1 //===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ overloading.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Template.h"
18 #include "clang/Sema/TemplateDeduction.h"
19 #include "clang/Basic/Diagnostic.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/CXXInheritance.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include <algorithm>
33
34 namespace clang {
35 using namespace sema;
36
37 /// A convenience routine for creating a decayed reference to a
38 /// function.
39 static ExprResult
CreateFunctionRefExpr(Sema & S,FunctionDecl * Fn,bool HadMultipleCandidates,SourceLocation Loc=SourceLocation (),const DeclarationNameLoc & LocInfo=DeclarationNameLoc ())40 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
41 SourceLocation Loc = SourceLocation(),
42 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
44 VK_LValue, Loc, LocInfo);
45 if (HadMultipleCandidates)
46 DRE->setHadMultipleCandidates(true);
47 ExprResult E = S.Owned(DRE);
48 E = S.DefaultFunctionArrayConversion(E.take());
49 if (E.isInvalid())
50 return ExprError();
51 return move(E);
52 }
53
54 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
55 bool InOverloadResolution,
56 StandardConversionSequence &SCS,
57 bool CStyle,
58 bool AllowObjCWritebackConversion);
59
60 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
61 QualType &ToType,
62 bool InOverloadResolution,
63 StandardConversionSequence &SCS,
64 bool CStyle);
65 static OverloadingResult
66 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
67 UserDefinedConversionSequence& User,
68 OverloadCandidateSet& Conversions,
69 bool AllowExplicit);
70
71
72 static ImplicitConversionSequence::CompareKind
73 CompareStandardConversionSequences(Sema &S,
74 const StandardConversionSequence& SCS1,
75 const StandardConversionSequence& SCS2);
76
77 static ImplicitConversionSequence::CompareKind
78 CompareQualificationConversions(Sema &S,
79 const StandardConversionSequence& SCS1,
80 const StandardConversionSequence& SCS2);
81
82 static ImplicitConversionSequence::CompareKind
83 CompareDerivedToBaseConversions(Sema &S,
84 const StandardConversionSequence& SCS1,
85 const StandardConversionSequence& SCS2);
86
87
88
89 /// GetConversionCategory - Retrieve the implicit conversion
90 /// category corresponding to the given implicit conversion kind.
91 ImplicitConversionCategory
GetConversionCategory(ImplicitConversionKind Kind)92 GetConversionCategory(ImplicitConversionKind Kind) {
93 static const ImplicitConversionCategory
94 Category[(int)ICK_Num_Conversion_Kinds] = {
95 ICC_Identity,
96 ICC_Lvalue_Transformation,
97 ICC_Lvalue_Transformation,
98 ICC_Lvalue_Transformation,
99 ICC_Identity,
100 ICC_Qualification_Adjustment,
101 ICC_Promotion,
102 ICC_Promotion,
103 ICC_Promotion,
104 ICC_Conversion,
105 ICC_Conversion,
106 ICC_Conversion,
107 ICC_Conversion,
108 ICC_Conversion,
109 ICC_Conversion,
110 ICC_Conversion,
111 ICC_Conversion,
112 ICC_Conversion,
113 ICC_Conversion,
114 ICC_Conversion,
115 ICC_Conversion,
116 ICC_Conversion
117 };
118 return Category[(int)Kind];
119 }
120
121 /// GetConversionRank - Retrieve the implicit conversion rank
122 /// corresponding to the given implicit conversion kind.
GetConversionRank(ImplicitConversionKind Kind)123 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
124 static const ImplicitConversionRank
125 Rank[(int)ICK_Num_Conversion_Kinds] = {
126 ICR_Exact_Match,
127 ICR_Exact_Match,
128 ICR_Exact_Match,
129 ICR_Exact_Match,
130 ICR_Exact_Match,
131 ICR_Exact_Match,
132 ICR_Promotion,
133 ICR_Promotion,
134 ICR_Promotion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_Conversion,
142 ICR_Conversion,
143 ICR_Conversion,
144 ICR_Conversion,
145 ICR_Conversion,
146 ICR_Complex_Real_Conversion,
147 ICR_Conversion,
148 ICR_Conversion,
149 ICR_Writeback_Conversion
150 };
151 return Rank[(int)Kind];
152 }
153
154 /// GetImplicitConversionName - Return the name of this kind of
155 /// implicit conversion.
GetImplicitConversionName(ImplicitConversionKind Kind)156 const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
157 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
158 "No conversion",
159 "Lvalue-to-rvalue",
160 "Array-to-pointer",
161 "Function-to-pointer",
162 "Noreturn adjustment",
163 "Qualification",
164 "Integral promotion",
165 "Floating point promotion",
166 "Complex promotion",
167 "Integral conversion",
168 "Floating conversion",
169 "Complex conversion",
170 "Floating-integral conversion",
171 "Pointer conversion",
172 "Pointer-to-member conversion",
173 "Boolean conversion",
174 "Compatible-types conversion",
175 "Derived-to-base conversion",
176 "Vector conversion",
177 "Vector splat",
178 "Complex-real conversion",
179 "Block Pointer conversion",
180 "Transparent Union Conversion"
181 "Writeback conversion"
182 };
183 return Name[Kind];
184 }
185
186 /// StandardConversionSequence - Set the standard conversion
187 /// sequence to the identity conversion.
setAsIdentityConversion()188 void StandardConversionSequence::setAsIdentityConversion() {
189 First = ICK_Identity;
190 Second = ICK_Identity;
191 Third = ICK_Identity;
192 DeprecatedStringLiteralToCharPtr = false;
193 QualificationIncludesObjCLifetime = false;
194 ReferenceBinding = false;
195 DirectBinding = false;
196 IsLvalueReference = true;
197 BindsToFunctionLvalue = false;
198 BindsToRvalue = false;
199 BindsImplicitObjectArgumentWithoutRefQualifier = false;
200 ObjCLifetimeConversionBinding = false;
201 CopyConstructor = 0;
202 }
203
204 /// getRank - Retrieve the rank of this standard conversion sequence
205 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
206 /// implicit conversions.
getRank() const207 ImplicitConversionRank StandardConversionSequence::getRank() const {
208 ImplicitConversionRank Rank = ICR_Exact_Match;
209 if (GetConversionRank(First) > Rank)
210 Rank = GetConversionRank(First);
211 if (GetConversionRank(Second) > Rank)
212 Rank = GetConversionRank(Second);
213 if (GetConversionRank(Third) > Rank)
214 Rank = GetConversionRank(Third);
215 return Rank;
216 }
217
218 /// isPointerConversionToBool - Determines whether this conversion is
219 /// a conversion of a pointer or pointer-to-member to bool. This is
220 /// used as part of the ranking of standard conversion sequences
221 /// (C++ 13.3.3.2p4).
isPointerConversionToBool() const222 bool StandardConversionSequence::isPointerConversionToBool() const {
223 // Note that FromType has not necessarily been transformed by the
224 // array-to-pointer or function-to-pointer implicit conversions, so
225 // check for their presence as well as checking whether FromType is
226 // a pointer.
227 if (getToType(1)->isBooleanType() &&
228 (getFromType()->isPointerType() ||
229 getFromType()->isObjCObjectPointerType() ||
230 getFromType()->isBlockPointerType() ||
231 getFromType()->isNullPtrType() ||
232 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
233 return true;
234
235 return false;
236 }
237
238 /// isPointerConversionToVoidPointer - Determines whether this
239 /// conversion is a conversion of a pointer to a void pointer. This is
240 /// used as part of the ranking of standard conversion sequences (C++
241 /// 13.3.3.2p4).
242 bool
243 StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext & Context) const244 isPointerConversionToVoidPointer(ASTContext& Context) const {
245 QualType FromType = getFromType();
246 QualType ToType = getToType(1);
247
248 // Note that FromType has not necessarily been transformed by the
249 // array-to-pointer implicit conversion, so check for its presence
250 // and redo the conversion to get a pointer.
251 if (First == ICK_Array_To_Pointer)
252 FromType = Context.getArrayDecayedType(FromType);
253
254 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
255 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
256 return ToPtrType->getPointeeType()->isVoidType();
257
258 return false;
259 }
260
261 /// Skip any implicit casts which could be either part of a narrowing conversion
262 /// or after one in an implicit conversion.
IgnoreNarrowingConversion(const Expr * Converted)263 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
264 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
265 switch (ICE->getCastKind()) {
266 case CK_NoOp:
267 case CK_IntegralCast:
268 case CK_IntegralToBoolean:
269 case CK_IntegralToFloating:
270 case CK_FloatingToIntegral:
271 case CK_FloatingToBoolean:
272 case CK_FloatingCast:
273 Converted = ICE->getSubExpr();
274 continue;
275
276 default:
277 return Converted;
278 }
279 }
280
281 return Converted;
282 }
283
284 /// Check if this standard conversion sequence represents a narrowing
285 /// conversion, according to C++11 [dcl.init.list]p7.
286 ///
287 /// \param Ctx The AST context.
288 /// \param Converted The result of applying this standard conversion sequence.
289 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
290 /// value of the expression prior to the narrowing conversion.
291 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
292 /// type of the expression prior to the narrowing conversion.
293 NarrowingKind
getNarrowingKind(ASTContext & Ctx,const Expr * Converted,APValue & ConstantValue,QualType & ConstantType) const294 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
295 const Expr *Converted,
296 APValue &ConstantValue,
297 QualType &ConstantType) const {
298 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
299
300 // C++11 [dcl.init.list]p7:
301 // A narrowing conversion is an implicit conversion ...
302 QualType FromType = getToType(0);
303 QualType ToType = getToType(1);
304 switch (Second) {
305 // -- from a floating-point type to an integer type, or
306 //
307 // -- from an integer type or unscoped enumeration type to a floating-point
308 // type, except where the source is a constant expression and the actual
309 // value after conversion will fit into the target type and will produce
310 // the original value when converted back to the original type, or
311 case ICK_Floating_Integral:
312 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
313 return NK_Type_Narrowing;
314 } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
315 llvm::APSInt IntConstantValue;
316 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
317 if (Initializer &&
318 Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
319 // Convert the integer to the floating type.
320 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
321 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
322 llvm::APFloat::rmNearestTiesToEven);
323 // And back.
324 llvm::APSInt ConvertedValue = IntConstantValue;
325 bool ignored;
326 Result.convertToInteger(ConvertedValue,
327 llvm::APFloat::rmTowardZero, &ignored);
328 // If the resulting value is different, this was a narrowing conversion.
329 if (IntConstantValue != ConvertedValue) {
330 ConstantValue = APValue(IntConstantValue);
331 ConstantType = Initializer->getType();
332 return NK_Constant_Narrowing;
333 }
334 } else {
335 // Variables are always narrowings.
336 return NK_Variable_Narrowing;
337 }
338 }
339 return NK_Not_Narrowing;
340
341 // -- from long double to double or float, or from double to float, except
342 // where the source is a constant expression and the actual value after
343 // conversion is within the range of values that can be represented (even
344 // if it cannot be represented exactly), or
345 case ICK_Floating_Conversion:
346 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
347 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
348 // FromType is larger than ToType.
349 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
350 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
351 // Constant!
352 assert(ConstantValue.isFloat());
353 llvm::APFloat FloatVal = ConstantValue.getFloat();
354 // Convert the source value into the target type.
355 bool ignored;
356 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
357 Ctx.getFloatTypeSemantics(ToType),
358 llvm::APFloat::rmNearestTiesToEven, &ignored);
359 // If there was no overflow, the source value is within the range of
360 // values that can be represented.
361 if (ConvertStatus & llvm::APFloat::opOverflow) {
362 ConstantType = Initializer->getType();
363 return NK_Constant_Narrowing;
364 }
365 } else {
366 return NK_Variable_Narrowing;
367 }
368 }
369 return NK_Not_Narrowing;
370
371 // -- from an integer type or unscoped enumeration type to an integer type
372 // that cannot represent all the values of the original type, except where
373 // the source is a constant expression and the actual value after
374 // conversion will fit into the target type and will produce the original
375 // value when converted back to the original type.
376 case ICK_Boolean_Conversion: // Bools are integers too.
377 if (!FromType->isIntegralOrUnscopedEnumerationType()) {
378 // Boolean conversions can be from pointers and pointers to members
379 // [conv.bool], and those aren't considered narrowing conversions.
380 return NK_Not_Narrowing;
381 } // Otherwise, fall through to the integral case.
382 case ICK_Integral_Conversion: {
383 assert(FromType->isIntegralOrUnscopedEnumerationType());
384 assert(ToType->isIntegralOrUnscopedEnumerationType());
385 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
386 const unsigned FromWidth = Ctx.getIntWidth(FromType);
387 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
388 const unsigned ToWidth = Ctx.getIntWidth(ToType);
389
390 if (FromWidth > ToWidth ||
391 (FromWidth == ToWidth && FromSigned != ToSigned)) {
392 // Not all values of FromType can be represented in ToType.
393 llvm::APSInt InitializerValue;
394 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
395 if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
396 ConstantValue = APValue(InitializerValue);
397
398 // Add a bit to the InitializerValue so we don't have to worry about
399 // signed vs. unsigned comparisons.
400 InitializerValue = InitializerValue.extend(
401 InitializerValue.getBitWidth() + 1);
402 // Convert the initializer to and from the target width and signed-ness.
403 llvm::APSInt ConvertedValue = InitializerValue;
404 ConvertedValue = ConvertedValue.trunc(ToWidth);
405 ConvertedValue.setIsSigned(ToSigned);
406 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
407 ConvertedValue.setIsSigned(InitializerValue.isSigned());
408 // If the result is different, this was a narrowing conversion.
409 if (ConvertedValue != InitializerValue) {
410 ConstantType = Initializer->getType();
411 return NK_Constant_Narrowing;
412 }
413 } else {
414 // Variables are always narrowings.
415 return NK_Variable_Narrowing;
416 }
417 }
418 return NK_Not_Narrowing;
419 }
420
421 default:
422 // Other kinds of conversions are not narrowings.
423 return NK_Not_Narrowing;
424 }
425 }
426
427 /// DebugPrint - Print this standard conversion sequence to standard
428 /// error. Useful for debugging overloading issues.
DebugPrint() const429 void StandardConversionSequence::DebugPrint() const {
430 raw_ostream &OS = llvm::errs();
431 bool PrintedSomething = false;
432 if (First != ICK_Identity) {
433 OS << GetImplicitConversionName(First);
434 PrintedSomething = true;
435 }
436
437 if (Second != ICK_Identity) {
438 if (PrintedSomething) {
439 OS << " -> ";
440 }
441 OS << GetImplicitConversionName(Second);
442
443 if (CopyConstructor) {
444 OS << " (by copy constructor)";
445 } else if (DirectBinding) {
446 OS << " (direct reference binding)";
447 } else if (ReferenceBinding) {
448 OS << " (reference binding)";
449 }
450 PrintedSomething = true;
451 }
452
453 if (Third != ICK_Identity) {
454 if (PrintedSomething) {
455 OS << " -> ";
456 }
457 OS << GetImplicitConversionName(Third);
458 PrintedSomething = true;
459 }
460
461 if (!PrintedSomething) {
462 OS << "No conversions required";
463 }
464 }
465
466 /// DebugPrint - Print this user-defined conversion sequence to standard
467 /// error. Useful for debugging overloading issues.
DebugPrint() const468 void UserDefinedConversionSequence::DebugPrint() const {
469 raw_ostream &OS = llvm::errs();
470 if (Before.First || Before.Second || Before.Third) {
471 Before.DebugPrint();
472 OS << " -> ";
473 }
474 if (ConversionFunction)
475 OS << '\'' << *ConversionFunction << '\'';
476 else
477 OS << "aggregate initialization";
478 if (After.First || After.Second || After.Third) {
479 OS << " -> ";
480 After.DebugPrint();
481 }
482 }
483
484 /// DebugPrint - Print this implicit conversion sequence to standard
485 /// error. Useful for debugging overloading issues.
DebugPrint() const486 void ImplicitConversionSequence::DebugPrint() const {
487 raw_ostream &OS = llvm::errs();
488 switch (ConversionKind) {
489 case StandardConversion:
490 OS << "Standard conversion: ";
491 Standard.DebugPrint();
492 break;
493 case UserDefinedConversion:
494 OS << "User-defined conversion: ";
495 UserDefined.DebugPrint();
496 break;
497 case EllipsisConversion:
498 OS << "Ellipsis conversion";
499 break;
500 case AmbiguousConversion:
501 OS << "Ambiguous conversion";
502 break;
503 case BadConversion:
504 OS << "Bad conversion";
505 break;
506 }
507
508 OS << "\n";
509 }
510
construct()511 void AmbiguousConversionSequence::construct() {
512 new (&conversions()) ConversionSet();
513 }
514
destruct()515 void AmbiguousConversionSequence::destruct() {
516 conversions().~ConversionSet();
517 }
518
519 void
copyFrom(const AmbiguousConversionSequence & O)520 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
521 FromTypePtr = O.FromTypePtr;
522 ToTypePtr = O.ToTypePtr;
523 new (&conversions()) ConversionSet(O.conversions());
524 }
525
526 namespace {
527 // Structure used by OverloadCandidate::DeductionFailureInfo to store
528 // template parameter and template argument information.
529 struct DFIParamWithArguments {
530 TemplateParameter Param;
531 TemplateArgument FirstArg;
532 TemplateArgument SecondArg;
533 };
534 }
535
536 /// \brief Convert from Sema's representation of template deduction information
537 /// to the form used in overload-candidate information.
538 OverloadCandidate::DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext & Context,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info)539 static MakeDeductionFailureInfo(ASTContext &Context,
540 Sema::TemplateDeductionResult TDK,
541 TemplateDeductionInfo &Info) {
542 OverloadCandidate::DeductionFailureInfo Result;
543 Result.Result = static_cast<unsigned>(TDK);
544 Result.Data = 0;
545 switch (TDK) {
546 case Sema::TDK_Success:
547 case Sema::TDK_InstantiationDepth:
548 case Sema::TDK_TooManyArguments:
549 case Sema::TDK_TooFewArguments:
550 break;
551
552 case Sema::TDK_Incomplete:
553 case Sema::TDK_InvalidExplicitArguments:
554 Result.Data = Info.Param.getOpaqueValue();
555 break;
556
557 case Sema::TDK_Inconsistent:
558 case Sema::TDK_Underqualified: {
559 // FIXME: Should allocate from normal heap so that we can free this later.
560 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
561 Saved->Param = Info.Param;
562 Saved->FirstArg = Info.FirstArg;
563 Saved->SecondArg = Info.SecondArg;
564 Result.Data = Saved;
565 break;
566 }
567
568 case Sema::TDK_SubstitutionFailure:
569 Result.Data = Info.take();
570 break;
571
572 case Sema::TDK_NonDeducedMismatch:
573 case Sema::TDK_FailedOverloadResolution:
574 break;
575 }
576
577 return Result;
578 }
579
Destroy()580 void OverloadCandidate::DeductionFailureInfo::Destroy() {
581 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
582 case Sema::TDK_Success:
583 case Sema::TDK_InstantiationDepth:
584 case Sema::TDK_Incomplete:
585 case Sema::TDK_TooManyArguments:
586 case Sema::TDK_TooFewArguments:
587 case Sema::TDK_InvalidExplicitArguments:
588 break;
589
590 case Sema::TDK_Inconsistent:
591 case Sema::TDK_Underqualified:
592 // FIXME: Destroy the data?
593 Data = 0;
594 break;
595
596 case Sema::TDK_SubstitutionFailure:
597 // FIXME: Destroy the template arugment list?
598 Data = 0;
599 break;
600
601 // Unhandled
602 case Sema::TDK_NonDeducedMismatch:
603 case Sema::TDK_FailedOverloadResolution:
604 break;
605 }
606 }
607
608 TemplateParameter
getTemplateParameter()609 OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
610 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
611 case Sema::TDK_Success:
612 case Sema::TDK_InstantiationDepth:
613 case Sema::TDK_TooManyArguments:
614 case Sema::TDK_TooFewArguments:
615 case Sema::TDK_SubstitutionFailure:
616 return TemplateParameter();
617
618 case Sema::TDK_Incomplete:
619 case Sema::TDK_InvalidExplicitArguments:
620 return TemplateParameter::getFromOpaqueValue(Data);
621
622 case Sema::TDK_Inconsistent:
623 case Sema::TDK_Underqualified:
624 return static_cast<DFIParamWithArguments*>(Data)->Param;
625
626 // Unhandled
627 case Sema::TDK_NonDeducedMismatch:
628 case Sema::TDK_FailedOverloadResolution:
629 break;
630 }
631
632 return TemplateParameter();
633 }
634
635 TemplateArgumentList *
getTemplateArgumentList()636 OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
637 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
638 case Sema::TDK_Success:
639 case Sema::TDK_InstantiationDepth:
640 case Sema::TDK_TooManyArguments:
641 case Sema::TDK_TooFewArguments:
642 case Sema::TDK_Incomplete:
643 case Sema::TDK_InvalidExplicitArguments:
644 case Sema::TDK_Inconsistent:
645 case Sema::TDK_Underqualified:
646 return 0;
647
648 case Sema::TDK_SubstitutionFailure:
649 return static_cast<TemplateArgumentList*>(Data);
650
651 // Unhandled
652 case Sema::TDK_NonDeducedMismatch:
653 case Sema::TDK_FailedOverloadResolution:
654 break;
655 }
656
657 return 0;
658 }
659
getFirstArg()660 const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
661 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
662 case Sema::TDK_Success:
663 case Sema::TDK_InstantiationDepth:
664 case Sema::TDK_Incomplete:
665 case Sema::TDK_TooManyArguments:
666 case Sema::TDK_TooFewArguments:
667 case Sema::TDK_InvalidExplicitArguments:
668 case Sema::TDK_SubstitutionFailure:
669 return 0;
670
671 case Sema::TDK_Inconsistent:
672 case Sema::TDK_Underqualified:
673 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
674
675 // Unhandled
676 case Sema::TDK_NonDeducedMismatch:
677 case Sema::TDK_FailedOverloadResolution:
678 break;
679 }
680
681 return 0;
682 }
683
684 const TemplateArgument *
getSecondArg()685 OverloadCandidate::DeductionFailureInfo::getSecondArg() {
686 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
687 case Sema::TDK_Success:
688 case Sema::TDK_InstantiationDepth:
689 case Sema::TDK_Incomplete:
690 case Sema::TDK_TooManyArguments:
691 case Sema::TDK_TooFewArguments:
692 case Sema::TDK_InvalidExplicitArguments:
693 case Sema::TDK_SubstitutionFailure:
694 return 0;
695
696 case Sema::TDK_Inconsistent:
697 case Sema::TDK_Underqualified:
698 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
699
700 // Unhandled
701 case Sema::TDK_NonDeducedMismatch:
702 case Sema::TDK_FailedOverloadResolution:
703 break;
704 }
705
706 return 0;
707 }
708
clear()709 void OverloadCandidateSet::clear() {
710 for (iterator i = begin(), e = end(); i != e; ++i)
711 for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
712 i->Conversions[ii].~ImplicitConversionSequence();
713 NumInlineSequences = 0;
714 Candidates.clear();
715 Functions.clear();
716 }
717
718 namespace {
719 class UnbridgedCastsSet {
720 struct Entry {
721 Expr **Addr;
722 Expr *Saved;
723 };
724 SmallVector<Entry, 2> Entries;
725
726 public:
save(Sema & S,Expr * & E)727 void save(Sema &S, Expr *&E) {
728 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
729 Entry entry = { &E, E };
730 Entries.push_back(entry);
731 E = S.stripARCUnbridgedCast(E);
732 }
733
restore()734 void restore() {
735 for (SmallVectorImpl<Entry>::iterator
736 i = Entries.begin(), e = Entries.end(); i != e; ++i)
737 *i->Addr = i->Saved;
738 }
739 };
740 }
741
742 /// checkPlaceholderForOverload - Do any interesting placeholder-like
743 /// preprocessing on the given expression.
744 ///
745 /// \param unbridgedCasts a collection to which to add unbridged casts;
746 /// without this, they will be immediately diagnosed as errors
747 ///
748 /// Return true on unrecoverable error.
checkPlaceholderForOverload(Sema & S,Expr * & E,UnbridgedCastsSet * unbridgedCasts=0)749 static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
750 UnbridgedCastsSet *unbridgedCasts = 0) {
751 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
752 // We can't handle overloaded expressions here because overload
753 // resolution might reasonably tweak them.
754 if (placeholder->getKind() == BuiltinType::Overload) return false;
755
756 // If the context potentially accepts unbridged ARC casts, strip
757 // the unbridged cast and add it to the collection for later restoration.
758 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
759 unbridgedCasts) {
760 unbridgedCasts->save(S, E);
761 return false;
762 }
763
764 // Go ahead and check everything else.
765 ExprResult result = S.CheckPlaceholderExpr(E);
766 if (result.isInvalid())
767 return true;
768
769 E = result.take();
770 return false;
771 }
772
773 // Nothing to do.
774 return false;
775 }
776
777 /// checkArgPlaceholdersForOverload - Check a set of call operands for
778 /// placeholders.
checkArgPlaceholdersForOverload(Sema & S,Expr ** args,unsigned numArgs,UnbridgedCastsSet & unbridged)779 static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
780 unsigned numArgs,
781 UnbridgedCastsSet &unbridged) {
782 for (unsigned i = 0; i != numArgs; ++i)
783 if (checkPlaceholderForOverload(S, args[i], &unbridged))
784 return true;
785
786 return false;
787 }
788
789 // IsOverload - Determine whether the given New declaration is an
790 // overload of the declarations in Old. This routine returns false if
791 // New and Old cannot be overloaded, e.g., if New has the same
792 // signature as some function in Old (C++ 1.3.10) or if the Old
793 // declarations aren't functions (or function templates) at all. When
794 // it does return false, MatchedDecl will point to the decl that New
795 // cannot be overloaded with. This decl may be a UsingShadowDecl on
796 // top of the underlying declaration.
797 //
798 // Example: Given the following input:
799 //
800 // void f(int, float); // #1
801 // void f(int, int); // #2
802 // int f(int, int); // #3
803 //
804 // When we process #1, there is no previous declaration of "f",
805 // so IsOverload will not be used.
806 //
807 // When we process #2, Old contains only the FunctionDecl for #1. By
808 // comparing the parameter types, we see that #1 and #2 are overloaded
809 // (since they have different signatures), so this routine returns
810 // false; MatchedDecl is unchanged.
811 //
812 // When we process #3, Old is an overload set containing #1 and #2. We
813 // compare the signatures of #3 to #1 (they're overloaded, so we do
814 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
815 // identical (return types of functions are not part of the
816 // signature), IsOverload returns false and MatchedDecl will be set to
817 // point to the FunctionDecl for #2.
818 //
819 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
820 // into a class by a using declaration. The rules for whether to hide
821 // shadow declarations ignore some properties which otherwise figure
822 // into a function template's signature.
823 Sema::OverloadKind
CheckOverload(Scope * S,FunctionDecl * New,const LookupResult & Old,NamedDecl * & Match,bool NewIsUsingDecl)824 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
825 NamedDecl *&Match, bool NewIsUsingDecl) {
826 for (LookupResult::iterator I = Old.begin(), E = Old.end();
827 I != E; ++I) {
828 NamedDecl *OldD = *I;
829
830 bool OldIsUsingDecl = false;
831 if (isa<UsingShadowDecl>(OldD)) {
832 OldIsUsingDecl = true;
833
834 // We can always introduce two using declarations into the same
835 // context, even if they have identical signatures.
836 if (NewIsUsingDecl) continue;
837
838 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
839 }
840
841 // If either declaration was introduced by a using declaration,
842 // we'll need to use slightly different rules for matching.
843 // Essentially, these rules are the normal rules, except that
844 // function templates hide function templates with different
845 // return types or template parameter lists.
