1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Sema.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/Overload.h"
18 #include "clang/Sema/DeclSpec.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/TemplateDeduction.h"
22 #include "clang/Sema/ExternalSemaSource.h"
23 #include "clang/Sema/TypoCorrection.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CXXInheritance.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclLookups.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Expr.h"
32 #include "clang/AST/ExprCXX.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/StringMap.h"
39 #include "llvm/ADT/TinyPtrVector.h"
40 #include "llvm/ADT/edit_distance.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 #include <iterator>
44 #include <limits>
45 #include <list>
46 #include <map>
47 #include <set>
48 #include <utility>
49 #include <vector>
50
51 using namespace clang;
52 using namespace sema;
53
54 namespace {
55 class UnqualUsingEntry {
56 const DeclContext *Nominated;
57 const DeclContext *CommonAncestor;
58
59 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)60 UnqualUsingEntry(const DeclContext *Nominated,
61 const DeclContext *CommonAncestor)
62 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63 }
64
getCommonAncestor() const65 const DeclContext *getCommonAncestor() const {
66 return CommonAncestor;
67 }
68
getNominatedNamespace() const69 const DeclContext *getNominatedNamespace() const {
70 return Nominated;
71 }
72
73 // Sort by the pointer value of the common ancestor.
74 struct Comparator {
operator ()__anon46b0bd150111::UnqualUsingEntry::Comparator75 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76 return L.getCommonAncestor() < R.getCommonAncestor();
77 }
78
operator ()__anon46b0bd150111::UnqualUsingEntry::Comparator79 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80 return E.getCommonAncestor() < DC;
81 }
82
operator ()__anon46b0bd150111::UnqualUsingEntry::Comparator83 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84 return DC < E.getCommonAncestor();
85 }
86 };
87 };
88
89 /// A collection of using directives, as used by C++ unqualified
90 /// lookup.
91 class UnqualUsingDirectiveSet {
92 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93
94 ListTy list;
95 llvm::SmallPtrSet<DeclContext*, 8> visited;
96
97 public:
UnqualUsingDirectiveSet()98 UnqualUsingDirectiveSet() {}
99
visitScopeChain(Scope * S,Scope * InnermostFileScope)100 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101 // C++ [namespace.udir]p1:
102 // During unqualified name lookup, the names appear as if they
103 // were declared in the nearest enclosing namespace which contains
104 // both the using-directive and the nominated namespace.
105 DeclContext *InnermostFileDC
106 = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107 assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 Scope::udir_iterator I = S->using_directives_begin(),
118 End = S->using_directives_end();
119 for (; I != End; ++I)
120 visit(*I, InnermostFileDC);
121 }
122 }
123 }
124
125 // Visits a context and collect all of its using directives
126 // recursively. Treats all using directives as if they were
127 // declared in the context.
128 //
129 // A given context is only every visited once, so it is important
130 // that contexts be visited from the inside out in order to get
131 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)132 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133 if (!visited.insert(DC))
134 return;
135
136 addUsingDirectives(DC, EffectiveDC);
137 }
138
139 // Visits a using directive and collects all of its using
140 // directives recursively. Treats all using directives as if they
141 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)142 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143 DeclContext *NS = UD->getNominatedNamespace();
144 if (!visited.insert(NS))
145 return;
146
147 addUsingDirective(UD, EffectiveDC);
148 addUsingDirectives(NS, EffectiveDC);
149 }
150
151 // Adds all the using directives in a context (and those nominated
152 // by its using directives, transitively) as if they appeared in
153 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)154 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155 SmallVector<DeclContext*,4> queue;
156 while (true) {
157 DeclContext::udir_iterator I, End;
158 for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159 UsingDirectiveDecl *UD = *I;
160 DeclContext *NS = UD->getNominatedNamespace();
161 if (visited.insert(NS)) {
162 addUsingDirective(UD, EffectiveDC);
163 queue.push_back(NS);
164 }
165 }
166
167 if (queue.empty())
168 return;
169
170 DC = queue.back();
171 queue.pop_back();
172 }
173 }
174
175 // Add a using directive as if it had been declared in the given
176 // context. This helps implement C++ [namespace.udir]p3:
177 // The using-directive is transitive: if a scope contains a
178 // using-directive that nominates a second namespace that itself
179 // contains using-directives, the effect is as if the
180 // using-directives from the second namespace also appeared in
181 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)182 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183 // Find the common ancestor between the effective context and
184 // the nominated namespace.
185 DeclContext *Common = UD->getNominatedNamespace();
186 while (!Common->Encloses(EffectiveDC))
187 Common = Common->getParent();
188 Common = Common->getPrimaryContext();
189
190 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191 }
192
done()193 void done() {
194 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195 }
196
197 typedef ListTy::const_iterator const_iterator;
198
begin() const199 const_iterator begin() const { return list.begin(); }
end() const200 const_iterator end() const { return list.end(); }
201
202 std::pair<const_iterator,const_iterator>
getNamespacesFor(DeclContext * DC) const203 getNamespacesFor(DeclContext *DC) const {
204 return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205 UnqualUsingEntry::Comparator());
206 }
207 };
208 }
209
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213 bool CPlusPlus,
214 bool Redeclaration) {
215 unsigned IDNS = 0;
216 switch (NameKind) {
217 case Sema::LookupObjCImplicitSelfParam:
218 case Sema::LookupOrdinaryName:
219 case Sema::LookupRedeclarationWithLinkage:
220 IDNS = Decl::IDNS_Ordinary;
221 if (CPlusPlus) {
222 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223 if (Redeclaration)
224 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225 }
226 break;
227
228 case Sema::LookupOperatorName:
229 // Operator lookup is its own crazy thing; it is not the same
230 // as (e.g.) looking up an operator name for redeclaration.
231 assert(!Redeclaration && "cannot do redeclaration operator lookup");
232 IDNS = Decl::IDNS_NonMemberOperator;
233 break;
234
235 case Sema::LookupTagName:
236 if (CPlusPlus) {
237 IDNS = Decl::IDNS_Type;
238
239 // When looking for a redeclaration of a tag name, we add:
240 // 1) TagFriend to find undeclared friend decls
241 // 2) Namespace because they can't "overload" with tag decls.
242 // 3) Tag because it includes class templates, which can't
243 // "overload" with tag decls.
244 if (Redeclaration)
245 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246 } else {
247 IDNS = Decl::IDNS_Tag;
248 }
249 break;
250 case Sema::LookupLabel:
251 IDNS = Decl::IDNS_Label;
252 break;
253
254 case Sema::LookupMemberName:
255 IDNS = Decl::IDNS_Member;
256 if (CPlusPlus)
257 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258 break;
259
260 case Sema::LookupNestedNameSpecifierName:
261 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262 break;
263
264 case Sema::LookupNamespaceName:
265 IDNS = Decl::IDNS_Namespace;
266 break;
267
268 case Sema::LookupUsingDeclName:
269 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270 | Decl::IDNS_Member | Decl::IDNS_Using;
271 break;
272
273 case Sema::LookupObjCProtocolName:
274 IDNS = Decl::IDNS_ObjCProtocol;
275 break;
276
277 case Sema::LookupAnyName:
278 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280 | Decl::IDNS_Type;
281 break;
282 }
283 return IDNS;
284 }
285
configure()286 void LookupResult::configure() {
287 IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288 isForRedeclaration());
289
290 // If we're looking for one of the allocation or deallocation
291 // operators, make sure that the implicitly-declared new and delete
292 // operators can be found.
293 if (!isForRedeclaration()) {
294 switch (NameInfo.getName().getCXXOverloadedOperator()) {
295 case OO_New:
296 case OO_Delete:
297 case OO_Array_New:
298 case OO_Array_Delete:
299 SemaRef.DeclareGlobalNewDelete();
300 break;
301
302 default:
303 break;
304 }
305 }
306 }
307
sanityImpl() const308 void LookupResult::sanityImpl() const {
309 // Note that this function is never called by NDEBUG builds. See
310 // LookupResult::sanity().
311 assert(ResultKind != NotFound || Decls.size() == 0);
312 assert(ResultKind != Found || Decls.size() == 1);
313 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
314 (Decls.size() == 1 &&
315 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
316 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
317 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
318 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
319 Ambiguity == AmbiguousBaseSubobjectTypes)));
320 assert((Paths != NULL) == (ResultKind == Ambiguous &&
321 (Ambiguity == AmbiguousBaseSubobjectTypes ||
322 Ambiguity == AmbiguousBaseSubobjects)));
323 }
324
325 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)326 void LookupResult::deletePaths(CXXBasePaths *Paths) {
327 delete Paths;
328 }
329
330 static NamedDecl *getVisibleDecl(NamedDecl *D);
331
getAcceptableDeclSlow(NamedDecl * D) const332 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
333 return getVisibleDecl(D);
334 }
335
336 /// Resolves the result kind of this lookup.
resolveKind()337 void LookupResult::resolveKind() {
338 unsigned N = Decls.size();
339
340 // Fast case: no possible ambiguity.
341 if (N == 0) {
342 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
343 return;
344 }
345
346 // If there's a single decl, we need to examine it to decide what
347 // kind of lookup this is.
348 if (N == 1) {
349 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
350 if (isa<FunctionTemplateDecl>(D))
351 ResultKind = FoundOverloaded;
352 else if (isa<UnresolvedUsingValueDecl>(D))
353 ResultKind = FoundUnresolvedValue;
354 return;
355 }
356
357 // Don't do any extra resolution if we've already resolved as ambiguous.
358 if (ResultKind == Ambiguous) return;
359
360 llvm::SmallPtrSet<NamedDecl*, 16> Unique;
361 llvm::SmallPtrSet<QualType, 16> UniqueTypes;
362
363 bool Ambiguous = false;
364 bool HasTag = false, HasFunction = false, HasNonFunction = false;
365 bool HasFunctionTemplate = false, HasUnresolved = false;
366
367 unsigned UniqueTagIndex = 0;
368
369 unsigned I = 0;
370 while (I < N) {
371 NamedDecl *D = Decls[I]->getUnderlyingDecl();
372 D = cast<NamedDecl>(D->getCanonicalDecl());
373
374 // Redeclarations of types via typedef can occur both within a scope
375 // and, through using declarations and directives, across scopes. There is
376 // no ambiguity if they all refer to the same type, so unique based on the
377 // canonical type.
378 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
379 if (!TD->getDeclContext()->isRecord()) {
380 QualType T = SemaRef.Context.getTypeDeclType(TD);
381 if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
382 // The type is not unique; pull something off the back and continue
383 // at this index.
384 Decls[I] = Decls[--N];
385 continue;
386 }
387 }
388 }
389
390 if (!Unique.insert(D)) {
391 // If it's not unique, pull something off the back (and
392 // continue at this index).
393 Decls[I] = Decls[--N];
394 continue;
395 }
396
397 // Otherwise, do some decl type analysis and then continue.
398
399 if (isa<UnresolvedUsingValueDecl>(D)) {
400 HasUnresolved = true;
401 } else if (isa<TagDecl>(D)) {
402 if (HasTag)
403 Ambiguous = true;
404 UniqueTagIndex = I;
405 HasTag = true;
406 } else if (isa<FunctionTemplateDecl>(D)) {
407 HasFunction = true;
408 HasFunctionTemplate = true;
409 } else if (isa<FunctionDecl>(D)) {
410 HasFunction = true;
411 } else {
412 if (HasNonFunction)
413 Ambiguous = true;
414 HasNonFunction = true;
415 }
416 I++;
417 }
418
419 // C++ [basic.scope.hiding]p2:
420 // A class name or enumeration name can be hidden by the name of
421 // an object, function, or enumerator declared in the same
422 // scope. If a class or enumeration name and an object, function,
423 // or enumerator are declared in the same scope (in any order)
424 // with the same name, the class or enumeration name is hidden
425 // wherever the object, function, or enumerator name is visible.
426 // But it's still an error if there are distinct tag types found,
427 // even if they're not visible. (ref?)
428 if (HideTags && HasTag && !Ambiguous &&
429 (HasFunction || HasNonFunction || HasUnresolved)) {
430 if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
431 Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
432 Decls[UniqueTagIndex] = Decls[--N];
433 else
434 Ambiguous = true;
435 }
436
437 Decls.set_size(N);
438
439 if (HasNonFunction && (HasFunction || HasUnresolved))
440 Ambiguous = true;
441
442 if (Ambiguous)
443 setAmbiguous(LookupResult::AmbiguousReference);
444 else if (HasUnresolved)
445 ResultKind = LookupResult::FoundUnresolvedValue;
446 else if (N > 1 || HasFunctionTemplate)
447 ResultKind = LookupResult::FoundOverloaded;
448 else
449 ResultKind = LookupResult::Found;
450 }
451
addDeclsFromBasePaths(const CXXBasePaths & P)452 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
453 CXXBasePaths::const_paths_iterator I, E;
454 DeclContext::lookup_iterator DI, DE;
455 for (I = P.begin(), E = P.end(); I != E; ++I)
456 for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
457 addDecl(*DI);
458 }
459
setAmbiguousBaseSubobjects(CXXBasePaths & P)460 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
461 Paths = new CXXBasePaths;
462 Paths->swap(P);
463 addDeclsFromBasePaths(*Paths);
464 resolveKind();
465 setAmbiguous(AmbiguousBaseSubobjects);
466 }
467
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)468 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
469 Paths = new CXXBasePaths;
470 Paths->swap(P);
471 addDeclsFromBasePaths(*Paths);
472 resolveKind();
473 setAmbiguous(AmbiguousBaseSubobjectTypes);
474 }
475
print(raw_ostream & Out)476 void LookupResult::print(raw_ostream &Out) {
477 Out << Decls.size() << " result(s)";
478 if (isAmbiguous()) Out << ", ambiguous";
479 if (Paths) Out << ", base paths present";
480
481 for (iterator I = begin(), E = end(); I != E; ++I) {
482 Out << "\n";
483 (*I)->print(Out, 2);
484 }
485 }
486
487 /// \brief Lookup a builtin function, when name lookup would otherwise
488 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)489 static bool LookupBuiltin(Sema &S, LookupResult &R) {
490 Sema::LookupNameKind NameKind = R.getLookupKind();
491
492 // If we didn't find a use of this identifier, and if the identifier
493 // corresponds to a compiler builtin, create the decl object for the builtin
494 // now, injecting it into translation unit scope, and return it.
495 if (NameKind == Sema::LookupOrdinaryName ||
496 NameKind == Sema::LookupRedeclarationWithLinkage) {
497 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
498 if (II) {
499 // If this is a builtin on this (or all) targets, create the decl.
500 if (unsigned BuiltinID = II->getBuiltinID()) {
501 // In C++, we don't have any predefined library functions like
502 // 'malloc'. Instead, we'll just error.
503 if (S.getLangOpts().CPlusPlus &&
504 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
505 return false;
506
507 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
508 BuiltinID, S.TUScope,
509 R.isForRedeclaration(),
510 R.getNameLoc())) {
511 R.addDecl(D);
512 return true;
513 }
514
515 if (R.isForRedeclaration()) {
516 // If we're redeclaring this function anyway, forget that
517 // this was a builtin at all.
518 S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
519 }
520
521 return false;
522 }
523 }
524 }
525
526 return false;
527 }
528
529 /// \brief Determine whether we can declare a special member function within
530 /// the class at this point.
CanDeclareSpecialMemberFunction(ASTContext & Context,const CXXRecordDecl * Class)531 static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
532 const CXXRecordDecl *Class) {
533 // We need to have a definition for the class.
534 if (!Class->getDefinition() || Class->isDependentContext())
535 return false;
536
537 // We can't be in the middle of defining the class.
538 if (const RecordType *RecordTy
539 = Context.getTypeDeclType(Class)->getAs<RecordType>())
540 return !RecordTy->isBeingDefined();
541
542 return false;
543 }
544
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)545 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
546 if (!CanDeclareSpecialMemberFunction(Context, Class))
547 return;
548
549 // If the default constructor has not yet been declared, do so now.
550 if (Class->needsImplicitDefaultConstructor())
551 DeclareImplicitDefaultConstructor(Class);
552
553 // If the copy constructor has not yet been declared, do so now.
554 if (!Class->hasDeclaredCopyConstructor())
555 DeclareImplicitCopyConstructor(Class);
556
557 // If the copy assignment operator has not yet been declared, do so now.
558 if (!Class->hasDeclaredCopyAssignment())
559 DeclareImplicitCopyAssignment(Class);
560
561 if (getLangOpts().CPlusPlus0x) {
562 // If the move constructor has not yet been declared, do so now.
