CI->getZExtValue();
292     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
293 
294     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
295       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
296       ++ByteOffset;
297     }
298     return true;
299   }
300 
301   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
302     if (CFP->getType()->isDoubleTy()) {
303       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
304       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
305     }
306     if (CFP->getType()->isFloatTy()){
307       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
308       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
309     }
310     return false;
311   }
312 
313   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
314     const StructLayout *SL = TD.getStructLayout(CS->getType());
315     unsigned Index = SL->getElementContainingOffset(ByteOffset);
316     uint64_t CurEltOffset = SL->getElementOffset(Index);
317     ByteOffset -= CurEltOffset;
318 
319     while (1) {
320       // If the element access is to the element itself and not to tail padding,
321       // read the bytes from the element.
322       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
323 
324       if (ByteOffset < EltSize &&
325           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
326                               BytesLeft, TD))
327         return false;
328 
329       ++Index;
330 
331       // Check to see if we read from the last struct element, if so we're done.
332       if (Index == CS->getType()->getNumElements())
333         return true;
334 
335       // If we read all of the bytes we needed from this element we're done.
336       uint64_t NextEltOffset = SL->getElementOffset(Index);
337 
338       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
339         return true;
340 
341       // Move to the next element of the struct.
342       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
343       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
344       ByteOffset = 0;
345       CurEltOffset = NextEltOffset;
346     }
347     // not reached.
348   }
349 
350   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
351       isa<ConstantDataSequential>(C)) {
352     Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
353     uint64_t EltSize = TD.getTypeAllocSize(EltTy);
354     uint64_t Index = ByteOffset / EltSize;
355     uint64_t Offset = ByteOffset - Index * EltSize;
356     uint64_t NumElts;
357     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
358       NumElts = AT->getNumElements();
359     else
360       NumElts = cast<VectorType>(C->getType())->getNumElements();
361 
362     for (; Index != NumElts; ++Index) {
363       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
364                               BytesLeft, TD))
365         return false;
366       if (EltSize >= BytesLeft)
367         return true;
368 
369       Offset = 0;
370       BytesLeft -= EltSize;
371       CurPtr += EltSize;
372     }
373     return true;
374   }
375 
376   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
377     if (CE->getOpcode() == Instruction::IntToPtr &&
378         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
379       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
380                                 BytesLeft, TD);
381   }
382 
383   // Otherwise, unknown initializer type.
384   return false;
385 }
386 
FoldReinterpretLoadFromConstPtr(Constant * C,const TargetData & TD)387 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
388                                                  const TargetData &TD) {
389   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
390   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
391 
392   // If this isn't an integer load we can't fold it directly.
393   if (!IntType) {
394     // If this is a float/double load, we can try folding it as an int32/64 load
395     // and then bitcast the result.  This can be useful for union cases.  Note
396     // that address spaces don't matter here since we're not going to result in
397     // an actual new load.
398     Type *MapTy;
399     if (LoadTy->isFloatTy())
400       MapTy = Type::getInt32PtrTy(C->getContext());
401     else if (LoadTy->isDoubleTy())
402       MapTy = Type::getInt64PtrTy(C->getContext());
403     else if (LoadTy->isVectorTy()) {
404       MapTy = IntegerType::get(C->getContext(),
405                                TD.getTypeAllocSizeInBits(LoadTy));
406       MapTy = PointerType::getUnqual(MapTy);
407     } else
408       return 0;
409 
410     C = FoldBitCast(C, MapTy, TD);
411     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
412       return FoldBitCast(Res, LoadTy, TD);
413     return 0;
414   }
415 
416   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
417   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
418 
419   GlobalValue *GVal;
420   int64_t Offset;
421   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
422     return 0;
423 
424   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
425   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
426       !GV->getInitializer()->getType()->isSized())
427     return 0;
428 
429   // If we're loading off the beginning of the global, some bytes may be valid,
430   // but we don't try to handle this.
431   if (Offset < 0) return 0;
432 
433   // If we're not accessing anything in this constant, the result is undefined.
434   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
435     return UndefValue::get(IntType);
436 
437   unsigned char RawBytes[32] = {0};
438   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
439                           BytesLoaded, TD))
440     return 0;
441 
442   APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
443   for (unsigned i = 1; i != BytesLoaded; ++i) {
444     ResultVal <<= 8;
445     ResultVal |= RawBytes[BytesLoaded-1-i];
446   }
447 
448   return ConstantInt::get(IntType->getContext(), ResultVal);
449 }
450 
451 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
452 /// produce if it is constant and determinable.  If this is not determinable,
453 /// return null.