846 bool UseMemberUsingDeclRules =
847 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
848
849 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
850 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
851 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
852 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
853 continue;
854 }
855
856 Match = *I;
857 return Ovl_Match;
858 }
859 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
860 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
861 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
862 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
863 continue;
864 }
865
866 Match = *I;
867 return Ovl_Match;
868 }
869 } else if (isa<UsingDecl>(OldD)) {
870 // We can overload with these, which can show up when doing
871 // redeclaration checks for UsingDecls.
872 assert(Old.getLookupKind() == LookupUsingDeclName);
873 } else if (isa<TagDecl>(OldD)) {
874 // We can always overload with tags by hiding them.
875 } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
876 // Optimistically assume that an unresolved using decl will
877 // overload; if it doesn't, we'll have to diagnose during
878 // template instantiation.
879 } else {
880 // (C++ 13p1):
881 // Only function declarations can be overloaded; object and type
882 // declarations cannot be overloaded.
883 Match = *I;
884 return Ovl_NonFunction;
885 }
886 }
887
888 return Ovl_Overload;
889 }
890
IsOverload(FunctionDecl * New,FunctionDecl * Old,bool UseUsingDeclRules)891 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
892 bool UseUsingDeclRules) {
893 // If both of the functions are extern "C", then they are not
894 // overloads.
895 if (Old->isExternC() && New->isExternC())
896 return false;
897
898 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
899 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
900
901 // C++ [temp.fct]p2:
902 // A function template can be overloaded with other function templates
903 // and with normal (non-template) functions.
904 if ((OldTemplate == 0) != (NewTemplate == 0))
905 return true;
906
907 // Is the function New an overload of the function Old?
908 QualType OldQType = Context.getCanonicalType(Old->getType());
909 QualType NewQType = Context.getCanonicalType(New->getType());
910
911 // Compare the signatures (C++ 1.3.10) of the two functions to
912 // determine whether they are overloads. If we find any mismatch
913 // in the signature, they are overloads.
914
915 // If either of these functions is a K&R-style function (no
916 // prototype), then we consider them to have matching signatures.
917 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
918 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
919 return false;
920
921 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
922 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
923
924 // The signature of a function includes the types of its
925 // parameters (C++ 1.3.10), which includes the presence or absence
926 // of the ellipsis; see C++ DR 357).
927 if (OldQType != NewQType &&
928 (OldType->getNumArgs() != NewType->getNumArgs() ||
929 OldType->isVariadic() != NewType->isVariadic() ||
930 !FunctionArgTypesAreEqual(OldType, NewType)))
931 return true;
932
933 // C++ [temp.over.link]p4:
934 // The signature of a function template consists of its function
935 // signature, its return type and its template parameter list. The names
936 // of the template parameters are significant only for establishing the
937 // relationship between the template parameters and the rest of the
938 // signature.
939 //
940 // We check the return type and template parameter lists for function
941 // templates first; the remaining checks follow.
942 //
943 // However, we don't consider either of these when deciding whether
944 // a member introduced by a shadow declaration is hidden.
945 if (!UseUsingDeclRules && NewTemplate &&
946 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
947 OldTemplate->getTemplateParameters(),
948 false, TPL_TemplateMatch) ||
949 OldType->getResultType() != NewType->getResultType()))
950 return true;
951
952 // If the function is a class member, its signature includes the
953 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
954 //
955 // As part of this, also check whether one of the member functions
956 // is static, in which case they are not overloads (C++
957 // 13.1p2). While not part of the definition of the signature,
958 // this check is important to determine whether these functions
959 // can be overloaded.
960 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
961 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
962 if (OldMethod && NewMethod &&
963 !OldMethod->isStatic() && !NewMethod->isStatic() &&
964 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
965 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
966 if (!UseUsingDeclRules &&
967 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
968 (OldMethod->getRefQualifier() == RQ_None ||
969 NewMethod->getRefQualifier() == RQ_None)) {
970 // C++0x [over.load]p2:
971 // - Member function declarations with the same name and the same
972 // parameter-type-list as well as member function template
973 // declarations with the same name, the same parameter-type-list, and
974 // the same template parameter lists cannot be overloaded if any of
975 // them, but not all, have a ref-qualifier (8.3.5).
976 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
977 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
978 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
979 }
980
981 return true;
982 }
983
984 // The signatures match; this is not an overload.
985 return false;
986 }
987
988 /// \brief Checks availability of the function depending on the current
989 /// function context. Inside an unavailable function, unavailability is ignored.
990 ///
991 /// \returns true if \arg FD is unavailable and current context is inside
992 /// an available function, false otherwise.
isFunctionConsideredUnavailable(FunctionDecl * FD)993 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
994 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
995 }
996
997 /// \brief Tries a user-defined conversion from From to ToType.
998 ///
999 /// Produces an implicit conversion sequence for when a standard conversion
1000 /// is not an option. See TryImplicitConversion for more information.
1001 static ImplicitConversionSequence
TryUserDefinedConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1002 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1003 bool SuppressUserConversions,
1004 bool AllowExplicit,
1005 bool InOverloadResolution,
1006 bool CStyle,
1007 bool AllowObjCWritebackConversion) {
1008 ImplicitConversionSequence ICS;
1009
1010 if (SuppressUserConversions) {
1011 // We're not in the case above, so there is no conversion that
1012 // we can perform.
1013 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1014 return ICS;
1015 }
1016
1017 // Attempt user-defined conversion.
1018 OverloadCandidateSet Conversions(From->getExprLoc());
1019 OverloadingResult UserDefResult
1020 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1021 AllowExplicit);
1022
1023 if (UserDefResult == OR_Success) {
1024 ICS.setUserDefined();
1025 // C++ [over.ics.user]p4:
1026 // A conversion of an expression of class type to the same class
1027 // type is given Exact Match rank, and a conversion of an
1028 // expression of class type to a base class of that type is
1029 // given Conversion rank, in spite of the fact that a copy
1030 // constructor (i.e., a user-defined conversion function) is
1031 // called for those cases.
1032 if (CXXConstructorDecl *Constructor
1033 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1034 QualType FromCanon
1035 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1036 QualType ToCanon
1037 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1038 if (Constructor->isCopyConstructor() &&
1039 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1040 // Turn this into a "standard" conversion sequence, so that it
1041 // gets ranked with standard conversion sequences.
1042 ICS.setStandard();
1043 ICS.Standard.setAsIdentityConversion();
1044 ICS.Standard.setFromType(From->getType());
1045 ICS.Standard.setAllToTypes(ToType);
1046 ICS.Standard.CopyConstructor = Constructor;
1047 if (ToCanon != FromCanon)
1048 ICS.Standard.Second = ICK_Derived_To_Base;
1049 }
1050 }
1051
1052 // C++ [over.best.ics]p4:
1053 // However, when considering the argument of a user-defined
1054 // conversion function that is a candidate by 13.3.1.3 when
1055 // invoked for the copying of the temporary in the second step
1056 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1057 // 13.3.1.6 in all cases, only standard conversion sequences and
1058 // ellipsis conversion sequences are allowed.
1059 if (SuppressUserConversions && ICS.isUserDefined()) {
1060 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1061 }
1062 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1063 ICS.setAmbiguous();
1064 ICS.Ambiguous.setFromType(From->getType());
1065 ICS.Ambiguous.setToType(ToType);
1066 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1067 Cand != Conversions.end(); ++Cand)
1068 if (Cand->Viable)
1069 ICS.Ambiguous.addConversion(Cand->Function);
1070 } else {
1071 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1072 }
1073
1074 return ICS;
1075 }
1076
1077 /// TryImplicitConversion - Attempt to perform an implicit conversion
1078 /// from the given expression (Expr) to the given type (ToType). This
1079 /// function returns an implicit conversion sequence that can be used
1080 /// to perform the initialization. Given
1081 ///
1082 /// void f(float f);
1083 /// void g(int i) { f(i); }
1084 ///
1085 /// this routine would produce an implicit conversion sequence to
1086 /// describe the initialization of f from i, which will be a standard
1087 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1088 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1089 //
1090 /// Note that this routine only determines how the conversion can be
1091 /// performed; it does not actually perform the conversion. As such,
1092 /// it will not produce any diagnostics if no conversion is available,
1093 /// but will instead return an implicit conversion sequence of kind
1094 /// "BadConversion".
1095 ///
1096 /// If @p SuppressUserConversions, then user-defined conversions are
1097 /// not permitted.
1098 /// If @p AllowExplicit, then explicit user-defined conversions are
1099 /// permitted.
1100 ///
1101 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1102 /// writeback conversion, which allows __autoreleasing id* parameters to
1103 /// be initialized with __strong id* or __weak id* arguments.
1104 static ImplicitConversionSequence
TryImplicitConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1105 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1106 bool SuppressUserConversions,
1107 bool AllowExplicit,
1108 bool InOverloadResolution,
1109 bool CStyle,
1110 bool AllowObjCWritebackConversion) {
1111 ImplicitConversionSequence ICS;
1112 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1113 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1114 ICS.setStandard();
1115 return ICS;
1116 }
1117
1118 if (!S.getLangOpts().CPlusPlus) {
1119 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1120 return ICS;
1121 }
1122
1123 // C++ [over.ics.user]p4:
1124 // A conversion of an expression of class type to the same class
1125 // type is given Exact Match rank, and a conversion of an
1126 // expression of class type to a base class of that type is
1127 // given Conversion rank, in spite of the fact that a copy/move
1128 // constructor (i.e., a user-defined conversion function) is
1129 // called for those cases.
1130 QualType FromType = From->getType();
1131 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1132 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1133 S.IsDerivedFrom(FromType, ToType))) {
1134 ICS.setStandard();
1135 ICS.Standard.setAsIdentityConversion();
1136 ICS.Standard.setFromType(FromType);
1137 ICS.Standard.setAllToTypes(ToType);
1138
1139 // We don't actually check at this point whether there is a valid
1140 // copy/move constructor, since overloading just assumes that it
1141 // exists. When we actually perform initialization, we'll find the
1142 // appropriate constructor to copy the returned object, if needed.
1143 ICS.Standard.CopyConstructor = 0;
1144
1145 // Determine whether this is considered a derived-to-base conversion.
1146 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1147 ICS.Standard.Second = ICK_Derived_To_Base;
1148
1149 return ICS;
1150 }
1151
1152 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1153 AllowExplicit, InOverloadResolution, CStyle,
1154 AllowObjCWritebackConversion);
1155 }
1156
1157 ImplicitConversionSequence
TryImplicitConversion(Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1158 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1159 bool SuppressUserConversions,
1160 bool AllowExplicit,
1161 bool InOverloadResolution,
1162 bool CStyle,
1163 bool AllowObjCWritebackConversion) {
1164 return clang::TryImplicitConversion(*this, From, ToType,
1165 SuppressUserConversions, AllowExplicit,
1166 InOverloadResolution, CStyle,
1167 AllowObjCWritebackConversion);
1168 }
1169
1170 /// PerformImplicitConversion - Perform an implicit conversion of the
1171 /// expression From to the type ToType. Returns the
1172 /// converted expression. Flavor is the kind of conversion we're
1173 /// performing, used in the error message. If @p AllowExplicit,
1174 /// explicit user-defined conversions are permitted.
1175 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit)1176 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1177 AssignmentAction Action, bool AllowExplicit) {
1178 ImplicitConversionSequence ICS;
1179 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1180 }
1181
1182 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit,ImplicitConversionSequence & ICS)1183 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1184 AssignmentAction Action, bool AllowExplicit,
1185 ImplicitConversionSequence& ICS) {
1186 if (checkPlaceholderForOverload(*this, From))
1187 return ExprError();
1188
1189 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1190 bool AllowObjCWritebackConversion
1191 = getLangOpts().ObjCAutoRefCount &&
1192 (Action == AA_Passing || Action == AA_Sending);
1193
1194 ICS = clang::TryImplicitConversion(*this, From, ToType,
1195 /*SuppressUserConversions=*/false,
1196 AllowExplicit,
1197 /*InOverloadResolution=*/false,
1198 /*CStyle=*/false,
1199 AllowObjCWritebackConversion);
1200 return PerformImplicitConversion(From, ToType, ICS, Action);
1201 }
1202
1203 /// \brief Determine whether the conversion from FromType to ToType is a valid
1204 /// conversion that strips "noreturn" off the nested function type.
IsNoReturnConversion(QualType FromType,QualType ToType,QualType & ResultTy)1205 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1206 QualType &ResultTy) {
1207 if (Context.hasSameUnqualifiedType(FromType, ToType))
1208 return false;
1209
1210 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1211 // where F adds one of the following at most once:
1212 // - a pointer
1213 // - a member pointer
1214 // - a block pointer
1215 CanQualType CanTo = Context.getCanonicalType(ToType);
1216 CanQualType CanFrom = Context.getCanonicalType(FromType);
1217 Type::TypeClass TyClass = CanTo->getTypeClass();
1218 if (TyClass != CanFrom->getTypeClass()) return false;
1219 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1220 if (TyClass == Type::Pointer) {
1221 CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1222 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1223 } else if (TyClass == Type::BlockPointer) {
1224 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1225 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1226 } else if (TyClass == Type::MemberPointer) {
1227 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1228 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1229 } else {
1230 return false;
1231 }
1232
1233 TyClass = CanTo->getTypeClass();
1234 if (TyClass != CanFrom->getTypeClass()) return false;
1235 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1236 return false;
1237 }
1238
1239 const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1240 FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1241 if (!EInfo.getNoReturn()) return false;
1242
1243 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1244 assert(QualType(FromFn, 0).isCanonical());
1245 if (QualType(FromFn, 0) != CanTo) return false;
1246
1247 ResultTy = ToType;
1248 return true;
1249 }
1250
1251 /// \brief Determine whether the conversion from FromType to ToType is a valid
1252 /// vector conversion.
1253 ///
1254 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1255 /// conversion.
IsVectorConversion(ASTContext & Context,QualType FromType,QualType ToType,ImplicitConversionKind & ICK)1256 static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1257 QualType ToType, ImplicitConversionKind &ICK) {
1258 // We need at least one of these types to be a vector type to have a vector
1259 // conversion.
1260 if (!ToType->isVectorType() && !FromType->isVectorType())
1261 return false;
1262
1263 // Identical types require no conversions.
1264 if (Context.hasSameUnqualifiedType(FromType, ToType))
1265 return false;
1266
1267 // There are no conversions between extended vector types, only identity.
1268 if (ToType->isExtVectorType()) {
1269 // There are no conversions between extended vector types other than the
1270 // identity conversion.
1271 if (FromType->isExtVectorType())
1272 return false;
1273
1274 // Vector splat from any arithmetic type to a vector.
1275 if (FromType->isArithmeticType()) {
1276 ICK = ICK_Vector_Splat;
1277 return true;
1278 }
1279 }
1280
1281 // We can perform the conversion between vector types in the following cases:
1282 // 1)vector types are equivalent AltiVec and GCC vector types
1283 // 2)lax vector conversions are permitted and the vector types are of the
1284 // same size
1285 if (ToType->isVectorType() && FromType->isVectorType()) {
1286 if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1287 (Context.getLangOpts().LaxVectorConversions &&
1288 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1289 ICK = ICK_Vector_Conversion;
1290 return true;
1291 }
1292 }
1293
1294 return false;
1295 }
1296
1297 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1298 bool InOverloadResolution,
1299 StandardConversionSequence &SCS,
1300 bool CStyle);
1301
1302 /// IsStandardConversion - Determines whether there is a standard
1303 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1304 /// expression From to the type ToType. Standard conversion sequences
1305 /// only consider non-class types; for conversions that involve class
1306 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1307 /// contain the standard conversion sequence required to perform this
1308 /// conversion and this routine will return true. Otherwise, this
1309 /// routine will return false and the value of SCS is unspecified.
IsStandardConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle,bool AllowObjCWritebackConversion)1310 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1311 bool InOverloadResolution,
1312 StandardConversionSequence &SCS,
1313 bool CStyle,
1314 bool AllowObjCWritebackConversion) {
1315 QualType FromType = From->getType();
1316
1317 // Standard conversions (C++ [conv])
1318 SCS.setAsIdentityConversion();
1319 SCS.DeprecatedStringLiteralToCharPtr = false;
1320 SCS.IncompatibleObjC = false;
1321 SCS.setFromType(FromType);
1322 SCS.CopyConstructor = 0;
1323
1324 // There are no standard conversions for class types in C++, so
1325 // abort early. When overloading in C, however, we do permit
1326 if (FromType->isRecordType() || ToType->isRecordType()) {
1327 if (S.getLangOpts().CPlusPlus)
1328 return false;
1329
1330 // When we're overloading in C, we allow, as standard conversions,
1331 }
1332
1333 // The first conversion can be an lvalue-to-rvalue conversion,
1334 // array-to-pointer conversion, or function-to-pointer conversion
1335 // (C++ 4p1).
1336
1337 if (FromType == S.Context.OverloadTy) {
1338 DeclAccessPair AccessPair;
1339 if (FunctionDecl *Fn
1340 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1341 AccessPair)) {
1342 // We were able to resolve the address of the overloaded function,
1343 // so we can convert to the type of that function.
1344 FromType = Fn->getType();
1345
1346 // we can sometimes resolve &foo<int> regardless of ToType, so check
1347 // if the type matches (identity) or we are converting to bool
1348 if (!S.Context.hasSameUnqualifiedType(
1349 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1350 QualType resultTy;
1351 // if the function type matches except for [[noreturn]], it's ok
1352 if (!S.IsNoReturnConversion(FromType,
1353 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1354 // otherwise, only a boolean conversion is standard
1355 if (!ToType->isBooleanType())
1356 return false;
1357 }
1358
1359 // Check if the "from" expression is taking the address of an overloaded
1360 // function and recompute the FromType accordingly. Take advantage of the
1361 // fact that non-static member functions *must* have such an address-of
1362 // expression.
1363 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1364 if (Method && !Method->isStatic()) {
1365 assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1366 "Non-unary operator on non-static member address");
1367 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1368 == UO_AddrOf &&
1369 "Non-address-of operator on non-static member address");
1370 const Type *ClassType
1371 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1372 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1373 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1374 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1375 UO_AddrOf &&
1376 "Non-address-of operator for overloaded function expression");
1377 FromType = S.Context.getPointerType(FromType);
1378 }
1379
1380 // Check that we've computed the proper type after overload resolution.
1381 assert(S.Context.hasSameType(
1382 FromType,
1383 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1384 } else {
1385 return false;
1386 }
1387 }
1388 // Lvalue-to-rvalue conversion (C++11 4.1):
1389 // A glvalue (3.10) of a non-function, non-array type T can
1390 // be converted to a prvalue.
1391 bool argIsLValue = From->isGLValue();
1392 if (argIsLValue &&
1393 !FromType->isFunctionType() && !FromType->isArrayType() &&
1394 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1395 SCS.First = ICK_Lvalue_To_Rvalue;
1396
1397 // C11 6.3.2.1p2:
1398 // ... if the lvalue has atomic type, the value has the non-atomic version
1399 // of the type of the lvalue ...
1400 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1401 FromType = Atomic->getValueType();
1402
1403 // If T is a non-class type, the type of the rvalue is the
1404 // cv-unqualified version of T. Otherwise, the type of the rvalue
1405 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1406 // just strip the qualifiers because they don't matter.
1407 FromType = FromType.getUnqualifiedType();
1408 } else if (FromType->isArrayType()) {
1409 // Array-to-pointer conversion (C++ 4.2)
1410 SCS.First = ICK_Array_To_Pointer;
1411
1412 // An lvalue or rvalue of type "array of N T" or "array of unknown
1413 // bound of T" can be converted to an rvalue of type "pointer to
1414 // T" (C++ 4.2p1).
1415 FromType = S.Context.getArrayDecayedType(FromType);
1416
1417 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1418 // This conversion is deprecated. (C++ D.4).
1419 SCS.DeprecatedStringLiteralToCharPtr = true;
1420
1421 // For the purpose of ranking in overload resolution
1422 // (13.3.3.1.1), this conversion is considered an
1423 // array-to-pointer conversion followed by a qualification
1424 // conversion (4.4). (C++ 4.2p2)
1425 SCS.Second = ICK_Identity;
1426 SCS.Third = ICK_Qualification;
1427 SCS.QualificationIncludesObjCLifetime = false;
1428 SCS.setAllToTypes(FromType);
1429 return true;
1430 }
1431 } else if (FromType->isFunctionType() && argIsLValue) {
1432 // Function-to-pointer conversion (C++ 4.3).
1433 SCS.First = ICK_Function_To_Pointer;
1434
1435 // An lvalue of function type T can be converted to an rvalue of
1436 // type "pointer to T." The result is a pointer to the
1437 // function. (C++ 4.3p1).
1438 FromType = S.Context.getPointerType(FromType);
1439 } else {
1440 // We don't require any conversions for the first step.
1441 SCS.First = ICK_Identity;
1442 }
1443 SCS.setToType(0, FromType);
1444
1445 // The second conversion can be an integral promotion, floating
1446 // point promotion, integral conversion, floating point conversion,
1447 // floating-integral conversion, pointer conversion,
1448 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1449 // For overloading in C, this can also be a "compatible-type"
1450 // conversion.
1451 bool IncompatibleObjC = false;
1452 ImplicitConversionKind SecondICK = ICK_Identity;
1453 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1454 // The unqualified versions of the types are the same: there's no
1455 // conversion to do.
1456 SCS.Second = ICK_Identity;
1457 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1458 // Integral promotion (C++ 4.5).
1459 SCS.Second = ICK_Integral_Promotion;
1460 FromType = ToType.getUnqualifiedType();
1461 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1462 // Floating point promotion (C++ 4.6).
1463 SCS.Second = ICK_Floating_Promotion;
1464 FromType = ToType.getUnqualifiedType();
1465 } else if (S.IsComplexPromotion(FromType, ToType)) {
1466 // Complex promotion (Clang extension)
1467 SCS.Second = ICK_Complex_Promotion;
1468 FromType = ToType.getUnqualifiedType();
1469 } else if (ToType->isBooleanType() &&
1470 (FromType->isArithmeticType() ||
1471 FromType->isAnyPointerType() ||
1472 FromType->isBlockPointerType() ||
1473 FromType->isMemberPointerType() ||
1474 FromType->isNullPtrType())) {
1475 // Boolean conversions (C++ 4.12).
1476 SCS.Second = ICK_Boolean_Conversion;
1477 FromType = S.Context.BoolTy;
1478 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1479 ToType->isIntegralType(S.Context)) {
1480 // Integral conversions (C++ 4.7).
1481 SCS.Second = ICK_Integral_Conversion;
1482 FromType = ToType.getUnqualifiedType();
1483 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1484 // Complex conversions (C99 6.3.1.6)
1485 SCS.Second = ICK_Complex_Conversion;
1486 FromType = ToType.getUnqualifiedType();
1487 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1488 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1489 // Complex-real conversions (C99 6.3.1.7)
1490 SCS.Second = ICK_Complex_Real;
1491 FromType = ToType.getUnqualifiedType();
1492 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1493 // Floating point conversions (C++ 4.8).
1494 SCS.Second = ICK_Floating_Conversion;
1495 FromType = ToType.getUnqualifiedType();
1496 } else if ((FromType->isRealFloatingType() &&
1497 ToType->isIntegralType(S.Context)) ||
1498 (FromType->isIntegralOrUnscopedEnumerationType() &&
1499 ToType->isRealFloatingType())) {
1500 // Floating-integral conversions (C++ 4.9).
1501 SCS.Second = ICK_Floating_Integral;
1502 FromType = ToType.getUnqualifiedType();
1503 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1504 SCS.Second = ICK_Block_Pointer_Conversion;
1505 } else if (AllowObjCWritebackConversion &&
1506 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1507 SCS.Second = ICK_Writeback_Conversion;
1508 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1509 FromType, IncompatibleObjC)) {
1510 // Pointer conversions (C++ 4.10).
1511 SCS.Second = ICK_Pointer_Conversion;
1512 SCS.IncompatibleObjC = IncompatibleObjC;
1513 FromType = FromType.getUnqualifiedType();
1514 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1515 InOverloadResolution, FromType)) {
1516 // Pointer to member conversions (4.11).
1517 SCS.Second = ICK_Pointer_Member;
1518 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1519 SCS.Second = SecondICK;
1520 FromType = ToType.getUnqualifiedType();
1521 } else if (!S.getLangOpts().CPlusPlus &&
1522 S.Context.typesAreCompatible(ToType, FromType)) {
1523 // Compatible conversions (Clang extension for C function overloading)
1524 SCS.Second = ICK_Compatible_Conversion;
1525 FromType = ToType.getUnqualifiedType();
1526 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1527 // Treat a conversion that strips "noreturn" as an identity conversion.
1528 SCS.Second = ICK_NoReturn_Adjustment;
1529 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1530 InOverloadResolution,
1531 SCS, CStyle)) {
1532 SCS.Second = ICK_TransparentUnionConversion;
1533 FromType = ToType;
1534 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1535 CStyle)) {
1536 // tryAtomicConversion has updated the standard conversion sequence
1537 // appropriately.
1538 return true;
1539 } else {
1540 // No second conversion required.
1541 SCS.Second = ICK_Identity;
1542 }
1543 SCS.setToType(1, FromType);
1544
1545 QualType CanonFrom;
1546 QualType CanonTo;
1547 // The third conversion can be a qualification conversion (C++ 4p1).
1548 bool ObjCLifetimeConversion;
1549 if (S.IsQualificationConversion(FromType, ToType, CStyle,
1550 ObjCLifetimeConversion)) {
1551 SCS.Third = ICK_Qualification;
1552 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1553 FromType = ToType;
1554 CanonFrom = S.Context.getCanonicalType(FromType);
1555 CanonTo = S.Context.getCanonicalType(ToType);
1556 } else {
1557 // No conversion required
1558 SCS.Third = ICK_Identity;
1559
1560 // C++ [over.best.ics]p6:
1561 // [...] Any difference in top-level cv-qualification is
1562 // subsumed by the initialization itself and does not constitute
1563 // a conversion. [...]
1564 CanonFrom = S.Context.getCanonicalType(FromType);
1565 CanonTo = S.Context.getCanonicalType(ToType);
1566 if (CanonFrom.getLocalUnqualifiedType()
1567 == CanonTo.getLocalUnqualifiedType() &&
1568 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1569 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1570 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1571 FromType = ToType;
1572 CanonFrom = CanonTo;
1573 }
1574 }
1575 SCS.setToType(2, FromType);
1576
1577 // If we have not converted the argument type to the parameter type,
1578 // this is a bad conversion sequence.
1579 if (CanonFrom != CanonTo)
1580 return false;
1581
1582 return true;
1583 }
1584
1585 static bool
IsTransparentUnionStandardConversion(Sema & S,Expr * From,QualType & ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)1586 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1587 QualType &ToType,
1588 bool InOverloadResolution,
1589 StandardConversionSequence &SCS,
1590 bool CStyle) {
1591
1592 const RecordType *UT = ToType->getAsUnionType();
1593 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1594 return false;
1595 // The field to initialize within the transparent union.
1596 RecordDecl *UD = UT->getDecl();
1597 // It's compatible if the expression matches any of the fields.
1598 for (RecordDecl::field_iterator it = UD->field_begin(),
1599 itend = UD->field_end();
1600 it != itend; ++it) {
1601 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1602 CStyle, /*ObjCWritebackConversion=*/false)) {
1603 ToType = it->getType();
1604 return true;
1605 }
1606 }
1607 return false;
1608 }
1609
1610 /// IsIntegralPromotion - Determines whether the conversion from the
1611 /// expression From (whose potentially-adjusted type is FromType) to
1612 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1613 /// sets PromotedType to the promoted type.
IsIntegralPromotion(Expr * From,QualType FromType,QualType ToType)1614 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1615 const BuiltinType *To = ToType->getAs<BuiltinType>();
1616 // All integers are built-in.
1617 if (!To) {
1618 return false;
1619 }
1620
1621 // An rvalue of type char, signed char, unsigned char, short int, or
1622 // unsigned short int can be converted to an rvalue of type int if
1623 // int can represent all the values of the source type; otherwise,
1624 // the source rvalue can be converted to an rvalue of type unsigned
1625 // int (C++ 4.5p1).