563 if (Class->needsImplicitMoveConstructor())
564 DeclareImplicitMoveConstructor(Class); // might not actually do it
565
566 // If the move assignment operator has not yet been declared, do so now.
567 if (Class->needsImplicitMoveAssignment())
568 DeclareImplicitMoveAssignment(Class); // might not actually do it
569 }
570
571 // If the destructor has not yet been declared, do so now.
572 if (!Class->hasDeclaredDestructor())
573 DeclareImplicitDestructor(Class);
574 }
575
576 /// \brief Determine whether this is the name of an implicitly-declared
577 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)578 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
579 switch (Name.getNameKind()) {
580 case DeclarationName::CXXConstructorName:
581 case DeclarationName::CXXDestructorName:
582 return true;
583
584 case DeclarationName::CXXOperatorName:
585 return Name.getCXXOverloadedOperator() == OO_Equal;
586
587 default:
588 break;
589 }
590
591 return false;
592 }
593
594 /// \brief If there are any implicit member functions with the given name
595 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)596 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
597 DeclarationName Name,
598 const DeclContext *DC) {
599 if (!DC)
600 return;
601
602 switch (Name.getNameKind()) {
603 case DeclarationName::CXXConstructorName:
604 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
605 if (Record->getDefinition() &&
606 CanDeclareSpecialMemberFunction(S.Context, Record)) {
607 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
608 if (Record->needsImplicitDefaultConstructor())
609 S.DeclareImplicitDefaultConstructor(Class);
610 if (!Record->hasDeclaredCopyConstructor())
611 S.DeclareImplicitCopyConstructor(Class);
612 if (S.getLangOpts().CPlusPlus0x &&
613 Record->needsImplicitMoveConstructor())
614 S.DeclareImplicitMoveConstructor(Class);
615 }
616 break;
617
618 case DeclarationName::CXXDestructorName:
619 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
620 if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
621 CanDeclareSpecialMemberFunction(S.Context, Record))
622 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
623 break;
624
625 case DeclarationName::CXXOperatorName:
626 if (Name.getCXXOverloadedOperator() != OO_Equal)
627 break;
628
629 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
630 if (Record->getDefinition() &&
631 CanDeclareSpecialMemberFunction(S.Context, Record)) {
632 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
633 if (!Record->hasDeclaredCopyAssignment())
634 S.DeclareImplicitCopyAssignment(Class);
635 if (S.getLangOpts().CPlusPlus0x &&
636 Record->needsImplicitMoveAssignment())
637 S.DeclareImplicitMoveAssignment(Class);
638 }
639 }
640 break;
641
642 default:
643 break;
644 }
645 }
646
647 // Adds all qualifying matches for a name within a decl context to the
648 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)649 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
650 bool Found = false;
651
652 // Lazily declare C++ special member functions.
653 if (S.getLangOpts().CPlusPlus)
654 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
655
656 // Perform lookup into this declaration context.
657 DeclContext::lookup_const_iterator I, E;
658 for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
659 NamedDecl *D = *I;
660 if ((D = R.getAcceptableDecl(D))) {
661 R.addDecl(D);
662 Found = true;
663 }
664 }
665
666 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
667 return true;
668
669 if (R.getLookupName().getNameKind()
670 != DeclarationName::CXXConversionFunctionName ||
671 R.getLookupName().getCXXNameType()->isDependentType() ||
672 !isa<CXXRecordDecl>(DC))
673 return Found;
674
675 // C++ [temp.mem]p6:
676 // A specialization of a conversion function template is not found by
677 // name lookup. Instead, any conversion function templates visible in the
678 // context of the use are considered. [...]
679 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
680 if (!Record->isCompleteDefinition())
681 return Found;
682
683 const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
684 for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
685 UEnd = Unresolved->end(); U != UEnd; ++U) {
686 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
687 if (!ConvTemplate)
688 continue;
689
690 // When we're performing lookup for the purposes of redeclaration, just
691 // add the conversion function template. When we deduce template
692 // arguments for specializations, we'll end up unifying the return
693 // type of the new declaration with the type of the function template.
694 if (R.isForRedeclaration()) {
695 R.addDecl(ConvTemplate);
696 Found = true;
697 continue;
698 }
699
700 // C++ [temp.mem]p6:
701 // [...] For each such operator, if argument deduction succeeds
702 // (14.9.2.3), the resulting specialization is used as if found by
703 // name lookup.
704 //
705 // When referencing a conversion function for any purpose other than
706 // a redeclaration (such that we'll be building an expression with the
707 // result), perform template argument deduction and place the
708 // specialization into the result set. We do this to avoid forcing all
709 // callers to perform special deduction for conversion functions.
710 TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
711 FunctionDecl *Specialization = 0;
712
713 const FunctionProtoType *ConvProto
714 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
715 assert(ConvProto && "Nonsensical conversion function template type");
716
717 // Compute the type of the function that we would expect the conversion
718 // function to have, if it were to match the name given.
719 // FIXME: Calling convention!
720 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
721 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
722 EPI.ExceptionSpecType = EST_None;
723 EPI.NumExceptions = 0;
724 QualType ExpectedType
725 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
726 0, 0, EPI);
727
728 // Perform template argument deduction against the type that we would
729 // expect the function to have.
730 if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
731 Specialization, Info)
732 == Sema::TDK_Success) {
733 R.addDecl(Specialization);
734 Found = true;
735 }
736 }
737
738 return Found;
739 }
740
741 // Performs C++ unqualified lookup into the given file context.
742 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)743 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
744 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
745
746 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
747
748 // Perform direct name lookup into the LookupCtx.
749 bool Found = LookupDirect(S, R, NS);
750
751 // Perform direct name lookup into the namespaces nominated by the
752 // using directives whose common ancestor is this namespace.
753 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
754 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
755
756 for (; UI != UEnd; ++UI)
757 if (LookupDirect(S, R, UI->getNominatedNamespace()))
758 Found = true;
759
760 R.resolveKind();
761
762 return Found;
763 }
764
isNamespaceOrTranslationUnitScope(Scope * S)765 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
766 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
767 return Ctx->isFileContext();
768 return false;
769 }
770
771 // Find the next outer declaration context from this scope. This
772 // routine actually returns the semantic outer context, which may
773 // differ from the lexical context (encoded directly in the Scope
774 // stack) when we are parsing a member of a class template. In this
775 // case, the second element of the pair will be true, to indicate that
776 // name lookup should continue searching in this semantic context when
777 // it leaves the current template parameter scope.
findOuterContext(Scope * S)778 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
779 DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
780 DeclContext *Lexical = 0;
781 for (Scope *OuterS = S->getParent(); OuterS;
782 OuterS = OuterS->getParent()) {
783 if (OuterS->getEntity()) {
784 Lexical = static_cast<DeclContext *>(OuterS->getEntity());
785 break;
786 }
787 }
788
789 // C++ [temp.local]p8:
790 // In the definition of a member of a class template that appears
791 // outside of the namespace containing the class template
792 // definition, the name of a template-parameter hides the name of
793 // a member of this namespace.
794 //
795 // Example:
796 //
797 // namespace N {
798 // class C { };
799 //
800 // template<class T> class B {
801 // void f(T);
802 // };
803 // }
804 //
805 // template<class C> void N::B<C>::f(C) {
806 // C b; // C is the template parameter, not N::C
807 // }
808 //
809 // In this example, the lexical context we return is the
810 // TranslationUnit, while the semantic context is the namespace N.
811 if (!Lexical || !DC || !S->getParent() ||
812 !S->getParent()->isTemplateParamScope())
813 return std::make_pair(Lexical, false);
814
815 // Find the outermost template parameter scope.
816 // For the example, this is the scope for the template parameters of
817 // template<class C>.
818 Scope *OutermostTemplateScope = S->getParent();
819 while (OutermostTemplateScope->getParent() &&
820 OutermostTemplateScope->getParent()->isTemplateParamScope())
821 OutermostTemplateScope = OutermostTemplateScope->getParent();
822
823 // Find the namespace context in which the original scope occurs. In
824 // the example, this is namespace N.
825 DeclContext *Semantic = DC;
826 while (!Semantic->isFileContext())
827 Semantic = Semantic->getParent();
828
829 // Find the declaration context just outside of the template
830 // parameter scope. This is the context in which the template is
831 // being lexically declaration (a namespace context). In the
832 // example, this is the global scope.
833 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
834 Lexical->Encloses(Semantic))
835 return std::make_pair(Semantic, true);
836
837 return std::make_pair(Lexical, false);
838 }
839
CppLookupName(LookupResult & R,Scope * S)840 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
841 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
842
843 DeclarationName Name = R.getLookupName();
844
845 // If this is the name of an implicitly-declared special member function,
846 // go through the scope stack to implicitly declare
847 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
848 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
849 if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
850 DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
851 }
852
853 // Implicitly declare member functions with the name we're looking for, if in
854 // fact we are in a scope where it matters.
855
856 Scope *Initial = S;
857 IdentifierResolver::iterator
858 I = IdResolver.begin(Name),
859 IEnd = IdResolver.end();
860
861 // First we lookup local scope.
862 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
863 // ...During unqualified name lookup (3.4.1), the names appear as if
864 // they were declared in the nearest enclosing namespace which contains
865 // both the using-directive and the nominated namespace.
866 // [Note: in this context, "contains" means "contains directly or
867 // indirectly".
868 //
869 // For example:
870 // namespace A { int i; }
871 // void foo() {
872 // int i;
873 // {
874 // using namespace A;
875 // ++i; // finds local 'i', A::i appears at global scope
876 // }
877 // }
878 //
879 DeclContext *OutsideOfTemplateParamDC = 0;
880 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
881 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
882
883 // Check whether the IdResolver has anything in this scope.
884 bool Found = false;
885 for (; I != IEnd && S->isDeclScope(*I); ++I) {
886 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
887 Found = true;
888 R.addDecl(ND);
889 }
890 }
891 if (Found) {
892 R.resolveKind();
893 if (S->isClassScope())
894 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
895 R.setNamingClass(Record);
896 return true;
897 }
898
899 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
900 S->getParent() && !S->getParent()->isTemplateParamScope()) {
901 // We've just searched the last template parameter scope and
902 // found nothing, so look into the the contexts between the
903 // lexical and semantic declaration contexts returned by
904 // findOuterContext(). This implements the name lookup behavior
905 // of C++ [temp.local]p8.
906 Ctx = OutsideOfTemplateParamDC;
907 OutsideOfTemplateParamDC = 0;
908 }
909
910 if (Ctx) {
911 DeclContext *OuterCtx;
912 bool SearchAfterTemplateScope;
913 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
914 if (SearchAfterTemplateScope)
915 OutsideOfTemplateParamDC = OuterCtx;
916
917 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
918 // We do not directly look into transparent contexts, since
919 // those entities will be found in the nearest enclosing
920 // non-transparent context.
921 if (Ctx->isTransparentContext())
922 continue;
923
924 // We do not look directly into function or method contexts,
925 // since all of the local variables and parameters of the
926 // function/method are present within the Scope.
927 if (Ctx->isFunctionOrMethod()) {
928 // If we have an Objective-C instance method, look for ivars
929 // in the corresponding interface.
930 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
931 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
932 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
933 ObjCInterfaceDecl *ClassDeclared;
934 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
935 Name.getAsIdentifierInfo(),
936 ClassDeclared)) {
937 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
938 R.addDecl(ND);
939 R.resolveKind();
940 return true;
941 }
942 }
943 }
944 }
945
946 continue;
947 }
948
949 // Perform qualified name lookup into this context.
950 // FIXME: In some cases, we know that every name that could be found by
951 // this qualified name lookup will also be on the identifier chain. For
952 // example, inside a class without any base classes, we never need to
953 // perform qualified lookup because all of the members are on top of the
954 // identifier chain.
955 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
956 return true;
957 }
958 }
959 }
960
961 // Stop if we ran out of scopes.
962 // FIXME: This really, really shouldn't be happening.
963 if (!S) return false;
964
965 // If we are looking for members, no need to look into global/namespace scope.
966 if (R.getLookupKind() == LookupMemberName)
967 return false;
968
969 // Collect UsingDirectiveDecls in all scopes, and recursively all
970 // nominated namespaces by those using-directives.
971 //
972 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
973 // don't build it for each lookup!
974
975 UnqualUsingDirectiveSet UDirs;
976 UDirs.visitScopeChain(Initial, S);
977 UDirs.done();
978
979 // Lookup namespace scope, and global scope.
980 // Unqualified name lookup in C++ requires looking into scopes
981 // that aren't strictly lexical, and therefore we walk through the
982 // context as well as walking through the scopes.
983
984 for (; S; S = S->getParent()) {
985 // Check whether the IdResolver has anything in this scope.
986 bool Found = false;
987 for (; I != IEnd && S->isDeclScope(*I); ++I) {
988 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
989 // We found something. Look for anything else in our scope
990 // with this same name and in an acceptable identifier
991 // namespace, so that we can construct an overload set if we
992 // need to.
993 Found = true;
994 R.addDecl(ND);
995 }
996 }
997
998 if (Found && S->isTemplateParamScope()) {
999 R.resolveKind();
1000 return true;
1001 }
1002
1003 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1004 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1005 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1006 // We've just searched the last template parameter scope and
1007 // found nothing, so look into the the contexts between the
1008 // lexical and semantic declaration contexts returned by
1009 // findOuterContext(). This implements the name lookup behavior
1010 // of C++ [temp.local]p8.
1011 Ctx = OutsideOfTemplateParamDC;
1012 OutsideOfTemplateParamDC = 0;
1013 }
1014
1015 if (Ctx) {
1016 DeclContext *OuterCtx;
1017 bool SearchAfterTemplateScope;
1018 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1019 if (SearchAfterTemplateScope)
1020 OutsideOfTemplateParamDC = OuterCtx;
1021
1022 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1023 // We do not directly look into transparent contexts, since
1024 // those entities will be found in the nearest enclosing
1025 // non-transparent context.
1026 if (Ctx->isTransparentContext())
1027 continue;
1028
1029 // If we have a context, and it's not a context stashed in the
1030 // template parameter scope for an out-of-line definition, also
1031 // look into that context.
1032 if (!(Found && S && S->isTemplateParamScope())) {
1033 assert(Ctx->isFileContext() &&
1034 "We should have been looking only at file context here already.");
1035
1036 // Look into context considering using-directives.
1037 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1038 Found = true;
1039 }
1040
1041 if (Found) {
1042 R.resolveKind();
1043 return true;
1044 }
1045
1046 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1047 return false;
1048 }
1049 }
1050
1051 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1052 return false;
1053 }
1054
1055 return !R.empty();
1056 }
1057
1058 /// \brief Retrieve the visible declaration corresponding to D, if any.
1059 ///
1060 /// This routine determines whether the declaration D is visible in the current
1061 /// module, with the current imports. If not, it checks whether any
1062 /// redeclaration of D is visible, and if so, returns that declaration.
1063 ///
1064 /// \returns D, or a visible previous declaration of D, whichever is more recent
1065 /// and visible. If no declaration of D is visible, returns null.
getVisibleDecl(NamedDecl * D)1066 static NamedDecl *getVisibleDecl(NamedDecl *D) {
1067 if (LookupResult::isVisible(D))
1068 return D;
1069
1070 for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1071 RD != RDEnd; ++RD) {
1072 if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1073 if (LookupResult::isVisible(ND))
1074 return ND;
1075 }
1076 }
1077
1078 return 0;
1079 }
1080
1081 /// @brief Perform unqualified name lookup starting from a given
1082 /// scope.
1083 ///
1084 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1085 /// used to find names within the current scope. For example, 'x' in
1086 /// @code
1087 /// int x;
1088 /// int f() {
1089 /// return x; // unqualified name look finds 'x' in the global scope
1090 /// }
1091 /// @endcode
1092 ///
1093 /// Different lookup criteria can find different names. For example, a
1094 /// particular scope can have both a struct and a function of the same
1095 /// name, and each can be found by certain lookup criteria. For more
1096 /// information about lookup criteria, see the documentation for the
1097 /// class LookupCriteria.
1098 ///
1099 /// @param S The scope from which unqualified name lookup will
1100 /// begin. If the lookup criteria permits, name lookup may also search
1101 /// in the parent scopes.
1102 ///
1103 /// @param Name The name of the entity that we are searching for.
1104 ///
1105 /// @param Loc If provided, the source location where we're performing
1106 /// name lookup. At present, this is only used to produce diagnostics when
1107 /// C library functions (like "malloc") are implicitly declared.