ConstantFoldLoadFromConstPtr(Constant * C,const TargetData * TD)454 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
455                                              const TargetData *TD) {
456   // First, try the easy cases:
457   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
458     if (GV->isConstant() && GV->hasDefinitiveInitializer())
459       return GV->getInitializer();
460 
461   // If the loaded value isn't a constant expr, we can't handle it.
462   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
463   if (!CE) return 0;
464 
465   if (CE->getOpcode() == Instruction::GetElementPtr) {
466     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
467       if (GV->isConstant() && GV->hasDefinitiveInitializer())
468         if (Constant *V =
469              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
470           return V;
471   }
472 
473   // Instead of loading constant c string, use corresponding integer value
474   // directly if string length is small enough.
475   StringRef Str;
476   if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
477     unsigned StrLen = Str.size();
478     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
479     unsigned NumBits = Ty->getPrimitiveSizeInBits();
480     // Replace load with immediate integer if the result is an integer or fp
481     // value.
482     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
483         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
484       APInt StrVal(NumBits, 0);
485       APInt SingleChar(NumBits, 0);
486       if (TD->isLittleEndian()) {
487         for (signed i = StrLen-1; i >= 0; i--) {
488           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
489           StrVal = (StrVal << 8) | SingleChar;
490         }
491       } else {
492         for (unsigned i = 0; i < StrLen; i++) {
493           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
494           StrVal = (StrVal << 8) | SingleChar;
495         }
496         // Append NULL at the end.
497         SingleChar = 0;
498         StrVal = (StrVal << 8) | SingleChar;
499       }
500 
501       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
502       if (Ty->isFloatingPointTy())
503         Res = ConstantExpr::getBitCast(Res, Ty);
504       return Res;
505     }
506   }
507 
508   // If this load comes from anywhere in a constant global, and if the global
509   // is all undef or zero, we know what it loads.
510   if (GlobalVariable *GV =
511         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
512     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
513       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
514       if (GV->getInitializer()->isNullValue())
515         return Constant::getNullValue(ResTy);
516       if (isa<UndefValue>(GV->getInitializer()))
517         return UndefValue::get(ResTy);
518     }
519   }
520 
521   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
522   // currently don't do any of this for big endian systems.  It can be
523   // generalized in the future if someone is interested.
524   if (TD && TD->isLittleEndian())
525     return FoldReinterpretLoadFromConstPtr(CE, *TD);
526   return 0;
527 }
528 
ConstantFoldLoadInst(const LoadInst * LI,const TargetData * TD)529 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
530   if (LI->isVolatile()) return 0;
531 
532   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
533     return ConstantFoldLoadFromConstPtr(C, TD);
534 
535   return 0;
536 }
537 
538 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
539 /// Attempt to symbolically evaluate the result of a binary operator merging
540 /// these together.  If target data info is available, it is provided as TD,
541 /// otherwise TD is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const TargetData * TD)542 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
543                                            Constant *Op1, const TargetData *TD){
544   // SROA
545 
546   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
547   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
548   // bits.
549 
550 
551   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
552   // constant.  This happens frequently when iterating over a global array.
553   if (Opc == Instruction::Sub && TD) {
554     GlobalValue *GV1, *GV2;
555     int64_t Offs1, Offs2;
556 
557     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
558       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
559           GV1 == GV2) {
560         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
561         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
562       }
563   }
564 
565   return 0;
566 }
567 
568 /// CastGEPIndices - If array indices are not pointer-sized integers,
569 /// explicitly cast them so that they aren't implicitly casted by the
570 /// getelementptr.
CastGEPIndices(ArrayRef<Constant * > Ops,Type * ResultTy,const TargetData * TD,const TargetLibraryInfo * TLI)571 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
572                                 Type *ResultTy, const TargetData *TD,
573                                 const TargetLibraryInfo *TLI) {
574   if (!TD) return 0;
575   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
576 
577   bool Any = false;
578   SmallVector<Constant*, 32> NewIdxs;
579   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
580     if ((i == 1 ||
581          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
582                                                         Ops.slice(1, i-1)))) &&
583         Ops[i]->getType() != IntPtrTy) {
584       Any = true;
585       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
586                                                                       true,
587                                                                       IntPtrTy,
588                                                                       true),
589                                               Ops[i], IntPtrTy));
590     } else
591       NewIdxs.push_back(Ops[i]);
592   }
593   if (!Any) return 0;
594 
595   Constant *C =
596     ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
597   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
598     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
599       C = Folded;
600   return C;
601 }
602 
603 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
604 /// constant expression, do so.