1626 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1627 !FromType->isEnumeralType()) {
1628 if (// We can promote any signed, promotable integer type to an int
1629 (FromType->isSignedIntegerType() ||
1630 // We can promote any unsigned integer type whose size is
1631 // less than int to an int.
1632 (!FromType->isSignedIntegerType() &&
1633 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1634 return To->getKind() == BuiltinType::Int;
1635 }
1636
1637 return To->getKind() == BuiltinType::UInt;
1638 }
1639
1640 // C++0x [conv.prom]p3:
1641 // A prvalue of an unscoped enumeration type whose underlying type is not
1642 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1643 // following types that can represent all the values of the enumeration
1644 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
1645 // unsigned int, long int, unsigned long int, long long int, or unsigned
1646 // long long int. If none of the types in that list can represent all the
1647 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1648 // type can be converted to an rvalue a prvalue of the extended integer type
1649 // with lowest integer conversion rank (4.13) greater than the rank of long
1650 // long in which all the values of the enumeration can be represented. If
1651 // there are two such extended types, the signed one is chosen.
1652 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1653 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1654 // provided for a scoped enumeration.
1655 if (FromEnumType->getDecl()->isScoped())
1656 return false;
1657
1658 // We have already pre-calculated the promotion type, so this is trivial.
1659 if (ToType->isIntegerType() &&
1660 !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1661 return Context.hasSameUnqualifiedType(ToType,
1662 FromEnumType->getDecl()->getPromotionType());
1663 }
1664
1665 // C++0x [conv.prom]p2:
1666 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1667 // to an rvalue a prvalue of the first of the following types that can
1668 // represent all the values of its underlying type: int, unsigned int,
1669 // long int, unsigned long int, long long int, or unsigned long long int.
1670 // If none of the types in that list can represent all the values of its
1671 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
1672 // or wchar_t can be converted to an rvalue a prvalue of its underlying
1673 // type.
1674 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1675 ToType->isIntegerType()) {
1676 // Determine whether the type we're converting from is signed or
1677 // unsigned.
1678 bool FromIsSigned = FromType->isSignedIntegerType();
1679 uint64_t FromSize = Context.getTypeSize(FromType);
1680
1681 // The types we'll try to promote to, in the appropriate
1682 // order. Try each of these types.
1683 QualType PromoteTypes[6] = {
1684 Context.IntTy, Context.UnsignedIntTy,
1685 Context.LongTy, Context.UnsignedLongTy ,
1686 Context.LongLongTy, Context.UnsignedLongLongTy
1687 };
1688 for (int Idx = 0; Idx < 6; ++Idx) {
1689 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1690 if (FromSize < ToSize ||
1691 (FromSize == ToSize &&
1692 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1693 // We found the type that we can promote to. If this is the
1694 // type we wanted, we have a promotion. Otherwise, no
1695 // promotion.
1696 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1697 }
1698 }
1699 }
1700
1701 // An rvalue for an integral bit-field (9.6) can be converted to an
1702 // rvalue of type int if int can represent all the values of the
1703 // bit-field; otherwise, it can be converted to unsigned int if
1704 // unsigned int can represent all the values of the bit-field. If
1705 // the bit-field is larger yet, no integral promotion applies to
1706 // it. If the bit-field has an enumerated type, it is treated as any
1707 // other value of that type for promotion purposes (C++ 4.5p3).
1708 // FIXME: We should delay checking of bit-fields until we actually perform the
1709 // conversion.
1710 using llvm::APSInt;
1711 if (From)
1712 if (FieldDecl *MemberDecl = From->getBitField()) {
1713 APSInt BitWidth;
1714 if (FromType->isIntegralType(Context) &&
1715 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1716 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1717 ToSize = Context.getTypeSize(ToType);
1718
1719 // Are we promoting to an int from a bitfield that fits in an int?
1720 if (BitWidth < ToSize ||
1721 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1722 return To->getKind() == BuiltinType::Int;
1723 }
1724
1725 // Are we promoting to an unsigned int from an unsigned bitfield
1726 // that fits into an unsigned int?
1727 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1728 return To->getKind() == BuiltinType::UInt;
1729 }
1730
1731 return false;
1732 }
1733 }
1734
1735 // An rvalue of type bool can be converted to an rvalue of type int,
1736 // with false becoming zero and true becoming one (C++ 4.5p4).
1737 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1738 return true;
1739 }
1740
1741 return false;
1742 }
1743
1744 /// IsFloatingPointPromotion - Determines whether the conversion from
1745 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1746 /// returns true and sets PromotedType to the promoted type.
IsFloatingPointPromotion(QualType FromType,QualType ToType)1747 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1748 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1749 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1750 /// An rvalue of type float can be converted to an rvalue of type
1751 /// double. (C++ 4.6p1).
1752 if (FromBuiltin->getKind() == BuiltinType::Float &&
1753 ToBuiltin->getKind() == BuiltinType::Double)
1754 return true;
1755
1756 // C99 6.3.1.5p1:
1757 // When a float is promoted to double or long double, or a
1758 // double is promoted to long double [...].
1759 if (!getLangOpts().CPlusPlus &&
1760 (FromBuiltin->getKind() == BuiltinType::Float ||
1761 FromBuiltin->getKind() == BuiltinType::Double) &&
1762 (ToBuiltin->getKind() == BuiltinType::LongDouble))
1763 return true;
1764
1765 // Half can be promoted to float.
1766 if (FromBuiltin->getKind() == BuiltinType::Half &&
1767 ToBuiltin->getKind() == BuiltinType::Float)
1768 return true;
1769 }
1770
1771 return false;
1772 }
1773
1774 /// \brief Determine if a conversion is a complex promotion.
1775 ///
1776 /// A complex promotion is defined as a complex -> complex conversion
1777 /// where the conversion between the underlying real types is a
1778 /// floating-point or integral promotion.
IsComplexPromotion(QualType FromType,QualType ToType)1779 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1780 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1781 if (!FromComplex)
1782 return false;
1783
1784 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1785 if (!ToComplex)
1786 return false;
1787
1788 return IsFloatingPointPromotion(FromComplex->getElementType(),
1789 ToComplex->getElementType()) ||
1790 IsIntegralPromotion(0, FromComplex->getElementType(),
1791 ToComplex->getElementType());
1792 }
1793
1794 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1795 /// the pointer type FromPtr to a pointer to type ToPointee, with the
1796 /// same type qualifiers as FromPtr has on its pointee type. ToType,
1797 /// if non-empty, will be a pointer to ToType that may or may not have
1798 /// the right set of qualifiers on its pointee.
1799 ///
1800 static QualType
BuildSimilarlyQualifiedPointerType(const Type * FromPtr,QualType ToPointee,QualType ToType,ASTContext & Context,bool StripObjCLifetime=false)1801 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1802 QualType ToPointee, QualType ToType,
1803 ASTContext &Context,
1804 bool StripObjCLifetime = false) {
1805 assert((FromPtr->getTypeClass() == Type::Pointer ||
1806 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1807 "Invalid similarly-qualified pointer type");
1808
1809 /// Conversions to 'id' subsume cv-qualifier conversions.
1810 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1811 return ToType.getUnqualifiedType();
1812
1813 QualType CanonFromPointee
1814 = Context.getCanonicalType(FromPtr->getPointeeType());
1815 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1816 Qualifiers Quals = CanonFromPointee.getQualifiers();
1817
1818 if (StripObjCLifetime)
1819 Quals.removeObjCLifetime();
1820
1821 // Exact qualifier match -> return the pointer type we're converting to.
1822 if (CanonToPointee.getLocalQualifiers() == Quals) {
1823 // ToType is exactly what we need. Return it.
1824 if (!ToType.isNull())
1825 return ToType.getUnqualifiedType();
1826
1827 // Build a pointer to ToPointee. It has the right qualifiers
1828 // already.
1829 if (isa<ObjCObjectPointerType>(ToType))
1830 return Context.getObjCObjectPointerType(ToPointee);
1831 return Context.getPointerType(ToPointee);
1832 }
1833
1834 // Just build a canonical type that has the right qualifiers.
1835 QualType QualifiedCanonToPointee
1836 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1837
1838 if (isa<ObjCObjectPointerType>(ToType))
1839 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1840 return Context.getPointerType(QualifiedCanonToPointee);
1841 }
1842
isNullPointerConstantForConversion(Expr * Expr,bool InOverloadResolution,ASTContext & Context)1843 static bool isNullPointerConstantForConversion(Expr *Expr,
1844 bool InOverloadResolution,
1845 ASTContext &Context) {
1846 // Handle value-dependent integral null pointer constants correctly.
1847 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1848 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1849 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1850 return !InOverloadResolution;
1851
1852 return Expr->isNullPointerConstant(Context,
1853 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1854 : Expr::NPC_ValueDependentIsNull);
1855 }
1856
1857 /// IsPointerConversion - Determines whether the conversion of the
1858 /// expression From, which has the (possibly adjusted) type FromType,
1859 /// can be converted to the type ToType via a pointer conversion (C++
1860 /// 4.10). If so, returns true and places the converted type (that
1861 /// might differ from ToType in its cv-qualifiers at some level) into
1862 /// ConvertedType.
1863 ///
1864 /// This routine also supports conversions to and from block pointers
1865 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
1866 /// pointers to interfaces. FIXME: Once we've determined the
1867 /// appropriate overloading rules for Objective-C, we may want to
1868 /// split the Objective-C checks into a different routine; however,
1869 /// GCC seems to consider all of these conversions to be pointer
1870 /// conversions, so for now they live here. IncompatibleObjC will be
1871 /// set if the conversion is an allowed Objective-C conversion that
1872 /// should result in a warning.
IsPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType,bool & IncompatibleObjC)1873 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1874 bool InOverloadResolution,
1875 QualType& ConvertedType,
1876 bool &IncompatibleObjC) {
1877 IncompatibleObjC = false;
1878 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1879 IncompatibleObjC))
1880 return true;
1881
1882 // Conversion from a null pointer constant to any Objective-C pointer type.
1883 if (ToType->isObjCObjectPointerType() &&
1884 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1885 ConvertedType = ToType;
1886 return true;
1887 }
1888
1889 // Blocks: Block pointers can be converted to void*.
1890 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1891 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1892 ConvertedType = ToType;
1893 return true;
1894 }
1895 // Blocks: A null pointer constant can be converted to a block
1896 // pointer type.
1897 if (ToType->isBlockPointerType() &&
1898 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1899 ConvertedType = ToType;
1900 return true;
1901 }
1902
1903 // If the left-hand-side is nullptr_t, the right side can be a null
1904 // pointer constant.
1905 if (ToType->isNullPtrType() &&
1906 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1907 ConvertedType = ToType;
1908 return true;
1909 }
1910
1911 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1912 if (!ToTypePtr)
1913 return false;
1914
1915 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1916 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1917 ConvertedType = ToType;
1918 return true;
1919 }
1920
1921 // Beyond this point, both types need to be pointers
1922 // , including objective-c pointers.
1923 QualType ToPointeeType = ToTypePtr->getPointeeType();
1924 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1925 !getLangOpts().ObjCAutoRefCount) {
1926 ConvertedType = BuildSimilarlyQualifiedPointerType(
1927 FromType->getAs<ObjCObjectPointerType>(),
1928 ToPointeeType,
1929 ToType, Context);
1930 return true;
1931 }
1932 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1933 if (!FromTypePtr)
1934 return false;
1935
1936 QualType FromPointeeType = FromTypePtr->getPointeeType();
1937
1938 // If the unqualified pointee types are the same, this can't be a
1939 // pointer conversion, so don't do all of the work below.
1940 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1941 return false;
1942
1943 // An rvalue of type "pointer to cv T," where T is an object type,
1944 // can be converted to an rvalue of type "pointer to cv void" (C++
1945 // 4.10p2).
1946 if (FromPointeeType->isIncompleteOrObjectType() &&
1947 ToPointeeType->isVoidType()) {
1948 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1949 ToPointeeType,
1950 ToType, Context,
1951 /*StripObjCLifetime=*/true);
1952 return true;
1953 }
1954
1955 // MSVC allows implicit function to void* type conversion.
1956 if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
1957 ToPointeeType->isVoidType()) {
1958 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1959 ToPointeeType,
1960 ToType, Context);
1961 return true;
1962 }
1963
1964 // When we're overloading in C, we allow a special kind of pointer
1965 // conversion for compatible-but-not-identical pointee types.
1966 if (!getLangOpts().CPlusPlus &&
1967 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1968 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1969 ToPointeeType,
1970 ToType, Context);
1971 return true;
1972 }
1973
1974 // C++ [conv.ptr]p3:
1975 //
1976 // An rvalue of type "pointer to cv D," where D is a class type,
1977 // can be converted to an rvalue of type "pointer to cv B," where
1978 // B is a base class (clause 10) of D. If B is an inaccessible
1979 // (clause 11) or ambiguous (10.2) base class of D, a program that
1980 // necessitates this conversion is ill-formed. The result of the
1981 // conversion is a pointer to the base class sub-object of the
1982 // derived class object. The null pointer value is converted to
1983 // the null pointer value of the destination type.
1984 //
1985 // Note that we do not check for ambiguity or inaccessibility
1986 // here. That is handled by CheckPointerConversion.
1987 if (getLangOpts().CPlusPlus &&
1988 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1989 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1990 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1991 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1992 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1993 ToPointeeType,
1994 ToType, Context);
1995 return true;
1996 }
1997
1998 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1999 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2000 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2001 ToPointeeType,
2002 ToType, Context);
2003 return true;
2004 }
2005
2006 return false;
2007 }
2008
2009 /// \brief Adopt the given qualifiers for the given type.
AdoptQualifiers(ASTContext & Context,QualType T,Qualifiers Qs)2010 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2011 Qualifiers TQs = T.getQualifiers();
2012
2013 // Check whether qualifiers already match.
2014 if (TQs == Qs)
2015 return T;
2016
2017 if (Qs.compatiblyIncludes(TQs))
2018 return Context.getQualifiedType(T, Qs);
2019
2020 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2021 }
2022
2023 /// isObjCPointerConversion - Determines whether this is an
2024 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2025 /// with the same arguments and return values.
isObjCPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType,bool & IncompatibleObjC)2026 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2027 QualType& ConvertedType,
2028 bool &IncompatibleObjC) {
2029 if (!getLangOpts().ObjC1)
2030 return false;
2031
2032 // The set of qualifiers on the type we're converting from.
2033 Qualifiers FromQualifiers = FromType.getQualifiers();
2034
2035 // First, we handle all conversions on ObjC object pointer types.
2036 const ObjCObjectPointerType* ToObjCPtr =
2037 ToType->getAs<ObjCObjectPointerType>();
2038 const ObjCObjectPointerType *FromObjCPtr =
2039 FromType->getAs<ObjCObjectPointerType>();
2040
2041 if (ToObjCPtr && FromObjCPtr) {
2042 // If the pointee types are the same (ignoring qualifications),
2043 // then this is not a pointer conversion.
2044 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2045 FromObjCPtr->getPointeeType()))
2046 return false;
2047
2048 // Check for compatible
2049 // Objective C++: We're able to convert between "id" or "Class" and a
2050 // pointer to any interface (in both directions).
2051 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2052 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2053 return true;
2054 }
2055 // Conversions with Objective-C's id<...>.
2056 if ((FromObjCPtr->isObjCQualifiedIdType() ||
2057 ToObjCPtr->isObjCQualifiedIdType()) &&
2058 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2059 /*compare=*/false)) {
2060 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2061 return true;
2062 }
2063 // Objective C++: We're able to convert from a pointer to an
2064 // interface to a pointer to a different interface.
2065 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2066 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2067 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2068 if (getLangOpts().CPlusPlus && LHS && RHS &&
2069 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2070 FromObjCPtr->getPointeeType()))
2071 return false;
2072 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2073 ToObjCPtr->getPointeeType(),
2074 ToType, Context);
2075 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2076 return true;
2077 }
2078
2079 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2080 // Okay: this is some kind of implicit downcast of Objective-C
2081 // interfaces, which is permitted. However, we're going to
2082 // complain about it.
2083 IncompatibleObjC = true;
2084 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2085 ToObjCPtr->getPointeeType(),
2086 ToType, Context);
2087 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2088 return true;
2089 }
2090 }
2091 // Beyond this point, both types need to be C pointers or block pointers.
2092 QualType ToPointeeType;
2093 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2094 ToPointeeType = ToCPtr->getPointeeType();
2095 else if (const BlockPointerType *ToBlockPtr =
2096 ToType->getAs<BlockPointerType>()) {
2097 // Objective C++: We're able to convert from a pointer to any object
2098 // to a block pointer type.
2099 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2100 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2101 return true;
2102 }
2103 ToPointeeType = ToBlockPtr->getPointeeType();
2104 }
2105 else if (FromType->getAs<BlockPointerType>() &&
2106 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2107 // Objective C++: We're able to convert from a block pointer type to a
2108 // pointer to any object.
2109 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2110 return true;
2111 }
2112 else
2113 return false;
2114
2115 QualType FromPointeeType;
2116 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2117 FromPointeeType = FromCPtr->getPointeeType();
2118 else if (const BlockPointerType *FromBlockPtr =
2119 FromType->getAs<BlockPointerType>())
2120 FromPointeeType = FromBlockPtr->getPointeeType();
2121 else
2122 return false;
2123
2124 // If we have pointers to pointers, recursively check whether this
2125 // is an Objective-C conversion.
2126 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2127 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2128 IncompatibleObjC)) {
2129 // We always complain about this conversion.
2130 IncompatibleObjC = true;
2131 ConvertedType = Context.getPointerType(ConvertedType);
2132 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2133 return true;
2134 }
2135 // Allow conversion of pointee being objective-c pointer to another one;
2136 // as in I* to id.
2137 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2138 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2139 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2140 IncompatibleObjC)) {
2141
2142 ConvertedType = Context.getPointerType(ConvertedType);
2143 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2144 return true;
2145 }
2146
2147 // If we have pointers to functions or blocks, check whether the only
2148 // differences in the argument and result types are in Objective-C
2149 // pointer conversions. If so, we permit the conversion (but
2150 // complain about it).
2151 const FunctionProtoType *FromFunctionType
2152 = FromPointeeType->getAs<FunctionProtoType>();
2153 const FunctionProtoType *ToFunctionType
2154 = ToPointeeType->getAs<FunctionProtoType>();
2155 if (FromFunctionType && ToFunctionType) {
2156 // If the function types are exactly the same, this isn't an
2157 // Objective-C pointer conversion.
2158 if (Context.getCanonicalType(FromPointeeType)
2159 == Context.getCanonicalType(ToPointeeType))
2160 return false;
2161
2162 // Perform the quick checks that will tell us whether these
2163 // function types are obviously different.
2164 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2165 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2166 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2167 return false;
2168
2169 bool HasObjCConversion = false;
2170 if (Context.getCanonicalType(FromFunctionType->getResultType())
2171 == Context.getCanonicalType(ToFunctionType->getResultType())) {
2172 // Okay, the types match exactly. Nothing to do.
2173 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2174 ToFunctionType->getResultType(),
2175 ConvertedType, IncompatibleObjC)) {
2176 // Okay, we have an Objective-C pointer conversion.
2177 HasObjCConversion = true;
2178 } else {
2179 // Function types are too different. Abort.
2180 return false;
2181 }
2182
2183 // Check argument types.
2184 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2185 ArgIdx != NumArgs; ++ArgIdx) {
2186 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2187 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2188 if (Context.getCanonicalType(FromArgType)
2189 == Context.getCanonicalType(ToArgType)) {
2190 // Okay, the types match exactly. Nothing to do.
2191 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2192 ConvertedType, IncompatibleObjC)) {
2193 // Okay, we have an Objective-C pointer conversion.
2194 HasObjCConversion = true;
2195 } else {
2196 // Argument types are too different. Abort.
2197 return false;
2198 }
2199 }
2200
2201 if (HasObjCConversion) {
2202 // We had an Objective-C conversion. Allow this pointer
2203 // conversion, but complain about it.
2204 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2205 IncompatibleObjC = true;
2206 return true;
2207 }
2208 }
2209
2210 return false;
2211 }
2212
2213 /// \brief Determine whether this is an Objective-C writeback conversion,
2214 /// used for parameter passing when performing automatic reference counting.
2215 ///
2216 /// \param FromType The type we're converting form.
2217 ///
2218 /// \param ToType The type we're converting to.
2219 ///
2220 /// \param ConvertedType The type that will be produced after applying
2221 /// this conversion.
isObjCWritebackConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2222 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2223 QualType &ConvertedType) {
2224 if (!getLangOpts().ObjCAutoRefCount ||
2225 Context.hasSameUnqualifiedType(FromType, ToType))
2226 return false;
2227
2228 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2229 QualType ToPointee;
2230 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2231 ToPointee = ToPointer->getPointeeType();
2232 else
2233 return false;
2234
2235 Qualifiers ToQuals = ToPointee.getQualifiers();
2236 if (!ToPointee->isObjCLifetimeType() ||
2237 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2238 !ToQuals.withoutObjCLifetime().empty())
2239 return false;
2240
2241 // Argument must be a pointer to __strong to __weak.
2242 QualType FromPointee;
2243 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2244 FromPointee = FromPointer->getPointeeType();
2245 else
2246 return false;
2247
2248 Qualifiers FromQuals = FromPointee.getQualifiers();
2249 if (!FromPointee->isObjCLifetimeType() ||
2250 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2251 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2252 return false;
2253
2254 // Make sure that we have compatible qualifiers.
2255 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2256 if (!ToQuals.compatiblyIncludes(FromQuals))
2257 return false;
2258
2259 // Remove qualifiers from the pointee type we're converting from; they
2260 // aren't used in the compatibility check belong, and we'll be adding back
2261 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2262 FromPointee = FromPointee.getUnqualifiedType();
2263
2264 // The unqualified form of the pointee types must be compatible.
2265 ToPointee = ToPointee.getUnqualifiedType();
2266 bool IncompatibleObjC;
2267 if (Context.typesAreCompatible(FromPointee, ToPointee))
2268 FromPointee = ToPointee;
2269 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2270 IncompatibleObjC))
2271 return false;
2272
2273 /// \brief Construct the type we're converting to, which is a pointer to
2274 /// __autoreleasing pointee.
2275 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2276 ConvertedType = Context.getPointerType(FromPointee);
2277 return true;
2278 }
2279
IsBlockPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2280 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2281 QualType& ConvertedType) {
2282 QualType ToPointeeType;
2283 if (const BlockPointerType *ToBlockPtr =
2284 ToType->getAs<BlockPointerType>())
2285 ToPointeeType = ToBlockPtr->getPointeeType();
2286 else
2287 return false;
2288
2289 QualType FromPointeeType;
2290 if (const BlockPointerType *FromBlockPtr =
2291 FromType->getAs<BlockPointerType>())
2292 FromPointeeType = FromBlockPtr->getPointeeType();
2293 else
2294 return false;
2295 // We have pointer to blocks, check whether the only
2296 // differences in the argument and result types are in Objective-C
2297 // pointer conversions. If so, we permit the conversion.
2298
2299 const FunctionProtoType *FromFunctionType
2300 = FromPointeeType->getAs<FunctionProtoType>();
2301 const FunctionProtoType *ToFunctionType
2302 = ToPointeeType->getAs<FunctionProtoType>();
2303
2304 if (!FromFunctionType || !ToFunctionType)
2305 return false;
2306
2307 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2308 return true;
2309
2310 // Perform the quick checks that will tell us whether these
2311 // function types are obviously different.
2312 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2313 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2314 return false;
2315
2316 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2317 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2318 if (FromEInfo != ToEInfo)
2319 return false;
2320
2321 bool IncompatibleObjC = false;
2322 if (Context.hasSameType(FromFunctionType->getResultType(),
2323 ToFunctionType->getResultType())) {
2324 // Okay, the types match exactly. Nothing to do.
2325 } else {
2326 QualType RHS = FromFunctionType->getResultType();
2327 QualType LHS = ToFunctionType->getResultType();
2328 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2329 !RHS.hasQualifiers() && LHS.hasQualifiers())
2330 LHS = LHS.getUnqualifiedType();
2331
2332 if (Context.hasSameType(RHS,LHS)) {
2333 // OK exact match.
2334 } else if (isObjCPointerConversion(RHS, LHS,
2335 ConvertedType, IncompatibleObjC)) {
2336 if (IncompatibleObjC)
2337 return false;
2338 // Okay, we have an Objective-C pointer conversion.
2339 }
2340 else
2341 return false;
2342 }
2343
2344 // Check argument types.
2345 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2346 ArgIdx != NumArgs; ++ArgIdx) {
2347 IncompatibleObjC = false;
2348 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2349 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2350 if (Context.hasSameType(FromArgType, ToArgType)) {
2351 // Okay, the types match exactly. Nothing to do.
2352 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2353 ConvertedType, IncompatibleObjC)) {
2354 if (IncompatibleObjC)
2355 return false;
2356 // Okay, we have an Objective-C pointer conversion.
2357 } else
2358 // Argument types are too different. Abort.
2359 return false;
2360 }
2361 if (LangOpts.ObjCAutoRefCount &&
2362 !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2363 ToFunctionType))
2364 return false;
2365
2366 ConvertedType = ToType;
2367 return true;
2368 }
2369
2370 enum {
2371 ft_default,
2372 ft_different_class,
2373 ft_parameter_arity,
2374 ft_parameter_mismatch,
2375 ft_return_type,
2376 ft_qualifer_mismatch
2377 };
2378
2379 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2380 /// function types. Catches different number of parameter, mismatch in
2381 /// parameter types, and different return types.
HandleFunctionTypeMismatch(PartialDiagnostic & PDiag,QualType FromType,QualType ToType)2382 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2383 QualType FromType, QualType ToType) {
2384 // If either type is not valid, include no extra info.
2385 if (FromType.isNull() || ToType.isNull()) {
2386 PDiag << ft_default;
2387 return;
2388 }
2389
2390 // Get the function type from the pointers.
2391 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2392 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2393 *ToMember = ToType->getAs<MemberPointerType>();
2394 if (FromMember->getClass() != ToMember->getClass()) {
2395 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2396 << QualType(FromMember->getClass(), 0);
2397 return;
2398 }
2399 FromType = FromMember->getPointeeType();
2400 ToType = ToMember->getPointeeType();
2401 }
2402
2403 if (FromType->isPointerType())
2404 FromType = FromType->getPointeeType();
2405 if (ToType->isPointerType())
2406 ToType = ToType->getPointeeType();
2407
2408 // Remove references.
2409 FromType = FromType.getNonReferenceType();
2410 ToType = ToType.getNonReferenceType();
2411
2412 // Don't print extra info for non-specialized template functions.
2413 if (FromType->isInstantiationDependentType() &&
2414 !FromType->getAs<TemplateSpecializationType>()) {
2415 PDiag << ft_default;
2416 return;
2417 }
2418
2419 // No extra info for same types.
2420 if (Context.hasSameType(FromType, ToType)) {
2421 PDiag << ft_default;
2422 return;
2423 }
2424
2425 const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2426 *ToFunction = ToType->getAs<FunctionProtoType>();
2427
2428 // Both types need to be function types.
2429 if (!FromFunction || !ToFunction) {
2430 PDiag << ft_default;
2431 return;
2432 }
2433
2434 if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2435 PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2436 << FromFunction->getNumArgs();
2437 return;
2438 }
2439
2440 // Handle different parameter types.
2441 unsigned ArgPos;
2442 if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2443 PDiag << ft_parameter_mismatch << ArgPos + 1
2444 << ToFunction->getArgType(ArgPos)
2445 << FromFunction->getArgType(ArgPos);
2446 return;
2447 }
2448
2449 // Handle different return type.