1108 ///
1109 /// @returns The result of name lookup, which includes zero or more
1110 /// declarations and possibly additional information used to diagnose
1111 /// ambiguities.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1112 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1113 DeclarationName Name = R.getLookupName();
1114 if (!Name) return false;
1115
1116 LookupNameKind NameKind = R.getLookupKind();
1117
1118 if (!getLangOpts().CPlusPlus) {
1119 // Unqualified name lookup in C/Objective-C is purely lexical, so
1120 // search in the declarations attached to the name.
1121 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1122 // Find the nearest non-transparent declaration scope.
1123 while (!(S->getFlags() & Scope::DeclScope) ||
1124 (S->getEntity() &&
1125 static_cast<DeclContext *>(S->getEntity())
1126 ->isTransparentContext()))
1127 S = S->getParent();
1128 }
1129
1130 unsigned IDNS = R.getIdentifierNamespace();
1131
1132 // Scan up the scope chain looking for a decl that matches this
1133 // identifier that is in the appropriate namespace. This search
1134 // should not take long, as shadowing of names is uncommon, and
1135 // deep shadowing is extremely uncommon.
1136 bool LeftStartingScope = false;
1137
1138 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1139 IEnd = IdResolver.end();
1140 I != IEnd; ++I)
1141 if ((*I)->isInIdentifierNamespace(IDNS)) {
1142 if (NameKind == LookupRedeclarationWithLinkage) {
1143 // Determine whether this (or a previous) declaration is
1144 // out-of-scope.
1145 if (!LeftStartingScope && !S->isDeclScope(*I))
1146 LeftStartingScope = true;
1147
1148 // If we found something outside of our starting scope that
1149 // does not have linkage, skip it.
1150 if (LeftStartingScope && !((*I)->hasLinkage()))
1151 continue;
1152 }
1153 else if (NameKind == LookupObjCImplicitSelfParam &&
1154 !isa<ImplicitParamDecl>(*I))
1155 continue;
1156
1157 // If this declaration is module-private and it came from an AST
1158 // file, we can't see it.
1159 NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
1160 if (!D)
1161 continue;
1162
1163 R.addDecl(D);
1164
1165 // Check whether there are any other declarations with the same name
1166 // and in the same scope.
1167 if (I != IEnd) {
1168 // Find the scope in which this declaration was declared (if it
1169 // actually exists in a Scope).
1170 while (S && !S->isDeclScope(D))
1171 S = S->getParent();
1172
1173 // If the scope containing the declaration is the translation unit,
1174 // then we'll need to perform our checks based on the matching
1175 // DeclContexts rather than matching scopes.
1176 if (S && isNamespaceOrTranslationUnitScope(S))
1177 S = 0;
1178
1179 // Compute the DeclContext, if we need it.
1180 DeclContext *DC = 0;
1181 if (!S)
1182 DC = (*I)->getDeclContext()->getRedeclContext();
1183
1184 IdentifierResolver::iterator LastI = I;
1185 for (++LastI; LastI != IEnd; ++LastI) {
1186 if (S) {
1187 // Match based on scope.
1188 if (!S->isDeclScope(*LastI))
1189 break;
1190 } else {
1191 // Match based on DeclContext.
1192 DeclContext *LastDC
1193 = (*LastI)->getDeclContext()->getRedeclContext();
1194 if (!LastDC->Equals(DC))
1195 break;
1196 }
1197
1198 // If the declaration isn't in the right namespace, skip it.
1199 if (!(*LastI)->isInIdentifierNamespace(IDNS))
1200 continue;
1201
1202 D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
1203 if (D)
1204 R.addDecl(D);
1205 }
1206
1207 R.resolveKind();
1208 }
1209 return true;
1210 }
1211 } else {
1212 // Perform C++ unqualified name lookup.
1213 if (CppLookupName(R, S))
1214 return true;
1215 }
1216
1217 // If we didn't find a use of this identifier, and if the identifier
1218 // corresponds to a compiler builtin, create the decl object for the builtin
1219 // now, injecting it into translation unit scope, and return it.
1220 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1221 return true;
1222
1223 // If we didn't find a use of this identifier, the ExternalSource
1224 // may be able to handle the situation.
1225 // Note: some lookup failures are expected!
1226 // See e.g. R.isForRedeclaration().
1227 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1228 }
1229
1230 /// @brief Perform qualified name lookup in the namespaces nominated by
1231 /// using directives by the given context.
1232 ///
1233 /// C++98 [namespace.qual]p2:
1234 /// Given X::m (where X is a user-declared namespace), or given ::m
1235 /// (where X is the global namespace), let S be the set of all
1236 /// declarations of m in X and in the transitive closure of all
1237 /// namespaces nominated by using-directives in X and its used
1238 /// namespaces, except that using-directives are ignored in any
1239 /// namespace, including X, directly containing one or more
1240 /// declarations of m. No namespace is searched more than once in
1241 /// the lookup of a name. If S is the empty set, the program is
1242 /// ill-formed. Otherwise, if S has exactly one member, or if the
1243 /// context of the reference is a using-declaration
1244 /// (namespace.udecl), S is the required set of declarations of
1245 /// m. Otherwise if the use of m is not one that allows a unique
1246 /// declaration to be chosen from S, the program is ill-formed.
1247 /// C++98 [namespace.qual]p5:
1248 /// During the lookup of a qualified namespace member name, if the
1249 /// lookup finds more than one declaration of the member, and if one
1250 /// declaration introduces a class name or enumeration name and the
1251 /// other declarations either introduce the same object, the same
1252 /// enumerator or a set of functions, the non-type name hides the
1253 /// class or enumeration name if and only if the declarations are
1254 /// from the same namespace; otherwise (the declarations are from
1255 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1256 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1257 DeclContext *StartDC) {
1258 assert(StartDC->isFileContext() && "start context is not a file context");
1259
1260 DeclContext::udir_iterator I = StartDC->using_directives_begin();
1261 DeclContext::udir_iterator E = StartDC->using_directives_end();
1262
1263 if (I == E) return false;
1264
1265 // We have at least added all these contexts to the queue.
1266 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1267 Visited.insert(StartDC);
1268
1269 // We have not yet looked into these namespaces, much less added
1270 // their "using-children" to the queue.
1271 SmallVector<NamespaceDecl*, 8> Queue;
1272
1273 // We have already looked into the initial namespace; seed the queue
1274 // with its using-children.
1275 for (; I != E; ++I) {
1276 NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1277 if (Visited.insert(ND))
1278 Queue.push_back(ND);
1279 }
1280
1281 // The easiest way to implement the restriction in [namespace.qual]p5
1282 // is to check whether any of the individual results found a tag
1283 // and, if so, to declare an ambiguity if the final result is not
1284 // a tag.
1285 bool FoundTag = false;
1286 bool FoundNonTag = false;
1287
1288 LookupResult LocalR(LookupResult::Temporary, R);
1289
1290 bool Found = false;
1291 while (!Queue.empty()) {
1292 NamespaceDecl *ND = Queue.back();
1293 Queue.pop_back();
1294
1295 // We go through some convolutions here to avoid copying results
1296 // between LookupResults.
1297 bool UseLocal = !R.empty();
1298 LookupResult &DirectR = UseLocal ? LocalR : R;
1299 bool FoundDirect = LookupDirect(S, DirectR, ND);
1300
1301 if (FoundDirect) {
1302 // First do any local hiding.
1303 DirectR.resolveKind();
1304
1305 // If the local result is a tag, remember that.
1306 if (DirectR.isSingleTagDecl())
1307 FoundTag = true;
1308 else
1309 FoundNonTag = true;
1310
1311 // Append the local results to the total results if necessary.
1312 if (UseLocal) {
1313 R.addAllDecls(LocalR);
1314 LocalR.clear();
1315 }
1316 }
1317
1318 // If we find names in this namespace, ignore its using directives.
1319 if (FoundDirect) {
1320 Found = true;
1321 continue;
1322 }
1323
1324 for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1325 NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1326 if (Visited.insert(Nom))
1327 Queue.push_back(Nom);
1328 }
1329 }
1330
1331 if (Found) {
1332 if (FoundTag && FoundNonTag)
1333 R.setAmbiguousQualifiedTagHiding();
1334 else
1335 R.resolveKind();
1336 }
1337
1338 return Found;
1339 }
1340
1341 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1342 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1343 CXXBasePath &Path,
1344 void *Name) {
1345 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1346
1347 DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1348 Path.Decls = BaseRecord->lookup(N);
1349 return Path.Decls.first != Path.Decls.second;
1350 }
1351
1352 /// \brief Determine whether the given set of member declarations contains only
1353 /// static members, nested types, and enumerators.
1354 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1355 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1356 Decl *D = (*First)->getUnderlyingDecl();
1357 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1358 return true;
1359
1360 if (isa<CXXMethodDecl>(D)) {
1361 // Determine whether all of the methods are static.
1362 bool AllMethodsAreStatic = true;
1363 for(; First != Last; ++First) {
1364 D = (*First)->getUnderlyingDecl();
1365
1366 if (!isa<CXXMethodDecl>(D)) {
1367 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1368 break;
1369 }
1370
1371 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1372 AllMethodsAreStatic = false;
1373 break;
1374 }
1375 }
1376
1377 if (AllMethodsAreStatic)
1378 return true;
1379 }
1380
1381 return false;
1382 }
1383
1384 /// \brief Perform qualified name lookup into a given context.
1385 ///
1386 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1387 /// names when the context of those names is explicit specified, e.g.,
1388 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1389 ///
1390 /// Different lookup criteria can find different names. For example, a
1391 /// particular scope can have both a struct and a function of the same
1392 /// name, and each can be found by certain lookup criteria. For more
1393 /// information about lookup criteria, see the documentation for the
1394 /// class LookupCriteria.
1395 ///
1396 /// \param R captures both the lookup criteria and any lookup results found.
1397 ///
1398 /// \param LookupCtx The context in which qualified name lookup will
1399 /// search. If the lookup criteria permits, name lookup may also search
1400 /// in the parent contexts or (for C++ classes) base classes.
1401 ///
1402 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1403 /// occurs as part of unqualified name lookup.
1404 ///
1405 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1406 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1407 bool InUnqualifiedLookup) {
1408 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1409
1410 if (!R.getLookupName())
1411 return false;
1412
1413 // Make sure that the declaration context is complete.
1414 assert((!isa<TagDecl>(LookupCtx) ||
1415 LookupCtx->isDependentContext() ||
1416 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1417 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1418 "Declaration context must already be complete!");
1419
1420 // Perform qualified name lookup into the LookupCtx.
1421 if (LookupDirect(*this, R, LookupCtx)) {
1422 R.resolveKind();
1423 if (isa<CXXRecordDecl>(LookupCtx))
1424 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1425 return true;
1426 }
1427
1428 // Don't descend into implied contexts for redeclarations.
1429 // C++98 [namespace.qual]p6:
1430 // In a declaration for a namespace member in which the
1431 // declarator-id is a qualified-id, given that the qualified-id
1432 // for the namespace member has the form
1433 // nested-name-specifier unqualified-id
1434 // the unqualified-id shall name a member of the namespace
1435 // designated by the nested-name-specifier.
1436 // See also [class.mfct]p5 and [class.static.data]p2.
1437 if (R.isForRedeclaration())
1438 return false;
1439
1440 // If this is a namespace, look it up in the implied namespaces.
1441 if (LookupCtx->isFileContext())
1442 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1443
1444 // If this isn't a C++ class, we aren't allowed to look into base
1445 // classes, we're done.
1446 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1447 if (!LookupRec || !LookupRec->getDefinition())
1448 return false;
1449
1450 // If we're performing qualified name lookup into a dependent class,
1451 // then we are actually looking into a current instantiation. If we have any
1452 // dependent base classes, then we either have to delay lookup until
1453 // template instantiation time (at which point all bases will be available)
1454 // or we have to fail.
1455 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1456 LookupRec->hasAnyDependentBases()) {
1457 R.setNotFoundInCurrentInstantiation();
1458 return false;
1459 }
1460
1461 // Perform lookup into our base classes.
1462 CXXBasePaths Paths;
1463 Paths.setOrigin(LookupRec);
1464
1465 // Look for this member in our base classes
1466 CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1467 switch (R.getLookupKind()) {
1468 case LookupObjCImplicitSelfParam:
1469 case LookupOrdinaryName:
1470 case LookupMemberName:
1471 case LookupRedeclarationWithLinkage:
1472 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1473 break;
1474
1475 case LookupTagName:
1476 BaseCallback = &CXXRecordDecl::FindTagMember;
1477 break;
1478
1479 case LookupAnyName:
1480 BaseCallback = &LookupAnyMember;
1481 break;
1482
1483 case LookupUsingDeclName:
1484 // This lookup is for redeclarations only.
1485
1486 case LookupOperatorName:
1487 case LookupNamespaceName:
1488 case LookupObjCProtocolName:
1489 case LookupLabel:
1490 // These lookups will never find a member in a C++ class (or base class).
1491 return false;
1492
1493 case LookupNestedNameSpecifierName:
1494 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1495 break;
1496 }
1497
1498 if (!LookupRec->lookupInBases(BaseCallback,
1499 R.getLookupName().getAsOpaquePtr(), Paths))
1500 return false;
1501
1502 R.setNamingClass(LookupRec);
1503
1504 // C++ [class.member.lookup]p2:
1505 // [...] If the resulting set of declarations are not all from
1506 // sub-objects of the same type, or the set has a nonstatic member
1507 // and includes members from distinct sub-objects, there is an
1508 // ambiguity and the program is ill-formed. Otherwise that set is
1509 // the result of the lookup.
1510 QualType SubobjectType;
1511 int SubobjectNumber = 0;
1512 AccessSpecifier SubobjectAccess = AS_none;
1513
1514 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1515 Path != PathEnd; ++Path) {
1516 const CXXBasePathElement &PathElement = Path->back();
1517
1518 // Pick the best (i.e. most permissive i.e. numerically lowest) access
1519 // across all paths.
1520 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1521
1522 // Determine whether we're looking at a distinct sub-object or not.
1523 if (SubobjectType.isNull()) {
1524 // This is the first subobject we've looked at. Record its type.
1525 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1526 SubobjectNumber = PathElement.SubobjectNumber;
1527 continue;
1528 }
1529
1530 if (SubobjectType
1531 != Context.getCanonicalType(PathElement.Base->getType())) {
1532 // We found members of the given name in two subobjects of
1533 // different types. If the declaration sets aren't the same, this
1534 // this lookup is ambiguous.
1535 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1536 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1537 DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1538 DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1539
1540 while (FirstD != FirstPath->Decls.second &&
1541 CurrentD != Path->Decls.second) {
1542 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1543 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1544 break;
1545
1546 ++FirstD;
1547 ++CurrentD;
1548 }
1549
1550 if (FirstD == FirstPath->Decls.second &&
1551 CurrentD == Path->Decls.second)
1552 continue;
1553 }
1554
1555 R.setAmbiguousBaseSubobjectTypes(Paths);
1556 return true;
1557 }
1558
1559 if (SubobjectNumber != PathElement.SubobjectNumber) {
1560 // We have a different subobject of the same type.
1561
1562 // C++ [class.member.lookup]p5:
1563 // A static member, a nested type or an enumerator defined in
1564 // a base class T can unambiguously be found even if an object
1565 // has more than one base class subobject of type T.
1566 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1567 continue;
1568
1569 // We have found a nonstatic member name in multiple, distinct
1570 // subobjects. Name lookup is ambiguous.
1571 R.setAmbiguousBaseSubobjects(Paths);
1572 return true;
1573 }
1574 }
1575
1576 // Lookup in a base class succeeded; return these results.
1577
1578 DeclContext::lookup_iterator I, E;
1579 for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1580 NamedDecl *D = *I;
1581 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1582 D->getAccess());
1583 R.addDecl(D, AS);
1584 }
1585 R.resolveKind();
1586 return true;
1587 }
1588
1589 /// @brief Performs name lookup for a name that was parsed in the
1590 /// source code, and may contain a C++ scope specifier.
1591 ///
1592 /// This routine is a convenience routine meant to be called from
1593 /// contexts that receive a name and an optional C++ scope specifier
1594 /// (e.g., "N::M::x"). It will then perform either qualified or
1595 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1596 /// respectively) on the given name and return those results.
1597 ///
1598 /// @param S The scope from which unqualified name lookup will
1599 /// begin.
1600 ///
1601 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
1602 ///
1603 /// @param EnteringContext Indicates whether we are going to enter the
1604 /// context of the scope-specifier SS (if present).