SymbolicallyEvaluateGEP(ArrayRef<Constant * > Ops,Type * ResultTy,const TargetData * TD,const TargetLibraryInfo * TLI)605 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
606                                          Type *ResultTy, const TargetData *TD,
607                                          const TargetLibraryInfo *TLI) {
608   Constant *Ptr = Ops[0];
609   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
610       !Ptr->getType()->isPointerTy())
611     return 0;
612 
613   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
614 
615   // If this is a constant expr gep that is effectively computing an
616   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
617   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
618     if (!isa<ConstantInt>(Ops[i])) {
619 
620       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
621       // "inttoptr (sub (ptrtoint Ptr), V)"
622       if (Ops.size() == 2 &&
623           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
624         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
625         assert((CE == 0 || CE->getType() == IntPtrTy) &&
626                "CastGEPIndices didn't canonicalize index types!");
627         if (CE && CE->getOpcode() == Instruction::Sub &&
628             CE->getOperand(0)->isNullValue()) {
629           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
630           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
631           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
632           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
633             Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
634           return Res;
635         }
636       }
637       return 0;
638     }
639 
640   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
641   APInt Offset =
642     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
643                                          makeArrayRef((Value **)Ops.data() + 1,
644                                                       Ops.size() - 1)));
645   Ptr = cast<Constant>(Ptr->stripPointerCasts());
646 
647   // If this is a GEP of a GEP, fold it all into a single GEP.
648   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
649     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
650 
651     // Do not try the incorporate the sub-GEP if some index is not a number.
652     bool AllConstantInt = true;
653     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
654       if (!isa<ConstantInt>(NestedOps[i])) {
655         AllConstantInt = false;
656         break;
657       }
658     if (!AllConstantInt)
659       break;
660 
661     Ptr = cast<Constant>(GEP->getOperand(0));
662     Offset += APInt(BitWidth,
663                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
664     Ptr = cast<Constant>(Ptr->stripPointerCasts());
665   }
666 
667   // If the base value for this address is a literal integer value, fold the
668   // getelementptr to the resulting integer value casted to the pointer type.
669   APInt BasePtr(BitWidth, 0);
670   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
671     if (CE->getOpcode() == Instruction::IntToPtr)
672       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
673         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
674   if (Ptr->isNullValue() || BasePtr != 0) {
675     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
676     return ConstantExpr::getIntToPtr(C, ResultTy);
677   }
678 
679   // Otherwise form a regular getelementptr. Recompute the indices so that
680   // we eliminate over-indexing of the notional static type array bounds.
681   // This makes it easy to determine if the getelementptr is "inbounds".
682   // Also, this helps GlobalOpt do SROA on GlobalVariables.
683   Type *Ty = Ptr->getType();
684   SmallVector<Constant*, 32> NewIdxs;
685   do {
686     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
687       if (ATy->isPointerTy()) {
688         // The only pointer indexing we'll do is on the first index of the GEP.
689         if (!NewIdxs.empty())
690           break;
691 
692         // Only handle pointers to sized types, not pointers to functions.
693         if (!ATy->getElementType()->isSized())
694           return 0;
695       }
696 
697       // Determine which element of the array the offset points into.
698       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
699       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
700       if (ElemSize == 0)
701         // The element size is 0. This may be [0 x Ty]*, so just use a zero
702         // index for this level and proceed to the next level to see if it can
703         // accommodate the offset.
704         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
705       else {
706         // The element size is non-zero divide the offset by the element
707         // size (rounding down), to compute the index at this level.
708         APInt NewIdx = Offset.udiv(ElemSize);
709         Offset -= NewIdx * ElemSize;
710         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
711       }
712       Ty = ATy->getElementType();
713     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
714       // Determine which field of the struct the offset points into. The
715       // getZExtValue is at least as safe as the StructLayout API because we
716       // know the offset is within the struct at this point.
717       const StructLayout &SL = *TD->getStructLayout(STy);
718       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
719       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
720                                          ElIdx));
721       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
722       Ty = STy->getTypeAtIndex(ElIdx);
723     } else {
724       // We've reached some non-indexable type.
725       break;
726     }
727   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
728 
729   // If we haven't used up the entire offset by descending the static
730   // type, then the offset is pointing into the middle of an indivisible
731   // member, so we can't simplify it.
732   if (Offset != 0)
733     return 0;
734 
735   // Create a GEP.
736   Constant *C =
737     ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
738   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
739          "Computed GetElementPtr has unexpected type!");
740 
741   // If we ended up indexing a member with a type that doesn't match
742   // the type of what the original indices indexed, add a cast.
743   if (Ty != cast<PointerType>(ResultTy)->getElementType())
744     C = FoldBitCast(C, ResultTy, *TD);
745 
746   return C;
747 }
748 
749 
750 
751 //===----------------------------------------------------------------------===//
752 // Constant Folding public APIs
753 //===----------------------------------------------------------------------===//
754 
755 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
756 /// If successful, the constant result is returned, if not, null is returned.
757 /// Note that this fails if not all of the operands are constant.  Otherwise,
758 /// this function can only fail when attempting to fold instructions like loads
759 /// and stores, which have no constant expression form.