2450 if (!Context.hasSameType(FromFunction->getResultType(),
2451 ToFunction->getResultType())) {
2452 PDiag << ft_return_type << ToFunction->getResultType()
2453 << FromFunction->getResultType();
2454 return;
2455 }
2456
2457 unsigned FromQuals = FromFunction->getTypeQuals(),
2458 ToQuals = ToFunction->getTypeQuals();
2459 if (FromQuals != ToQuals) {
2460 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2461 return;
2462 }
2463
2464 // Unable to find a difference, so add no extra info.
2465 PDiag << ft_default;
2466 }
2467
2468 /// FunctionArgTypesAreEqual - This routine checks two function proto types
2469 /// for equality of their argument types. Caller has already checked that
2470 /// they have same number of arguments. This routine assumes that Objective-C
2471 /// pointer types which only differ in their protocol qualifiers are equal.
2472 /// If the parameters are different, ArgPos will have the the parameter index
2473 /// of the first different parameter.
FunctionArgTypesAreEqual(const FunctionProtoType * OldType,const FunctionProtoType * NewType,unsigned * ArgPos)2474 bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2475 const FunctionProtoType *NewType,
2476 unsigned *ArgPos) {
2477 if (!getLangOpts().ObjC1) {
2478 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2479 N = NewType->arg_type_begin(),
2480 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2481 if (!Context.hasSameType(*O, *N)) {
2482 if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2483 return false;
2484 }
2485 }
2486 return true;
2487 }
2488
2489 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2490 N = NewType->arg_type_begin(),
2491 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2492 QualType ToType = (*O);
2493 QualType FromType = (*N);
2494 if (!Context.hasSameType(ToType, FromType)) {
2495 if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2496 if (const PointerType *PTFr = FromType->getAs<PointerType>())
2497 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2498 PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2499 (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2500 PTFr->getPointeeType()->isObjCQualifiedClassType()))
2501 continue;
2502 }
2503 else if (const ObjCObjectPointerType *PTTo =
2504 ToType->getAs<ObjCObjectPointerType>()) {
2505 if (const ObjCObjectPointerType *PTFr =
2506 FromType->getAs<ObjCObjectPointerType>())
2507 if (Context.hasSameUnqualifiedType(
2508 PTTo->getObjectType()->getBaseType(),
2509 PTFr->getObjectType()->getBaseType()))
2510 continue;
2511 }
2512 if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2513 return false;
2514 }
2515 }
2516 return true;
2517 }
2518
2519 /// CheckPointerConversion - Check the pointer conversion from the
2520 /// expression From to the type ToType. This routine checks for
2521 /// ambiguous or inaccessible derived-to-base pointer
2522 /// conversions for which IsPointerConversion has already returned
2523 /// true. It returns true and produces a diagnostic if there was an
2524 /// error, or returns false otherwise.
CheckPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2525 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2526 CastKind &Kind,
2527 CXXCastPath& BasePath,
2528 bool IgnoreBaseAccess) {
2529 QualType FromType = From->getType();
2530 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2531
2532 Kind = CK_BitCast;
2533
2534 if (!IsCStyleOrFunctionalCast &&
2535 Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2536 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2537 DiagRuntimeBehavior(From->getExprLoc(), From,
2538 PDiag(diag::warn_impcast_bool_to_null_pointer)
2539 << ToType << From->getSourceRange());
2540
2541 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2542 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2543 QualType FromPointeeType = FromPtrType->getPointeeType(),
2544 ToPointeeType = ToPtrType->getPointeeType();
2545
2546 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2547 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2548 // We must have a derived-to-base conversion. Check an
2549 // ambiguous or inaccessible conversion.
2550 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2551 From->getExprLoc(),
2552 From->getSourceRange(), &BasePath,
2553 IgnoreBaseAccess))
2554 return true;
2555
2556 // The conversion was successful.
2557 Kind = CK_DerivedToBase;
2558 }
2559 }
2560 } else if (const ObjCObjectPointerType *ToPtrType =
2561 ToType->getAs<ObjCObjectPointerType>()) {
2562 if (const ObjCObjectPointerType *FromPtrType =
2563 FromType->getAs<ObjCObjectPointerType>()) {
2564 // Objective-C++ conversions are always okay.
2565 // FIXME: We should have a different class of conversions for the
2566 // Objective-C++ implicit conversions.
2567 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2568 return false;
2569 } else if (FromType->isBlockPointerType()) {
2570 Kind = CK_BlockPointerToObjCPointerCast;
2571 } else {
2572 Kind = CK_CPointerToObjCPointerCast;
2573 }
2574 } else if (ToType->isBlockPointerType()) {
2575 if (!FromType->isBlockPointerType())
2576 Kind = CK_AnyPointerToBlockPointerCast;
2577 }
2578
2579 // We shouldn't fall into this case unless it's valid for other
2580 // reasons.
2581 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2582 Kind = CK_NullToPointer;
2583
2584 return false;
2585 }
2586
2587 /// IsMemberPointerConversion - Determines whether the conversion of the
2588 /// expression From, which has the (possibly adjusted) type FromType, can be
2589 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2590 /// If so, returns true and places the converted type (that might differ from
2591 /// ToType in its cv-qualifiers at some level) into ConvertedType.
IsMemberPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType)2592 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2593 QualType ToType,
2594 bool InOverloadResolution,
2595 QualType &ConvertedType) {
2596 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2597 if (!ToTypePtr)
2598 return false;
2599
2600 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2601 if (From->isNullPointerConstant(Context,
2602 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2603 : Expr::NPC_ValueDependentIsNull)) {
2604 ConvertedType = ToType;
2605 return true;
2606 }
2607
2608 // Otherwise, both types have to be member pointers.
2609 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2610 if (!FromTypePtr)
2611 return false;
2612
2613 // A pointer to member of B can be converted to a pointer to member of D,
2614 // where D is derived from B (C++ 4.11p2).
2615 QualType FromClass(FromTypePtr->getClass(), 0);
2616 QualType ToClass(ToTypePtr->getClass(), 0);
2617
2618 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2619 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2620 IsDerivedFrom(ToClass, FromClass)) {
2621 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2622 ToClass.getTypePtr());
2623 return true;
2624 }
2625
2626 return false;
2627 }
2628
2629 /// CheckMemberPointerConversion - Check the member pointer conversion from the
2630 /// expression From to the type ToType. This routine checks for ambiguous or
2631 /// virtual or inaccessible base-to-derived member pointer conversions
2632 /// for which IsMemberPointerConversion has already returned true. It returns
2633 /// true and produces a diagnostic if there was an error, or returns false
2634 /// otherwise.
CheckMemberPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2635 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2636 CastKind &Kind,
2637 CXXCastPath &BasePath,
2638 bool IgnoreBaseAccess) {
2639 QualType FromType = From->getType();
2640 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2641 if (!FromPtrType) {
2642 // This must be a null pointer to member pointer conversion
2643 assert(From->isNullPointerConstant(Context,
2644 Expr::NPC_ValueDependentIsNull) &&
2645 "Expr must be null pointer constant!");
2646 Kind = CK_NullToMemberPointer;
2647 return false;
2648 }
2649
2650 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2651 assert(ToPtrType && "No member pointer cast has a target type "
2652 "that is not a member pointer.");
2653
2654 QualType FromClass = QualType(FromPtrType->getClass(), 0);
2655 QualType ToClass = QualType(ToPtrType->getClass(), 0);
2656
2657 // FIXME: What about dependent types?
2658 assert(FromClass->isRecordType() && "Pointer into non-class.");
2659 assert(ToClass->isRecordType() && "Pointer into non-class.");
2660
2661 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2662 /*DetectVirtual=*/true);
2663 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2664 assert(DerivationOkay &&
2665 "Should not have been called if derivation isn't OK.");
2666 (void)DerivationOkay;
2667
2668 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2669 getUnqualifiedType())) {
2670 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2671 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2672 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2673 return true;
2674 }
2675
2676 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2677 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2678 << FromClass << ToClass << QualType(VBase, 0)
2679 << From->getSourceRange();
2680 return true;
2681 }
2682
2683 if (!IgnoreBaseAccess)
2684 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2685 Paths.front(),
2686 diag::err_downcast_from_inaccessible_base);
2687
2688 // Must be a base to derived member conversion.
2689 BuildBasePathArray(Paths, BasePath);
2690 Kind = CK_BaseToDerivedMemberPointer;
2691 return false;
2692 }
2693
2694 /// IsQualificationConversion - Determines whether the conversion from
2695 /// an rvalue of type FromType to ToType is a qualification conversion
2696 /// (C++ 4.4).
2697 ///
2698 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2699 /// when the qualification conversion involves a change in the Objective-C
2700 /// object lifetime.
2701 bool
IsQualificationConversion(QualType FromType,QualType ToType,bool CStyle,bool & ObjCLifetimeConversion)2702 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2703 bool CStyle, bool &ObjCLifetimeConversion) {
2704 FromType = Context.getCanonicalType(FromType);
2705 ToType = Context.getCanonicalType(ToType);
2706 ObjCLifetimeConversion = false;
2707
2708 // If FromType and ToType are the same type, this is not a
2709 // qualification conversion.
2710 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2711 return false;
2712
2713 // (C++ 4.4p4):
2714 // A conversion can add cv-qualifiers at levels other than the first
2715 // in multi-level pointers, subject to the following rules: [...]
2716 bool PreviousToQualsIncludeConst = true;
2717 bool UnwrappedAnyPointer = false;
2718 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2719 // Within each iteration of the loop, we check the qualifiers to
2720 // determine if this still looks like a qualification
2721 // conversion. Then, if all is well, we unwrap one more level of
2722 // pointers or pointers-to-members and do it all again
2723 // until there are no more pointers or pointers-to-members left to
2724 // unwrap.
2725 UnwrappedAnyPointer = true;
2726
2727 Qualifiers FromQuals = FromType.getQualifiers();
2728 Qualifiers ToQuals = ToType.getQualifiers();
2729
2730 // Objective-C ARC:
2731 // Check Objective-C lifetime conversions.
2732 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2733 UnwrappedAnyPointer) {
2734 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2735 ObjCLifetimeConversion = true;
2736 FromQuals.removeObjCLifetime();
2737 ToQuals.removeObjCLifetime();
2738 } else {
2739 // Qualification conversions cannot cast between different
2740 // Objective-C lifetime qualifiers.
2741 return false;
2742 }
2743 }
2744
2745 // Allow addition/removal of GC attributes but not changing GC attributes.
2746 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2747 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2748 FromQuals.removeObjCGCAttr();
2749 ToQuals.removeObjCGCAttr();
2750 }
2751
2752 // -- for every j > 0, if const is in cv 1,j then const is in cv
2753 // 2,j, and similarly for volatile.
2754 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2755 return false;
2756
2757 // -- if the cv 1,j and cv 2,j are different, then const is in
2758 // every cv for 0 < k < j.
2759 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2760 && !PreviousToQualsIncludeConst)
2761 return false;
2762
2763 // Keep track of whether all prior cv-qualifiers in the "to" type
2764 // include const.
2765 PreviousToQualsIncludeConst
2766 = PreviousToQualsIncludeConst && ToQuals.hasConst();
2767 }
2768
2769 // We are left with FromType and ToType being the pointee types
2770 // after unwrapping the original FromType and ToType the same number
2771 // of types. If we unwrapped any pointers, and if FromType and
2772 // ToType have the same unqualified type (since we checked
2773 // qualifiers above), then this is a qualification conversion.
2774 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2775 }
2776
2777 /// \brief - Determine whether this is a conversion from a scalar type to an
2778 /// atomic type.
2779 ///
2780 /// If successful, updates \c SCS's second and third steps in the conversion
2781 /// sequence to finish the conversion.
tryAtomicConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)2782 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2783 bool InOverloadResolution,
2784 StandardConversionSequence &SCS,
2785 bool CStyle) {
2786 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2787 if (!ToAtomic)
2788 return false;
2789
2790 StandardConversionSequence InnerSCS;
2791 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2792 InOverloadResolution, InnerSCS,
2793 CStyle, /*AllowObjCWritebackConversion=*/false))
2794 return false;
2795
2796 SCS.Second = InnerSCS.Second;
2797 SCS.setToType(1, InnerSCS.getToType(1));
2798 SCS.Third = InnerSCS.Third;
2799 SCS.QualificationIncludesObjCLifetime
2800 = InnerSCS.QualificationIncludesObjCLifetime;
2801 SCS.setToType(2, InnerSCS.getToType(2));
2802 return true;
2803 }
2804
isFirstArgumentCompatibleWithType(ASTContext & Context,CXXConstructorDecl * Constructor,QualType Type)2805 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2806 CXXConstructorDecl *Constructor,
2807 QualType Type) {
2808 const FunctionProtoType *CtorType =
2809 Constructor->getType()->getAs<FunctionProtoType>();
2810 if (CtorType->getNumArgs() > 0) {
2811 QualType FirstArg = CtorType->getArgType(0);
2812 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2813 return true;
2814 }
2815 return false;
2816 }
2817
2818 static OverloadingResult
IsInitializerListConstructorConversion(Sema & S,Expr * From,QualType ToType,CXXRecordDecl * To,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)2819 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2820 CXXRecordDecl *To,
2821 UserDefinedConversionSequence &User,
2822 OverloadCandidateSet &CandidateSet,
2823 bool AllowExplicit) {
2824 DeclContext::lookup_iterator Con, ConEnd;
2825 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
2826 Con != ConEnd; ++Con) {
2827 NamedDecl *D = *Con;
2828 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2829
2830 // Find the constructor (which may be a template).
2831 CXXConstructorDecl *Constructor = 0;
2832 FunctionTemplateDecl *ConstructorTmpl
2833 = dyn_cast<FunctionTemplateDecl>(D);
2834 if (ConstructorTmpl)
2835 Constructor
2836 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2837 else
2838 Constructor = cast<CXXConstructorDecl>(D);
2839
2840 bool Usable = !Constructor->isInvalidDecl() &&
2841 S.isInitListConstructor(Constructor) &&
2842 (AllowExplicit || !Constructor->isExplicit());
2843 if (Usable) {
2844 // If the first argument is (a reference to) the target type,
2845 // suppress conversions.
2846 bool SuppressUserConversions =
2847 isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2848 if (ConstructorTmpl)
2849 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2850 /*ExplicitArgs*/ 0,
2851 From, CandidateSet,
2852 SuppressUserConversions);
2853 else
2854 S.AddOverloadCandidate(Constructor, FoundDecl,
2855 From, CandidateSet,
2856 SuppressUserConversions);
2857 }
2858 }
2859
2860 bool HadMultipleCandidates = (CandidateSet.size() > 1);
2861
2862 OverloadCandidateSet::iterator Best;
2863 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2864 case OR_Success: {
2865 // Record the standard conversion we used and the conversion function.
2866 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2867 S.MarkFunctionReferenced(From->getLocStart(), Constructor);
2868
2869 QualType ThisType = Constructor->getThisType(S.Context);
2870 // Initializer lists don't have conversions as such.
2871 User.Before.setAsIdentityConversion();
2872 User.HadMultipleCandidates = HadMultipleCandidates;
2873 User.ConversionFunction = Constructor;
2874 User.FoundConversionFunction = Best->FoundDecl;
2875 User.After.setAsIdentityConversion();
2876 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2877 User.After.setAllToTypes(ToType);
2878 return OR_Success;
2879 }
2880
2881 case OR_No_Viable_Function:
2882 return OR_No_Viable_Function;
2883 case OR_Deleted:
2884 return OR_Deleted;
2885 case OR_Ambiguous:
2886 return OR_Ambiguous;
2887 }
2888
2889 llvm_unreachable("Invalid OverloadResult!");
2890 }
2891
2892 /// Determines whether there is a user-defined conversion sequence
2893 /// (C++ [over.ics.user]) that converts expression From to the type
2894 /// ToType. If such a conversion exists, User will contain the
2895 /// user-defined conversion sequence that performs such a conversion
2896 /// and this routine will return true. Otherwise, this routine returns
2897 /// false and User is unspecified.
2898 ///
2899 /// \param AllowExplicit true if the conversion should consider C++0x
2900 /// "explicit" conversion functions as well as non-explicit conversion
2901 /// functions (C++0x [class.conv.fct]p2).
2902 static OverloadingResult
IsUserDefinedConversion(Sema & S,Expr * From,QualType ToType,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)2903 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2904 UserDefinedConversionSequence &User,
2905 OverloadCandidateSet &CandidateSet,
2906 bool AllowExplicit) {
2907 // Whether we will only visit constructors.
2908 bool ConstructorsOnly = false;
2909
2910 // If the type we are conversion to is a class type, enumerate its
2911 // constructors.
2912 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2913 // C++ [over.match.ctor]p1:
2914 // When objects of class type are direct-initialized (8.5), or
2915 // copy-initialized from an expression of the same or a
2916 // derived class type (8.5), overload resolution selects the
2917 // constructor. [...] For copy-initialization, the candidate
2918 // functions are all the converting constructors (12.3.1) of
2919 // that class. The argument list is the expression-list within
2920 // the parentheses of the initializer.
2921 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2922 (From->getType()->getAs<RecordType>() &&
2923 S.IsDerivedFrom(From->getType(), ToType)))
2924 ConstructorsOnly = true;
2925
2926 S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2927 // RequireCompleteType may have returned true due to some invalid decl
2928 // during template instantiation, but ToType may be complete enough now
2929 // to try to recover.
2930 if (ToType->isIncompleteType()) {
2931 // We're not going to find any constructors.
2932 } else if (CXXRecordDecl *ToRecordDecl
2933 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2934
2935 Expr **Args = &From;
2936 unsigned NumArgs = 1;
2937 bool ListInitializing = false;
2938 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
2939 // But first, see if there is an init-list-contructor that will work.
2940 OverloadingResult Result = IsInitializerListConstructorConversion(
2941 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
2942 if (Result != OR_No_Viable_Function)
2943 return Result;
2944 // Never mind.
2945 CandidateSet.clear();
2946
2947 // If we're list-initializing, we pass the individual elements as
2948 // arguments, not the entire list.
2949 Args = InitList->getInits();
2950 NumArgs = InitList->getNumInits();
2951 ListInitializing = true;
2952 }
2953
2954 DeclContext::lookup_iterator Con, ConEnd;
2955 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2956 Con != ConEnd; ++Con) {
2957 NamedDecl *D = *Con;
2958 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2959
2960 // Find the constructor (which may be a template).
2961 CXXConstructorDecl *Constructor = 0;
2962 FunctionTemplateDecl *ConstructorTmpl
2963 = dyn_cast<FunctionTemplateDecl>(D);
2964 if (ConstructorTmpl)
2965 Constructor
2966 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2967 else
2968 Constructor = cast<CXXConstructorDecl>(D);
2969
2970 bool Usable = !Constructor->isInvalidDecl();
2971 if (ListInitializing)
2972 Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
2973 else
2974 Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
2975 if (Usable) {
2976 bool SuppressUserConversions = !ConstructorsOnly;
2977 if (SuppressUserConversions && ListInitializing) {
2978 SuppressUserConversions = false;
2979 if (NumArgs == 1) {
2980 // If the first argument is (a reference to) the target type,
2981 // suppress conversions.
2982 SuppressUserConversions = isFirstArgumentCompatibleWithType(
2983 S.Context, Constructor, ToType);
2984 }
2985 }
2986 if (ConstructorTmpl)
2987 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2988 /*ExplicitArgs*/ 0,
2989 llvm::makeArrayRef(Args, NumArgs),
2990 CandidateSet, SuppressUserConversions);
2991 else
2992 // Allow one user-defined conversion when user specifies a
2993 // From->ToType conversion via an static cast (c-style, etc).
2994 S.AddOverloadCandidate(Constructor, FoundDecl,
2995 llvm::makeArrayRef(Args, NumArgs),
2996 CandidateSet, SuppressUserConversions);
2997 }
2998 }
2999 }
3000 }
3001
3002 // Enumerate conversion functions, if we're allowed to.
3003 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3004 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
3005 S.PDiag(0) << From->getSourceRange())) {
3006 // No conversion functions from incomplete types.
3007 } else if (const RecordType *FromRecordType
3008 = From->getType()->getAs<RecordType>()) {
3009 if (CXXRecordDecl *FromRecordDecl
3010 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3011 // Add all of the conversion functions as candidates.
3012 const UnresolvedSetImpl *Conversions
3013 = FromRecordDecl->getVisibleConversionFunctions();
3014 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3015 E = Conversions->end(); I != E; ++I) {
3016 DeclAccessPair FoundDecl = I.getPair();
3017 NamedDecl *D = FoundDecl.getDecl();
3018 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3019 if (isa<UsingShadowDecl>(D))
3020 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3021
3022 CXXConversionDecl *Conv;
3023 FunctionTemplateDecl *ConvTemplate;
3024 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3025 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3026 else
3027 Conv = cast<CXXConversionDecl>(D);
3028
3029 if (AllowExplicit || !Conv->isExplicit()) {
3030 if (ConvTemplate)
3031 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3032 ActingContext, From, ToType,
3033 CandidateSet);
3034 else
3035 S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3036 From, ToType, CandidateSet);
3037 }
3038 }
3039 }
3040 }
3041
3042 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3043
3044 OverloadCandidateSet::iterator Best;
3045 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3046 case OR_Success:
3047 // Record the standard conversion we used and the conversion function.
3048 if (CXXConstructorDecl *Constructor
3049 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3050 S.MarkFunctionReferenced(From->getLocStart(), Constructor);
3051
3052 // C++ [over.ics.user]p1:
3053 // If the user-defined conversion is specified by a
3054 // constructor (12.3.1), the initial standard conversion
3055 // sequence converts the source type to the type required by
3056 // the argument of the constructor.
3057 //
3058 QualType ThisType = Constructor->getThisType(S.Context);
3059 if (isa<InitListExpr>(From)) {
3060 // Initializer lists don't have conversions as such.
3061 User.Before.setAsIdentityConversion();
3062 } else {
3063 if (Best->Conversions[0].isEllipsis())
3064 User.EllipsisConversion = true;
3065 else {
3066 User.Before = Best->Conversions[0].Standard;
3067 User.EllipsisConversion = false;
3068 }
3069 }
3070 User.HadMultipleCandidates = HadMultipleCandidates;
3071 User.ConversionFunction = Constructor;
3072 User.FoundConversionFunction = Best->FoundDecl;
3073 User.After.setAsIdentityConversion();
3074 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3075 User.After.setAllToTypes(ToType);
3076 return OR_Success;
3077 }
3078 if (CXXConversionDecl *Conversion
3079 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3080 S.MarkFunctionReferenced(From->getLocStart(), Conversion);
3081
3082 // C++ [over.ics.user]p1:
3083 //
3084 // [...] If the user-defined conversion is specified by a
3085 // conversion function (12.3.2), the initial standard
3086 // conversion sequence converts the source type to the
3087 // implicit object parameter of the conversion function.
3088 User.Before = Best->Conversions[0].Standard;
3089 User.HadMultipleCandidates = HadMultipleCandidates;
3090 User.ConversionFunction = Conversion;
3091 User.FoundConversionFunction = Best->FoundDecl;
3092 User.EllipsisConversion = false;
3093
3094 // C++ [over.ics.user]p2:
3095 // The second standard conversion sequence converts the
3096 // result of the user-defined conversion to the target type
3097 // for the sequence. Since an implicit conversion sequence
3098 // is an initialization, the special rules for
3099 // initialization by user-defined conversion apply when
3100 // selecting the best user-defined conversion for a
3101 // user-defined conversion sequence (see 13.3.3 and
3102 // 13.3.3.1).
3103 User.After = Best->FinalConversion;
3104 return OR_Success;
3105 }
3106 llvm_unreachable("Not a constructor or conversion function?");
3107
3108 case OR_No_Viable_Function:
3109 return OR_No_Viable_Function;
3110 case OR_Deleted:
3111 // No conversion here! We're done.
3112 return OR_Deleted;
3113
3114 case OR_Ambiguous:
3115 return OR_Ambiguous;
3116 }
3117
3118 llvm_unreachable("Invalid OverloadResult!");
3119 }
3120
3121 bool
DiagnoseMultipleUserDefinedConversion(Expr * From,QualType ToType)3122 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3123 ImplicitConversionSequence ICS;
3124 OverloadCandidateSet CandidateSet(From->getExprLoc());
3125 OverloadingResult OvResult =
3126 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3127 CandidateSet, false);
3128 if (OvResult == OR_Ambiguous)
3129 Diag(From->getLocStart(),
3130 diag::err_typecheck_ambiguous_condition)
3131 << From->getType() << ToType << From->getSourceRange();
3132 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
3133 Diag(From->getLocStart(),
3134 diag::err_typecheck_nonviable_condition)
3135 << From->getType() << ToType << From->getSourceRange();
3136 else
3137 return false;
3138 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3139 return true;
3140 }
3141
3142 /// \brief Compare the user-defined conversion functions or constructors
3143 /// of two user-defined conversion sequences to determine whether any ordering
3144 /// is possible.
3145 static ImplicitConversionSequence::CompareKind
compareConversionFunctions(Sema & S,FunctionDecl * Function1,FunctionDecl * Function2)3146 compareConversionFunctions(Sema &S,
3147 FunctionDecl *Function1,
3148 FunctionDecl *Function2) {
3149 if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
3150 return ImplicitConversionSequence::Indistinguishable;
3151
3152 // Objective-C++:
3153 // If both conversion functions are implicitly-declared conversions from
3154 // a lambda closure type to a function pointer and a block pointer,
3155 // respectively, always prefer the conversion to a function pointer,
3156 // because the function pointer is more lightweight and is more likely
3157 // to keep code working.
3158 CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3159 if (!Conv1)
3160 return ImplicitConversionSequence::Indistinguishable;
3161
3162 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3163 if (!Conv2)
3164 return ImplicitConversionSequence::Indistinguishable;
3165
3166 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3167 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3168 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3169 if (Block1 != Block2)
3170 return Block1? ImplicitConversionSequence::Worse
3171 : ImplicitConversionSequence::Better;
3172 }
3173
3174 return ImplicitConversionSequence::Indistinguishable;
3175 }
3176
3177 /// CompareImplicitConversionSequences - Compare two implicit
3178 /// conversion sequences to determine whether one is better than the
3179 /// other or if they are indistinguishable (C++ 13.3.3.2).
3180 static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema & S,const ImplicitConversionSequence & ICS1,const ImplicitConversionSequence & ICS2)3181 CompareImplicitConversionSequences(Sema &S,
3182 const ImplicitConversionSequence& ICS1,
3183 const ImplicitConversionSequence& ICS2)
3184 {
3185 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3186 // conversion sequences (as defined in 13.3.3.1)
3187 // -- a standard conversion sequence (13.3.3.1.1) is a better
3188 // conversion sequence than a user-defined conversion sequence or
3189 // an ellipsis conversion sequence, and
3190 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3191 // conversion sequence than an ellipsis conversion sequence
3192 // (13.3.3.1.3).
3193 //
3194 // C++0x [over.best.ics]p10:
3195 // For the purpose of ranking implicit conversion sequences as
3196 // described in 13.3.3.2, the ambiguous conversion sequence is
3197 // treated as a user-defined sequence that is indistinguishable
3198 // from any other user-defined conversion sequence.
3199 if (ICS1.getKindRank() < ICS2.getKindRank())
3200 return ImplicitConversionSequence::Better;
3201 if (ICS2.getKindRank() < ICS1.getKindRank())
3202 return ImplicitConversionSequence::Worse;
3203
3204 // The following checks require both conversion sequences to be of
3205 // the same kind.
3206 if (ICS1.getKind() != ICS2.getKind())
3207 return ImplicitConversionSequence::Indistinguishable;
3208
3209 ImplicitConversionSequence::CompareKind Result =
3210 ImplicitConversionSequence::Indistinguishable;
3211
3212 // Two implicit conversion sequences of the same form are
3213 // indistinguishable conversion sequences unless one of the
3214 // following rules apply: (C++ 13.3.3.2p3):
3215 if (ICS1.isStandard())
3216 Result = CompareStandardConversionSequences(S,
3217 ICS1.Standard, ICS2.Standard);
3218 else if (ICS1.isUserDefined()) {
3219 // User-defined conversion sequence U1 is a better conversion
3220 // sequence than another user-defined conversion sequence U2 if
3221 // they contain the same user-defined conversion function or
3222 // constructor and if the second standard conversion sequence of
3223 // U1 is better than the second standard conversion sequence of
3224 // U2 (C++ 13.3.3.2p3).