1605 ///
1606 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1607 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1608 bool AllowBuiltinCreation, bool EnteringContext) {
1609 if (SS && SS->isInvalid()) {
1610 // When the scope specifier is invalid, don't even look for
1611 // anything.
1612 return false;
1613 }
1614
1615 if (SS && SS->isSet()) {
1616 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1617 // We have resolved the scope specifier to a particular declaration
1618 // contex, and will perform name lookup in that context.
1619 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1620 return false;
1621
1622 R.setContextRange(SS->getRange());
1623 return LookupQualifiedName(R, DC);
1624 }
1625
1626 // We could not resolve the scope specified to a specific declaration
1627 // context, which means that SS refers to an unknown specialization.
1628 // Name lookup can't find anything in this case.
1629 R.setNotFoundInCurrentInstantiation();
1630 R.setContextRange(SS->getRange());
1631 return false;
1632 }
1633
1634 // Perform unqualified name lookup starting in the given scope.
1635 return LookupName(R, S, AllowBuiltinCreation);
1636 }
1637
1638
1639 /// @brief Produce a diagnostic describing the ambiguity that resulted
1640 /// from name lookup.
1641 ///
1642 /// @param Result The ambiguous name lookup result.
1643 ///
1644 /// @param Name The name of the entity that name lookup was
1645 /// searching for.
1646 ///
1647 /// @param NameLoc The location of the name within the source code.
1648 ///
1649 /// @param LookupRange A source range that provides more
1650 /// source-location information concerning the lookup itself. For
1651 /// example, this range might highlight a nested-name-specifier that
1652 /// precedes the name.
1653 ///
1654 /// @returns true
DiagnoseAmbiguousLookup(LookupResult & Result)1655 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1656 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1657
1658 DeclarationName Name = Result.getLookupName();
1659 SourceLocation NameLoc = Result.getNameLoc();
1660 SourceRange LookupRange = Result.getContextRange();
1661
1662 switch (Result.getAmbiguityKind()) {
1663 case LookupResult::AmbiguousBaseSubobjects: {
1664 CXXBasePaths *Paths = Result.getBasePaths();
1665 QualType SubobjectType = Paths->front().back().Base->getType();
1666 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1667 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1668 << LookupRange;
1669
1670 DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1671 while (isa<CXXMethodDecl>(*Found) &&
1672 cast<CXXMethodDecl>(*Found)->isStatic())
1673 ++Found;
1674
1675 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1676
1677 return true;
1678 }
1679
1680 case LookupResult::AmbiguousBaseSubobjectTypes: {
1681 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1682 << Name << LookupRange;
1683
1684 CXXBasePaths *Paths = Result.getBasePaths();
1685 std::set<Decl *> DeclsPrinted;
1686 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1687 PathEnd = Paths->end();
1688 Path != PathEnd; ++Path) {
1689 Decl *D = *Path->Decls.first;
1690 if (DeclsPrinted.insert(D).second)
1691 Diag(D->getLocation(), diag::note_ambiguous_member_found);
1692 }
1693
1694 return true;
1695 }
1696
1697 case LookupResult::AmbiguousTagHiding: {
1698 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1699
1700 llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1701
1702 LookupResult::iterator DI, DE = Result.end();
1703 for (DI = Result.begin(); DI != DE; ++DI)
1704 if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1705 TagDecls.insert(TD);
1706 Diag(TD->getLocation(), diag::note_hidden_tag);
1707 }
1708
1709 for (DI = Result.begin(); DI != DE; ++DI)
1710 if (!isa<TagDecl>(*DI))
1711 Diag((*DI)->getLocation(), diag::note_hiding_object);
1712
1713 // For recovery purposes, go ahead and implement the hiding.
1714 LookupResult::Filter F = Result.makeFilter();
1715 while (F.hasNext()) {
1716 if (TagDecls.count(F.next()))
1717 F.erase();
1718 }
1719 F.done();
1720
1721 return true;
1722 }
1723
1724 case LookupResult::AmbiguousReference: {
1725 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1726
1727 LookupResult::iterator DI = Result.begin(), DE = Result.end();
1728 for (; DI != DE; ++DI)
1729 Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1730
1731 return true;
1732 }
1733 }
1734
1735 llvm_unreachable("unknown ambiguity kind");
1736 }
1737
1738 namespace {
1739 struct AssociatedLookup {
AssociatedLookup__anon46b0bd150211::AssociatedLookup1740 AssociatedLookup(Sema &S,
1741 Sema::AssociatedNamespaceSet &Namespaces,
1742 Sema::AssociatedClassSet &Classes)
1743 : S(S), Namespaces(Namespaces), Classes(Classes) {
1744 }
1745
1746 Sema &S;
1747 Sema::AssociatedNamespaceSet &Namespaces;
1748 Sema::AssociatedClassSet &Classes;
1749 };
1750 }
1751
1752 static void
1753 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1754
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1755 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1756 DeclContext *Ctx) {
1757 // Add the associated namespace for this class.
1758
1759 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1760 // be a locally scoped record.
1761
1762 // We skip out of inline namespaces. The innermost non-inline namespace
1763 // contains all names of all its nested inline namespaces anyway, so we can
1764 // replace the entire inline namespace tree with its root.
1765 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1766 Ctx->isInlineNamespace())
1767 Ctx = Ctx->getParent();
1768
1769 if (Ctx->isFileContext())
1770 Namespaces.insert(Ctx->getPrimaryContext());
1771 }
1772
1773 // \brief Add the associated classes and namespaces for argument-dependent
1774 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1775 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)1776 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1777 const TemplateArgument &Arg) {
1778 // C++ [basic.lookup.koenig]p2, last bullet:
1779 // -- [...] ;
1780 switch (Arg.getKind()) {
1781 case TemplateArgument::Null:
1782 break;
1783
1784 case TemplateArgument::Type:
1785 // [...] the namespaces and classes associated with the types of the
1786 // template arguments provided for template type parameters (excluding
1787 // template template parameters)
1788 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1789 break;
1790
1791 case TemplateArgument::Template:
1792 case TemplateArgument::TemplateExpansion: {
1793 // [...] the namespaces in which any template template arguments are
1794 // defined; and the classes in which any member templates used as
1795 // template template arguments are defined.
1796 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1797 if (ClassTemplateDecl *ClassTemplate
1798 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1799 DeclContext *Ctx = ClassTemplate->getDeclContext();
1800 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1801 Result.Classes.insert(EnclosingClass);
1802 // Add the associated namespace for this class.
1803 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1804 }
1805 break;
1806 }
1807
1808 case TemplateArgument::Declaration:
1809 case TemplateArgument::Integral:
1810 case TemplateArgument::Expression:
1811 // [Note: non-type template arguments do not contribute to the set of
1812 // associated namespaces. ]
1813 break;
1814
1815 case TemplateArgument::Pack:
1816 for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1817 PEnd = Arg.pack_end();
1818 P != PEnd; ++P)
1819 addAssociatedClassesAndNamespaces(Result, *P);
1820 break;
1821 }
1822 }
1823
1824 // \brief Add the associated classes and namespaces for
1825 // argument-dependent lookup with an argument of class type
1826 // (C++ [basic.lookup.koenig]p2).
1827 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)1828 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1829 CXXRecordDecl *Class) {
1830
1831 // Just silently ignore anything whose name is __va_list_tag.
1832 if (Class->getDeclName() == Result.S.VAListTagName)
1833 return;
1834
1835 // C++ [basic.lookup.koenig]p2:
1836 // [...]
1837 // -- If T is a class type (including unions), its associated
1838 // classes are: the class itself; the class of which it is a
1839 // member, if any; and its direct and indirect base
1840 // classes. Its associated namespaces are the namespaces in
1841 // which its associated classes are defined.
1842
1843 // Add the class of which it is a member, if any.
1844 DeclContext *Ctx = Class->getDeclContext();
1845 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1846 Result.Classes.insert(EnclosingClass);
1847 // Add the associated namespace for this class.
1848 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1849
1850 // Add the class itself. If we've already seen this class, we don't
1851 // need to visit base classes.
1852 if (!Result.Classes.insert(Class))
1853 return;
1854
1855 // -- If T is a template-id, its associated namespaces and classes are
1856 // the namespace in which the template is defined; for member
1857 // templates, the member template's class; the namespaces and classes
1858 // associated with the types of the template arguments provided for
1859 // template type parameters (excluding template template parameters); the
1860 // namespaces in which any template template arguments are defined; and
1861 // the classes in which any member templates used as template template
1862 // arguments are defined. [Note: non-type template arguments do not
1863 // contribute to the set of associated namespaces. ]
1864 if (ClassTemplateSpecializationDecl *Spec
1865 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1866 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1867 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1868 Result.Classes.insert(EnclosingClass);
1869 // Add the associated namespace for this class.
1870 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1871
1872 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1873 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1874 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1875 }
1876
1877 // Only recurse into base classes for complete types.
1878 if (!Class->hasDefinition()) {
1879 // FIXME: we might need to instantiate templates here
1880 return;
1881 }
1882
1883 // Add direct and indirect base classes along with their associated
1884 // namespaces.
1885 SmallVector<CXXRecordDecl *, 32> Bases;
1886 Bases.push_back(Class);
1887 while (!Bases.empty()) {
1888 // Pop this class off the stack.
1889 Class = Bases.back();
1890 Bases.pop_back();
1891
1892 // Visit the base classes.
1893 for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1894 BaseEnd = Class->bases_end();
1895 Base != BaseEnd; ++Base) {
1896 const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1897 // In dependent contexts, we do ADL twice, and the first time around,
1898 // the base type might be a dependent TemplateSpecializationType, or a
1899 // TemplateTypeParmType. If that happens, simply ignore it.
1900 // FIXME: If we want to support export, we probably need to add the
1901 // namespace of the template in a TemplateSpecializationType, or even
1902 // the classes and namespaces of known non-dependent arguments.
1903 if (!BaseType)
1904 continue;
1905 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1906 if (Result.Classes.insert(BaseDecl)) {
1907 // Find the associated namespace for this base class.
1908 DeclContext *BaseCtx = BaseDecl->getDeclContext();
1909 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1910
1911 // Make sure we visit the bases of this base class.
1912 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1913 Bases.push_back(BaseDecl);
1914 }
1915 }
1916 }
1917 }
1918
1919 // \brief Add the associated classes and namespaces for
1920 // argument-dependent lookup with an argument of type T
1921 // (C++ [basic.lookup.koenig]p2).
1922 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)1923 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1924 // C++ [basic.lookup.koenig]p2:
1925 //
1926 // For each argument type T in the function call, there is a set
1927 // of zero or more associated namespaces and a set of zero or more
1928 // associated classes to be considered. The sets of namespaces and
1929 // classes is determined entirely by the types of the function
1930 // arguments (and the namespace of any template template
1931 // argument). Typedef names and using-declarations used to specify
1932 // the types do not contribute to this set. The sets of namespaces
1933 // and classes are determined in the following way:
1934
1935 SmallVector<const Type *, 16> Queue;
1936 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1937
1938 while (true) {
1939 switch (T->getTypeClass()) {
1940
1941 #define TYPE(Class, Base)
1942 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1943 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1944 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1945 #define ABSTRACT_TYPE(Class, Base)
1946 #include "clang/AST/TypeNodes.def"
1947 // T is canonical. We can also ignore dependent types because
1948 // we don't need to do ADL at the definition point, but if we
1949 // wanted to implement template export (or if we find some other
1950 // use for associated classes and namespaces...) this would be
1951 // wrong.
1952 break;
1953
1954 // -- If T is a pointer to U or an array of U, its associated
1955 // namespaces and classes are those associated with U.
1956 case Type::Pointer:
1957 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1958 continue;
1959 case Type::ConstantArray:
1960 case Type::IncompleteArray:
1961 case Type::VariableArray:
1962 T = cast<ArrayType>(T)->getElementType().getTypePtr();
1963 continue;
1964
1965 // -- If T is a fundamental type, its associated sets of
1966 // namespaces and classes are both empty.
1967 case Type::Builtin:
1968 break;
1969
1970 // -- If T is a class type (including unions), its associated
1971 // classes are: the class itself; the class of which it is a
1972 // member, if any; and its direct and indirect base
1973 // classes. Its associated namespaces are the namespaces in
1974 // which its associated classes are defined.
1975 case Type::Record: {
1976 CXXRecordDecl *Class
1977 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1978 addAssociatedClassesAndNamespaces(Result, Class);
1979 break;
1980 }
1981
1982 // -- If T is an enumeration type, its associated namespace is
1983 // the namespace in which it is defined. If it is class
1984 // member, its associated class is the member's class; else
1985 // it has no associated class.
1986 case Type::Enum: {
1987 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1988
1989 DeclContext *Ctx = Enum->getDeclContext();
1990 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1991 Result.Classes.insert(EnclosingClass);
1992
1993 // Add the associated namespace for this class.
1994 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1995
1996 break;
1997 }
1998
1999 // -- If T is a function type, its associated namespaces and
2000 // classes are those associated with the function parameter
2001 // types and those associated with the return type.
2002 case Type::FunctionProto: {
2003 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2004 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2005 ArgEnd = Proto->arg_type_end();
2006 Arg != ArgEnd; ++Arg)
2007 Queue.push_back(Arg->getTypePtr());
2008 // fallthrough
2009 }
2010 case Type::FunctionNoProto: {
2011 const FunctionType *FnType = cast<FunctionType>(T);
2012 T = FnType->getResultType().getTypePtr();
2013 continue;
2014 }
2015
2016 // -- If T is a pointer to a member function of a class X, its
2017 // associated namespaces and classes are those associated
2018 // with the function parameter types and return type,
2019 // together with those associated with X.
2020 //
2021 // -- If T is a pointer to a data member of class X, its
2022 // associated namespaces and classes are those associated
2023 // with the member type together with those associated with
2024 // X.
2025 case Type::MemberPointer: {
2026 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2027
2028 // Queue up the class type into which this points.
2029 Queue.push_back(MemberPtr->getClass());
2030
2031 // And directly continue with the pointee type.
2032 T = MemberPtr->getPointeeType().getTypePtr();
2033 continue;
2034 }
2035
2036 // As an extension, treat this like a normal pointer.
2037 case Type::BlockPointer:
2038 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2039 continue;
2040
2041 // References aren't covered by the standard, but that's such an
2042 // obvious defect that we cover them anyway.
2043 case Type::LValueReference:
2044 case Type::RValueReference:
2045 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2046 continue;
2047
2048 // These are fundamental types.
2049 case Type::Vector:
2050 case Type::ExtVector:
2051 case Type::Complex:
2052 break;
2053
2054 // If T is an Objective-C object or interface type, or a pointer to an
2055 // object or interface type, the associated namespace is the global
2056 // namespace.
2057 case Type::ObjCObject:
2058 case Type::ObjCInterface:
2059 case Type::ObjCObjectPointer:
2060 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2061 break;
2062
2063 // Atomic types are just wrappers; use the associations of the
2064 // contained type.
2065 case Type::Atomic:
2066 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2067 continue;
2068 }
2069
2070 if (Queue.empty()) break;
2071 T = Queue.back();
2072 Queue.pop_back();
2073 }
2074 }
2075
2076 /// \brief Find the associated classes and namespaces for
2077 /// argument-dependent lookup for a call with the given set of
2078 /// arguments.
2079 ///
2080 /// This routine computes the sets of associated classes and associated
2081 /// namespaces searched by argument-dependent lookup
2082 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2083 void
FindAssociatedClassesAndNamespaces(llvm::ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2084 Sema::FindAssociatedClassesAndNamespaces(llvm::ArrayRef<Expr *> Args,
2085 AssociatedNamespaceSet &AssociatedNamespaces,
2086 AssociatedClassSet &AssociatedClasses) {
2087 AssociatedNamespaces.clear();
2088 AssociatedClasses.clear();
2089
2090 AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
2091
2092 // C++ [basic.lookup.koenig]p2:
2093 // For each argument type T in the function call, there is a set
2094 // of zero or more associated namespaces and a set of zero or more
2095 // associated classes to be considered. The sets of namespaces and
2096 // classes is determined entirely by the types of the function
2097 // arguments (and the namespace of any template template
2098 // argument).
2099 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2100 Expr *Arg = Args[ArgIdx];
2101
2102 if (Arg->getType() != Context.OverloadTy) {
2103 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2104 continue;
2105 }
2106
2107 // [...] In addition, if the argument is the name or address of a
2108 // set of overloaded functions and/or function templates, its
2109 // associated classes and namespaces are the union of those
2110 // associated with each of the members of the set: the namespace
2111 // in which the function or function template is defined and the
2112 // classes and namespaces associated with its (non-dependent)
2113 // parameter types and return type.