ConstantFoldInstruction(Instruction * I,const TargetData * TD,const TargetLibraryInfo * TLI)760 Constant *llvm::ConstantFoldInstruction(Instruction *I,
761                                         const TargetData *TD,
762                                         const TargetLibraryInfo *TLI) {
763   // Handle PHI nodes quickly here...
764   if (PHINode *PN = dyn_cast<PHINode>(I)) {
765     Constant *CommonValue = 0;
766 
767     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
768       Value *Incoming = PN->getIncomingValue(i);
769       // If the incoming value is undef then skip it.  Note that while we could
770       // skip the value if it is equal to the phi node itself we choose not to
771       // because that would break the rule that constant folding only applies if
772       // all operands are constants.
773       if (isa<UndefValue>(Incoming))
774         continue;
775       // If the incoming value is not a constant, or is a different constant to
776       // the one we saw previously, then give up.
777       Constant *C = dyn_cast<Constant>(Incoming);
778       if (!C || (CommonValue && C != CommonValue))
779         return 0;
780       CommonValue = C;
781     }
782 
783     // If we reach here, all incoming values are the same constant or undef.
784     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
785   }
786 
787   // Scan the operand list, checking to see if they are all constants, if so,
788   // hand off to ConstantFoldInstOperands.
789   SmallVector<Constant*, 8> Ops;
790   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
791     if (Constant *Op = dyn_cast<Constant>(*i))
792       Ops.push_back(Op);
793     else
794       return 0;  // All operands not constant!
795 
796   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
797     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
798                                            TD, TLI);
799 
800   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
801     return ConstantFoldLoadInst(LI, TD);
802 
803   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
804     return ConstantExpr::getInsertValue(
805                                 cast<Constant>(IVI->getAggregateOperand()),
806                                 cast<Constant>(IVI->getInsertedValueOperand()),
807                                 IVI->getIndices());
808 
809   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
810     return ConstantExpr::getExtractValue(
811                                     cast<Constant>(EVI->getAggregateOperand()),
812                                     EVI->getIndices());
813 
814   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
815 }
816 
817 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
818 /// using the specified TargetData.  If successful, the constant result is
819 /// result is returned, if not, null is returned.
ConstantFoldConstantExpression(const ConstantExpr * CE,const TargetData * TD,const TargetLibraryInfo * TLI)820 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
821                                                const TargetData *TD,
822                                                const TargetLibraryInfo *TLI) {
823   SmallVector<Constant*, 8> Ops;
824   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
825        i != e; ++i) {
826     Constant *NewC = cast<Constant>(*i);
827     // Recursively fold the ConstantExpr's operands.
828     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
829       NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
830     Ops.push_back(NewC);
831   }
832 
833   if (CE->isCompare())
834     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
835                                            TD, TLI);
836   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
837 }
838 
839 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
840 /// specified opcode and operands.  If successful, the constant result is
841 /// returned, if not, null is returned.  Note that this function can fail when
842 /// attempting to fold instructions like loads and stores, which have no
843 /// constant expression form.
844 ///
845 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
846 /// information, due to only being passed an opcode and operands. Constant
847 /// folding using this function strips this information.
848 ///
ConstantFoldInstOperands(unsigned Opcode,Type * DestTy,ArrayRef<Constant * > Ops,const TargetData * TD,const TargetLibraryInfo * TLI)849 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
850                                          ArrayRef<Constant *> Ops,
851                                          const TargetData *TD,
852                                          const TargetLibraryInfo *TLI) {
853   // Handle easy binops first.
854   if (Instruction::isBinaryOp(Opcode)) {
855     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
856       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
857         return C;
858 
859     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
860   }
861 
862   switch (Opcode) {
863   default: return 0;
864   case Instruction::ICmp:
865   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
866   case Instruction::Call:
867     if (Function *F = dyn_cast<Function>(Ops.back()))
868       if (canConstantFoldCallTo(F))
869         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
870     return 0;
871   case Instruction::PtrToInt:
872     // If the input is a inttoptr, eliminate the pair.  This requires knowing
873     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
874     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
875       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
876         Constant *Input = CE->getOperand(0);
877         unsigned InWidth = Input->getType()->getScalarSizeInBits();
878         if (TD->getPointerSizeInBits() < InWidth) {
879           Constant *Mask =
880             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
881                                                   TD->getPointerSizeInBits()));
882           Input = ConstantExpr::getAnd(Input, Mask);
883         }
884         // Do a zext or trunc to get to the dest size.
885         return ConstantExpr::getIntegerCast(Input, DestTy, false);
886       }
887     }
888     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
889   case Instruction::IntToPtr:
890     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
891     // the int size is >= the ptr size.  This requires knowing the width of a
892     // pointer, so it can't be done in ConstantExpr::getCast.