3225 if (ICS1.UserDefined.ConversionFunction ==
3226 ICS2.UserDefined.ConversionFunction)
3227 Result = CompareStandardConversionSequences(S,
3228 ICS1.UserDefined.After,
3229 ICS2.UserDefined.After);
3230 else
3231 Result = compareConversionFunctions(S,
3232 ICS1.UserDefined.ConversionFunction,
3233 ICS2.UserDefined.ConversionFunction);
3234 }
3235
3236 // List-initialization sequence L1 is a better conversion sequence than
3237 // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3238 // for some X and L2 does not.
3239 if (Result == ImplicitConversionSequence::Indistinguishable &&
3240 !ICS1.isBad() &&
3241 ICS1.isListInitializationSequence() &&
3242 ICS2.isListInitializationSequence()) {
3243 if (ICS1.isStdInitializerListElement() &&
3244 !ICS2.isStdInitializerListElement())
3245 return ImplicitConversionSequence::Better;
3246 if (!ICS1.isStdInitializerListElement() &&
3247 ICS2.isStdInitializerListElement())
3248 return ImplicitConversionSequence::Worse;
3249 }
3250
3251 return Result;
3252 }
3253
hasSimilarType(ASTContext & Context,QualType T1,QualType T2)3254 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3255 while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3256 Qualifiers Quals;
3257 T1 = Context.getUnqualifiedArrayType(T1, Quals);
3258 T2 = Context.getUnqualifiedArrayType(T2, Quals);
3259 }
3260
3261 return Context.hasSameUnqualifiedType(T1, T2);
3262 }
3263
3264 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3265 // determine if one is a proper subset of the other.
3266 static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext & Context,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3267 compareStandardConversionSubsets(ASTContext &Context,
3268 const StandardConversionSequence& SCS1,
3269 const StandardConversionSequence& SCS2) {
3270 ImplicitConversionSequence::CompareKind Result
3271 = ImplicitConversionSequence::Indistinguishable;
3272
3273 // the identity conversion sequence is considered to be a subsequence of
3274 // any non-identity conversion sequence
3275 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3276 return ImplicitConversionSequence::Better;
3277 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3278 return ImplicitConversionSequence::Worse;
3279
3280 if (SCS1.Second != SCS2.Second) {
3281 if (SCS1.Second == ICK_Identity)
3282 Result = ImplicitConversionSequence::Better;
3283 else if (SCS2.Second == ICK_Identity)
3284 Result = ImplicitConversionSequence::Worse;
3285 else
3286 return ImplicitConversionSequence::Indistinguishable;
3287 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3288 return ImplicitConversionSequence::Indistinguishable;
3289
3290 if (SCS1.Third == SCS2.Third) {
3291 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3292 : ImplicitConversionSequence::Indistinguishable;
3293 }
3294
3295 if (SCS1.Third == ICK_Identity)
3296 return Result == ImplicitConversionSequence::Worse
3297 ? ImplicitConversionSequence::Indistinguishable
3298 : ImplicitConversionSequence::Better;
3299
3300 if (SCS2.Third == ICK_Identity)
3301 return Result == ImplicitConversionSequence::Better
3302 ? ImplicitConversionSequence::Indistinguishable
3303 : ImplicitConversionSequence::Worse;
3304
3305 return ImplicitConversionSequence::Indistinguishable;
3306 }
3307
3308 /// \brief Determine whether one of the given reference bindings is better
3309 /// than the other based on what kind of bindings they are.
isBetterReferenceBindingKind(const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3310 static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3311 const StandardConversionSequence &SCS2) {
3312 // C++0x [over.ics.rank]p3b4:
3313 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3314 // implicit object parameter of a non-static member function declared
3315 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3316 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3317 // lvalue reference to a function lvalue and S2 binds an rvalue
3318 // reference*.
3319 //
3320 // FIXME: Rvalue references. We're going rogue with the above edits,
3321 // because the semantics in the current C++0x working paper (N3225 at the
3322 // time of this writing) break the standard definition of std::forward
3323 // and std::reference_wrapper when dealing with references to functions.
3324 // Proposed wording changes submitted to CWG for consideration.
3325 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3326 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3327 return false;
3328
3329 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3330 SCS2.IsLvalueReference) ||
3331 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3332 !SCS2.IsLvalueReference);
3333 }
3334
3335 /// CompareStandardConversionSequences - Compare two standard
3336 /// conversion sequences to determine whether one is better than the
3337 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3338 static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3339 CompareStandardConversionSequences(Sema &S,
3340 const StandardConversionSequence& SCS1,
3341 const StandardConversionSequence& SCS2)
3342 {
3343 // Standard conversion sequence S1 is a better conversion sequence
3344 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3345
3346 // -- S1 is a proper subsequence of S2 (comparing the conversion
3347 // sequences in the canonical form defined by 13.3.3.1.1,
3348 // excluding any Lvalue Transformation; the identity conversion
3349 // sequence is considered to be a subsequence of any
3350 // non-identity conversion sequence) or, if not that,
3351 if (ImplicitConversionSequence::CompareKind CK
3352 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3353 return CK;
3354
3355 // -- the rank of S1 is better than the rank of S2 (by the rules
3356 // defined below), or, if not that,
3357 ImplicitConversionRank Rank1 = SCS1.getRank();
3358 ImplicitConversionRank Rank2 = SCS2.getRank();
3359 if (Rank1 < Rank2)
3360 return ImplicitConversionSequence::Better;
3361 else if (Rank2 < Rank1)
3362 return ImplicitConversionSequence::Worse;
3363
3364 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3365 // are indistinguishable unless one of the following rules
3366 // applies:
3367
3368 // A conversion that is not a conversion of a pointer, or
3369 // pointer to member, to bool is better than another conversion
3370 // that is such a conversion.
3371 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3372 return SCS2.isPointerConversionToBool()
3373 ? ImplicitConversionSequence::Better
3374 : ImplicitConversionSequence::Worse;
3375
3376 // C++ [over.ics.rank]p4b2:
3377 //
3378 // If class B is derived directly or indirectly from class A,
3379 // conversion of B* to A* is better than conversion of B* to
3380 // void*, and conversion of A* to void* is better than conversion
3381 // of B* to void*.
3382 bool SCS1ConvertsToVoid
3383 = SCS1.isPointerConversionToVoidPointer(S.Context);
3384 bool SCS2ConvertsToVoid
3385 = SCS2.isPointerConversionToVoidPointer(S.Context);
3386 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3387 // Exactly one of the conversion sequences is a conversion to
3388 // a void pointer; it's the worse conversion.
3389 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3390 : ImplicitConversionSequence::Worse;
3391 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3392 // Neither conversion sequence converts to a void pointer; compare
3393 // their derived-to-base conversions.
3394 if (ImplicitConversionSequence::CompareKind DerivedCK
3395 = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3396 return DerivedCK;
3397 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3398 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3399 // Both conversion sequences are conversions to void
3400 // pointers. Compare the source types to determine if there's an
3401 // inheritance relationship in their sources.
3402 QualType FromType1 = SCS1.getFromType();
3403 QualType FromType2 = SCS2.getFromType();
3404
3405 // Adjust the types we're converting from via the array-to-pointer
3406 // conversion, if we need to.
3407 if (SCS1.First == ICK_Array_To_Pointer)
3408 FromType1 = S.Context.getArrayDecayedType(FromType1);
3409 if (SCS2.First == ICK_Array_To_Pointer)
3410 FromType2 = S.Context.getArrayDecayedType(FromType2);
3411
3412 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3413 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3414
3415 if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3416 return ImplicitConversionSequence::Better;
3417 else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3418 return ImplicitConversionSequence::Worse;
3419
3420 // Objective-C++: If one interface is more specific than the
3421 // other, it is the better one.
3422 const ObjCObjectPointerType* FromObjCPtr1
3423 = FromType1->getAs<ObjCObjectPointerType>();
3424 const ObjCObjectPointerType* FromObjCPtr2
3425 = FromType2->getAs<ObjCObjectPointerType>();
3426 if (FromObjCPtr1 && FromObjCPtr2) {
3427 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3428 FromObjCPtr2);
3429 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3430 FromObjCPtr1);
3431 if (AssignLeft != AssignRight) {
3432 return AssignLeft? ImplicitConversionSequence::Better
3433 : ImplicitConversionSequence::Worse;
3434 }
3435 }
3436 }
3437
3438 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3439 // bullet 3).
3440 if (ImplicitConversionSequence::CompareKind QualCK
3441 = CompareQualificationConversions(S, SCS1, SCS2))
3442 return QualCK;
3443
3444 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3445 // Check for a better reference binding based on the kind of bindings.
3446 if (isBetterReferenceBindingKind(SCS1, SCS2))
3447 return ImplicitConversionSequence::Better;
3448 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3449 return ImplicitConversionSequence::Worse;
3450
3451 // C++ [over.ics.rank]p3b4:
3452 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3453 // which the references refer are the same type except for
3454 // top-level cv-qualifiers, and the type to which the reference
3455 // initialized by S2 refers is more cv-qualified than the type
3456 // to which the reference initialized by S1 refers.
3457 QualType T1 = SCS1.getToType(2);
3458 QualType T2 = SCS2.getToType(2);
3459 T1 = S.Context.getCanonicalType(T1);
3460 T2 = S.Context.getCanonicalType(T2);
3461 Qualifiers T1Quals, T2Quals;
3462 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3463 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3464 if (UnqualT1 == UnqualT2) {
3465 // Objective-C++ ARC: If the references refer to objects with different
3466 // lifetimes, prefer bindings that don't change lifetime.
3467 if (SCS1.ObjCLifetimeConversionBinding !=
3468 SCS2.ObjCLifetimeConversionBinding) {
3469 return SCS1.ObjCLifetimeConversionBinding
3470 ? ImplicitConversionSequence::Worse
3471 : ImplicitConversionSequence::Better;
3472 }
3473
3474 // If the type is an array type, promote the element qualifiers to the
3475 // type for comparison.
3476 if (isa<ArrayType>(T1) && T1Quals)
3477 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3478 if (isa<ArrayType>(T2) && T2Quals)
3479 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3480 if (T2.isMoreQualifiedThan(T1))
3481 return ImplicitConversionSequence::Better;
3482 else if (T1.isMoreQualifiedThan(T2))
3483 return ImplicitConversionSequence::Worse;
3484 }
3485 }
3486
3487 // In Microsoft mode, prefer an integral conversion to a
3488 // floating-to-integral conversion if the integral conversion
3489 // is between types of the same size.
3490 // For example:
3491 // void f(float);
3492 // void f(int);
3493 // int main {
3494 // long a;
3495 // f(a);
3496 // }
3497 // Here, MSVC will call f(int) instead of generating a compile error
3498 // as clang will do in standard mode.
3499 if (S.getLangOpts().MicrosoftMode &&
3500 SCS1.Second == ICK_Integral_Conversion &&
3501 SCS2.Second == ICK_Floating_Integral &&
3502 S.Context.getTypeSize(SCS1.getFromType()) ==
3503 S.Context.getTypeSize(SCS1.getToType(2)))
3504 return ImplicitConversionSequence::Better;
3505
3506 return ImplicitConversionSequence::Indistinguishable;
3507 }
3508
3509 /// CompareQualificationConversions - Compares two standard conversion
3510 /// sequences to determine whether they can be ranked based on their
3511 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3512 ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3513 CompareQualificationConversions(Sema &S,
3514 const StandardConversionSequence& SCS1,
3515 const StandardConversionSequence& SCS2) {
3516 // C++ 13.3.3.2p3:
3517 // -- S1 and S2 differ only in their qualification conversion and
3518 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
3519 // cv-qualification signature of type T1 is a proper subset of
3520 // the cv-qualification signature of type T2, and S1 is not the
3521 // deprecated string literal array-to-pointer conversion (4.2).
3522 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3523 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3524 return ImplicitConversionSequence::Indistinguishable;
3525
3526 // FIXME: the example in the standard doesn't use a qualification
3527 // conversion (!)
3528 QualType T1 = SCS1.getToType(2);
3529 QualType T2 = SCS2.getToType(2);
3530 T1 = S.Context.getCanonicalType(T1);
3531 T2 = S.Context.getCanonicalType(T2);
3532 Qualifiers T1Quals, T2Quals;
3533 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3534 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3535
3536 // If the types are the same, we won't learn anything by unwrapped
3537 // them.
3538 if (UnqualT1 == UnqualT2)
3539 return ImplicitConversionSequence::Indistinguishable;
3540
3541 // If the type is an array type, promote the element qualifiers to the type
3542 // for comparison.
3543 if (isa<ArrayType>(T1) && T1Quals)
3544 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3545 if (isa<ArrayType>(T2) && T2Quals)
3546 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3547
3548 ImplicitConversionSequence::CompareKind Result
3549 = ImplicitConversionSequence::Indistinguishable;
3550
3551 // Objective-C++ ARC:
3552 // Prefer qualification conversions not involving a change in lifetime
3553 // to qualification conversions that do not change lifetime.
3554 if (SCS1.QualificationIncludesObjCLifetime !=
3555 SCS2.QualificationIncludesObjCLifetime) {
3556 Result = SCS1.QualificationIncludesObjCLifetime
3557 ? ImplicitConversionSequence::Worse
3558 : ImplicitConversionSequence::Better;
3559 }
3560
3561 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3562 // Within each iteration of the loop, we check the qualifiers to
3563 // determine if this still looks like a qualification
3564 // conversion. Then, if all is well, we unwrap one more level of
3565 // pointers or pointers-to-members and do it all again
3566 // until there are no more pointers or pointers-to-members left
3567 // to unwrap. This essentially mimics what
3568 // IsQualificationConversion does, but here we're checking for a
3569 // strict subset of qualifiers.
3570 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3571 // The qualifiers are the same, so this doesn't tell us anything
3572 // about how the sequences rank.
3573 ;
3574 else if (T2.isMoreQualifiedThan(T1)) {
3575 // T1 has fewer qualifiers, so it could be the better sequence.
3576 if (Result == ImplicitConversionSequence::Worse)
3577 // Neither has qualifiers that are a subset of the other's
3578 // qualifiers.
3579 return ImplicitConversionSequence::Indistinguishable;
3580
3581 Result = ImplicitConversionSequence::Better;
3582 } else if (T1.isMoreQualifiedThan(T2)) {
3583 // T2 has fewer qualifiers, so it could be the better sequence.
3584 if (Result == ImplicitConversionSequence::Better)
3585 // Neither has qualifiers that are a subset of the other's
3586 // qualifiers.
3587 return ImplicitConversionSequence::Indistinguishable;
3588
3589 Result = ImplicitConversionSequence::Worse;
3590 } else {
3591 // Qualifiers are disjoint.
3592 return ImplicitConversionSequence::Indistinguishable;
3593 }
3594
3595 // If the types after this point are equivalent, we're done.
3596 if (S.Context.hasSameUnqualifiedType(T1, T2))
3597 break;
3598 }
3599
3600 // Check that the winning standard conversion sequence isn't using
3601 // the deprecated string literal array to pointer conversion.
3602 switch (Result) {
3603 case ImplicitConversionSequence::Better:
3604 if (SCS1.DeprecatedStringLiteralToCharPtr)
3605 Result = ImplicitConversionSequence::Indistinguishable;
3606 break;
3607
3608 case ImplicitConversionSequence::Indistinguishable:
3609 break;
3610
3611 case ImplicitConversionSequence::Worse:
3612 if (SCS2.DeprecatedStringLiteralToCharPtr)
3613 Result = ImplicitConversionSequence::Indistinguishable;
3614 break;
3615 }
3616
3617 return Result;
3618 }
3619
3620 /// CompareDerivedToBaseConversions - Compares two standard conversion
3621 /// sequences to determine whether they can be ranked based on their
3622 /// various kinds of derived-to-base conversions (C++
3623 /// [over.ics.rank]p4b3). As part of these checks, we also look at
3624 /// conversions between Objective-C interface types.
3625 ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3626 CompareDerivedToBaseConversions(Sema &S,
3627 const StandardConversionSequence& SCS1,
3628 const StandardConversionSequence& SCS2) {
3629 QualType FromType1 = SCS1.getFromType();
3630 QualType ToType1 = SCS1.getToType(1);
3631 QualType FromType2 = SCS2.getFromType();
3632 QualType ToType2 = SCS2.getToType(1);
3633
3634 // Adjust the types we're converting from via the array-to-pointer
3635 // conversion, if we need to.
3636 if (SCS1.First == ICK_Array_To_Pointer)
3637 FromType1 = S.Context.getArrayDecayedType(FromType1);
3638 if (SCS2.First == ICK_Array_To_Pointer)
3639 FromType2 = S.Context.getArrayDecayedType(FromType2);
3640
3641 // Canonicalize all of the types.
3642 FromType1 = S.Context.getCanonicalType(FromType1);
3643 ToType1 = S.Context.getCanonicalType(ToType1);
3644 FromType2 = S.Context.getCanonicalType(FromType2);
3645 ToType2 = S.Context.getCanonicalType(ToType2);
3646
3647 // C++ [over.ics.rank]p4b3:
3648 //
3649 // If class B is derived directly or indirectly from class A and
3650 // class C is derived directly or indirectly from B,
3651 //
3652 // Compare based on pointer conversions.
3653 if (SCS1.Second == ICK_Pointer_Conversion &&
3654 SCS2.Second == ICK_Pointer_Conversion &&
3655 /*FIXME: Remove if Objective-C id conversions get their own rank*/
3656 FromType1->isPointerType() && FromType2->isPointerType() &&
3657 ToType1->isPointerType() && ToType2->isPointerType()) {
3658 QualType FromPointee1
3659 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3660 QualType ToPointee1
3661 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3662 QualType FromPointee2
3663 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3664 QualType ToPointee2
3665 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3666
3667 // -- conversion of C* to B* is better than conversion of C* to A*,
3668 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3669 if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3670 return ImplicitConversionSequence::Better;
3671 else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3672 return ImplicitConversionSequence::Worse;
3673 }
3674
3675 // -- conversion of B* to A* is better than conversion of C* to A*,
3676 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3677 if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3678 return ImplicitConversionSequence::Better;
3679 else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3680 return ImplicitConversionSequence::Worse;
3681 }
3682 } else if (SCS1.Second == ICK_Pointer_Conversion &&
3683 SCS2.Second == ICK_Pointer_Conversion) {
3684 const ObjCObjectPointerType *FromPtr1
3685 = FromType1->getAs<ObjCObjectPointerType>();
3686 const ObjCObjectPointerType *FromPtr2
3687 = FromType2->getAs<ObjCObjectPointerType>();
3688 const ObjCObjectPointerType *ToPtr1
3689 = ToType1->getAs<ObjCObjectPointerType>();
3690 const ObjCObjectPointerType *ToPtr2
3691 = ToType2->getAs<ObjCObjectPointerType>();
3692
3693 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3694 // Apply the same conversion ranking rules for Objective-C pointer types
3695 // that we do for C++ pointers to class types. However, we employ the
3696 // Objective-C pseudo-subtyping relationship used for assignment of
3697 // Objective-C pointer types.
3698 bool FromAssignLeft
3699 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3700 bool FromAssignRight
3701 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3702 bool ToAssignLeft
3703 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3704 bool ToAssignRight
3705 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3706
3707 // A conversion to an a non-id object pointer type or qualified 'id'
3708 // type is better than a conversion to 'id'.
3709 if (ToPtr1->isObjCIdType() &&
3710 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3711 return ImplicitConversionSequence::Worse;
3712 if (ToPtr2->isObjCIdType() &&
3713 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3714 return ImplicitConversionSequence::Better;
3715
3716 // A conversion to a non-id object pointer type is better than a
3717 // conversion to a qualified 'id' type
3718 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3719 return ImplicitConversionSequence::Worse;
3720 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3721 return ImplicitConversionSequence::Better;
3722
3723 // A conversion to an a non-Class object pointer type or qualified 'Class'
3724 // type is better than a conversion to 'Class'.
3725 if (ToPtr1->isObjCClassType() &&
3726 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3727 return ImplicitConversionSequence::Worse;
3728 if (ToPtr2->isObjCClassType() &&
3729 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3730 return ImplicitConversionSequence::Better;
3731
3732 // A conversion to a non-Class object pointer type is better than a
3733 // conversion to a qualified 'Class' type.
3734 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3735 return ImplicitConversionSequence::Worse;
3736 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3737 return ImplicitConversionSequence::Better;
3738
3739 // -- "conversion of C* to B* is better than conversion of C* to A*,"
3740 if (S.Context.hasSameType(FromType1, FromType2) &&
3741 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3742 (ToAssignLeft != ToAssignRight))
3743 return ToAssignLeft? ImplicitConversionSequence::Worse
3744 : ImplicitConversionSequence::Better;
3745
3746 // -- "conversion of B* to A* is better than conversion of C* to A*,"
3747 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3748 (FromAssignLeft != FromAssignRight))
3749 return FromAssignLeft? ImplicitConversionSequence::Better
3750 : ImplicitConversionSequence::Worse;
3751 }
3752 }
3753
3754 // Ranking of member-pointer types.
3755 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3756 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3757 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3758 const MemberPointerType * FromMemPointer1 =
3759 FromType1->getAs<MemberPointerType>();
3760 const MemberPointerType * ToMemPointer1 =
3761 ToType1->getAs<MemberPointerType>();
3762 const MemberPointerType * FromMemPointer2 =
3763 FromType2->getAs<MemberPointerType>();
3764 const MemberPointerType * ToMemPointer2 =
3765 ToType2->getAs<MemberPointerType>();
3766 const Type *FromPointeeType1 = FromMemPointer1->getClass();
3767 const Type *ToPointeeType1 = ToMemPointer1->getClass();
3768 const Type *FromPointeeType2 = FromMemPointer2->getClass();
3769 const Type *ToPointeeType2 = ToMemPointer2->getClass();
3770 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3771 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3772 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3773 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3774 // conversion of A::* to B::* is better than conversion of A::* to C::*,
3775 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3776 if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3777 return ImplicitConversionSequence::Worse;
3778 else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3779 return ImplicitConversionSequence::Better;
3780 }
3781 // conversion of B::* to C::* is better than conversion of A::* to C::*
3782 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3783 if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3784 return ImplicitConversionSequence::Better;
3785 else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3786 return ImplicitConversionSequence::Worse;
3787 }
3788 }
3789
3790 if (SCS1.Second == ICK_Derived_To_Base) {
3791 // -- conversion of C to B is better than conversion of C to A,
3792 // -- binding of an expression of type C to a reference of type
3793 // B& is better than binding an expression of type C to a
3794 // reference of type A&,
3795 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3796 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3797 if (S.IsDerivedFrom(ToType1, ToType2))
3798 return ImplicitConversionSequence::Better;
3799 else if (S.IsDerivedFrom(ToType2, ToType1))
3800 return ImplicitConversionSequence::Worse;
3801 }
3802
3803 // -- conversion of B to A is better than conversion of C to A.
3804 // -- binding of an expression of type B to a reference of type
3805 // A& is better than binding an expression of type C to a
3806 // reference of type A&,
3807 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3808 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3809 if (S.IsDerivedFrom(FromType2, FromType1))
3810 return ImplicitConversionSequence::Better;
3811 else if (S.IsDerivedFrom(FromType1, FromType2))
3812 return ImplicitConversionSequence::Worse;
3813 }
3814 }
3815
3816 return ImplicitConversionSequence::Indistinguishable;
3817 }
3818
3819 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
3820 /// determine whether they are reference-related,
3821 /// reference-compatible, reference-compatible with added
3822 /// qualification, or incompatible, for use in C++ initialization by
3823 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3824 /// type, and the first type (T1) is the pointee type of the reference
3825 /// type being initialized.
3826 Sema::ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc,QualType OrigT1,QualType OrigT2,bool & DerivedToBase,bool & ObjCConversion,bool & ObjCLifetimeConversion)3827 Sema::CompareReferenceRelationship(SourceLocation Loc,
3828 QualType OrigT1, QualType OrigT2,
3829 bool &DerivedToBase,
3830 bool &ObjCConversion,
3831 bool &ObjCLifetimeConversion) {
3832 assert(!OrigT1->isReferenceType() &&
3833 "T1 must be the pointee type of the reference type");
3834 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3835
3836 QualType T1 = Context.getCanonicalType(OrigT1);
3837 QualType T2 = Context.getCanonicalType(OrigT2);
3838 Qualifiers T1Quals, T2Quals;
3839 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3840 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3841
3842 // C++ [dcl.init.ref]p4:
3843 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3844 // reference-related to "cv2 T2" if T1 is the same type as T2, or
3845 // T1 is a base class of T2.
3846 DerivedToBase = false;
3847 ObjCConversion = false;
3848 ObjCLifetimeConversion = false;
3849 if (UnqualT1 == UnqualT2) {
3850 // Nothing to do.
3851 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3852 IsDerivedFrom(UnqualT2, UnqualT1))
3853 DerivedToBase = true;
3854 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3855 UnqualT2->isObjCObjectOrInterfaceType() &&
3856 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3857 ObjCConversion = true;
3858 else
3859 return Ref_Incompatible;
3860
3861 // At this point, we know that T1 and T2 are reference-related (at
3862 // least).
3863
3864 // If the type is an array type, promote the element qualifiers to the type
3865 // for comparison.
3866 if (isa<ArrayType>(T1) && T1Quals)
3867 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3868 if (isa<ArrayType>(T2) && T2Quals)
3869 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3870
3871 // C++ [dcl.init.ref]p4:
3872 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3873 // reference-related to T2 and cv1 is the same cv-qualification
3874 // as, or greater cv-qualification than, cv2. For purposes of
3875 // overload resolution, cases for which cv1 is greater
3876 // cv-qualification than cv2 are identified as
3877 // reference-compatible with added qualification (see 13.3.3.2).
3878 //
3879 // Note that we also require equivalence of Objective-C GC and address-space
3880 // qualifiers when performing these computations, so that e.g., an int in
3881 // address space 1 is not reference-compatible with an int in address
3882 // space 2.
3883 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3884 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3885 T1Quals.removeObjCLifetime();
3886 T2Quals.removeObjCLifetime();
3887 ObjCLifetimeConversion = true;
3888 }
3889
3890 if (T1Quals == T2Quals)
3891 return Ref_Compatible;
3892 else if (T1Quals.compatiblyIncludes(T2Quals))
3893 return Ref_Compatible_With_Added_Qualification;
3894 else
3895 return Ref_Related;
3896 }
3897
3898 /// \brief Look for a user-defined conversion to an value reference-compatible
3899 /// with DeclType. Return true if something definite is found.
3900 static bool
FindConversionForRefInit(Sema & S,ImplicitConversionSequence & ICS,QualType DeclType,SourceLocation DeclLoc,Expr * Init,QualType T2,bool AllowRvalues,bool AllowExplicit)3901 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3902 QualType DeclType, SourceLocation DeclLoc,
3903 Expr *Init, QualType T2, bool AllowRvalues,
3904 bool AllowExplicit) {
3905 assert(T2->isRecordType() && "Can only find conversions of record types.");
3906 CXXRecordDecl *T2RecordDecl
3907 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3908
3909 OverloadCandidateSet CandidateSet(DeclLoc);
3910 const UnresolvedSetImpl *Conversions
3911 = T2RecordDecl->getVisibleConversionFunctions();
3912 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3913 E = Conversions->end(); I != E; ++I) {
3914 NamedDecl *D = *I;
3915 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3916 if (isa<UsingShadowDecl>(D))
3917 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3918
3919 FunctionTemplateDecl *ConvTemplate
3920 = dyn_cast<FunctionTemplateDecl>(D);
3921 CXXConversionDecl *Conv;
3922 if (ConvTemplate)
3923 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3924 else
3925 Conv = cast<CXXConversionDecl>(D);
3926
3927 // If this is an explicit conversion, and we're not allowed to consider
3928 // explicit conversions, skip it.