2114 Arg = Arg->IgnoreParens();
2115 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2116 if (unaryOp->getOpcode() == UO_AddrOf)
2117 Arg = unaryOp->getSubExpr();
2118
2119 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2120 if (!ULE) continue;
2121
2122 for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2123 I != E; ++I) {
2124 // Look through any using declarations to find the underlying function.
2125 NamedDecl *Fn = (*I)->getUnderlyingDecl();
2126
2127 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2128 if (!FDecl)
2129 FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2130
2131 // Add the classes and namespaces associated with the parameter
2132 // types and return type of this function.
2133 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2134 }
2135 }
2136 }
2137
2138 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2139 /// an acceptable non-member overloaded operator for a call whose
2140 /// arguments have types T1 (and, if non-empty, T2). This routine
2141 /// implements the check in C++ [over.match.oper]p3b2 concerning
2142 /// enumeration types.
2143 static bool
IsAcceptableNonMemberOperatorCandidate(FunctionDecl * Fn,QualType T1,QualType T2,ASTContext & Context)2144 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2145 QualType T1, QualType T2,
2146 ASTContext &Context) {
2147 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2148 return true;
2149
2150 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2151 return true;
2152
2153 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2154 if (Proto->getNumArgs() < 1)
2155 return false;
2156
2157 if (T1->isEnumeralType()) {
2158 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2159 if (Context.hasSameUnqualifiedType(T1, ArgType))
2160 return true;
2161 }
2162
2163 if (Proto->getNumArgs() < 2)
2164 return false;
2165
2166 if (!T2.isNull() && T2->isEnumeralType()) {
2167 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2168 if (Context.hasSameUnqualifiedType(T2, ArgType))
2169 return true;
2170 }
2171
2172 return false;
2173 }
2174
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2175 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2176 SourceLocation Loc,
2177 LookupNameKind NameKind,
2178 RedeclarationKind Redecl) {
2179 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2180 LookupName(R, S);
2181 return R.getAsSingle<NamedDecl>();
2182 }
2183
2184 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2185 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2186 SourceLocation IdLoc,
2187 RedeclarationKind Redecl) {
2188 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2189 LookupObjCProtocolName, Redecl);
2190 return cast_or_null<ObjCProtocolDecl>(D);
2191 }
2192
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2193 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2194 QualType T1, QualType T2,
2195 UnresolvedSetImpl &Functions) {
2196 // C++ [over.match.oper]p3:
2197 // -- The set of non-member candidates is the result of the
2198 // unqualified lookup of operator@ in the context of the
2199 // expression according to the usual rules for name lookup in
2200 // unqualified function calls (3.4.2) except that all member
2201 // functions are ignored. However, if no operand has a class
2202 // type, only those non-member functions in the lookup set
2203 // that have a first parameter of type T1 or "reference to
2204 // (possibly cv-qualified) T1", when T1 is an enumeration
2205 // type, or (if there is a right operand) a second parameter
2206 // of type T2 or "reference to (possibly cv-qualified) T2",
2207 // when T2 is an enumeration type, are candidate functions.
2208 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2209 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2210 LookupName(Operators, S);
2211
2212 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2213
2214 if (Operators.empty())
2215 return;
2216
2217 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2218 Op != OpEnd; ++Op) {
2219 NamedDecl *Found = (*Op)->getUnderlyingDecl();
2220 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2221 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2222 Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2223 } else if (FunctionTemplateDecl *FunTmpl
2224 = dyn_cast<FunctionTemplateDecl>(Found)) {
2225 // FIXME: friend operators?
2226 // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2227 // later?
2228 if (!FunTmpl->getDeclContext()->isRecord())
2229 Functions.addDecl(*Op, Op.getAccess());
2230 }
2231 }
2232 }
2233
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2234 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2235 CXXSpecialMember SM,
2236 bool ConstArg,
2237 bool VolatileArg,
2238 bool RValueThis,
2239 bool ConstThis,
2240 bool VolatileThis) {
2241 RD = RD->getDefinition();
2242 assert((RD && !RD->isBeingDefined()) &&
2243 "doing special member lookup into record that isn't fully complete");
2244 if (RValueThis || ConstThis || VolatileThis)
2245 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2246 "constructors and destructors always have unqualified lvalue this");
2247 if (ConstArg || VolatileArg)
2248 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2249 "parameter-less special members can't have qualified arguments");
2250
2251 llvm::FoldingSetNodeID ID;
2252 ID.AddPointer(RD);
2253 ID.AddInteger(SM);
2254 ID.AddInteger(ConstArg);
2255 ID.AddInteger(VolatileArg);
2256 ID.AddInteger(RValueThis);
2257 ID.AddInteger(ConstThis);
2258 ID.AddInteger(VolatileThis);
2259
2260 void *InsertPoint;
2261 SpecialMemberOverloadResult *Result =
2262 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2263
2264 // This was already cached
2265 if (Result)
2266 return Result;
2267
2268 Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2269 Result = new (Result) SpecialMemberOverloadResult(ID);
2270 SpecialMemberCache.InsertNode(Result, InsertPoint);
2271
2272 if (SM == CXXDestructor) {
2273 if (!RD->hasDeclaredDestructor())
2274 DeclareImplicitDestructor(RD);
2275 CXXDestructorDecl *DD = RD->getDestructor();
2276 assert(DD && "record without a destructor");
2277 Result->setMethod(DD);
2278 Result->setKind(DD->isDeleted() ?
2279 SpecialMemberOverloadResult::NoMemberOrDeleted :
2280 SpecialMemberOverloadResult::SuccessNonConst);
2281 return Result;
2282 }
2283
2284 // Prepare for overload resolution. Here we construct a synthetic argument
2285 // if necessary and make sure that implicit functions are declared.
2286 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2287 DeclarationName Name;
2288 Expr *Arg = 0;
2289 unsigned NumArgs;
2290
2291 if (SM == CXXDefaultConstructor) {
2292 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2293 NumArgs = 0;
2294 if (RD->needsImplicitDefaultConstructor())
2295 DeclareImplicitDefaultConstructor(RD);
2296 } else {
2297 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2298 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2299 if (!RD->hasDeclaredCopyConstructor())
2300 DeclareImplicitCopyConstructor(RD);
2301 if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveConstructor())
2302 DeclareImplicitMoveConstructor(RD);
2303 } else {
2304 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2305 if (!RD->hasDeclaredCopyAssignment())
2306 DeclareImplicitCopyAssignment(RD);
2307 if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveAssignment())
2308 DeclareImplicitMoveAssignment(RD);
2309 }
2310
2311 QualType ArgType = CanTy;
2312 if (ConstArg)
2313 ArgType.addConst();
2314 if (VolatileArg)
2315 ArgType.addVolatile();
2316
2317 // This isn't /really/ specified by the standard, but it's implied
2318 // we should be working from an RValue in the case of move to ensure
2319 // that we prefer to bind to rvalue references, and an LValue in the
2320 // case of copy to ensure we don't bind to rvalue references.
2321 // Possibly an XValue is actually correct in the case of move, but
2322 // there is no semantic difference for class types in this restricted
2323 // case.
2324 ExprValueKind VK;
2325 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2326 VK = VK_LValue;
2327 else
2328 VK = VK_RValue;
2329
2330 NumArgs = 1;
2331 Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType, VK);
2332 }
2333
2334 // Create the object argument
2335 QualType ThisTy = CanTy;
2336 if (ConstThis)
2337 ThisTy.addConst();
2338 if (VolatileThis)
2339 ThisTy.addVolatile();
2340 Expr::Classification Classification =
2341 (new (Context) OpaqueValueExpr(SourceLocation(), ThisTy,
2342 RValueThis ? VK_RValue : VK_LValue))->
2343 Classify(Context);
2344
2345 // Now we perform lookup on the name we computed earlier and do overload
2346 // resolution. Lookup is only performed directly into the class since there
2347 // will always be a (possibly implicit) declaration to shadow any others.
2348 OverloadCandidateSet OCS((SourceLocation()));
2349 DeclContext::lookup_iterator I, E;
2350 SpecialMemberOverloadResult::Kind SuccessKind =
2351 SpecialMemberOverloadResult::SuccessNonConst;
2352
2353 llvm::tie(I, E) = RD->lookup(Name);
2354 assert((I != E) &&
2355 "lookup for a constructor or assignment operator was empty");
2356 for ( ; I != E; ++I) {
2357 Decl *Cand = *I;
2358
2359 if (Cand->isInvalidDecl())
2360 continue;
2361
2362 if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2363 // FIXME: [namespace.udecl]p15 says that we should only consider a
2364 // using declaration here if it does not match a declaration in the
2365 // derived class. We do not implement this correctly in other cases
2366 // either.
2367 Cand = U->getTargetDecl();
2368
2369 if (Cand->isInvalidDecl())
2370 continue;
2371 }
2372
2373 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2374 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2375 AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2376 Classification, llvm::makeArrayRef(&Arg, NumArgs),
2377 OCS, true);
2378 else
2379 AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2380 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2381
2382 // Here we're looking for a const parameter to speed up creation of
2383 // implicit copy methods.
2384 if ((SM == CXXCopyAssignment && M->isCopyAssignmentOperator()) ||
2385 (SM == CXXCopyConstructor &&
2386 cast<CXXConstructorDecl>(M)->isCopyConstructor())) {
2387 QualType ArgType = M->getType()->getAs<FunctionProtoType>()->getArgType(0);
2388 if (!ArgType->isReferenceType() ||
2389 ArgType->getPointeeType().isConstQualified())
2390 SuccessKind = SpecialMemberOverloadResult::SuccessConst;
2391 }
2392 } else if (FunctionTemplateDecl *Tmpl =
2393 dyn_cast<FunctionTemplateDecl>(Cand)) {
2394 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2395 AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2396 RD, 0, ThisTy, Classification,
2397 llvm::makeArrayRef(&Arg, NumArgs),
2398 OCS, true);
2399 else
2400 AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2401 0, llvm::makeArrayRef(&Arg, NumArgs),
2402 OCS, true);
2403 } else {
2404 assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2405 }
2406 }
2407
2408 OverloadCandidateSet::iterator Best;
2409 switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2410 case OR_Success:
2411 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2412 Result->setKind(SuccessKind);
2413 break;
2414
2415 case OR_Deleted:
2416 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2417 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2418 break;
2419
2420 case OR_Ambiguous:
2421 Result->setMethod(0);
2422 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2423 break;
2424
2425 case OR_No_Viable_Function:
2426 Result->setMethod(0);
2427 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2428 break;
2429 }
2430
2431 return Result;
2432 }
2433
2434 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2435 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2436 SpecialMemberOverloadResult *Result =
2437 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2438 false, false);
2439
2440 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2441 }
2442
2443 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals,bool * ConstParamMatch)2444 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2445 unsigned Quals,
2446 bool *ConstParamMatch) {
2447 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2448 "non-const, non-volatile qualifiers for copy ctor arg");
2449 SpecialMemberOverloadResult *Result =
2450 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2451 Quals & Qualifiers::Volatile, false, false, false);
2452
2453 if (ConstParamMatch)
2454 *ConstParamMatch = Result->hasConstParamMatch();
2455
2456 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2457 }
2458
2459 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class)2460 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class) {
2461 SpecialMemberOverloadResult *Result =
2462 LookupSpecialMember(Class, CXXMoveConstructor, false,
2463 false, false, false, false);
2464
2465 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2466 }
2467
2468 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2469 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2470 // If the implicit constructors have not yet been declared, do so now.
2471 if (CanDeclareSpecialMemberFunction(Context, Class)) {
2472 if (Class->needsImplicitDefaultConstructor())
2473 DeclareImplicitDefaultConstructor(Class);
2474 if (!Class->hasDeclaredCopyConstructor())
2475 DeclareImplicitCopyConstructor(Class);
2476 if (getLangOpts().CPlusPlus0x && Class->needsImplicitMoveConstructor())
2477 DeclareImplicitMoveConstructor(Class);
2478 }
2479
2480 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2481 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2482 return Class->lookup(Name);
2483 }
2484
2485 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals,bool * ConstParamMatch)2486 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2487 unsigned Quals, bool RValueThis,
2488 unsigned ThisQuals,
2489 bool *ConstParamMatch) {
2490 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2491 "non-const, non-volatile qualifiers for copy assignment arg");
2492 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2493 "non-const, non-volatile qualifiers for copy assignment this");
2494 SpecialMemberOverloadResult *Result =
2495 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2496 Quals & Qualifiers::Volatile, RValueThis,
2497 ThisQuals & Qualifiers::Const,
2498 ThisQuals & Qualifiers::Volatile);
2499
2500 if (ConstParamMatch)
2501 *ConstParamMatch = Result->hasConstParamMatch();
2502
2503 return Result->getMethod();
2504 }
2505
2506 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,bool RValueThis,unsigned ThisQuals)2507 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2508 bool RValueThis,
2509 unsigned ThisQuals) {
2510 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2511 "non-const, non-volatile qualifiers for copy assignment this");
2512 SpecialMemberOverloadResult *Result =
2513 LookupSpecialMember(Class, CXXMoveAssignment, false, false, RValueThis,
2514 ThisQuals & Qualifiers::Const,
2515 ThisQuals & Qualifiers::Volatile);
2516
2517 return Result->getMethod();
2518 }
2519
2520 /// \brief Look for the destructor of the given class.
2521 ///
2522 /// During semantic analysis, this routine should be used in lieu of
2523 /// CXXRecordDecl::getDestructor().
2524 ///
2525 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2526 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2527 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2528 false, false, false,
2529 false, false)->getMethod());
2530 }
2531
2532 /// LookupLiteralOperator - Determine which literal operator should be used for
2533 /// a user-defined literal, per C++11 [lex.ext].
2534 ///
2535 /// Normal overload resolution is not used to select which literal operator to
2536 /// call for a user-defined literal. Look up the provided literal operator name,
2537 /// and filter the results to the appropriate set for the given argument types.
2538 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRawAndTemplate)2539 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2540 ArrayRef<QualType> ArgTys,
2541 bool AllowRawAndTemplate) {
2542 LookupName(R, S);
2543 assert(R.getResultKind() != LookupResult::Ambiguous &&
2544 "literal operator lookup can't be ambiguous");
2545
2546 // Filter the lookup results appropriately.
2547 LookupResult::Filter F = R.makeFilter();
2548
2549 bool FoundTemplate = false;
2550 bool FoundRaw = false;
2551 bool FoundExactMatch = false;
2552
2553 while (F.hasNext()) {
2554 Decl *D = F.next();
2555 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2556 D = USD->getTargetDecl();
2557
2558 bool IsTemplate = isa<FunctionTemplateDecl>(D);
2559 bool IsRaw = false;
2560 bool IsExactMatch = false;
2561
2562 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2563 if (FD->getNumParams() == 1 &&
2564 FD->getParamDecl(0)->getType()->getAs<PointerType>())
2565 IsRaw = true;
2566 else {
2567 IsExactMatch = true;
2568 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2569 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2570 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2571 IsExactMatch = false;
2572 break;
2573 }
2574 }
2575 }
2576 }
2577
2578 if (IsExactMatch) {
2579 FoundExactMatch = true;
2580 AllowRawAndTemplate = false;
2581 if (FoundRaw || FoundTemplate) {
2582 // Go through again and remove the raw and template decls we've
2583 // already found.
2584 F.restart();
2585 FoundRaw = FoundTemplate = false;
2586 }
2587 } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2588 FoundTemplate |= IsTemplate;
2589 FoundRaw |= IsRaw;
2590 } else {
2591 F.erase();
2592 }
2593 }
2594
2595 F.done();
2596
2597 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2598 // parameter type, that is used in preference to a raw literal operator
2599 // or literal operator template.
2600 if (FoundExactMatch)
2601 return LOLR_Cooked;
2602
2603 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2604 // operator template, but not both.
2605 if (FoundRaw && FoundTemplate) {
2606 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2607 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2608 Decl *D = *I;
2609 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2610 D = USD->getTargetDecl();
2611 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2612 D = FunTmpl->getTemplatedDecl();
2613 NoteOverloadCandidate(cast<FunctionDecl>(D));
2614 }
2615 return LOLR_Error;
2616 }
2617
2618 if (FoundRaw)
2619 return LOLR_Raw;
2620
2621 if (FoundTemplate)
2622 return LOLR_Template;
2623
2624 // Didn't find anything we could use.
2625 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2626 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2627 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2628 return LOLR_Error;
2629 }
2630
insert(NamedDecl * New)2631 void ADLResult::insert(NamedDecl *New) {
2632 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2633
2634 // If we haven't yet seen a decl for this key, or the last decl
2635 // was exactly this one, we're done.