893     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
894       if (TD &&
895           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
896           CE->getOpcode() == Instruction::PtrToInt)
897         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
898 
899     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
900   case Instruction::Trunc:
901   case Instruction::ZExt:
902   case Instruction::SExt:
903   case Instruction::FPTrunc:
904   case Instruction::FPExt:
905   case Instruction::UIToFP:
906   case Instruction::SIToFP:
907   case Instruction::FPToUI:
908   case Instruction::FPToSI:
909       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
910   case Instruction::BitCast:
911     if (TD)
912       return FoldBitCast(Ops[0], DestTy, *TD);
913     return ConstantExpr::getBitCast(Ops[0], DestTy);
914   case Instruction::Select:
915     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
916   case Instruction::ExtractElement:
917     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
918   case Instruction::InsertElement:
919     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
920   case Instruction::ShuffleVector:
921     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
922   case Instruction::GetElementPtr:
923     if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
924       return C;
925     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
926       return C;
927 
928     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
929   }
930 }
931 
932 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
933 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
934 /// returns a constant expression of the specified operands.
935 ///
ConstantFoldCompareInstOperands(unsigned Predicate,Constant * Ops0,Constant * Ops1,const TargetData * TD,const TargetLibraryInfo * TLI)936 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
937                                                 Constant *Ops0, Constant *Ops1,
938                                                 const TargetData *TD,
939                                                 const TargetLibraryInfo *TLI) {
940   // fold: icmp (inttoptr x), null         -> icmp x, 0
941   // fold: icmp (ptrtoint x), 0            -> icmp x, null
942   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
943   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
944   //
945   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
946   // around to know if bit truncation is happening.
947   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
948     if (TD && Ops1->isNullValue()) {
949       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
950       if (CE0->getOpcode() == Instruction::IntToPtr) {
951         // Convert the integer value to the right size to ensure we get the
952         // proper extension or truncation.
953         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
954                                                    IntPtrTy, false);
955         Constant *Null = Constant::getNullValue(C->getType());
956         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
957       }
958 
959       // Only do this transformation if the int is intptrty in size, otherwise
960       // there is a truncation or extension that we aren't modeling.
961       if (CE0->getOpcode() == Instruction::PtrToInt &&
962           CE0->getType() == IntPtrTy) {
963         Constant *C = CE0->getOperand(0);
964         Constant *Null = Constant::getNullValue(C->getType());
965         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
966       }
967     }
968 
969     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
970       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
971         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
972 
973         if (CE0->getOpcode() == Instruction::IntToPtr) {
974           // Convert the integer value to the right size to ensure we get the
975           // proper extension or truncation.
976           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
977                                                       IntPtrTy, false);
978           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
979                                                       IntPtrTy, false);
980           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
981         }
982 
983         // Only do this transformation if the int is intptrty in size, otherwise
984         // there is a truncation or extension that we aren't modeling.
985         if ((CE0->getOpcode() == Instruction::PtrToInt &&
986              CE0->getType() == IntPtrTy &&
987              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
988           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
989                                                  CE1->getOperand(0), TD, TLI);
990       }
991     }
992 
993     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
994     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
995     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
996         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
997       Constant *LHS =
998         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
999                                         TD, TLI);
1000       Constant *RHS =
1001         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1002                                         TD, TLI);
1003       unsigned OpC =
1004         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1005       Constant *Ops[] = { LHS, RHS };
1006       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1007     }
1008   }
1009 
1010   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1011 }
1012 
1013 
1014 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1015 /// getelementptr constantexpr, return the constant value being addressed by the
1016 /// constant expression, or null if something is funny and we can't decide.
ConstantFoldLoadThroughGEPConstantExpr(Constant * C,ConstantExpr * CE)1017 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1018                                                        ConstantExpr *CE) {
1019   if (!CE->getOperand(1)->isNullValue())
1020     return 0;  // Do not allow stepping over the value!
1021 
1022   // Loop over all of the operands, tracking down which value we are
1023   // addressing.
1024   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1025     C = C->getAggregateElement(CE->getOperand(i));
1026     if (C == 0) return 0;
1027   }
1028   return C;
1029 }
1030 
1031 /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1032 /// indices (with an *implied* zero pointer index that is not in the list),
1033 /// return the constant value being addressed by a virtual load, or null if
1034 /// something is funny and we can't decide.
ConstantFoldLoadThroughGEPIndices(Constant * C,ArrayRef<Constant * > Indices)1035 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1036                                                   ArrayRef<Constant*> Indices) {
1037   // Loop over all of the operands, tracking down which value we are
1038   // addressing.