3929 if (!AllowExplicit && Conv->isExplicit())
3930 continue;
3931
3932 if (AllowRvalues) {
3933 bool DerivedToBase = false;
3934 bool ObjCConversion = false;
3935 bool ObjCLifetimeConversion = false;
3936
3937 // If we are initializing an rvalue reference, don't permit conversion
3938 // functions that return lvalues.
3939 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3940 const ReferenceType *RefType
3941 = Conv->getConversionType()->getAs<LValueReferenceType>();
3942 if (RefType && !RefType->getPointeeType()->isFunctionType())
3943 continue;
3944 }
3945
3946 if (!ConvTemplate &&
3947 S.CompareReferenceRelationship(
3948 DeclLoc,
3949 Conv->getConversionType().getNonReferenceType()
3950 .getUnqualifiedType(),
3951 DeclType.getNonReferenceType().getUnqualifiedType(),
3952 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3953 Sema::Ref_Incompatible)
3954 continue;
3955 } else {
3956 // If the conversion function doesn't return a reference type,
3957 // it can't be considered for this conversion. An rvalue reference
3958 // is only acceptable if its referencee is a function type.
3959
3960 const ReferenceType *RefType =
3961 Conv->getConversionType()->getAs<ReferenceType>();
3962 if (!RefType ||
3963 (!RefType->isLValueReferenceType() &&
3964 !RefType->getPointeeType()->isFunctionType()))
3965 continue;
3966 }
3967
3968 if (ConvTemplate)
3969 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3970 Init, DeclType, CandidateSet);
3971 else
3972 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3973 DeclType, CandidateSet);
3974 }
3975
3976 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3977
3978 OverloadCandidateSet::iterator Best;
3979 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3980 case OR_Success:
3981 // C++ [over.ics.ref]p1:
3982 //
3983 // [...] If the parameter binds directly to the result of
3984 // applying a conversion function to the argument
3985 // expression, the implicit conversion sequence is a
3986 // user-defined conversion sequence (13.3.3.1.2), with the
3987 // second standard conversion sequence either an identity
3988 // conversion or, if the conversion function returns an
3989 // entity of a type that is a derived class of the parameter
3990 // type, a derived-to-base Conversion.
3991 if (!Best->FinalConversion.DirectBinding)
3992 return false;
3993
3994 if (Best->Function)
3995 S.MarkFunctionReferenced(DeclLoc, Best->Function);
3996 ICS.setUserDefined();
3997 ICS.UserDefined.Before = Best->Conversions[0].Standard;
3998 ICS.UserDefined.After = Best->FinalConversion;
3999 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4000 ICS.UserDefined.ConversionFunction = Best->Function;
4001 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4002 ICS.UserDefined.EllipsisConversion = false;
4003 assert(ICS.UserDefined.After.ReferenceBinding &&
4004 ICS.UserDefined.After.DirectBinding &&
4005 "Expected a direct reference binding!");
4006 return true;
4007
4008 case OR_Ambiguous:
4009 ICS.setAmbiguous();
4010 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4011 Cand != CandidateSet.end(); ++Cand)
4012 if (Cand->Viable)
4013 ICS.Ambiguous.addConversion(Cand->Function);
4014 return true;
4015
4016 case OR_No_Viable_Function:
4017 case OR_Deleted:
4018 // There was no suitable conversion, or we found a deleted
4019 // conversion; continue with other checks.
4020 return false;
4021 }
4022
4023 llvm_unreachable("Invalid OverloadResult!");
4024 }
4025
4026 /// \brief Compute an implicit conversion sequence for reference
4027 /// initialization.
4028 static ImplicitConversionSequence
TryReferenceInit(Sema & S,Expr * Init,QualType DeclType,SourceLocation DeclLoc,bool SuppressUserConversions,bool AllowExplicit)4029 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4030 SourceLocation DeclLoc,
4031 bool SuppressUserConversions,
4032 bool AllowExplicit) {
4033 assert(DeclType->isReferenceType() && "Reference init needs a reference");
4034
4035 // Most paths end in a failed conversion.
4036 ImplicitConversionSequence ICS;
4037 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4038
4039 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4040 QualType T2 = Init->getType();
4041
4042 // If the initializer is the address of an overloaded function, try
4043 // to resolve the overloaded function. If all goes well, T2 is the
4044 // type of the resulting function.
4045 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4046 DeclAccessPair Found;
4047 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4048 false, Found))
4049 T2 = Fn->getType();
4050 }
4051
4052 // Compute some basic properties of the types and the initializer.
4053 bool isRValRef = DeclType->isRValueReferenceType();
4054 bool DerivedToBase = false;
4055 bool ObjCConversion = false;
4056 bool ObjCLifetimeConversion = false;
4057 Expr::Classification InitCategory = Init->Classify(S.Context);
4058 Sema::ReferenceCompareResult RefRelationship
4059 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4060 ObjCConversion, ObjCLifetimeConversion);
4061
4062
4063 // C++0x [dcl.init.ref]p5:
4064 // A reference to type "cv1 T1" is initialized by an expression
4065 // of type "cv2 T2" as follows:
4066
4067 // -- If reference is an lvalue reference and the initializer expression
4068 if (!isRValRef) {
4069 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4070 // reference-compatible with "cv2 T2," or
4071 //
4072 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4073 if (InitCategory.isLValue() &&
4074 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4075 // C++ [over.ics.ref]p1:
4076 // When a parameter of reference type binds directly (8.5.3)
4077 // to an argument expression, the implicit conversion sequence
4078 // is the identity conversion, unless the argument expression
4079 // has a type that is a derived class of the parameter type,
4080 // in which case the implicit conversion sequence is a
4081 // derived-to-base Conversion (13.3.3.1).
4082 ICS.setStandard();
4083 ICS.Standard.First = ICK_Identity;
4084 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4085 : ObjCConversion? ICK_Compatible_Conversion
4086 : ICK_Identity;
4087 ICS.Standard.Third = ICK_Identity;
4088 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4089 ICS.Standard.setToType(0, T2);
4090 ICS.Standard.setToType(1, T1);
4091 ICS.Standard.setToType(2, T1);
4092 ICS.Standard.ReferenceBinding = true;
4093 ICS.Standard.DirectBinding = true;
4094 ICS.Standard.IsLvalueReference = !isRValRef;
4095 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4096 ICS.Standard.BindsToRvalue = false;
4097 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4098 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4099 ICS.Standard.CopyConstructor = 0;
4100
4101 // Nothing more to do: the inaccessibility/ambiguity check for
4102 // derived-to-base conversions is suppressed when we're
4103 // computing the implicit conversion sequence (C++
4104 // [over.best.ics]p2).
4105 return ICS;
4106 }
4107
4108 // -- has a class type (i.e., T2 is a class type), where T1 is
4109 // not reference-related to T2, and can be implicitly
4110 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4111 // is reference-compatible with "cv3 T3" 92) (this
4112 // conversion is selected by enumerating the applicable
4113 // conversion functions (13.3.1.6) and choosing the best
4114 // one through overload resolution (13.3)),
4115 if (!SuppressUserConversions && T2->isRecordType() &&
4116 !S.RequireCompleteType(DeclLoc, T2, 0) &&
4117 RefRelationship == Sema::Ref_Incompatible) {
4118 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4119 Init, T2, /*AllowRvalues=*/false,
4120 AllowExplicit))
4121 return ICS;
4122 }
4123 }
4124
4125 // -- Otherwise, the reference shall be an lvalue reference to a
4126 // non-volatile const type (i.e., cv1 shall be const), or the reference
4127 // shall be an rvalue reference.
4128 //
4129 // We actually handle one oddity of C++ [over.ics.ref] at this
4130 // point, which is that, due to p2 (which short-circuits reference
4131 // binding by only attempting a simple conversion for non-direct
4132 // bindings) and p3's strange wording, we allow a const volatile
4133 // reference to bind to an rvalue. Hence the check for the presence
4134 // of "const" rather than checking for "const" being the only
4135 // qualifier.
4136 // This is also the point where rvalue references and lvalue inits no longer
4137 // go together.
4138 if (!isRValRef && !T1.isConstQualified())
4139 return ICS;
4140
4141 // -- If the initializer expression
4142 //
4143 // -- is an xvalue, class prvalue, array prvalue or function
4144 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4145 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4146 (InitCategory.isXValue() ||
4147 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4148 (InitCategory.isLValue() && T2->isFunctionType()))) {
4149 ICS.setStandard();
4150 ICS.Standard.First = ICK_Identity;
4151 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4152 : ObjCConversion? ICK_Compatible_Conversion
4153 : ICK_Identity;
4154 ICS.Standard.Third = ICK_Identity;
4155 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4156 ICS.Standard.setToType(0, T2);
4157 ICS.Standard.setToType(1, T1);
4158 ICS.Standard.setToType(2, T1);
4159 ICS.Standard.ReferenceBinding = true;
4160 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4161 // binding unless we're binding to a class prvalue.
4162 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4163 // allow the use of rvalue references in C++98/03 for the benefit of
4164 // standard library implementors; therefore, we need the xvalue check here.
4165 ICS.Standard.DirectBinding =
4166 S.getLangOpts().CPlusPlus0x ||
4167 (InitCategory.isPRValue() && !T2->isRecordType());
4168 ICS.Standard.IsLvalueReference = !isRValRef;
4169 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4170 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4171 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4172 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4173 ICS.Standard.CopyConstructor = 0;
4174 return ICS;
4175 }
4176
4177 // -- has a class type (i.e., T2 is a class type), where T1 is not
4178 // reference-related to T2, and can be implicitly converted to
4179 // an xvalue, class prvalue, or function lvalue of type
4180 // "cv3 T3", where "cv1 T1" is reference-compatible with
4181 // "cv3 T3",
4182 //
4183 // then the reference is bound to the value of the initializer
4184 // expression in the first case and to the result of the conversion
4185 // in the second case (or, in either case, to an appropriate base
4186 // class subobject).
4187 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4188 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4189 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4190 Init, T2, /*AllowRvalues=*/true,
4191 AllowExplicit)) {
4192 // In the second case, if the reference is an rvalue reference
4193 // and the second standard conversion sequence of the
4194 // user-defined conversion sequence includes an lvalue-to-rvalue
4195 // conversion, the program is ill-formed.
4196 if (ICS.isUserDefined() && isRValRef &&
4197 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4198 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4199
4200 return ICS;
4201 }
4202
4203 // -- Otherwise, a temporary of type "cv1 T1" is created and
4204 // initialized from the initializer expression using the
4205 // rules for a non-reference copy initialization (8.5). The
4206 // reference is then bound to the temporary. If T1 is
4207 // reference-related to T2, cv1 must be the same
4208 // cv-qualification as, or greater cv-qualification than,
4209 // cv2; otherwise, the program is ill-formed.
4210 if (RefRelationship == Sema::Ref_Related) {
4211 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4212 // we would be reference-compatible or reference-compatible with
4213 // added qualification. But that wasn't the case, so the reference
4214 // initialization fails.
4215 //
4216 // Note that we only want to check address spaces and cvr-qualifiers here.
4217 // ObjC GC and lifetime qualifiers aren't important.
4218 Qualifiers T1Quals = T1.getQualifiers();
4219 Qualifiers T2Quals = T2.getQualifiers();
4220 T1Quals.removeObjCGCAttr();
4221 T1Quals.removeObjCLifetime();
4222 T2Quals.removeObjCGCAttr();
4223 T2Quals.removeObjCLifetime();
4224 if (!T1Quals.compatiblyIncludes(T2Quals))
4225 return ICS;
4226 }
4227
4228 // If at least one of the types is a class type, the types are not
4229 // related, and we aren't allowed any user conversions, the
4230 // reference binding fails. This case is important for breaking
4231 // recursion, since TryImplicitConversion below will attempt to
4232 // create a temporary through the use of a copy constructor.
4233 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4234 (T1->isRecordType() || T2->isRecordType()))
4235 return ICS;
4236
4237 // If T1 is reference-related to T2 and the reference is an rvalue
4238 // reference, the initializer expression shall not be an lvalue.
4239 if (RefRelationship >= Sema::Ref_Related &&
4240 isRValRef && Init->Classify(S.Context).isLValue())
4241 return ICS;
4242
4243 // C++ [over.ics.ref]p2:
4244 // When a parameter of reference type is not bound directly to
4245 // an argument expression, the conversion sequence is the one
4246 // required to convert the argument expression to the
4247 // underlying type of the reference according to
4248 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4249 // to copy-initializing a temporary of the underlying type with
4250 // the argument expression. Any difference in top-level
4251 // cv-qualification is subsumed by the initialization itself
4252 // and does not constitute a conversion.
4253 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4254 /*AllowExplicit=*/false,
4255 /*InOverloadResolution=*/false,
4256 /*CStyle=*/false,
4257 /*AllowObjCWritebackConversion=*/false);
4258
4259 // Of course, that's still a reference binding.
4260 if (ICS.isStandard()) {
4261 ICS.Standard.ReferenceBinding = true;
4262 ICS.Standard.IsLvalueReference = !isRValRef;
4263 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4264 ICS.Standard.BindsToRvalue = true;
4265 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4266 ICS.Standard.ObjCLifetimeConversionBinding = false;
4267 } else if (ICS.isUserDefined()) {
4268 // Don't allow rvalue references to bind to lvalues.
4269 if (DeclType->isRValueReferenceType()) {
4270 if (const ReferenceType *RefType
4271 = ICS.UserDefined.ConversionFunction->getResultType()
4272 ->getAs<LValueReferenceType>()) {
4273 if (!RefType->getPointeeType()->isFunctionType()) {
4274 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4275 DeclType);
4276 return ICS;
4277 }
4278 }
4279 }
4280
4281 ICS.UserDefined.After.ReferenceBinding = true;
4282 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4283 ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4284 ICS.UserDefined.After.BindsToRvalue = true;
4285 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4286 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4287 }
4288
4289 return ICS;
4290 }
4291
4292 static ImplicitConversionSequence
4293 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4294 bool SuppressUserConversions,
4295 bool InOverloadResolution,
4296 bool AllowObjCWritebackConversion,
4297 bool AllowExplicit = false);
4298
4299 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4300 /// initializer list From.
4301 static ImplicitConversionSequence
TryListConversion(Sema & S,InitListExpr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion)4302 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4303 bool SuppressUserConversions,
4304 bool InOverloadResolution,
4305 bool AllowObjCWritebackConversion) {
4306 // C++11 [over.ics.list]p1:
4307 // When an argument is an initializer list, it is not an expression and
4308 // special rules apply for converting it to a parameter type.
4309
4310 ImplicitConversionSequence Result;
4311 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4312 Result.setListInitializationSequence();
4313
4314 // We need a complete type for what follows. Incomplete types can never be
4315 // initialized from init lists.
4316 if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()))
4317 return Result;
4318
4319 // C++11 [over.ics.list]p2:
4320 // If the parameter type is std::initializer_list<X> or "array of X" and
4321 // all the elements can be implicitly converted to X, the implicit
4322 // conversion sequence is the worst conversion necessary to convert an
4323 // element of the list to X.
4324 bool toStdInitializerList = false;
4325 QualType X;
4326 if (ToType->isArrayType())
4327 X = S.Context.getBaseElementType(ToType);
4328 else
4329 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4330 if (!X.isNull()) {
4331 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4332 Expr *Init = From->getInit(i);
4333 ImplicitConversionSequence ICS =
4334 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4335 InOverloadResolution,
4336 AllowObjCWritebackConversion);
4337 // If a single element isn't convertible, fail.
4338 if (ICS.isBad()) {
4339 Result = ICS;
4340 break;
4341 }
4342 // Otherwise, look for the worst conversion.
4343 if (Result.isBad() ||
4344 CompareImplicitConversionSequences(S, ICS, Result) ==
4345 ImplicitConversionSequence::Worse)
4346 Result = ICS;
4347 }
4348
4349 // For an empty list, we won't have computed any conversion sequence.
4350 // Introduce the identity conversion sequence.
4351 if (From->getNumInits() == 0) {
4352 Result.setStandard();
4353 Result.Standard.setAsIdentityConversion();
4354 Result.Standard.setFromType(ToType);
4355 Result.Standard.setAllToTypes(ToType);
4356 }
4357
4358 Result.setListInitializationSequence();
4359 Result.setStdInitializerListElement(toStdInitializerList);
4360 return Result;
4361 }
4362
4363 // C++11 [over.ics.list]p3:
4364 // Otherwise, if the parameter is a non-aggregate class X and overload
4365 // resolution chooses a single best constructor [...] the implicit
4366 // conversion sequence is a user-defined conversion sequence. If multiple
4367 // constructors are viable but none is better than the others, the
4368 // implicit conversion sequence is a user-defined conversion sequence.
4369 if (ToType->isRecordType() && !ToType->isAggregateType()) {
4370 // This function can deal with initializer lists.
4371 Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4372 /*AllowExplicit=*/false,
4373 InOverloadResolution, /*CStyle=*/false,
4374 AllowObjCWritebackConversion);
4375 Result.setListInitializationSequence();
4376 return Result;
4377 }
4378
4379 // C++11 [over.ics.list]p4:
4380 // Otherwise, if the parameter has an aggregate type which can be
4381 // initialized from the initializer list [...] the implicit conversion
4382 // sequence is a user-defined conversion sequence.
4383 if (ToType->isAggregateType()) {
4384 // Type is an aggregate, argument is an init list. At this point it comes
4385 // down to checking whether the initialization works.
4386 // FIXME: Find out whether this parameter is consumed or not.
4387 InitializedEntity Entity =
4388 InitializedEntity::InitializeParameter(S.Context, ToType,
4389 /*Consumed=*/false);
4390 if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4391 Result.setUserDefined();
4392 Result.UserDefined.Before.setAsIdentityConversion();
4393 // Initializer lists don't have a type.
4394 Result.UserDefined.Before.setFromType(QualType());
4395 Result.UserDefined.Before.setAllToTypes(QualType());
4396
4397 Result.UserDefined.After.setAsIdentityConversion();
4398 Result.UserDefined.After.setFromType(ToType);
4399 Result.UserDefined.After.setAllToTypes(ToType);
4400 Result.UserDefined.ConversionFunction = 0;
4401 }
4402 return Result;
4403 }
4404
4405 // C++11 [over.ics.list]p5:
4406 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4407 if (ToType->isReferenceType()) {
4408 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4409 // mention initializer lists in any way. So we go by what list-
4410 // initialization would do and try to extrapolate from that.
4411
4412 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4413
4414 // If the initializer list has a single element that is reference-related
4415 // to the parameter type, we initialize the reference from that.
4416 if (From->getNumInits() == 1) {
4417 Expr *Init = From->getInit(0);
4418
4419 QualType T2 = Init->getType();
4420
4421 // If the initializer is the address of an overloaded function, try
4422 // to resolve the overloaded function. If all goes well, T2 is the
4423 // type of the resulting function.
4424 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4425 DeclAccessPair Found;
4426 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4427 Init, ToType, false, Found))
4428 T2 = Fn->getType();
4429 }
4430
4431 // Compute some basic properties of the types and the initializer.
4432 bool dummy1 = false;
4433 bool dummy2 = false;
4434 bool dummy3 = false;
4435 Sema::ReferenceCompareResult RefRelationship
4436 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4437 dummy2, dummy3);
4438
4439 if (RefRelationship >= Sema::Ref_Related)
4440 return TryReferenceInit(S, Init, ToType,
4441 /*FIXME:*/From->getLocStart(),
4442 SuppressUserConversions,
4443 /*AllowExplicit=*/false);
4444 }
4445
4446 // Otherwise, we bind the reference to a temporary created from the
4447 // initializer list.
4448 Result = TryListConversion(S, From, T1, SuppressUserConversions,
4449 InOverloadResolution,
4450 AllowObjCWritebackConversion);
4451 if (Result.isFailure())
4452 return Result;
4453 assert(!Result.isEllipsis() &&
4454 "Sub-initialization cannot result in ellipsis conversion.");
4455
4456 // Can we even bind to a temporary?
4457 if (ToType->isRValueReferenceType() ||
4458 (T1.isConstQualified() && !T1.isVolatileQualified())) {
4459 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4460 Result.UserDefined.After;
4461 SCS.ReferenceBinding = true;
4462 SCS.IsLvalueReference = ToType->isLValueReferenceType();
4463 SCS.BindsToRvalue = true;
4464 SCS.BindsToFunctionLvalue = false;
4465 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4466 SCS.ObjCLifetimeConversionBinding = false;
4467 } else
4468 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4469 From, ToType);
4470 return Result;
4471 }
4472
4473 // C++11 [over.ics.list]p6:
4474 // Otherwise, if the parameter type is not a class:
4475 if (!ToType->isRecordType()) {
4476 // - if the initializer list has one element, the implicit conversion
4477 // sequence is the one required to convert the element to the
4478 // parameter type.
4479 unsigned NumInits = From->getNumInits();
4480 if (NumInits == 1)
4481 Result = TryCopyInitialization(S, From->getInit(0), ToType,
4482 SuppressUserConversions,
4483 InOverloadResolution,
4484 AllowObjCWritebackConversion);
4485 // - if the initializer list has no elements, the implicit conversion
4486 // sequence is the identity conversion.
4487 else if (NumInits == 0) {
4488 Result.setStandard();
4489 Result.Standard.setAsIdentityConversion();
4490 Result.Standard.setFromType(ToType);
4491 Result.Standard.setAllToTypes(ToType);
4492 }
4493 Result.setListInitializationSequence();
4494 return Result;
4495 }
4496
4497 // C++11 [over.ics.list]p7:
4498 // In all cases other than those enumerated above, no conversion is possible
4499 return Result;
4500 }
4501
4502 /// TryCopyInitialization - Try to copy-initialize a value of type
4503 /// ToType from the expression From. Return the implicit conversion
4504 /// sequence required to pass this argument, which may be a bad
4505 /// conversion sequence (meaning that the argument cannot be passed to
4506 /// a parameter of this type). If @p SuppressUserConversions, then we
4507 /// do not permit any user-defined conversion sequences.
4508 static ImplicitConversionSequence
TryCopyInitialization(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion,bool AllowExplicit)4509 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4510 bool SuppressUserConversions,
4511 bool InOverloadResolution,
4512 bool AllowObjCWritebackConversion,
4513 bool AllowExplicit) {
4514 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4515 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4516 InOverloadResolution,AllowObjCWritebackConversion);
4517
4518 if (ToType->isReferenceType())
4519 return TryReferenceInit(S, From, ToType,
4520 /*FIXME:*/From->getLocStart(),
4521 SuppressUserConversions,
4522 AllowExplicit);
4523
4524 return TryImplicitConversion(S, From, ToType,
4525 SuppressUserConversions,
4526 /*AllowExplicit=*/false,
4527 InOverloadResolution,
4528 /*CStyle=*/false,
4529 AllowObjCWritebackConversion);
4530 }
4531
TryCopyInitialization(const CanQualType FromQTy,const CanQualType ToQTy,Sema & S,SourceLocation Loc,ExprValueKind FromVK)4532 static bool TryCopyInitialization(const CanQualType FromQTy,
4533 const CanQualType ToQTy,
4534 Sema &S,
4535 SourceLocation Loc,
4536 ExprValueKind FromVK) {
4537 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4538 ImplicitConversionSequence ICS =
4539 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4540
4541 return !ICS.isBad();
4542 }
4543
4544 /// TryObjectArgumentInitialization - Try to initialize the object
4545 /// parameter of the given member function (@c Method) from the
4546 /// expression @p From.
4547 static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema & S,QualType OrigFromType,Expr::Classification FromClassification,CXXMethodDecl * Method,CXXRecordDecl * ActingContext)4548 TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
4549 Expr::Classification FromClassification,
4550 CXXMethodDecl *Method,
4551 CXXRecordDecl *ActingContext) {
4552 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4553 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4554 // const volatile object.
4555 unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4556 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4557 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
4558
4559 // Set up the conversion sequence as a "bad" conversion, to allow us
4560 // to exit early.
4561 ImplicitConversionSequence ICS;
4562
4563 // We need to have an object of class type.
4564 QualType FromType = OrigFromType;
4565 if (const PointerType *PT = FromType->getAs<PointerType>()) {
4566 FromType = PT->getPointeeType();
4567
4568 // When we had a pointer, it's implicitly dereferenced, so we
4569 // better have an lvalue.
4570 assert(FromClassification.isLValue());
4571 }
4572
4573 assert(FromType->isRecordType());
4574
4575 // C++0x [over.match.funcs]p4:
4576 // For non-static member functions, the type of the implicit object
4577 // parameter is
4578 //
4579 // - "lvalue reference to cv X" for functions declared without a
4580 // ref-qualifier or with the & ref-qualifier
4581 // - "rvalue reference to cv X" for functions declared with the &&
4582 // ref-qualifier
4583 //
4584 // where X is the class of which the function is a member and cv is the
4585 // cv-qualification on the member function declaration.
4586 //
4587 // However, when finding an implicit conversion sequence for the argument, we
4588 // are not allowed to create temporaries or perform user-defined conversions
4589 // (C++ [over.match.funcs]p5). We perform a simplified version of
4590 // reference binding here, that allows class rvalues to bind to
4591 // non-constant references.
4592
4593 // First check the qualifiers.
4594 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4595 if (ImplicitParamType.getCVRQualifiers()
4596 != FromTypeCanon.getLocalCVRQualifiers() &&
4597 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4598 ICS.setBad(BadConversionSequence::bad_qualifiers,
4599 OrigFromType, ImplicitParamType);
4600 return ICS;
4601 }
4602
4603 // Check that we have either the same type or a derived type. It
4604 // affects the conversion rank.
4605 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4606 ImplicitConversionKind SecondKind;
4607 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4608 SecondKind = ICK_Identity;
4609 } else if (S.IsDerivedFrom(FromType, ClassType))
4610 SecondKind = ICK_Derived_To_Base;
4611 else {
4612 ICS.setBad(BadConversionSequence::unrelated_class,
4613 FromType, ImplicitParamType);
4614 return ICS;
4615 }
4616
4617 // Check the ref-qualifier.
4618 switch (Method->getRefQualifier()) {
4619 case RQ_None:
4620 // Do nothing; we don't care about lvalueness or rvalueness.
4621 break;
4622
4623 case RQ_LValue:
4624 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4625 // non-const lvalue reference cannot bind to an rvalue
4626 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4627 ImplicitParamType);
4628 return ICS;
4629 }
4630 break;
4631
4632 case RQ_RValue:
4633 if (!FromClassification.isRValue()) {
4634 // rvalue reference cannot bind to an lvalue
4635 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4636 ImplicitParamType);
4637 return ICS;
4638 }
4639 break;
4640 }
4641
4642 // Success. Mark this as a reference binding.
4643 ICS.setStandard();
4644 ICS.Standard.setAsIdentityConversion();
4645 ICS.Standard.Second = SecondKind;
4646 ICS.Standard.setFromType(FromType);
4647 ICS.Standard.setAllToTypes(ImplicitParamType);
4648 ICS.Standard.ReferenceBinding = true;
4649 ICS.Standard.DirectBinding = true;
4650 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4651 ICS.Standard.BindsToFunctionLvalue = false;
4652 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4653 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4654 = (Method->getRefQualifier() == RQ_None);
4655 return ICS;
4656 }
4657
4658 /// PerformObjectArgumentInitialization - Perform initialization of
4659 /// the implicit object parameter for the given Method with the given
4660 /// expression.
4661 ExprResult
PerformObjectArgumentInitialization(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,CXXMethodDecl * Method)4662 Sema::PerformObjectArgumentInitialization(Expr *From,
4663 NestedNameSpecifier *Qualifier,
4664 NamedDecl *FoundDecl,
4665 CXXMethodDecl *Method) {
4666 QualType FromRecordType, DestType;
4667 QualType ImplicitParamRecordType =
4668 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4669
4670 Expr::Classification FromClassification;
4671 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4672 FromRecordType = PT->getPointeeType();
4673 DestType = Method->getThisType(Context);
4674 FromClassification = Expr::Classification::makeSimpleLValue();
4675 } else {
4676 FromRecordType = From->getType();
4677 DestType = ImplicitParamRecordType;
4678 FromClassification = From->Classify(Context);
4679 }
4680
4681 // Note that we always use the true parent context when performing
4682 // the actual argument initialization.