2636 if (Old == 0 || Old == New) {
2637 Old = New;
2638 return;
2639 }
2640
2641 // Otherwise, decide which is a more recent redeclaration.
2642 FunctionDecl *OldFD, *NewFD;
2643 if (isa<FunctionTemplateDecl>(New)) {
2644 OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2645 NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2646 } else {
2647 OldFD = cast<FunctionDecl>(Old);
2648 NewFD = cast<FunctionDecl>(New);
2649 }
2650
2651 FunctionDecl *Cursor = NewFD;
2652 while (true) {
2653 Cursor = Cursor->getPreviousDecl();
2654
2655 // If we got to the end without finding OldFD, OldFD is the newer
2656 // declaration; leave things as they are.
2657 if (!Cursor) return;
2658
2659 // If we do find OldFD, then NewFD is newer.
2660 if (Cursor == OldFD) break;
2661
2662 // Otherwise, keep looking.
2663 }
2664
2665 Old = New;
2666 }
2667
ArgumentDependentLookup(DeclarationName Name,bool Operator,SourceLocation Loc,llvm::ArrayRef<Expr * > Args,ADLResult & Result,bool StdNamespaceIsAssociated)2668 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2669 SourceLocation Loc,
2670 llvm::ArrayRef<Expr *> Args,
2671 ADLResult &Result,
2672 bool StdNamespaceIsAssociated) {
2673 // Find all of the associated namespaces and classes based on the
2674 // arguments we have.
2675 AssociatedNamespaceSet AssociatedNamespaces;
2676 AssociatedClassSet AssociatedClasses;
2677 FindAssociatedClassesAndNamespaces(Args,
2678 AssociatedNamespaces,
2679 AssociatedClasses);
2680 if (StdNamespaceIsAssociated && StdNamespace)
2681 AssociatedNamespaces.insert(getStdNamespace());
2682
2683 QualType T1, T2;
2684 if (Operator) {
2685 T1 = Args[0]->getType();
2686 if (Args.size() >= 2)
2687 T2 = Args[1]->getType();
2688 }
2689
2690 // Try to complete all associated classes, in case they contain a
2691 // declaration of a friend function.
2692 for (AssociatedClassSet::iterator C = AssociatedClasses.begin(),
2693 CEnd = AssociatedClasses.end();
2694 C != CEnd; ++C)
2695 RequireCompleteType(Loc, Context.getRecordType(*C), 0);
2696
2697 // C++ [basic.lookup.argdep]p3:
2698 // Let X be the lookup set produced by unqualified lookup (3.4.1)
2699 // and let Y be the lookup set produced by argument dependent
2700 // lookup (defined as follows). If X contains [...] then Y is
2701 // empty. Otherwise Y is the set of declarations found in the
2702 // namespaces associated with the argument types as described
2703 // below. The set of declarations found by the lookup of the name
2704 // is the union of X and Y.
2705 //
2706 // Here, we compute Y and add its members to the overloaded
2707 // candidate set.
2708 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2709 NSEnd = AssociatedNamespaces.end();
2710 NS != NSEnd; ++NS) {
2711 // When considering an associated namespace, the lookup is the
2712 // same as the lookup performed when the associated namespace is
2713 // used as a qualifier (3.4.3.2) except that:
2714 //
2715 // -- Any using-directives in the associated namespace are
2716 // ignored.
2717 //
2718 // -- Any namespace-scope friend functions declared in
2719 // associated classes are visible within their respective
2720 // namespaces even if they are not visible during an ordinary
2721 // lookup (11.4).
2722 DeclContext::lookup_iterator I, E;
2723 for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2724 NamedDecl *D = *I;
2725 // If the only declaration here is an ordinary friend, consider
2726 // it only if it was declared in an associated classes.
2727 if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2728 DeclContext *LexDC = D->getLexicalDeclContext();
2729 if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2730 continue;
2731 }
2732
2733 if (isa<UsingShadowDecl>(D))
2734 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2735
2736 if (isa<FunctionDecl>(D)) {
2737 if (Operator &&
2738 !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2739 T1, T2, Context))
2740 continue;
2741 } else if (!isa<FunctionTemplateDecl>(D))
2742 continue;
2743
2744 Result.insert(D);
2745 }
2746 }
2747 }
2748
2749 //----------------------------------------------------------------------------
2750 // Search for all visible declarations.
2751 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2752 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2753
2754 namespace {
2755
2756 class ShadowContextRAII;
2757
2758 class VisibleDeclsRecord {
2759 public:
2760 /// \brief An entry in the shadow map, which is optimized to store a
2761 /// single declaration (the common case) but can also store a list
2762 /// of declarations.
2763 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2764
2765 private:
2766 /// \brief A mapping from declaration names to the declarations that have
2767 /// this name within a particular scope.
2768 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2769
2770 /// \brief A list of shadow maps, which is used to model name hiding.
2771 std::list<ShadowMap> ShadowMaps;
2772
2773 /// \brief The declaration contexts we have already visited.
2774 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2775
2776 friend class ShadowContextRAII;
2777
2778 public:
2779 /// \brief Determine whether we have already visited this context
2780 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2781 bool visitedContext(DeclContext *Ctx) {
2782 return !VisitedContexts.insert(Ctx);
2783 }
2784
alreadyVisitedContext(DeclContext * Ctx)2785 bool alreadyVisitedContext(DeclContext *Ctx) {
2786 return VisitedContexts.count(Ctx);
2787 }
2788
2789 /// \brief Determine whether the given declaration is hidden in the
2790 /// current scope.
2791 ///
2792 /// \returns the declaration that hides the given declaration, or
2793 /// NULL if no such declaration exists.
2794 NamedDecl *checkHidden(NamedDecl *ND);
2795
2796 /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2797 void add(NamedDecl *ND) {
2798 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2799 }
2800 };
2801
2802 /// \brief RAII object that records when we've entered a shadow context.
2803 class ShadowContextRAII {
2804 VisibleDeclsRecord &Visible;
2805
2806 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2807
2808 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2809 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2810 Visible.ShadowMaps.push_back(ShadowMap());
2811 }
2812
~ShadowContextRAII()2813 ~ShadowContextRAII() {
2814 Visible.ShadowMaps.pop_back();
2815 }
2816 };
2817
2818 } // end anonymous namespace
2819
checkHidden(NamedDecl * ND)2820 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2821 // Look through using declarations.
2822 ND = ND->getUnderlyingDecl();
2823
2824 unsigned IDNS = ND->getIdentifierNamespace();
2825 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2826 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2827 SM != SMEnd; ++SM) {
2828 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2829 if (Pos == SM->end())
2830 continue;
2831
2832 for (ShadowMapEntry::iterator I = Pos->second.begin(),
2833 IEnd = Pos->second.end();
2834 I != IEnd; ++I) {
2835 // A tag declaration does not hide a non-tag declaration.
2836 if ((*I)->hasTagIdentifierNamespace() &&
2837 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2838 Decl::IDNS_ObjCProtocol)))
2839 continue;
2840
2841 // Protocols are in distinct namespaces from everything else.
2842 if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2843 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2844 (*I)->getIdentifierNamespace() != IDNS)
2845 continue;
2846
2847 // Functions and function templates in the same scope overload
2848 // rather than hide. FIXME: Look for hiding based on function
2849 // signatures!
2850 if ((*I)->isFunctionOrFunctionTemplate() &&
2851 ND->isFunctionOrFunctionTemplate() &&
2852 SM == ShadowMaps.rbegin())
2853 continue;
2854
2855 // We've found a declaration that hides this one.
2856 return *I;
2857 }
2858 }
2859
2860 return 0;
2861 }
2862
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2863 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2864 bool QualifiedNameLookup,
2865 bool InBaseClass,
2866 VisibleDeclConsumer &Consumer,
2867 VisibleDeclsRecord &Visited) {
2868 if (!Ctx)
2869 return;
2870
2871 // Make sure we don't visit the same context twice.
2872 if (Visited.visitedContext(Ctx->getPrimaryContext()))
2873 return;
2874
2875 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2876 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2877
2878 // Enumerate all of the results in this context.
2879 for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2880 LEnd = Ctx->lookups_end();
2881 L != LEnd; ++L) {
2882 for (DeclContext::lookup_result R = *L; R.first != R.second; ++R.first) {
2883 if (NamedDecl *ND = dyn_cast<NamedDecl>(*R.first)) {
2884 if ((ND = Result.getAcceptableDecl(ND))) {
2885 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2886 Visited.add(ND);
2887 }
2888 }
2889 }
2890 }
2891
2892 // Traverse using directives for qualified name lookup.
2893 if (QualifiedNameLookup) {
2894 ShadowContextRAII Shadow(Visited);
2895 DeclContext::udir_iterator I, E;
2896 for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2897 LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2898 QualifiedNameLookup, InBaseClass, Consumer, Visited);
2899 }
2900 }
2901
2902 // Traverse the contexts of inherited C++ classes.
2903 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2904 if (!Record->hasDefinition())
2905 return;
2906
2907 for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2908 BEnd = Record->bases_end();
2909 B != BEnd; ++B) {
2910 QualType BaseType = B->getType();
2911
2912 // Don't look into dependent bases, because name lookup can't look
2913 // there anyway.
2914 if (BaseType->isDependentType())
2915 continue;
2916
2917 const RecordType *Record = BaseType->getAs<RecordType>();
2918 if (!Record)
2919 continue;
2920
2921 // FIXME: It would be nice to be able to determine whether referencing
2922 // a particular member would be ambiguous. For example, given
2923 //
2924 // struct A { int member; };
2925 // struct B { int member; };
2926 // struct C : A, B { };
2927 //
2928 // void f(C *c) { c->### }
2929 //
2930 // accessing 'member' would result in an ambiguity. However, we
2931 // could be smart enough to qualify the member with the base
2932 // class, e.g.,
2933 //
2934 // c->B::member
2935 //
2936 // or
2937 //
2938 // c->A::member
2939
2940 // Find results in this base class (and its bases).
2941 ShadowContextRAII Shadow(Visited);
2942 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2943 true, Consumer, Visited);
2944 }
2945 }
2946
2947 // Traverse the contexts of Objective-C classes.
2948 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2949 // Traverse categories.
2950 for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2951 Category; Category = Category->getNextClassCategory()) {
2952 ShadowContextRAII Shadow(Visited);
2953 LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2954 Consumer, Visited);
2955 }
2956
2957 // Traverse protocols.
2958 for (ObjCInterfaceDecl::all_protocol_iterator
2959 I = IFace->all_referenced_protocol_begin(),
2960 E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2961 ShadowContextRAII Shadow(Visited);
2962 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2963 Visited);
2964 }
2965
2966 // Traverse the superclass.
2967 if (IFace->getSuperClass()) {
2968 ShadowContextRAII Shadow(Visited);
2969 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2970 true, Consumer, Visited);
2971 }
2972
2973 // If there is an implementation, traverse it. We do this to find
2974 // synthesized ivars.
2975 if (IFace->getImplementation()) {
2976 ShadowContextRAII Shadow(Visited);
2977 LookupVisibleDecls(IFace->getImplementation(), Result,
2978 QualifiedNameLookup, InBaseClass, Consumer, Visited);
2979 }
2980 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2981 for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2982 E = Protocol->protocol_end(); I != E; ++I) {
2983 ShadowContextRAII Shadow(Visited);
2984 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2985 Visited);
2986 }
2987 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2988 for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2989 E = Category->protocol_end(); I != E; ++I) {
2990 ShadowContextRAII Shadow(Visited);
2991 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2992 Visited);
2993 }
2994
2995 // If there is an implementation, traverse it.
2996 if (Category->getImplementation()) {
2997 ShadowContextRAII Shadow(Visited);
2998 LookupVisibleDecls(Category->getImplementation(), Result,
2999 QualifiedNameLookup, true, Consumer, Visited);
3000 }
3001 }
3002 }
3003
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3004 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3005 UnqualUsingDirectiveSet &UDirs,
3006 VisibleDeclConsumer &Consumer,
3007 VisibleDeclsRecord &Visited) {
3008 if (!S)
3009 return;
3010
3011 if (!S->getEntity() ||
3012 (!S->getParent() &&
3013 !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
3014 ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
3015 // Walk through the declarations in this Scope.
3016 for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
3017 D != DEnd; ++D) {
3018 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
3019 if ((ND = Result.getAcceptableDecl(ND))) {
3020 Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
3021 Visited.add(ND);
3022 }
3023 }
3024 }
3025
3026 // FIXME: C++ [temp.local]p8
3027 DeclContext *Entity = 0;
3028 if (S->getEntity()) {
3029 // Look into this scope's declaration context, along with any of its
3030 // parent lookup contexts (e.g., enclosing classes), up to the point
3031 // where we hit the context stored in the next outer scope.
3032 Entity = (DeclContext *)S->getEntity();
3033 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3034
3035 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3036 Ctx = Ctx->getLookupParent()) {
3037 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3038 if (Method->isInstanceMethod()) {
3039 // For instance methods, look for ivars in the method's interface.
3040 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3041 Result.getNameLoc(), Sema::LookupMemberName);
3042 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3043 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3044 /*InBaseClass=*/false, Consumer, Visited);
3045 }
3046 }
3047
3048 // We've already performed all of the name lookup that we need
3049 // to for Objective-C methods; the next context will be the
3050 // outer scope.
3051 break;
3052 }
3053
3054 if (Ctx->isFunctionOrMethod())
3055 continue;
3056
3057 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3058 /*InBaseClass=*/false, Consumer, Visited);
3059 }
3060 } else if (!S->getParent()) {
3061 // Look into the translation unit scope. We walk through the translation
3062 // unit's declaration context, because the Scope itself won't have all of
3063 // the declarations if we loaded a precompiled header.
3064 // FIXME: We would like the translation unit's Scope object to point to the
3065 // translation unit, so we don't need this special "if" branch. However,
3066 // doing so would force the normal C++ name-lookup code to look into the
3067 // translation unit decl when the IdentifierInfo chains would suffice.
3068 // Once we fix that problem (which is part of a more general "don't look
3069 // in DeclContexts unless we have to" optimization), we can eliminate this.
3070 Entity = Result.getSema().Context.getTranslationUnitDecl();
3071 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3072 /*InBaseClass=*/false, Consumer, Visited);
3073 }
3074
3075 if (Entity) {
3076 // Lookup visible declarations in any namespaces found by using
3077 // directives.
3078 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3079 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3080 for (; UI != UEnd; ++UI)
3081 LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3082 Result, /*QualifiedNameLookup=*/false,
3083 /*InBaseClass=*/false, Consumer, Visited);
3084 }
3085
3086 // Lookup names in the parent scope.
3087 ShadowContextRAII Shadow(Visited);
3088 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3089 }
3090
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3091 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3092 VisibleDeclConsumer &Consumer,
3093 bool IncludeGlobalScope) {
3094 // Determine the set of using directives available during
3095 // unqualified name lookup.
3096 Scope *Initial = S;
3097 UnqualUsingDirectiveSet UDirs;
3098 if (getLangOpts().CPlusPlus) {
3099 // Find the first namespace or translation-unit scope.
3100 while (S && !isNamespaceOrTranslationUnitScope(S))
3101 S = S->getParent();
3102
3103 UDirs.visitScopeChain(Initial, S);
3104 }
3105 UDirs.done();
3106
3107 // Look for visible declarations.
3108 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3109 VisibleDeclsRecord Visited;
3110 if (!IncludeGlobalScope)
3111 Visited.visitedContext(Context.getTranslationUnitDecl());
3112 ShadowContextRAII Shadow(Visited);
3113 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3114 }
3115
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3116 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3117 VisibleDeclConsumer &Consumer,
3118 bool IncludeGlobalScope) {
3119 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3120 VisibleDeclsRecord Visited;
3121 if (!IncludeGlobalScope)
3122 Visited.visitedContext(Context.getTranslationUnitDecl());
3123 ShadowContextRAII Shadow(Visited);
3124 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3125 /*InBaseClass=*/false, Consumer, Visited);
3126 }
3127
3128 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3129 /// If GnuLabelLoc is a valid source location, then this is a definition
3130 /// of an __label__ label name, otherwise it is a normal label definition
3131 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3132 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3133 SourceLocation GnuLabelLoc) {
3134 // Do a lookup to see if we have a label with this name already.
3135 NamedDecl *Res = 0;
3136
3137 if (GnuLabelLoc.isValid()) {
3138 // Local label definitions always shadow existing labels.