1039   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1040     C = C->getAggregateElement(Indices[i]);
1041     if (C == 0) return 0;
1042   }
1043   return C;
1044 }
1045 
1046 
1047 //===----------------------------------------------------------------------===//
1048 //  Constant Folding for Calls
1049 //
1050 
1051 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
1052 /// the specified function.
1053 bool
canConstantFoldCallTo(const Function * F)1054 llvm::canConstantFoldCallTo(const Function *F) {
1055   switch (F->getIntrinsicID()) {
1056   case Intrinsic::sqrt:
1057   case Intrinsic::pow:
1058   case Intrinsic::powi:
1059   case Intrinsic::bswap:
1060   case Intrinsic::ctpop:
1061   case Intrinsic::ctlz:
1062   case Intrinsic::cttz:
1063   case Intrinsic::sadd_with_overflow:
1064   case Intrinsic::uadd_with_overflow:
1065   case Intrinsic::ssub_with_overflow:
1066   case Intrinsic::usub_with_overflow:
1067   case Intrinsic::smul_with_overflow:
1068   case Intrinsic::umul_with_overflow:
1069   case Intrinsic::convert_from_fp16:
1070   case Intrinsic::convert_to_fp16:
1071   case Intrinsic::x86_sse_cvtss2si:
1072   case Intrinsic::x86_sse_cvtss2si64:
1073   case Intrinsic::x86_sse_cvttss2si:
1074   case Intrinsic::x86_sse_cvttss2si64:
1075   case Intrinsic::x86_sse2_cvtsd2si:
1076   case Intrinsic::x86_sse2_cvtsd2si64:
1077   case Intrinsic::x86_sse2_cvttsd2si:
1078   case Intrinsic::x86_sse2_cvttsd2si64:
1079     return true;
1080   default:
1081     return false;
1082   case 0: break;
1083   }
1084 
1085   if (!F->hasName()) return false;
1086   StringRef Name = F->getName();
1087 
1088   // In these cases, the check of the length is required.  We don't want to
1089   // return true for a name like "cos\0blah" which strcmp would return equal to
1090   // "cos", but has length 8.
1091   switch (Name[0]) {
1092   default: return false;
1093   case 'a':
1094     return Name == "acos" || Name == "asin" ||
1095       Name == "atan" || Name == "atan2";
1096   case 'c':
1097     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1098   case 'e':
1099     return Name == "exp" || Name == "exp2";
1100   case 'f':
1101     return Name == "fabs" || Name == "fmod" || Name == "floor";
1102   case 'l':
1103     return Name == "log" || Name == "log10";
1104   case 'p':
1105     return Name == "pow";
1106   case 's':
1107     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1108       Name == "sinf" || Name == "sqrtf";
1109   case 't':
1110     return Name == "tan" || Name == "tanh";
1111   }
1112 }
1113 
ConstantFoldFP(double (* NativeFP)(double),double V,Type * Ty)1114 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1115                                 Type *Ty) {
1116   sys::llvm_fenv_clearexcept();
1117   V = NativeFP(V);
1118   if (sys::llvm_fenv_testexcept()) {
1119     sys::llvm_fenv_clearexcept();
1120     return 0;
1121   }
1122 
1123   if (Ty->isFloatTy())
1124     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1125   if (Ty->isDoubleTy())
1126     return ConstantFP::get(Ty->getContext(), APFloat(V));
1127   llvm_unreachable("Can only constant fold float/double");
1128 }
1129 
ConstantFoldBinaryFP(double (* NativeFP)(double,double),double V,double W,Type * Ty)1130 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1131                                       double V, double W, Type *Ty) {
1132   sys::llvm_fenv_clearexcept();
1133   V = NativeFP(V, W);
1134   if (sys::llvm_fenv_testexcept()) {
1135     sys::llvm_fenv_clearexcept();
1136     return 0;
1137   }
1138 
1139   if (Ty->isFloatTy())
1140     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1141   if (Ty->isDoubleTy())
1142     return ConstantFP::get(Ty->getContext(), APFloat(V));
1143   llvm_unreachable("Can only constant fold float/double");
1144 }
1145 
1146 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1147 /// conversion of a constant floating point. If roundTowardZero is false, the
1148 /// default IEEE rounding is used (toward nearest, ties to even). This matches
1149 /// the behavior of the non-truncating SSE instructions in the default rounding
1150 /// mode. The desired integer type Ty is used to select how many bits are
1151 /// available for the result. Returns null if the conversion cannot be
1152 /// performed, otherwise returns the Constant value resulting from the
1153 /// conversion.
ConstantFoldConvertToInt(const APFloat & Val,bool roundTowardZero,Type * Ty)1154 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1155                                           bool roundTowardZero, Type *Ty) {
1156   // All of these conversion intrinsics form an integer of at most 64bits.