4683 ImplicitConversionSequence ICS
4684 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4685 Method, Method->getParent());
4686 if (ICS.isBad()) {
4687 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4688 Qualifiers FromQs = FromRecordType.getQualifiers();
4689 Qualifiers ToQs = DestType.getQualifiers();
4690 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4691 if (CVR) {
4692 Diag(From->getLocStart(),
4693 diag::err_member_function_call_bad_cvr)
4694 << Method->getDeclName() << FromRecordType << (CVR - 1)
4695 << From->getSourceRange();
4696 Diag(Method->getLocation(), diag::note_previous_decl)
4697 << Method->getDeclName();
4698 return ExprError();
4699 }
4700 }
4701
4702 return Diag(From->getLocStart(),
4703 diag::err_implicit_object_parameter_init)
4704 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4705 }
4706
4707 if (ICS.Standard.Second == ICK_Derived_To_Base) {
4708 ExprResult FromRes =
4709 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4710 if (FromRes.isInvalid())
4711 return ExprError();
4712 From = FromRes.take();
4713 }
4714
4715 if (!Context.hasSameType(From->getType(), DestType))
4716 From = ImpCastExprToType(From, DestType, CK_NoOp,
4717 From->getValueKind()).take();
4718 return Owned(From);
4719 }
4720
4721 /// TryContextuallyConvertToBool - Attempt to contextually convert the
4722 /// expression From to bool (C++0x [conv]p3).
4723 static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema & S,Expr * From)4724 TryContextuallyConvertToBool(Sema &S, Expr *From) {
4725 // FIXME: This is pretty broken.
4726 return TryImplicitConversion(S, From, S.Context.BoolTy,
4727 // FIXME: Are these flags correct?
4728 /*SuppressUserConversions=*/false,
4729 /*AllowExplicit=*/true,
4730 /*InOverloadResolution=*/false,
4731 /*CStyle=*/false,
4732 /*AllowObjCWritebackConversion=*/false);
4733 }
4734
4735 /// PerformContextuallyConvertToBool - Perform a contextual conversion
4736 /// of the expression From to bool (C++0x [conv]p3).
PerformContextuallyConvertToBool(Expr * From)4737 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4738 if (checkPlaceholderForOverload(*this, From))
4739 return ExprError();
4740
4741 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4742 if (!ICS.isBad())
4743 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4744
4745 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4746 return Diag(From->getLocStart(),
4747 diag::err_typecheck_bool_condition)
4748 << From->getType() << From->getSourceRange();
4749 return ExprError();
4750 }
4751
4752 /// Check that the specified conversion is permitted in a converted constant
4753 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
4754 /// is acceptable.
CheckConvertedConstantConversions(Sema & S,StandardConversionSequence & SCS)4755 static bool CheckConvertedConstantConversions(Sema &S,
4756 StandardConversionSequence &SCS) {
4757 // Since we know that the target type is an integral or unscoped enumeration
4758 // type, most conversion kinds are impossible. All possible First and Third
4759 // conversions are fine.
4760 switch (SCS.Second) {
4761 case ICK_Identity:
4762 case ICK_Integral_Promotion:
4763 case ICK_Integral_Conversion:
4764 return true;
4765
4766 case ICK_Boolean_Conversion:
4767 // Conversion from an integral or unscoped enumeration type to bool is
4768 // classified as ICK_Boolean_Conversion, but it's also an integral
4769 // conversion, so it's permitted in a converted constant expression.
4770 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4771 SCS.getToType(2)->isBooleanType();
4772
4773 case ICK_Floating_Integral:
4774 case ICK_Complex_Real:
4775 return false;
4776
4777 case ICK_Lvalue_To_Rvalue:
4778 case ICK_Array_To_Pointer:
4779 case ICK_Function_To_Pointer:
4780 case ICK_NoReturn_Adjustment:
4781 case ICK_Qualification:
4782 case ICK_Compatible_Conversion:
4783 case ICK_Vector_Conversion:
4784 case ICK_Vector_Splat:
4785 case ICK_Derived_To_Base:
4786 case ICK_Pointer_Conversion:
4787 case ICK_Pointer_Member:
4788 case ICK_Block_Pointer_Conversion:
4789 case ICK_Writeback_Conversion:
4790 case ICK_Floating_Promotion:
4791 case ICK_Complex_Promotion:
4792 case ICK_Complex_Conversion:
4793 case ICK_Floating_Conversion:
4794 case ICK_TransparentUnionConversion:
4795 llvm_unreachable("unexpected second conversion kind");
4796
4797 case ICK_Num_Conversion_Kinds:
4798 break;
4799 }
4800
4801 llvm_unreachable("unknown conversion kind");
4802 }
4803
4804 /// CheckConvertedConstantExpression - Check that the expression From is a
4805 /// converted constant expression of type T, perform the conversion and produce
4806 /// the converted expression, per C++11 [expr.const]p3.
CheckConvertedConstantExpression(Expr * From,QualType T,llvm::APSInt & Value,CCEKind CCE)4807 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4808 llvm::APSInt &Value,
4809 CCEKind CCE) {
4810 assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
4811 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4812
4813 if (checkPlaceholderForOverload(*this, From))
4814 return ExprError();
4815
4816 // C++11 [expr.const]p3 with proposed wording fixes:
4817 // A converted constant expression of type T is a core constant expression,
4818 // implicitly converted to a prvalue of type T, where the converted
4819 // expression is a literal constant expression and the implicit conversion
4820 // sequence contains only user-defined conversions, lvalue-to-rvalue
4821 // conversions, integral promotions, and integral conversions other than
4822 // narrowing conversions.
4823 ImplicitConversionSequence ICS =
4824 TryImplicitConversion(From, T,
4825 /*SuppressUserConversions=*/false,
4826 /*AllowExplicit=*/false,
4827 /*InOverloadResolution=*/false,
4828 /*CStyle=*/false,
4829 /*AllowObjcWritebackConversion=*/false);
4830 StandardConversionSequence *SCS = 0;
4831 switch (ICS.getKind()) {
4832 case ImplicitConversionSequence::StandardConversion:
4833 if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4834 return Diag(From->getLocStart(),
4835 diag::err_typecheck_converted_constant_expression_disallowed)
4836 << From->getType() << From->getSourceRange() << T;
4837 SCS = &ICS.Standard;
4838 break;
4839 case ImplicitConversionSequence::UserDefinedConversion:
4840 // We are converting from class type to an integral or enumeration type, so
4841 // the Before sequence must be trivial.
4842 if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4843 return Diag(From->getLocStart(),
4844 diag::err_typecheck_converted_constant_expression_disallowed)
4845 << From->getType() << From->getSourceRange() << T;
4846 SCS = &ICS.UserDefined.After;
4847 break;
4848 case ImplicitConversionSequence::AmbiguousConversion:
4849 case ImplicitConversionSequence::BadConversion:
4850 if (!DiagnoseMultipleUserDefinedConversion(From, T))
4851 return Diag(From->getLocStart(),
4852 diag::err_typecheck_converted_constant_expression)
4853 << From->getType() << From->getSourceRange() << T;
4854 return ExprError();
4855
4856 case ImplicitConversionSequence::EllipsisConversion:
4857 llvm_unreachable("ellipsis conversion in converted constant expression");
4858 }
4859
4860 ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4861 if (Result.isInvalid())
4862 return Result;
4863
4864 // Check for a narrowing implicit conversion.
4865 APValue PreNarrowingValue;
4866 QualType PreNarrowingType;
4867 switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4868 PreNarrowingType)) {
4869 case NK_Variable_Narrowing:
4870 // Implicit conversion to a narrower type, and the value is not a constant
4871 // expression. We'll diagnose this in a moment.
4872 case NK_Not_Narrowing:
4873 break;
4874
4875 case NK_Constant_Narrowing:
4876 Diag(From->getLocStart(),
4877 isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4878 diag::err_cce_narrowing)
4879 << CCE << /*Constant*/1
4880 << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4881 break;
4882
4883 case NK_Type_Narrowing:
4884 Diag(From->getLocStart(),
4885 isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4886 diag::err_cce_narrowing)
4887 << CCE << /*Constant*/0 << From->getType() << T;
4888 break;
4889 }
4890
4891 // Check the expression is a constant expression.
4892 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4893 Expr::EvalResult Eval;
4894 Eval.Diag = &Notes;
4895
4896 if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
4897 // The expression can't be folded, so we can't keep it at this position in
4898 // the AST.
4899 Result = ExprError();
4900 } else {
4901 Value = Eval.Val.getInt();
4902
4903 if (Notes.empty()) {
4904 // It's a constant expression.
4905 return Result;
4906 }
4907 }
4908
4909 // It's not a constant expression. Produce an appropriate diagnostic.
4910 if (Notes.size() == 1 &&
4911 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
4912 Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
4913 else {
4914 Diag(From->getLocStart(), diag::err_expr_not_cce)
4915 << CCE << From->getSourceRange();
4916 for (unsigned I = 0; I < Notes.size(); ++I)
4917 Diag(Notes[I].first, Notes[I].second);
4918 }
4919 return Result;
4920 }
4921
4922 /// dropPointerConversions - If the given standard conversion sequence
4923 /// involves any pointer conversions, remove them. This may change
4924 /// the result type of the conversion sequence.
dropPointerConversion(StandardConversionSequence & SCS)4925 static void dropPointerConversion(StandardConversionSequence &SCS) {
4926 if (SCS.Second == ICK_Pointer_Conversion) {
4927 SCS.Second = ICK_Identity;
4928 SCS.Third = ICK_Identity;
4929 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4930 }
4931 }
4932
4933 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
4934 /// convert the expression From to an Objective-C pointer type.
4935 static ImplicitConversionSequence
TryContextuallyConvertToObjCPointer(Sema & S,Expr * From)4936 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4937 // Do an implicit conversion to 'id'.
4938 QualType Ty = S.Context.getObjCIdType();
4939 ImplicitConversionSequence ICS
4940 = TryImplicitConversion(S, From, Ty,
4941 // FIXME: Are these flags correct?
4942 /*SuppressUserConversions=*/false,
4943 /*AllowExplicit=*/true,
4944 /*InOverloadResolution=*/false,
4945 /*CStyle=*/false,
4946 /*AllowObjCWritebackConversion=*/false);
4947
4948 // Strip off any final conversions to 'id'.
4949 switch (ICS.getKind()) {
4950 case ImplicitConversionSequence::BadConversion:
4951 case ImplicitConversionSequence::AmbiguousConversion:
4952 case ImplicitConversionSequence::EllipsisConversion:
4953 break;
4954
4955 case ImplicitConversionSequence::UserDefinedConversion:
4956 dropPointerConversion(ICS.UserDefined.After);
4957 break;
4958
4959 case ImplicitConversionSequence::StandardConversion:
4960 dropPointerConversion(ICS.Standard);
4961 break;
4962 }
4963
4964 return ICS;
4965 }
4966
4967 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
4968 /// conversion of the expression From to an Objective-C pointer type.
PerformContextuallyConvertToObjCPointer(Expr * From)4969 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
4970 if (checkPlaceholderForOverload(*this, From))
4971 return ExprError();
4972
4973 QualType Ty = Context.getObjCIdType();
4974 ImplicitConversionSequence ICS =
4975 TryContextuallyConvertToObjCPointer(*this, From);
4976 if (!ICS.isBad())
4977 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
4978 return ExprError();
4979 }
4980
4981 /// Determine whether the provided type is an integral type, or an enumeration
4982 /// type of a permitted flavor.
isIntegralOrEnumerationType(QualType T,bool AllowScopedEnum)4983 static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
4984 return AllowScopedEnum ? T->isIntegralOrEnumerationType()
4985 : T->isIntegralOrUnscopedEnumerationType();
4986 }
4987
4988 /// \brief Attempt to convert the given expression to an integral or
4989 /// enumeration type.
4990 ///
4991 /// This routine will attempt to convert an expression of class type to an
4992 /// integral or enumeration type, if that class type only has a single
4993 /// conversion to an integral or enumeration type.
4994 ///
4995 /// \param Loc The source location of the construct that requires the
4996 /// conversion.
4997 ///
4998 /// \param FromE The expression we're converting from.
4999 ///
5000 /// \param NotIntDiag The diagnostic to be emitted if the expression does not
5001 /// have integral or enumeration type.
5002 ///
5003 /// \param IncompleteDiag The diagnostic to be emitted if the expression has
5004 /// incomplete class type.
5005 ///
5006 /// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
5007 /// explicit conversion function (because no implicit conversion functions
5008 /// were available). This is a recovery mode.
5009 ///
5010 /// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
5011 /// showing which conversion was picked.
5012 ///
5013 /// \param AmbigDiag The diagnostic to be emitted if there is more than one
5014 /// conversion function that could convert to integral or enumeration type.
5015 ///
5016 /// \param AmbigNote The note to be emitted with \p AmbigDiag for each
5017 /// usable conversion function.
5018 ///
5019 /// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
5020 /// function, which may be an extension in this case.
5021 ///
5022 /// \param AllowScopedEnumerations Specifies whether conversions to scoped
5023 /// enumerations should be considered.
5024 ///
5025 /// \returns The expression, converted to an integral or enumeration type if
5026 /// successful.
5027 ExprResult
ConvertToIntegralOrEnumerationType(SourceLocation Loc,Expr * From,const PartialDiagnostic & NotIntDiag,const PartialDiagnostic & IncompleteDiag,const PartialDiagnostic & ExplicitConvDiag,const PartialDiagnostic & ExplicitConvNote,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & AmbigNote,const PartialDiagnostic & ConvDiag,bool AllowScopedEnumerations)5028 Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
5029 const PartialDiagnostic &NotIntDiag,
5030 const PartialDiagnostic &IncompleteDiag,
5031 const PartialDiagnostic &ExplicitConvDiag,
5032 const PartialDiagnostic &ExplicitConvNote,
5033 const PartialDiagnostic &AmbigDiag,
5034 const PartialDiagnostic &AmbigNote,
5035 const PartialDiagnostic &ConvDiag,
5036 bool AllowScopedEnumerations) {
5037 // We can't perform any more checking for type-dependent expressions.
5038 if (From->isTypeDependent())
5039 return Owned(From);
5040
5041 // Process placeholders immediately.
5042 if (From->hasPlaceholderType()) {
5043 ExprResult result = CheckPlaceholderExpr(From);
5044 if (result.isInvalid()) return result;
5045 From = result.take();
5046 }
5047
5048 // If the expression already has integral or enumeration type, we're golden.
5049 QualType T = From->getType();
5050 if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
5051 return DefaultLvalueConversion(From);
5052
5053 // FIXME: Check for missing '()' if T is a function type?
5054
5055 // If we don't have a class type in C++, there's no way we can get an
5056 // expression of integral or enumeration type.
5057 const RecordType *RecordTy = T->getAs<RecordType>();
5058 if (!RecordTy || !getLangOpts().CPlusPlus) {
5059 if (NotIntDiag.getDiagID())
5060 Diag(Loc, NotIntDiag) << T << From->getSourceRange();
5061 return Owned(From);
5062 }
5063
5064 // We must have a complete class type.
5065 if (RequireCompleteType(Loc, T, IncompleteDiag))
5066 return Owned(From);
5067
5068 // Look for a conversion to an integral or enumeration type.
5069 UnresolvedSet<4> ViableConversions;
5070 UnresolvedSet<4> ExplicitConversions;
5071 const UnresolvedSetImpl *Conversions
5072 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5073
5074 bool HadMultipleCandidates = (Conversions->size() > 1);
5075
5076 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5077 E = Conversions->end();
5078 I != E;
5079 ++I) {
5080 if (CXXConversionDecl *Conversion
5081 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
5082 if (isIntegralOrEnumerationType(
5083 Conversion->getConversionType().getNonReferenceType(),
5084 AllowScopedEnumerations)) {
5085 if (Conversion->isExplicit())
5086 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5087 else
5088 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5089 }
5090 }
5091 }
5092
5093 switch (ViableConversions.size()) {
5094 case 0:
5095 if (ExplicitConversions.size() == 1 && ExplicitConvDiag.getDiagID()) {
5096 DeclAccessPair Found = ExplicitConversions[0];
5097 CXXConversionDecl *Conversion
5098 = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5099
5100 // The user probably meant to invoke the given explicit
5101 // conversion; use it.
5102 QualType ConvTy
5103 = Conversion->getConversionType().getNonReferenceType();
5104 std::string TypeStr;
5105 ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
5106
5107 Diag(Loc, ExplicitConvDiag)
5108 << T << ConvTy
5109 << FixItHint::CreateInsertion(From->getLocStart(),
5110 "static_cast<" + TypeStr + ">(")
5111 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
5112 ")");
5113 Diag(Conversion->getLocation(), ExplicitConvNote)
5114 << ConvTy->isEnumeralType() << ConvTy;
5115
5116 // If we aren't in a SFINAE context, build a call to the
5117 // explicit conversion function.
5118 if (isSFINAEContext())
5119 return ExprError();
5120
5121 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5122 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5123 HadMultipleCandidates);
5124 if (Result.isInvalid())
5125 return ExprError();
5126 // Record usage of conversion in an implicit cast.
5127 From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5128 CK_UserDefinedConversion,
5129 Result.get(), 0,
5130 Result.get()->getValueKind());
5131 }
5132
5133 // We'll complain below about a non-integral condition type.
5134 break;
5135
5136 case 1: {
5137 // Apply this conversion.
5138 DeclAccessPair Found = ViableConversions[0];
5139 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5140
5141 CXXConversionDecl *Conversion
5142 = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5143 QualType ConvTy
5144 = Conversion->getConversionType().getNonReferenceType();
5145 if (ConvDiag.getDiagID()) {
5146 if (isSFINAEContext())
5147 return ExprError();
5148
5149 Diag(Loc, ConvDiag)
5150 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
5151 }
5152
5153 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5154 HadMultipleCandidates);
5155 if (Result.isInvalid())
5156 return ExprError();
5157 // Record usage of conversion in an implicit cast.
5158 From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5159 CK_UserDefinedConversion,
5160 Result.get(), 0,
5161 Result.get()->getValueKind());
5162 break;
5163 }
5164
5165 default:
5166 if (!AmbigDiag.getDiagID())
5167 return Owned(From);
5168
5169 Diag(Loc, AmbigDiag)
5170 << T << From->getSourceRange();
5171 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5172 CXXConversionDecl *Conv
5173 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5174 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5175 Diag(Conv->getLocation(), AmbigNote)
5176 << ConvTy->isEnumeralType() << ConvTy;
5177 }
5178 return Owned(From);
5179 }
5180
5181 if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
5182 NotIntDiag.getDiagID())
5183 Diag(Loc, NotIntDiag) << From->getType() << From->getSourceRange();
5184
5185 return DefaultLvalueConversion(From);
5186 }
5187
5188 /// AddOverloadCandidate - Adds the given function to the set of
5189 /// candidate functions, using the given function call arguments. If
5190 /// @p SuppressUserConversions, then don't allow user-defined
5191 /// conversions via constructors or conversion operators.
5192 ///
5193 /// \para PartialOverloading true if we are performing "partial" overloading
5194 /// based on an incomplete set of function arguments. This feature is used by
5195 /// code completion.
5196 void
AddOverloadCandidate(FunctionDecl * Function,DeclAccessPair FoundDecl,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit)5197 Sema::AddOverloadCandidate(FunctionDecl *Function,
5198 DeclAccessPair FoundDecl,
5199 llvm::ArrayRef<Expr *> Args,
5200 OverloadCandidateSet& CandidateSet,
5201 bool SuppressUserConversions,
5202 bool PartialOverloading,
5203 bool AllowExplicit) {
5204 const FunctionProtoType* Proto
5205 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5206 assert(Proto && "Functions without a prototype cannot be overloaded");
5207 assert(!Function->getDescribedFunctionTemplate() &&
5208 "Use AddTemplateOverloadCandidate for function templates");
5209
5210 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5211 if (!isa<CXXConstructorDecl>(Method)) {
5212 // If we get here, it's because we're calling a member function
5213 // that is named without a member access expression (e.g.,
5214 // "this->f") that was either written explicitly or created
5215 // implicitly. This can happen with a qualified call to a member
5216 // function, e.g., X::f(). We use an empty type for the implied
5217 // object argument (C++ [over.call.func]p3), and the acting context
5218 // is irrelevant.
5219 AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5220 QualType(), Expr::Classification::makeSimpleLValue(),
5221 Args, CandidateSet, SuppressUserConversions);
5222 return;
5223 }
5224 // We treat a constructor like a non-member function, since its object
5225 // argument doesn't participate in overload resolution.
5226 }
5227
5228 if (!CandidateSet.isNewCandidate(Function))
5229 return;
5230
5231 // Overload resolution is always an unevaluated context.
5232 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5233
5234 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5235 // C++ [class.copy]p3:
5236 // A member function template is never instantiated to perform the copy
5237 // of a class object to an object of its class type.
5238 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5239 if (Args.size() == 1 &&
5240 Constructor->isSpecializationCopyingObject() &&
5241 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5242 IsDerivedFrom(Args[0]->getType(), ClassType)))
5243 return;
5244 }
5245
5246 // Add this candidate
5247 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5248 Candidate.FoundDecl = FoundDecl;
5249 Candidate.Function = Function;
5250 Candidate.Viable = true;
5251 Candidate.IsSurrogate = false;
5252 Candidate.IgnoreObjectArgument = false;
5253 Candidate.ExplicitCallArguments = Args.size();
5254
5255 unsigned NumArgsInProto = Proto->getNumArgs();
5256
5257 // (C++ 13.3.2p2): A candidate function having fewer than m
5258 // parameters is viable only if it has an ellipsis in its parameter
5259 // list (8.3.5).
5260 if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5261 !Proto->isVariadic()) {
5262 Candidate.Viable = false;
5263 Candidate.FailureKind = ovl_fail_too_many_arguments;
5264 return;
5265 }
5266
5267 // (C++ 13.3.2p2): A candidate function having more than m parameters
5268 // is viable only if the (m+1)st parameter has a default argument
5269 // (8.3.6). For the purposes of overload resolution, the
5270 // parameter list is truncated on the right, so that there are
5271 // exactly m parameters.
5272 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5273 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5274 // Not enough arguments.
5275 Candidate.Viable = false;
5276 Candidate.FailureKind = ovl_fail_too_few_arguments;
5277 return;
5278 }
5279
5280 // (CUDA B.1): Check for invalid calls between targets.
5281 if (getLangOpts().CUDA)
5282 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5283 if (CheckCUDATarget(Caller, Function)) {
5284 Candidate.Viable = false;
5285 Candidate.FailureKind = ovl_fail_bad_target;
5286 return;
5287 }
5288
5289 // Determine the implicit conversion sequences for each of the
5290 // arguments.
5291 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5292 if (ArgIdx < NumArgsInProto) {
5293 // (C++ 13.3.2p3): for F to be a viable function, there shall
5294 // exist for each argument an implicit conversion sequence
5295 // (13.3.3.1) that converts that argument to the corresponding
5296 // parameter of F.
5297 QualType ParamType = Proto->getArgType(ArgIdx);
5298 Candidate.Conversions[ArgIdx]
5299 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5300 SuppressUserConversions,
5301 /*InOverloadResolution=*/true,
5302 /*AllowObjCWritebackConversion=*/
5303 getLangOpts().ObjCAutoRefCount,
5304 AllowExplicit);
5305 if (Candidate.Conversions[ArgIdx].isBad()) {
5306 Candidate.Viable = false;
5307 Candidate.FailureKind = ovl_fail_bad_conversion;
5308 break;
5309 }
5310 } else {
5311 // (C++ 13.3.2p2): For the purposes of overload resolution, any
5312 // argument for which there is no corresponding parameter is
5313 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5314 Candidate.Conversions[ArgIdx].setEllipsis();
5315 }
5316 }
5317 }
5318
5319 /// \brief Add all of the function declarations in the given function set to
5320 /// the overload canddiate set.
AddFunctionCandidates(const UnresolvedSetImpl & Fns,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,TemplateArgumentListInfo * ExplicitTemplateArgs)5321 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5322 llvm::ArrayRef<Expr *> Args,
5323 OverloadCandidateSet& CandidateSet,
5324 bool SuppressUserConversions,
5325 TemplateArgumentListInfo *ExplicitTemplateArgs) {
5326 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5327 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5328 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5329 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5330 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5331 cast<CXXMethodDecl>(FD)->getParent(),
5332 Args[0]->getType(), Args[0]->Classify(Context),
5333 Args.slice(1), CandidateSet,
5334 SuppressUserConversions);
5335 else
5336 AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5337 SuppressUserConversions);
5338 } else {
5339 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5340 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5341 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5342 AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5343 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5344 ExplicitTemplateArgs,
5345 Args[0]->getType(),
5346 Args[0]->Classify(Context), Args.slice(1),
5347 CandidateSet, SuppressUserConversions);
5348 else
5349 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5350 ExplicitTemplateArgs, Args,
5351 CandidateSet, SuppressUserConversions);
5352 }
5353 }
5354 }
5355
5356 /// AddMethodCandidate - Adds a named decl (which is some kind of
5357 /// method) as a method candidate to the given overload set.
AddMethodCandidate(DeclAccessPair FoundDecl,QualType ObjectType,Expr::Classification ObjectClassification,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5358 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5359 QualType ObjectType,
5360 Expr::Classification ObjectClassification,
5361 Expr **Args, unsigned NumArgs,
5362 OverloadCandidateSet& CandidateSet,
5363 bool SuppressUserConversions) {
5364 NamedDecl *Decl = FoundDecl.getDecl();
5365 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5366
5367 if (isa<UsingShadowDecl>(Decl))
5368 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5369
5370 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5371 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5372 "Expected a member function template");
5373 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5374 /*ExplicitArgs*/ 0,
5375 ObjectType, ObjectClassification,
5376 llvm::makeArrayRef(Args, NumArgs), CandidateSet,
5377 SuppressUserConversions);
5378 } else {
5379 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5380 ObjectType, ObjectClassification,
5381 llvm::makeArrayRef(Args, NumArgs),
5382 CandidateSet, SuppressUserConversions);
5383 }
5384 }
5385
5386 /// AddMethodCandidate - Adds the given C++ member function to the set
5387 /// of candidate functions, using the given function call arguments
5388 /// and the object argument (@c Object). For example, in a call
5389 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5390 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5391 /// allow user-defined conversions via constructors or conversion
5392 /// operators.
5393 void
AddMethodCandidate(CXXMethodDecl * Method,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5394 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5395 CXXRecordDecl *ActingContext, QualType ObjectType,
5396 Expr::Classification ObjectClassification,
5397 llvm::ArrayRef<Expr *> Args,
5398 OverloadCandidateSet& CandidateSet,
5399 bool SuppressUserConversions) {
5400 const FunctionProtoType* Proto
5401 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5402 assert(Proto && "Methods without a prototype cannot be overloaded");
5403 assert(!isa<CXXConstructorDecl>(Method) &&
5404 "Use AddOverloadCandidate for constructors");
5405
5406 if (!CandidateSet.isNewCandidate(Method))
5407 return;
5408
5409 // Overload resolution is always an unevaluated context.
5410 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5411
5412 // Add this candidate
5413 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5414 Candidate.FoundDecl = FoundDecl;
5415 Candidate.Function = Method;
5416 Candidate.IsSurrogate = false;
5417 Candidate.IgnoreObjectArgument = false;
5418 Candidate.ExplicitCallArguments = Args.size();
5419
5420 unsigned NumArgsInProto = Proto->getNumArgs();
5421
5422 // (C++ 13.3.2p2): A candidate function having fewer than m
5423 // parameters is viable only if it has an ellipsis in its parameter
5424 // list (8.3.5).