3139 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3140 Scope *S = CurScope;
3141 PushOnScopeChains(Res, S, true);
3142 return cast<LabelDecl>(Res);
3143 }
3144
3145 // Not a GNU local label.
3146 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3147 // If we found a label, check to see if it is in the same context as us.
3148 // When in a Block, we don't want to reuse a label in an enclosing function.
3149 if (Res && Res->getDeclContext() != CurContext)
3150 Res = 0;
3151 if (Res == 0) {
3152 // If not forward referenced or defined already, create the backing decl.
3153 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3154 Scope *S = CurScope->getFnParent();
3155 assert(S && "Not in a function?");
3156 PushOnScopeChains(Res, S, true);
3157 }
3158 return cast<LabelDecl>(Res);
3159 }
3160
3161 //===----------------------------------------------------------------------===//
3162 // Typo correction
3163 //===----------------------------------------------------------------------===//
3164
3165 namespace {
3166
3167 typedef llvm::StringMap<TypoCorrection, llvm::BumpPtrAllocator> TypoResultsMap;
3168 typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3169
3170 static const unsigned MaxTypoDistanceResultSets = 5;
3171
3172 class TypoCorrectionConsumer : public VisibleDeclConsumer {
3173 /// \brief The name written that is a typo in the source.
3174 StringRef Typo;
3175
3176 /// \brief The results found that have the smallest edit distance
3177 /// found (so far) with the typo name.
3178 ///
3179 /// The pointer value being set to the current DeclContext indicates
3180 /// whether there is a keyword with this name.
3181 TypoEditDistanceMap BestResults;
3182
3183 Sema &SemaRef;
3184
3185 public:
TypoCorrectionConsumer(Sema & SemaRef,IdentifierInfo * Typo)3186 explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3187 : Typo(Typo->getName()),
3188 SemaRef(SemaRef) { }
3189
3190 virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3191 bool InBaseClass);
3192 void FoundName(StringRef Name);
3193 void addKeywordResult(StringRef Keyword);
3194 void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3195 NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3196 void addCorrection(TypoCorrection Correction);
3197
3198 typedef TypoResultsMap::iterator result_iterator;
3199 typedef TypoEditDistanceMap::iterator distance_iterator;
begin()3200 distance_iterator begin() { return BestResults.begin(); }
end()3201 distance_iterator end() { return BestResults.end(); }
erase(distance_iterator I)3202 void erase(distance_iterator I) { BestResults.erase(I); }
size() const3203 unsigned size() const { return BestResults.size(); }
empty() const3204 bool empty() const { return BestResults.empty(); }
3205
operator [](StringRef Name)3206 TypoCorrection &operator[](StringRef Name) {
3207 return BestResults.begin()->second[Name];
3208 }
3209
getBestEditDistance(bool Normalized)3210 unsigned getBestEditDistance(bool Normalized) {
3211 if (BestResults.empty())
3212 return (std::numeric_limits<unsigned>::max)();
3213
3214 unsigned BestED = BestResults.begin()->first;
3215 return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3216 }
3217 };
3218
3219 }
3220
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3221 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3222 DeclContext *Ctx, bool InBaseClass) {
3223 // Don't consider hidden names for typo correction.
3224 if (Hiding)
3225 return;
3226
3227 // Only consider entities with identifiers for names, ignoring
3228 // special names (constructors, overloaded operators, selectors,
3229 // etc.).
3230 IdentifierInfo *Name = ND->getIdentifier();
3231 if (!Name)
3232 return;
3233
3234 FoundName(Name->getName());
3235 }
3236
FoundName(StringRef Name)3237 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3238 // Use a simple length-based heuristic to determine the minimum possible
3239 // edit distance. If the minimum isn't good enough, bail out early.
3240 unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3241 if (MinED && Typo.size() / MinED < 3)
3242 return;
3243
3244 // Compute an upper bound on the allowable edit distance, so that the
3245 // edit-distance algorithm can short-circuit.
3246 unsigned UpperBound = (Typo.size() + 2) / 3;
3247
3248 // Compute the edit distance between the typo and the name of this
3249 // entity, and add the identifier to the list of results.
3250 addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3251 }
3252
addKeywordResult(StringRef Keyword)3253 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3254 // Compute the edit distance between the typo and this keyword,
3255 // and add the keyword to the list of results.
3256 addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3257 }
3258
addName(StringRef Name,NamedDecl * ND,unsigned Distance,NestedNameSpecifier * NNS,bool isKeyword)3259 void TypoCorrectionConsumer::addName(StringRef Name,
3260 NamedDecl *ND,
3261 unsigned Distance,
3262 NestedNameSpecifier *NNS,
3263 bool isKeyword) {
3264 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3265 if (isKeyword) TC.makeKeyword();
3266 addCorrection(TC);
3267 }
3268
addCorrection(TypoCorrection Correction)3269 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3270 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3271 TypoResultsMap &Map = BestResults[Correction.getEditDistance(false)];
3272
3273 TypoCorrection &CurrentCorrection = Map[Name];
3274 if (!CurrentCorrection ||
3275 // FIXME: The following should be rolled up into an operator< on
3276 // TypoCorrection with a more principled definition.
3277 CurrentCorrection.isKeyword() < Correction.isKeyword() ||
3278 Correction.getAsString(SemaRef.getLangOpts()) <
3279 CurrentCorrection.getAsString(SemaRef.getLangOpts()))
3280 CurrentCorrection = Correction;
3281
3282 while (BestResults.size() > MaxTypoDistanceResultSets)
3283 erase(llvm::prior(BestResults.end()));
3284 }
3285
3286 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3287 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3288 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3289 static void getNestedNameSpecifierIdentifiers(
3290 NestedNameSpecifier *NNS,
3291 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3292 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3293 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3294 else
3295 Identifiers.clear();
3296
3297 const IdentifierInfo *II = NULL;
3298
3299 switch (NNS->getKind()) {
3300 case NestedNameSpecifier::Identifier:
3301 II = NNS->getAsIdentifier();
3302 break;
3303
3304 case NestedNameSpecifier::Namespace:
3305 if (NNS->getAsNamespace()->isAnonymousNamespace())
3306 return;
3307 II = NNS->getAsNamespace()->getIdentifier();
3308 break;
3309
3310 case NestedNameSpecifier::NamespaceAlias:
3311 II = NNS->getAsNamespaceAlias()->getIdentifier();
3312 break;
3313
3314 case NestedNameSpecifier::TypeSpecWithTemplate:
3315 case NestedNameSpecifier::TypeSpec:
3316 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3317 break;
3318
3319 case NestedNameSpecifier::Global:
3320 return;
3321 }
3322
3323 if (II)
3324 Identifiers.push_back(II);
3325 }
3326
3327 namespace {
3328
3329 class SpecifierInfo {
3330 public:
3331 DeclContext* DeclCtx;
3332 NestedNameSpecifier* NameSpecifier;
3333 unsigned EditDistance;
3334
SpecifierInfo(DeclContext * Ctx,NestedNameSpecifier * NNS,unsigned ED)3335 SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3336 : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3337 };
3338
3339 typedef SmallVector<DeclContext*, 4> DeclContextList;
3340 typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3341
3342 class NamespaceSpecifierSet {
3343 ASTContext &Context;
3344 DeclContextList CurContextChain;
3345 SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3346 SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3347 bool isSorted;
3348
3349 SpecifierInfoList Specifiers;
3350 llvm::SmallSetVector<unsigned, 4> Distances;
3351 llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3352
3353 /// \brief Helper for building the list of DeclContexts between the current
3354 /// context and the top of the translation unit
3355 static DeclContextList BuildContextChain(DeclContext *Start);
3356
3357 void SortNamespaces();
3358
3359 public:
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3360 NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3361 CXXScopeSpec *CurScopeSpec)
3362 : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3363 isSorted(true) {
3364 if (CurScopeSpec && CurScopeSpec->getScopeRep())
3365 getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3366 CurNameSpecifierIdentifiers);
3367 // Build the list of identifiers that would be used for an absolute
3368 // (from the global context) NestedNameSpecifier refering to the current
3369 // context.
3370 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3371 CEnd = CurContextChain.rend();
3372 C != CEnd; ++C) {
3373 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3374 CurContextIdentifiers.push_back(ND->getIdentifier());
3375 }
3376 }
3377
3378 /// \brief Add the namespace to the set, computing the corresponding
3379 /// NestedNameSpecifier and its distance in the process.
3380 void AddNamespace(NamespaceDecl *ND);
3381
3382 typedef SpecifierInfoList::iterator iterator;
begin()3383 iterator begin() {
3384 if (!isSorted) SortNamespaces();
3385 return Specifiers.begin();
3386 }
end()3387 iterator end() { return Specifiers.end(); }
3388 };
3389
3390 }
3391
BuildContextChain(DeclContext * Start)3392 DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3393 assert(Start && "Bulding a context chain from a null context");
3394 DeclContextList Chain;
3395 for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3396 DC = DC->getLookupParent()) {
3397 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3398 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3399 !(ND && ND->isAnonymousNamespace()))
3400 Chain.push_back(DC->getPrimaryContext());
3401 }
3402 return Chain;
3403 }
3404
SortNamespaces()3405 void NamespaceSpecifierSet::SortNamespaces() {
3406 SmallVector<unsigned, 4> sortedDistances;
3407 sortedDistances.append(Distances.begin(), Distances.end());
3408
3409 if (sortedDistances.size() > 1)
3410 std::sort(sortedDistances.begin(), sortedDistances.end());
3411
3412 Specifiers.clear();
3413 for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3414 DIEnd = sortedDistances.end();
3415 DI != DIEnd; ++DI) {
3416 SpecifierInfoList &SpecList = DistanceMap[*DI];
3417 Specifiers.append(SpecList.begin(), SpecList.end());
3418 }
3419
3420 isSorted = true;
3421 }
3422
AddNamespace(NamespaceDecl * ND)3423 void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3424 DeclContext *Ctx = cast<DeclContext>(ND);
3425 NestedNameSpecifier *NNS = NULL;
3426 unsigned NumSpecifiers = 0;
3427 DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3428 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3429
3430 // Eliminate common elements from the two DeclContext chains.
3431 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3432 CEnd = CurContextChain.rend();
3433 C != CEnd && !NamespaceDeclChain.empty() &&
3434 NamespaceDeclChain.back() == *C; ++C) {
3435 NamespaceDeclChain.pop_back();
3436 }
3437
3438 // Add an explicit leading '::' specifier if needed.
3439 if (NamespaceDecl *ND =
3440 NamespaceDeclChain.empty() ? NULL :
3441 dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3442 IdentifierInfo *Name = ND->getIdentifier();
3443 if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3444 Name) != CurContextIdentifiers.end() ||
3445 std::find(CurNameSpecifierIdentifiers.begin(),
3446 CurNameSpecifierIdentifiers.end(),
3447 Name) != CurNameSpecifierIdentifiers.end()) {
3448 NamespaceDeclChain = FullNamespaceDeclChain;
3449 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3450 }
3451 }
3452
3453 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3454 for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3455 CEnd = NamespaceDeclChain.rend();
3456 C != CEnd; ++C) {
3457 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3458 if (ND) {
3459 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3460 ++NumSpecifiers;
3461 }
3462 }
3463
3464 // If the built NestedNameSpecifier would be replacing an existing
3465 // NestedNameSpecifier, use the number of component identifiers that
3466 // would need to be changed as the edit distance instead of the number
3467 // of components in the built NestedNameSpecifier.
3468 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3469 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3470 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3471 NumSpecifiers = llvm::ComputeEditDistance(
3472 llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3473 llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3474 }
3475
3476 isSorted = false;
3477 Distances.insert(NumSpecifiers);
3478 DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3479 }
3480
3481 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup)3482 static void LookupPotentialTypoResult(Sema &SemaRef,
3483 LookupResult &Res,
3484 IdentifierInfo *Name,
3485 Scope *S, CXXScopeSpec *SS,
3486 DeclContext *MemberContext,
3487 bool EnteringContext,
3488 bool isObjCIvarLookup) {
3489 Res.suppressDiagnostics();
3490 Res.clear();
3491 Res.setLookupName(Name);
3492 if (MemberContext) {
3493 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3494 if (isObjCIvarLookup) {
3495 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3496 Res.addDecl(Ivar);
3497 Res.resolveKind();
3498 return;
3499 }
3500 }
3501
3502 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3503 Res.addDecl(Prop);
3504 Res.resolveKind();
3505 return;
3506 }
3507 }
3508
3509 SemaRef.LookupQualifiedName(Res, MemberContext);
3510 return;
3511 }
3512
3513 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3514 EnteringContext);
3515
3516 // Fake ivar lookup; this should really be part of
3517 // LookupParsedName.
3518 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3519 if (Method->isInstanceMethod() && Method->getClassInterface() &&
3520 (Res.empty() ||
3521 (Res.isSingleResult() &&
3522 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3523 if (ObjCIvarDecl *IV
3524 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3525 Res.addDecl(IV);
3526 Res.resolveKind();
3527 }
3528 }
3529 }
3530 }
3531
3532 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC)3533 static void AddKeywordsToConsumer(Sema &SemaRef,
3534 TypoCorrectionConsumer &Consumer,
3535 Scope *S, CorrectionCandidateCallback &CCC) {
3536 if (CCC.WantObjCSuper)
3537 Consumer.addKeywordResult("super");
3538
3539 if (CCC.WantTypeSpecifiers) {
3540 // Add type-specifier keywords to the set of results.
3541 const char *CTypeSpecs[] = {
3542 "char", "const", "double", "enum", "float", "int", "long", "short",
3543 "signed", "struct", "union", "unsigned", "void", "volatile",
3544 "_Complex", "_Imaginary",
3545 // storage-specifiers as well
3546 "extern", "inline", "static", "typedef"
3547 };
3548
3549 const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3550 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3551 Consumer.addKeywordResult(CTypeSpecs[I]);
3552
3553 if (SemaRef.getLangOpts().C99)
3554 Consumer.addKeywordResult("restrict");
3555 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3556 Consumer.addKeywordResult("bool");
3557 else if (SemaRef.getLangOpts().C99)
3558 Consumer.addKeywordResult("_Bool");
3559
3560 if (SemaRef.getLangOpts().CPlusPlus) {
3561 Consumer.addKeywordResult("class");
3562 Consumer.addKeywordResult("typename");
3563 Consumer.addKeywordResult("wchar_t");
3564
3565 if (SemaRef.getLangOpts().CPlusPlus0x) {
3566 Consumer.addKeywordResult("char16_t");
3567 Consumer.addKeywordResult("char32_t");
3568 Consumer.addKeywordResult("constexpr");
3569 Consumer.addKeywordResult("decltype");
3570 Consumer.addKeywordResult("thread_local");
3571 }
3572 }
3573
3574 if (SemaRef.getLangOpts().GNUMode)
3575 Consumer.addKeywordResult("typeof");
3576 }
3577
3578 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3579 Consumer.addKeywordResult("const_cast");
3580 Consumer.addKeywordResult("dynamic_cast");
3581 Consumer.addKeywordResult("reinterpret_cast");
3582 Consumer.addKeywordResult("static_cast");
3583 }
3584
3585 if (CCC.WantExpressionKeywords) {
3586 Consumer.addKeywordResult("sizeof");
3587 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3588 Consumer.addKeywordResult("false");
3589 Consumer.addKeywordResult("true");
3590 }
3591
3592 if (SemaRef.getLangOpts().CPlusPlus) {
3593 const char *CXXExprs[] = {
3594 "delete", "new", "operator", "throw", "typeid"
3595 };
3596 const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3597 for (unsigned I = 0; I != NumCXXExprs; ++I)
3598 Consumer.addKeywordResult(CXXExprs[I]);
3599
3600 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3601 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3602 Consumer.addKeywordResult("this");
3603
3604 if (SemaRef.getLangOpts().CPlusPlus0x) {
3605 Consumer.addKeywordResult("alignof");
3606 Consumer.addKeywordResult("nullptr");
3607 }
3608 }
3609 }
3610
3611 if (CCC.WantRemainingKeywords) {
3612 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3613 // Statements.