1157   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1158   assert(ResultWidth <= 64 &&
1159          "Can only constant fold conversions to 64 and 32 bit ints");
1160 
1161   uint64_t UIntVal;
1162   bool isExact = false;
1163   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1164                                               : APFloat::rmNearestTiesToEven;
1165   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1166                                                   /*isSigned=*/true, mode,
1167                                                   &isExact);
1168   if (status != APFloat::opOK && status != APFloat::opInexact)
1169     return 0;
1170   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1171 }
1172 
1173 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
1174 /// with the specified arguments, returning null if unsuccessful.
1175 Constant *
ConstantFoldCall(Function * F,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1176 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1177                        const TargetLibraryInfo *TLI) {
1178   if (!F->hasName()) return 0;
1179   StringRef Name = F->getName();
1180 
1181   Type *Ty = F->getReturnType();
1182   if (Operands.size() == 1) {
1183     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1184       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1185         APFloat Val(Op->getValueAPF());
1186 
1187         bool lost = false;
1188         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1189 
1190         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1191       }
1192       if (!TLI)
1193         return 0;
1194 
1195       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1196         return 0;
1197 
1198       /// We only fold functions with finite arguments. Folding NaN and inf is
1199       /// likely to be aborted with an exception anyway, and some host libms
1200       /// have known errors raising exceptions.
1201       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1202         return 0;
1203 
1204       /// Currently APFloat versions of these functions do not exist, so we use
1205       /// the host native double versions.  Float versions are not called
1206       /// directly but for all these it is true (float)(f((double)arg)) ==
1207       /// f(arg).  Long double not supported yet.
1208       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1209                                      Op->getValueAPF().convertToDouble();
1210       switch (Name[0]) {
1211       case 'a':
1212         if (Name == "acos" && TLI->has(LibFunc::acos))
1213           return ConstantFoldFP(acos, V, Ty);
1214         else if (Name == "asin" && TLI->has(LibFunc::asin))
1215           return ConstantFoldFP(asin, V, Ty);
1216         else if (Name == "atan" && TLI->has(LibFunc::atan))
1217           return ConstantFoldFP(atan, V, Ty);
1218         break;
1219       case 'c':
1220         if (Name == "ceil" && TLI->has(LibFunc::ceil))
1221           return ConstantFoldFP(ceil, V, Ty);
1222         else if (Name == "cos" && TLI->has(LibFunc::cos))
1223           return ConstantFoldFP(cos, V, Ty);
1224         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1225           return ConstantFoldFP(cosh, V, Ty);
1226         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1227           return ConstantFoldFP(cos, V, Ty);
1228         break;
1229       case 'e':
1230         if (Name == "exp" && TLI->has(LibFunc::exp))
1231           return ConstantFoldFP(exp, V, Ty);
1232 
1233         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1234           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1235           // C99 library.
1236           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1237         }
1238         break;
1239       case 'f':
1240         if (Name == "fabs" && TLI->has(LibFunc::fabs))
1241           return ConstantFoldFP(fabs, V, Ty);
1242         else if (Name == "floor" && TLI->has(LibFunc::floor))
1243           return ConstantFoldFP(floor, V, Ty);
1244         break;
1245       case 'l':
1246         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1247           return ConstantFoldFP(log, V, Ty);
1248         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1249           return ConstantFoldFP(log10, V, Ty);
1250         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1251                  (Ty->isFloatTy() || Ty->isDoubleTy())) {
1252           if (V >= -0.0)
1253             return ConstantFoldFP(sqrt, V, Ty);
1254           else // Undefined
1255             return Constant::getNullValue(Ty);
1256         }
1257         break;
1258       case 's':
1259         if (Name == "sin" && TLI->has(LibFunc::sin))
1260           return ConstantFoldFP(sin, V, Ty);
1261         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1262           return ConstantFoldFP(sinh, V, Ty);
1263         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1264           return ConstantFoldFP(sqrt, V, Ty);
1265         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1266           return ConstantFoldFP(sqrt, V, Ty);
1267         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1268           return ConstantFoldFP(sin, V, Ty);
1269         break;
1270       case 't':
1271         if (Name == "tan" && TLI->has(LibFunc::tan))
1272           return ConstantFoldFP(tan, V, Ty);
1273         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1274           return ConstantFoldFP(tanh, V, Ty);
1275         break;
1276       default:
1277         break;
1278       }
1279       return 0;
1280     }
1281 
1282     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1283       switch (F->getIntrinsicID()) {
1284       case Intrinsic::bswap:
1285         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1286       case Intrinsic::ctpop:
1287         return ConstantInt::get(Ty, Op->getValue().countPopulation());
1288       case Intrinsic::convert_from_fp16: {
1289         APFloat Val(Op->getValue());
1290 
1291         bool lost = false;
1292         APFloat::opStatus status =
1293           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1294 
1295         // Conversion is always precise.
1296         (void)status;
1297         assert(status == APFloat::opOK && !lost &&
1298                "Precision lost during fp16 constfolding");
1299 
1300         return ConstantFP::get(F->getContext(), Val);
1301       }
1302       default:
1303         return 0;
1304       }
1305     }
1306 
1307     // Support ConstantVector in case we have an Undef in the top.
1308     if (isa<ConstantVector>(Operands[0]) ||
1309         isa<ConstantDataVector>(Operands[0])) {
1310       Constant *Op = cast<Constant>(Operands[0]);
1311       switch (F->getIntrinsicID()) {
1312       default: break;
1313       case Intrinsic::x86_sse_cvtss2si:
1314       case Intrinsic::x86_sse_cvtss2si64:
1315       case Intrinsic::x86_sse2_cvtsd2si:
1316       case Intrinsic::x86_sse2_cvtsd2si64:
1317         if (ConstantFP *FPOp =
1318               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1319           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1320                                           /*roundTowardZero=*/false, Ty);
1321       case Intrinsic::x86_sse_cvttss2si:
1322       case Intrinsic::x86_sse_cvttss2si64:
1323       case Intrinsic::x86_sse2_cvttsd2si:
1324       case Intrinsic::x86_sse2_cvttsd2si64:
1325         if (ConstantFP *FPOp =
1326               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1327           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1328                                           /*roundTowardZero=*/true, Ty);
1329       }
1330     }
1331 
1332     if (isa<UndefValue>(Operands[0])) {
1333       if (F->getIntrinsicID() == Intrinsic::bswap)
1334         return Operands[0];
1335       return 0;
1336     }
1337 
1338     return 0;
1339   }
1340 
1341   if (Operands.size() == 2) {
1342     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1343       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1344         return 0;
1345       double Op1V = Ty->isFloatTy() ?
1346                       (double)Op1->getValueAPF().convertToFloat() :
1347                       Op1->getValueAPF().convertToDouble();
1348       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1349         if (Op2->getType() != Op1->getType())
1350           return 0;
1351 
1352         double Op2V = Ty->isFloatTy() ?
1353                       (double)Op2->getValueAPF().convertToFloat():
1354                       Op2->getValueAPF().convertToDouble();
1355 
1356         if (F->getIntrinsicID() == Intrinsic::pow) {
1357           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1358         }
1359         if (!TLI)
1360           return 0;
1361         if (Name == "pow" && TLI->has(LibFunc::pow))
1362           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1363         if (Name == "fmod" && TLI->has(LibFunc::fmod))
1364           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1365         if (Name == "atan2" && TLI->has(LibFunc::atan2))
1366           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1367       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1368         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1369           return ConstantFP::get(F->getContext(),
1370                                  APFloat((float)std::pow((float)Op1V,
1371                                                  (int)Op2C->getZExtValue())));
1372         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1373           return ConstantFP::get(F->getContext(),
1374                                  APFloat((double)std::pow((double)Op1V,
1375                                                    (int)Op2C->getZExtValue())));
1376       }
1377       return 0;
1378     }
1379 
1380     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1381       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1382         switch (F->getIntrinsicID()) {
1383         default: break;
1384         case Intrinsic::sadd_with_overflow:
1385         case Intrinsic::uadd_with_overflow:
1386         case Intrinsic::ssub_with_overflow:
1387         case Intrinsic::usub_with_overflow:
1388         case Intrinsic::smul_with_overflow:
1389         case Intrinsic::umul_with_overflow: {
1390           APInt Res;
1391           bool Overflow;
1392           switch (F->getIntrinsicID()) {
1393           default: llvm_unreachable("Invalid case");
1394           case Intrinsic::sadd_with_overflow:
1395             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1396             break;
1397           case Intrinsic::uadd_with_overflow:
1398             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1399             break;
1400           case Intrinsic::ssub_with_overflow:
1401             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1402             break;
1403           case Intrinsic::usub_with_overflow:
1404             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1405             break;
1406           case Intrinsic::smul_with_overflow:
1407             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1408             break;
1409           case Intrinsic::umul_with_overflow:
1410             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1411             break;
1412           }
1413           Constant *Ops[] = {
1414             ConstantInt::get(F->getContext(), Res),
1415             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1416           };
1417           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1418         }
1419         case Intrinsic::cttz:
1420           // FIXME: This should check for Op2 == 1, and become unreachable if
1421           // Op1 == 0.
1422           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1423         case Intrinsic::ctlz:
1424           // FIXME: This should check for Op2 == 1, and become unreachable if
1425           // Op1 == 0.
1426           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1427         }
1428       }
1429 
1430       return 0;
1431     }
1432     return 0;
1433   }
1434   return 0;
1435 }
1436