3614 const char *CStmts[] = {
3615 "do", "else", "for", "goto", "if", "return", "switch", "while" };
3616 const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3617 for (unsigned I = 0; I != NumCStmts; ++I)
3618 Consumer.addKeywordResult(CStmts[I]);
3619
3620 if (SemaRef.getLangOpts().CPlusPlus) {
3621 Consumer.addKeywordResult("catch");
3622 Consumer.addKeywordResult("try");
3623 }
3624
3625 if (S && S->getBreakParent())
3626 Consumer.addKeywordResult("break");
3627
3628 if (S && S->getContinueParent())
3629 Consumer.addKeywordResult("continue");
3630
3631 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3632 Consumer.addKeywordResult("case");
3633 Consumer.addKeywordResult("default");
3634 }
3635 } else {
3636 if (SemaRef.getLangOpts().CPlusPlus) {
3637 Consumer.addKeywordResult("namespace");
3638 Consumer.addKeywordResult("template");
3639 }
3640
3641 if (S && S->isClassScope()) {
3642 Consumer.addKeywordResult("explicit");
3643 Consumer.addKeywordResult("friend");
3644 Consumer.addKeywordResult("mutable");
3645 Consumer.addKeywordResult("private");
3646 Consumer.addKeywordResult("protected");
3647 Consumer.addKeywordResult("public");
3648 Consumer.addKeywordResult("virtual");
3649 }
3650 }
3651
3652 if (SemaRef.getLangOpts().CPlusPlus) {
3653 Consumer.addKeywordResult("using");
3654
3655 if (SemaRef.getLangOpts().CPlusPlus0x)
3656 Consumer.addKeywordResult("static_assert");
3657 }
3658 }
3659 }
3660
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3661 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3662 TypoCorrection &Candidate) {
3663 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3664 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3665 }
3666
3667 /// \brief Try to "correct" a typo in the source code by finding
3668 /// visible declarations whose names are similar to the name that was
3669 /// present in the source code.
3670 ///
3671 /// \param TypoName the \c DeclarationNameInfo structure that contains
3672 /// the name that was present in the source code along with its location.
3673 ///
3674 /// \param LookupKind the name-lookup criteria used to search for the name.
3675 ///
3676 /// \param S the scope in which name lookup occurs.
3677 ///
3678 /// \param SS the nested-name-specifier that precedes the name we're
3679 /// looking for, if present.
3680 ///
3681 /// \param CCC A CorrectionCandidateCallback object that provides further
3682 /// validation of typo correction candidates. It also provides flags for
3683 /// determining the set of keywords permitted.
3684 ///
3685 /// \param MemberContext if non-NULL, the context in which to look for
3686 /// a member access expression.
3687 ///
3688 /// \param EnteringContext whether we're entering the context described by
3689 /// the nested-name-specifier SS.
3690 ///
3691 /// \param OPT when non-NULL, the search for visible declarations will
3692 /// also walk the protocols in the qualified interfaces of \p OPT.
3693 ///
3694 /// \returns a \c TypoCorrection containing the corrected name if the typo
3695 /// along with information such as the \c NamedDecl where the corrected name
3696 /// was declared, and any additional \c NestedNameSpecifier needed to access
3697 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)3698 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3699 Sema::LookupNameKind LookupKind,
3700 Scope *S, CXXScopeSpec *SS,
3701 CorrectionCandidateCallback &CCC,
3702 DeclContext *MemberContext,
3703 bool EnteringContext,
3704 const ObjCObjectPointerType *OPT) {
3705 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3706 return TypoCorrection();
3707
3708 // In Microsoft mode, don't perform typo correction in a template member
3709 // function dependent context because it interferes with the "lookup into
3710 // dependent bases of class templates" feature.
3711 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3712 isa<CXXMethodDecl>(CurContext))
3713 return TypoCorrection();
3714
3715 // We only attempt to correct typos for identifiers.
3716 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3717 if (!Typo)
3718 return TypoCorrection();
3719
3720 // If the scope specifier itself was invalid, don't try to correct
3721 // typos.
3722 if (SS && SS->isInvalid())
3723 return TypoCorrection();
3724
3725 // Never try to correct typos during template deduction or
3726 // instantiation.
3727 if (!ActiveTemplateInstantiations.empty())
3728 return TypoCorrection();
3729
3730 NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3731
3732 TypoCorrectionConsumer Consumer(*this, Typo);
3733
3734 // If a callback object considers an empty typo correction candidate to be
3735 // viable, assume it does not do any actual validation of the candidates.
3736 TypoCorrection EmptyCorrection;
3737 bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3738
3739 // Perform name lookup to find visible, similarly-named entities.
3740 bool IsUnqualifiedLookup = false;
3741 DeclContext *QualifiedDC = MemberContext;
3742 if (MemberContext) {
3743 LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3744
3745 // Look in qualified interfaces.
3746 if (OPT) {
3747 for (ObjCObjectPointerType::qual_iterator
3748 I = OPT->qual_begin(), E = OPT->qual_end();
3749 I != E; ++I)
3750 LookupVisibleDecls(*I, LookupKind, Consumer);
3751 }
3752 } else if (SS && SS->isSet()) {
3753 QualifiedDC = computeDeclContext(*SS, EnteringContext);
3754 if (!QualifiedDC)
3755 return TypoCorrection();
3756
3757 // Provide a stop gap for files that are just seriously broken. Trying
3758 // to correct all typos can turn into a HUGE performance penalty, causing
3759 // some files to take minutes to get rejected by the parser.
3760 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3761 return TypoCorrection();
3762 ++TyposCorrected;
3763
3764 LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3765 } else {
3766 IsUnqualifiedLookup = true;
3767 UnqualifiedTyposCorrectedMap::iterator Cached
3768 = UnqualifiedTyposCorrected.find(Typo);
3769 if (Cached != UnqualifiedTyposCorrected.end()) {
3770 // Add the cached value, unless it's a keyword or fails validation. In the
3771 // keyword case, we'll end up adding the keyword below.
3772 if (Cached->second) {
3773 if (!Cached->second.isKeyword() &&
3774 isCandidateViable(CCC, Cached->second))
3775 Consumer.addCorrection(Cached->second);
3776 } else {
3777 // Only honor no-correction cache hits when a callback that will validate
3778 // correction candidates is not being used.
3779 if (!ValidatingCallback)
3780 return TypoCorrection();
3781 }
3782 }
3783 if (Cached == UnqualifiedTyposCorrected.end()) {
3784 // Provide a stop gap for files that are just seriously broken. Trying
3785 // to correct all typos can turn into a HUGE performance penalty, causing
3786 // some files to take minutes to get rejected by the parser.
3787 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3788 return TypoCorrection();
3789 }
3790 }
3791
3792 // Determine whether we are going to search in the various namespaces for
3793 // corrections.
3794 bool SearchNamespaces
3795 = getLangOpts().CPlusPlus &&
3796 (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3797
3798 if (IsUnqualifiedLookup || SearchNamespaces) {
3799 // For unqualified lookup, look through all of the names that we have
3800 // seen in this translation unit.
3801 // FIXME: Re-add the ability to skip very unlikely potential corrections.
3802 for (IdentifierTable::iterator I = Context.Idents.begin(),
3803 IEnd = Context.Idents.end();
3804 I != IEnd; ++I)
3805 Consumer.FoundName(I->getKey());
3806
3807 // Walk through identifiers in external identifier sources.
3808 // FIXME: Re-add the ability to skip very unlikely potential corrections.
3809 if (IdentifierInfoLookup *External
3810 = Context.Idents.getExternalIdentifierLookup()) {
3811 OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3812 do {
3813 StringRef Name = Iter->Next();
3814 if (Name.empty())
3815 break;
3816
3817 Consumer.FoundName(Name);
3818 } while (true);
3819 }
3820 }
3821
3822 AddKeywordsToConsumer(*this, Consumer, S, CCC);
3823
3824 // If we haven't found anything, we're done.
3825 if (Consumer.empty()) {
3826 // If this was an unqualified lookup, note that no correction was found.
3827 if (IsUnqualifiedLookup)
3828 (void)UnqualifiedTyposCorrected[Typo];
3829
3830 return TypoCorrection();
3831 }
3832
3833 // Make sure that the user typed at least 3 characters for each correction
3834 // made. Otherwise, we don't even both looking at the results.
3835 unsigned ED = Consumer.getBestEditDistance(true);
3836 if (ED > 0 && Typo->getName().size() / ED < 3) {
3837 // If this was an unqualified lookup, note that no correction was found.
3838 if (IsUnqualifiedLookup)
3839 (void)UnqualifiedTyposCorrected[Typo];
3840
3841 return TypoCorrection();
3842 }
3843
3844 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
3845 // to search those namespaces.
3846 if (SearchNamespaces) {
3847 // Load any externally-known namespaces.
3848 if (ExternalSource && !LoadedExternalKnownNamespaces) {
3849 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3850 LoadedExternalKnownNamespaces = true;
3851 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3852 for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3853 KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3854 }
3855
3856 for (llvm::DenseMap<NamespaceDecl*, bool>::iterator
3857 KNI = KnownNamespaces.begin(),
3858 KNIEnd = KnownNamespaces.end();
3859 KNI != KNIEnd; ++KNI)
3860 Namespaces.AddNamespace(KNI->first);
3861 }
3862
3863 // Weed out any names that could not be found by name lookup or, if a
3864 // CorrectionCandidateCallback object was provided, failed validation.
3865 llvm::SmallVector<TypoCorrection, 16> QualifiedResults;
3866 LookupResult TmpRes(*this, TypoName, LookupKind);
3867 TmpRes.suppressDiagnostics();
3868 while (!Consumer.empty()) {
3869 TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3870 unsigned ED = DI->first;
3871 for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
3872 IEnd = DI->second.end();
3873 I != IEnd; /* Increment in loop. */) {
3874 // If the item already has been looked up or is a keyword, keep it.
3875 // If a validator callback object was given, drop the correction
3876 // unless it passes validation.
3877 if (I->second.isResolved()) {
3878 TypoCorrectionConsumer::result_iterator Prev = I;
3879 ++I;
3880 if (!isCandidateViable(CCC, Prev->second))
3881 DI->second.erase(Prev);
3882 continue;
3883 }
3884
3885 // Perform name lookup on this name.
3886 IdentifierInfo *Name = I->second.getCorrectionAsIdentifierInfo();
3887 LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3888 EnteringContext, CCC.IsObjCIvarLookup);
3889
3890 switch (TmpRes.getResultKind()) {
3891 case LookupResult::NotFound:
3892 case LookupResult::NotFoundInCurrentInstantiation:
3893 case LookupResult::FoundUnresolvedValue:
3894 QualifiedResults.push_back(I->second);
3895 // We didn't find this name in our scope, or didn't like what we found;
3896 // ignore it.
3897 {
3898 TypoCorrectionConsumer::result_iterator Next = I;
3899 ++Next;
3900 DI->second.erase(I);
3901 I = Next;
3902 }
3903 break;
3904
3905 case LookupResult::Ambiguous:
3906 // We don't deal with ambiguities.
3907 return TypoCorrection();
3908
3909 case LookupResult::FoundOverloaded: {
3910 TypoCorrectionConsumer::result_iterator Prev = I;
3911 // Store all of the Decls for overloaded symbols
3912 for (LookupResult::iterator TRD = TmpRes.begin(),
3913 TRDEnd = TmpRes.end();
3914 TRD != TRDEnd; ++TRD)
3915 I->second.addCorrectionDecl(*TRD);
3916 ++I;
3917 if (!isCandidateViable(CCC, Prev->second))
3918 DI->second.erase(Prev);
3919 break;
3920 }
3921
3922 case LookupResult::Found: {
3923 TypoCorrectionConsumer::result_iterator Prev = I;
3924 I->second.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3925 ++I;
3926 if (!isCandidateViable(CCC, Prev->second))
3927 DI->second.erase(Prev);
3928 break;
3929 }
3930
3931 }
3932 }
3933
3934 if (DI->second.empty())
3935 Consumer.erase(DI);
3936 else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
3937 // If there are results in the closest possible bucket, stop
3938 break;
3939
3940 // Only perform the qualified lookups for C++
3941 if (SearchNamespaces) {
3942 TmpRes.suppressDiagnostics();
3943 for (llvm::SmallVector<TypoCorrection,
3944 16>::iterator QRI = QualifiedResults.begin(),
3945 QRIEnd = QualifiedResults.end();
3946 QRI != QRIEnd; ++QRI) {
3947 for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
3948 NIEnd = Namespaces.end();
3949 NI != NIEnd; ++NI) {
3950 DeclContext *Ctx = NI->DeclCtx;
3951
3952 // FIXME: Stop searching once the namespaces are too far away to create
3953 // acceptable corrections for this identifier (since the namespaces
3954 // are sorted in ascending order by edit distance).
3955
3956 TmpRes.clear();
3957 TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
3958 if (!LookupQualifiedName(TmpRes, Ctx)) continue;
3959
3960 // Any corrections added below will be validated in subsequent
3961 // iterations of the main while() loop over the Consumer's contents.
3962 switch (TmpRes.getResultKind()) {
3963 case LookupResult::Found: {
3964 TypoCorrection TC(*QRI);
3965 TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3966 TC.setCorrectionSpecifier(NI->NameSpecifier);
3967 TC.setQualifierDistance(NI->EditDistance);
3968 Consumer.addCorrection(TC);
3969 break;
3970 }
3971 case LookupResult::FoundOverloaded: {
3972 TypoCorrection TC(*QRI);
3973 TC.setCorrectionSpecifier(NI->NameSpecifier);
3974 TC.setQualifierDistance(NI->EditDistance);
3975 for (LookupResult::iterator TRD = TmpRes.begin(),
3976 TRDEnd = TmpRes.end();
3977 TRD != TRDEnd; ++TRD)
3978 TC.addCorrectionDecl(*TRD);
3979 Consumer.addCorrection(TC);
3980 break;
3981 }
3982 case LookupResult::NotFound:
3983 case LookupResult::NotFoundInCurrentInstantiation:
3984 case LookupResult::Ambiguous:
3985 case LookupResult::FoundUnresolvedValue:
3986 break;
3987 }
3988 }
3989 }
3990 }
3991
3992 QualifiedResults.clear();
3993 }
3994
3995 // No corrections remain...
3996 if (Consumer.empty()) return TypoCorrection();
3997
3998 TypoResultsMap &BestResults = Consumer.begin()->second;
3999 ED = TypoCorrection::NormalizeEditDistance(Consumer.begin()->first);
4000
4001 if (ED > 0 && Typo->getName().size() / ED < 3) {
4002 // If this was an unqualified lookup and we believe the callback
4003 // object wouldn't have filtered out possible corrections, note
4004 // that no correction was found.
4005 if (IsUnqualifiedLookup && !ValidatingCallback)
4006 (void)UnqualifiedTyposCorrected[Typo];
4007
4008 return TypoCorrection();
4009 }
4010
4011 // If only a single name remains, return that result.
4012 if (BestResults.size() == 1) {
4013 const llvm::StringMapEntry<TypoCorrection> &Correction = *(BestResults.begin());
4014 const TypoCorrection &Result = Correction.second;
4015
4016 // Don't correct to a keyword that's the same as the typo; the keyword
4017 // wasn't actually in scope.
4018 if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4019
4020 // Record the correction for unqualified lookup.
4021 if (IsUnqualifiedLookup)
4022 UnqualifiedTyposCorrected[Typo] = Result;
4023
4024 return Result;
4025 }
4026 else if (BestResults.size() > 1
4027 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4028 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4029 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4030 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4031 && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4032 && BestResults["super"].isKeyword()) {
4033 // Prefer 'super' when we're completing in a message-receiver
4034 // context.
4035
4036 // Don't correct to a keyword that's the same as the typo; the keyword
4037 // wasn't actually in scope.
4038 if (ED == 0) return TypoCorrection();
4039
4040 // Record the correction for unqualified lookup.
4041 if (IsUnqualifiedLookup)
4042 UnqualifiedTyposCorrected[Typo] = BestResults["super"];
4043
4044 return BestResults["super"];
4045 }
4046
4047 // If this was an unqualified lookup and we believe the callback object did
4048 // not filter out possible corrections, note that no correction was found.
4049 if (IsUnqualifiedLookup && !ValidatingCallback)
4050 (void)UnqualifiedTyposCorrected[Typo];
4051
4052 return TypoCorrection();
4053 }
4054
addCorrectionDecl(NamedDecl * CDecl)4055 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4056 if (!CDecl) return;
4057
4058 if (isKeyword())
4059 CorrectionDecls.clear();
4060
4061 CorrectionDecls.push_back(CDecl);
4062
4063 if (!CorrectionName)
4064 CorrectionName = CDecl->getDeclName();
4065 }
4066
getAsString(const LangOptions & LO) const4067 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4068 if (CorrectionNameSpec) {
4069 std::string tmpBuffer;
4070 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4071 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4072 CorrectionName.printName(PrefixOStream);
4073 return PrefixOStream.str();
4074 }
4075
4076 return CorrectionName.getAsString();
4077 }
4078