5425 if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5426 Candidate.Viable = false;
5427 Candidate.FailureKind = ovl_fail_too_many_arguments;
5428 return;
5429 }
5430
5431 // (C++ 13.3.2p2): A candidate function having more than m parameters
5432 // is viable only if the (m+1)st parameter has a default argument
5433 // (8.3.6). For the purposes of overload resolution, the
5434 // parameter list is truncated on the right, so that there are
5435 // exactly m parameters.
5436 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5437 if (Args.size() < MinRequiredArgs) {
5438 // Not enough arguments.
5439 Candidate.Viable = false;
5440 Candidate.FailureKind = ovl_fail_too_few_arguments;
5441 return;
5442 }
5443
5444 Candidate.Viable = true;
5445
5446 if (Method->isStatic() || ObjectType.isNull())
5447 // The implicit object argument is ignored.
5448 Candidate.IgnoreObjectArgument = true;
5449 else {
5450 // Determine the implicit conversion sequence for the object
5451 // parameter.
5452 Candidate.Conversions[0]
5453 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5454 Method, ActingContext);
5455 if (Candidate.Conversions[0].isBad()) {
5456 Candidate.Viable = false;
5457 Candidate.FailureKind = ovl_fail_bad_conversion;
5458 return;
5459 }
5460 }
5461
5462 // Determine the implicit conversion sequences for each of the
5463 // arguments.
5464 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5465 if (ArgIdx < NumArgsInProto) {
5466 // (C++ 13.3.2p3): for F to be a viable function, there shall
5467 // exist for each argument an implicit conversion sequence
5468 // (13.3.3.1) that converts that argument to the corresponding
5469 // parameter of F.
5470 QualType ParamType = Proto->getArgType(ArgIdx);
5471 Candidate.Conversions[ArgIdx + 1]
5472 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5473 SuppressUserConversions,
5474 /*InOverloadResolution=*/true,
5475 /*AllowObjCWritebackConversion=*/
5476 getLangOpts().ObjCAutoRefCount);
5477 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5478 Candidate.Viable = false;
5479 Candidate.FailureKind = ovl_fail_bad_conversion;
5480 break;
5481 }
5482 } else {
5483 // (C++ 13.3.2p2): For the purposes of overload resolution, any
5484 // argument for which there is no corresponding parameter is
5485 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5486 Candidate.Conversions[ArgIdx + 1].setEllipsis();
5487 }
5488 }
5489 }
5490
5491 /// \brief Add a C++ member function template as a candidate to the candidate
5492 /// set, using template argument deduction to produce an appropriate member
5493 /// function template specialization.
5494 void
AddMethodTemplateCandidate(FunctionTemplateDecl * MethodTmpl,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ObjectType,Expr::Classification ObjectClassification,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5495 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5496 DeclAccessPair FoundDecl,
5497 CXXRecordDecl *ActingContext,
5498 TemplateArgumentListInfo *ExplicitTemplateArgs,
5499 QualType ObjectType,
5500 Expr::Classification ObjectClassification,
5501 llvm::ArrayRef<Expr *> Args,
5502 OverloadCandidateSet& CandidateSet,
5503 bool SuppressUserConversions) {
5504 if (!CandidateSet.isNewCandidate(MethodTmpl))
5505 return;
5506
5507 // C++ [over.match.funcs]p7:
5508 // In each case where a candidate is a function template, candidate
5509 // function template specializations are generated using template argument
5510 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
5511 // candidate functions in the usual way.113) A given name can refer to one
5512 // or more function templates and also to a set of overloaded non-template
5513 // functions. In such a case, the candidate functions generated from each
5514 // function template are combined with the set of non-template candidate
5515 // functions.
5516 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5517 FunctionDecl *Specialization = 0;
5518 if (TemplateDeductionResult Result
5519 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5520 Specialization, Info)) {
5521 OverloadCandidate &Candidate = CandidateSet.addCandidate();
5522 Candidate.FoundDecl = FoundDecl;
5523 Candidate.Function = MethodTmpl->getTemplatedDecl();
5524 Candidate.Viable = false;
5525 Candidate.FailureKind = ovl_fail_bad_deduction;
5526 Candidate.IsSurrogate = false;
5527 Candidate.IgnoreObjectArgument = false;
5528 Candidate.ExplicitCallArguments = Args.size();
5529 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5530 Info);
5531 return;
5532 }
5533
5534 // Add the function template specialization produced by template argument
5535 // deduction as a candidate.
5536 assert(Specialization && "Missing member function template specialization?");
5537 assert(isa<CXXMethodDecl>(Specialization) &&
5538 "Specialization is not a member function?");
5539 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5540 ActingContext, ObjectType, ObjectClassification, Args,
5541 CandidateSet, SuppressUserConversions);
5542 }
5543
5544 /// \brief Add a C++ function template specialization as a candidate
5545 /// in the candidate set, using template argument deduction to produce
5546 /// an appropriate function template specialization.
5547 void
AddTemplateOverloadCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5548 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5549 DeclAccessPair FoundDecl,
5550 TemplateArgumentListInfo *ExplicitTemplateArgs,
5551 llvm::ArrayRef<Expr *> Args,
5552 OverloadCandidateSet& CandidateSet,
5553 bool SuppressUserConversions) {
5554 if (!CandidateSet.isNewCandidate(FunctionTemplate))
5555 return;
5556
5557 // C++ [over.match.funcs]p7:
5558 // In each case where a candidate is a function template, candidate
5559 // function template specializations are generated using template argument
5560 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
5561 // candidate functions in the usual way.113) A given name can refer to one
5562 // or more function templates and also to a set of overloaded non-template
5563 // functions. In such a case, the candidate functions generated from each
5564 // function template are combined with the set of non-template candidate
5565 // functions.
5566 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5567 FunctionDecl *Specialization = 0;
5568 if (TemplateDeductionResult Result
5569 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5570 Specialization, Info)) {
5571 OverloadCandidate &Candidate = CandidateSet.addCandidate();
5572 Candidate.FoundDecl = FoundDecl;
5573 Candidate.Function = FunctionTemplate->getTemplatedDecl();
5574 Candidate.Viable = false;
5575 Candidate.FailureKind = ovl_fail_bad_deduction;
5576 Candidate.IsSurrogate = false;
5577 Candidate.IgnoreObjectArgument = false;
5578 Candidate.ExplicitCallArguments = Args.size();
5579 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5580 Info);
5581 return;
5582 }
5583
5584 // Add the function template specialization produced by template argument
5585 // deduction as a candidate.
5586 assert(Specialization && "Missing function template specialization?");
5587 AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5588 SuppressUserConversions);
5589 }
5590
5591 /// AddConversionCandidate - Add a C++ conversion function as a
5592 /// candidate in the candidate set (C++ [over.match.conv],
5593 /// C++ [over.match.copy]). From is the expression we're converting from,
5594 /// and ToType is the type that we're eventually trying to convert to
5595 /// (which may or may not be the same type as the type that the
5596 /// conversion function produces).
5597 void
AddConversionCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet)5598 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5599 DeclAccessPair FoundDecl,
5600 CXXRecordDecl *ActingContext,
5601 Expr *From, QualType ToType,
5602 OverloadCandidateSet& CandidateSet) {
5603 assert(!Conversion->getDescribedFunctionTemplate() &&
5604 "Conversion function templates use AddTemplateConversionCandidate");
5605 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5606 if (!CandidateSet.isNewCandidate(Conversion))
5607 return;
5608
5609 // Overload resolution is always an unevaluated context.
5610 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5611
5612 // Add this candidate
5613 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5614 Candidate.FoundDecl = FoundDecl;
5615 Candidate.Function = Conversion;
5616 Candidate.IsSurrogate = false;
5617 Candidate.IgnoreObjectArgument = false;
5618 Candidate.FinalConversion.setAsIdentityConversion();
5619 Candidate.FinalConversion.setFromType(ConvType);
5620 Candidate.FinalConversion.setAllToTypes(ToType);
5621 Candidate.Viable = true;
5622 Candidate.ExplicitCallArguments = 1;
5623
5624 // C++ [over.match.funcs]p4:
5625 // For conversion functions, the function is considered to be a member of
5626 // the class of the implicit implied object argument for the purpose of
5627 // defining the type of the implicit object parameter.
5628 //
5629 // Determine the implicit conversion sequence for the implicit
5630 // object parameter.
5631 QualType ImplicitParamType = From->getType();
5632 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5633 ImplicitParamType = FromPtrType->getPointeeType();
5634 CXXRecordDecl *ConversionContext
5635 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5636
5637 Candidate.Conversions[0]
5638 = TryObjectArgumentInitialization(*this, From->getType(),
5639 From->Classify(Context),
5640 Conversion, ConversionContext);
5641
5642 if (Candidate.Conversions[0].isBad()) {
5643 Candidate.Viable = false;
5644 Candidate.FailureKind = ovl_fail_bad_conversion;
5645 return;
5646 }
5647
5648 // We won't go through a user-define type conversion function to convert a
5649 // derived to base as such conversions are given Conversion Rank. They only
5650 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5651 QualType FromCanon
5652 = Context.getCanonicalType(From->getType().getUnqualifiedType());
5653 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5654 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5655 Candidate.Viable = false;
5656 Candidate.FailureKind = ovl_fail_trivial_conversion;
5657 return;
5658 }
5659
5660 // To determine what the conversion from the result of calling the
5661 // conversion function to the type we're eventually trying to
5662 // convert to (ToType), we need to synthesize a call to the
5663 // conversion function and attempt copy initialization from it. This
5664 // makes sure that we get the right semantics with respect to
5665 // lvalues/rvalues and the type. Fortunately, we can allocate this
5666 // call on the stack and we don't need its arguments to be
5667 // well-formed.
5668 DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5669 VK_LValue, From->getLocStart());
5670 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5671 Context.getPointerType(Conversion->getType()),
5672 CK_FunctionToPointerDecay,
5673 &ConversionRef, VK_RValue);
5674
5675 QualType ConversionType = Conversion->getConversionType();
5676 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5677 Candidate.Viable = false;
5678 Candidate.FailureKind = ovl_fail_bad_final_conversion;
5679 return;
5680 }
5681
5682 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5683
5684 // Note that it is safe to allocate CallExpr on the stack here because
5685 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5686 // allocator).
5687 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5688 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
5689 From->getLocStart());
5690 ImplicitConversionSequence ICS =
5691 TryCopyInitialization(*this, &Call, ToType,
5692 /*SuppressUserConversions=*/true,
5693 /*InOverloadResolution=*/false,
5694 /*AllowObjCWritebackConversion=*/false);
5695
5696 switch (ICS.getKind()) {
5697 case ImplicitConversionSequence::StandardConversion:
5698 Candidate.FinalConversion = ICS.Standard;
5699
5700 // C++ [over.ics.user]p3:
5701 // If the user-defined conversion is specified by a specialization of a
5702 // conversion function template, the second standard conversion sequence
5703 // shall have exact match rank.
5704 if (Conversion->getPrimaryTemplate() &&
5705 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5706 Candidate.Viable = false;
5707 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5708 }
5709
5710 // C++0x [dcl.init.ref]p5:
5711 // In the second case, if the reference is an rvalue reference and
5712 // the second standard conversion sequence of the user-defined
5713 // conversion sequence includes an lvalue-to-rvalue conversion, the
5714 // program is ill-formed.
5715 if (ToType->isRValueReferenceType() &&
5716 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5717 Candidate.Viable = false;
5718 Candidate.FailureKind = ovl_fail_bad_final_conversion;
5719 }
5720 break;
5721
5722 case ImplicitConversionSequence::BadConversion:
5723 Candidate.Viable = false;
5724 Candidate.FailureKind = ovl_fail_bad_final_conversion;
5725 break;
5726
5727 default:
5728 llvm_unreachable(
5729 "Can only end up with a standard conversion sequence or failure");
5730 }
5731 }
5732
5733 /// \brief Adds a conversion function template specialization
5734 /// candidate to the overload set, using template argument deduction
5735 /// to deduce the template arguments of the conversion function
5736 /// template from the type that we are converting to (C++
5737 /// [temp.deduct.conv]).
5738 void
AddTemplateConversionCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,CXXRecordDecl * ActingDC,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet)5739 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5740 DeclAccessPair FoundDecl,
5741 CXXRecordDecl *ActingDC,
5742 Expr *From, QualType ToType,
5743 OverloadCandidateSet &CandidateSet) {
5744 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5745 "Only conversion function templates permitted here");
5746
5747 if (!CandidateSet.isNewCandidate(FunctionTemplate))
5748 return;
5749
5750 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5751 CXXConversionDecl *Specialization = 0;
5752 if (TemplateDeductionResult Result
5753 = DeduceTemplateArguments(FunctionTemplate, ToType,
5754 Specialization, Info)) {
5755 OverloadCandidate &Candidate = CandidateSet.addCandidate();
5756 Candidate.FoundDecl = FoundDecl;
5757 Candidate.Function = FunctionTemplate->getTemplatedDecl();
5758 Candidate.Viable = false;
5759 Candidate.FailureKind = ovl_fail_bad_deduction;
5760 Candidate.IsSurrogate = false;
5761 Candidate.IgnoreObjectArgument = false;
5762 Candidate.ExplicitCallArguments = 1;
5763 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5764 Info);
5765 return;
5766 }
5767
5768 // Add the conversion function template specialization produced by
5769 // template argument deduction as a candidate.
5770 assert(Specialization && "Missing function template specialization?");
5771 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5772 CandidateSet);
5773 }
5774
5775 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5776 /// converts the given @c Object to a function pointer via the
5777 /// conversion function @c Conversion, and then attempts to call it
5778 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
5779 /// the type of function that we'll eventually be calling.
AddSurrogateCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,const FunctionProtoType * Proto,Expr * Object,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)5780 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
5781 DeclAccessPair FoundDecl,
5782 CXXRecordDecl *ActingContext,
5783 const FunctionProtoType *Proto,
5784 Expr *Object,
5785 llvm::ArrayRef<Expr *> Args,
5786 OverloadCandidateSet& CandidateSet) {
5787 if (!CandidateSet.isNewCandidate(Conversion))
5788 return;
5789
5790 // Overload resolution is always an unevaluated context.
5791 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5792
5793 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5794 Candidate.FoundDecl = FoundDecl;
5795 Candidate.Function = 0;
5796 Candidate.Surrogate = Conversion;
5797 Candidate.Viable = true;
5798 Candidate.IsSurrogate = true;
5799 Candidate.IgnoreObjectArgument = false;
5800 Candidate.ExplicitCallArguments = Args.size();
5801
5802 // Determine the implicit conversion sequence for the implicit
5803 // object parameter.
5804 ImplicitConversionSequence ObjectInit
5805 = TryObjectArgumentInitialization(*this, Object->getType(),
5806 Object->Classify(Context),
5807 Conversion, ActingContext);
5808 if (ObjectInit.isBad()) {
5809 Candidate.Viable = false;
5810 Candidate.FailureKind = ovl_fail_bad_conversion;
5811 Candidate.Conversions[0] = ObjectInit;
5812 return;
5813 }
5814
5815 // The first conversion is actually a user-defined conversion whose
5816 // first conversion is ObjectInit's standard conversion (which is
5817 // effectively a reference binding). Record it as such.
5818 Candidate.Conversions[0].setUserDefined();
5819 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5820 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5821 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5822 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5823 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5824 Candidate.Conversions[0].UserDefined.After
5825 = Candidate.Conversions[0].UserDefined.Before;
5826 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5827
5828 // Find the
5829 unsigned NumArgsInProto = Proto->getNumArgs();
5830
5831 // (C++ 13.3.2p2): A candidate function having fewer than m
5832 // parameters is viable only if it has an ellipsis in its parameter
5833 // list (8.3.5).
5834 if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5835 Candidate.Viable = false;
5836 Candidate.FailureKind = ovl_fail_too_many_arguments;
5837 return;
5838 }
5839
5840 // Function types don't have any default arguments, so just check if
5841 // we have enough arguments.
5842 if (Args.size() < NumArgsInProto) {
5843 // Not enough arguments.
5844 Candidate.Viable = false;
5845 Candidate.FailureKind = ovl_fail_too_few_arguments;
5846 return;
5847 }
5848
5849 // Determine the implicit conversion sequences for each of the
5850 // arguments.
5851 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5852 if (ArgIdx < NumArgsInProto) {
5853 // (C++ 13.3.2p3): for F to be a viable function, there shall
5854 // exist for each argument an implicit conversion sequence
5855 // (13.3.3.1) that converts that argument to the corresponding
5856 // parameter of F.
5857 QualType ParamType = Proto->getArgType(ArgIdx);
5858 Candidate.Conversions[ArgIdx + 1]
5859 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5860 /*SuppressUserConversions=*/false,
5861 /*InOverloadResolution=*/false,
5862 /*AllowObjCWritebackConversion=*/
5863 getLangOpts().ObjCAutoRefCount);
5864 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5865 Candidate.Viable = false;
5866 Candidate.FailureKind = ovl_fail_bad_conversion;
5867 break;
5868 }
5869 } else {
5870 // (C++ 13.3.2p2): For the purposes of overload resolution, any
5871 // argument for which there is no corresponding parameter is
5872 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5873 Candidate.Conversions[ArgIdx + 1].setEllipsis();
5874 }
5875 }
5876 }
5877
5878 /// \brief Add overload candidates for overloaded operators that are
5879 /// member functions.
5880 ///
5881 /// Add the overloaded operator candidates that are member functions
5882 /// for the operator Op that was used in an operator expression such
5883 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
5884 /// CandidateSet will store the added overload candidates. (C++
5885 /// [over.match.oper]).
AddMemberOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,SourceRange OpRange)5886 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5887 SourceLocation OpLoc,
5888 Expr **Args, unsigned NumArgs,
5889 OverloadCandidateSet& CandidateSet,
5890 SourceRange OpRange) {
5891 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5892
5893 // C++ [over.match.oper]p3:
5894 // For a unary operator @ with an operand of a type whose
5895 // cv-unqualified version is T1, and for a binary operator @ with
5896 // a left operand of a type whose cv-unqualified version is T1 and
5897 // a right operand of a type whose cv-unqualified version is T2,
5898 // three sets of candidate functions, designated member
5899 // candidates, non-member candidates and built-in candidates, are
5900 // constructed as follows:
5901 QualType T1 = Args[0]->getType();
5902
5903 // -- If T1 is a class type, the set of member candidates is the
5904 // result of the qualified lookup of T1::operator@
5905 // (13.3.1.1.1); otherwise, the set of member candidates is
5906 // empty.
5907 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5908 // Complete the type if it can be completed. Otherwise, we're done.
5909 if (RequireCompleteType(OpLoc, T1, PDiag()))
5910 return;
5911
5912 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5913 LookupQualifiedName(Operators, T1Rec->getDecl());
5914 Operators.suppressDiagnostics();
5915
5916 for (LookupResult::iterator Oper = Operators.begin(),
5917 OperEnd = Operators.end();
5918 Oper != OperEnd;
5919 ++Oper)
5920 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5921 Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5922 CandidateSet,
5923 /* SuppressUserConversions = */ false);
5924 }
5925 }
5926
5927 /// AddBuiltinCandidate - Add a candidate for a built-in
5928 /// operator. ResultTy and ParamTys are the result and parameter types
5929 /// of the built-in candidate, respectively. Args and NumArgs are the
5930 /// arguments being passed to the candidate. IsAssignmentOperator
5931 /// should be true when this built-in candidate is an assignment
5932 /// operator. NumContextualBoolArguments is the number of arguments
5933 /// (at the beginning of the argument list) that will be contextually
5934 /// converted to bool.
AddBuiltinCandidate(QualType ResultTy,QualType * ParamTys,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool IsAssignmentOperator,unsigned NumContextualBoolArguments)5935 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5936 Expr **Args, unsigned NumArgs,
5937 OverloadCandidateSet& CandidateSet,
5938 bool IsAssignmentOperator,
5939 unsigned NumContextualBoolArguments) {
5940 // Overload resolution is always an unevaluated context.
5941 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5942
5943 // Add this candidate
5944 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5945 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5946 Candidate.Function = 0;
5947 Candidate.IsSurrogate = false;
5948 Candidate.IgnoreObjectArgument = false;
5949 Candidate.BuiltinTypes.ResultTy = ResultTy;
5950 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5951 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5952
5953 // Determine the implicit conversion sequences for each of the
5954 // arguments.
5955 Candidate.Viable = true;
5956 Candidate.ExplicitCallArguments = NumArgs;
5957 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5958 // C++ [over.match.oper]p4:
5959 // For the built-in assignment operators, conversions of the
5960 // left operand are restricted as follows:
5961 // -- no temporaries are introduced to hold the left operand, and
5962 // -- no user-defined conversions are applied to the left
5963 // operand to achieve a type match with the left-most
5964 // parameter of a built-in candidate.
5965 //
5966 // We block these conversions by turning off user-defined
5967 // conversions, since that is the only way that initialization of
5968 // a reference to a non-class type can occur from something that
5969 // is not of the same type.
5970 if (ArgIdx < NumContextualBoolArguments) {
5971 assert(ParamTys[ArgIdx] == Context.BoolTy &&
5972 "Contextual conversion to bool requires bool type");
5973 Candidate.Conversions[ArgIdx]
5974 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
5975 } else {
5976 Candidate.Conversions[ArgIdx]
5977 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
5978 ArgIdx == 0 && IsAssignmentOperator,
5979 /*InOverloadResolution=*/false,
5980 /*AllowObjCWritebackConversion=*/
5981 getLangOpts().ObjCAutoRefCount);
5982 }
5983 if (Candidate.Conversions[ArgIdx].isBad()) {
5984 Candidate.Viable = false;
5985 Candidate.FailureKind = ovl_fail_bad_conversion;
5986 break;
5987 }
5988 }
5989 }
5990
5991 /// BuiltinCandidateTypeSet - A set of types that will be used for the
5992 /// candidate operator functions for built-in operators (C++
5993 /// [over.built]). The types are separated into pointer types and
5994 /// enumeration types.
5995 class BuiltinCandidateTypeSet {
5996 /// TypeSet - A set of types.
5997 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
5998
5999 /// PointerTypes - The set of pointer types that will be used in the
6000 /// built-in candidates.
6001 TypeSet PointerTypes;
6002
6003 /// MemberPointerTypes - The set of member pointer types that will be
6004 /// used in the built-in candidates.
6005 TypeSet MemberPointerTypes;
6006
6007 /// EnumerationTypes - The set of enumeration types that will be
6008 /// used in the built-in candidates.
6009 TypeSet EnumerationTypes;
6010
6011 /// \brief The set of vector types that will be used in the built-in
6012 /// candidates.
6013 TypeSet VectorTypes;
6014
6015 /// \brief A flag indicating non-record types are viable candidates
6016 bool HasNonRecordTypes;
6017
6018 /// \brief A flag indicating whether either arithmetic or enumeration types
6019 /// were present in the candidate set.
6020 bool HasArithmeticOrEnumeralTypes;
6021
6022 /// \brief A flag indicating whether the nullptr type was present in the
6023 /// candidate set.
6024 bool HasNullPtrType;
6025
6026 /// Sema - The semantic analysis instance where we are building the
6027 /// candidate type set.
6028 Sema &SemaRef;
6029
6030 /// Context - The AST context in which we will build the type sets.
6031 ASTContext &Context;
6032
6033 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6034 const Qualifiers &VisibleQuals);
6035 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6036
6037 public:
6038 /// iterator - Iterates through the types that are part of the set.
6039 typedef TypeSet::iterator iterator;
6040
BuiltinCandidateTypeSet(Sema & SemaRef)6041 BuiltinCandidateTypeSet(Sema &SemaRef)
6042 : HasNonRecordTypes(false),
6043 HasArithmeticOrEnumeralTypes(false),
6044 HasNullPtrType(false),
6045 SemaRef(SemaRef),
6046 Context(SemaRef.Context) { }
6047
6048 void AddTypesConvertedFrom(QualType Ty,
6049 SourceLocation Loc,
6050 bool AllowUserConversions,
6051 bool AllowExplicitConversions,
6052 const Qualifiers &VisibleTypeConversionsQuals);
6053
6054 /// pointer_begin - First pointer type found;
pointer_begin()6055 iterator pointer_begin() { return PointerTypes.begin(); }
6056
6057 /// pointer_end - Past the last pointer type found;
pointer_end()6058 iterator pointer_end() { return PointerTypes.end(); }
6059
6060 /// member_pointer_begin - First member pointer type found;
member_pointer_begin()6061 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6062
6063 /// member_pointer_end - Past the last member pointer type found;
member_pointer_end()6064 iterator member_pointer_end() { return MemberPointerTypes.end(); }
6065
6066 /// enumeration_begin - First enumeration type found;
enumeration_begin()6067 iterator enumeration_begin() { return EnumerationTypes.begin(); }
6068
6069 /// enumeration_end - Past the last enumeration type found;
enumeration_end()6070 iterator enumeration_end() { return EnumerationTypes.end(); }
6071
vector_begin()6072 iterator vector_begin() { return VectorTypes.begin(); }
vector_end()6073 iterator vector_end() { return VectorTypes.end(); }
6074
hasNonRecordTypes()6075 bool hasNonRecordTypes() { return HasNonRecordTypes; }
hasArithmeticOrEnumeralTypes()6076 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
hasNullPtrType() const6077 bool hasNullPtrType() const { return HasNullPtrType; }
6078 };
6079
6080 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6081 /// the set of pointer types along with any more-qualified variants of
6082 /// that type. For example, if @p Ty is "int const *", this routine
6083 /// will add "int const *", "int const volatile *", "int const
6084 /// restrict *", and "int const volatile restrict *" to the set of
6085 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6086 /// false otherwise.
6087 ///
6088 /// FIXME: what to do about extended qualifiers?
6089 bool
AddPointerWithMoreQualifiedTypeVariants(QualType Ty,const Qualifiers & VisibleQuals)6090 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6091 const Qualifiers &VisibleQuals) {
6092
6093 // Insert this type.
6094 if (!PointerTypes.insert(Ty))
6095 return false;
6096
6097 QualType PointeeTy;
6098 const PointerType *PointerTy = Ty->getAs<PointerType>();
6099 bool buildObjCPtr = false;
6100 if (!PointerTy) {
6101 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
6102 PointeeTy = PTy->getPointeeType();
6103 buildObjCPtr = true;
6104 }
6105 else
6106 llvm_unreachable("type was not a pointer type!");
6107 }
6108 else
6109 PointeeTy = PointerTy->getPointeeType();
6110
6111 // Don't add qualified variants of arrays. For one, they're not allowed
6112 // (the qualifier would sink to the element type), and for another, the
6113 // only overload situation where it matters is subscript or pointer +- int,
6114 // and those shouldn't have qualifier variants anyway.
6115 if (PointeeTy->isArrayType())
6116 return true;
6117 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6118 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
6119 BaseCVR = Array->getElementType().getCVRQualifiers();
6120 bool hasVolatile = VisibleQuals.hasVolatile();
6121 bool hasRestrict = VisibleQuals.hasRestrict();
6122
6123 // Iterate through all strict supersets of BaseCVR.
6124 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6125 if ((CVR | BaseCVR) != CVR) continue;
6126 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
6127 // in the types.
6128 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6129 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
6130 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6131 if (!buildObjCPtr)
6132 PointerTypes.insert(Context.getPointerType(QPointeeTy));
6133 else
6134 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
6135 }
6136
6137 return true;
6138 }
6139
6140 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6141 /// to the set of pointer types along with any more-qualified variants of
6142 /// that type. For example, if @p Ty is "int const *", this routine
6143 /// will add "int const *", "int const volatile *", "int const
6144 /// restrict *", and "int const volatile restrict *" to the set of
6145 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6146 /// false otherwise.
6147 ///
6148 /// FIXME: what to do about extended qualifiers?
6149 bool
AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty)6150 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6151 QualType Ty) {
6152 // Insert this type.
6153 if (!MemberPointerTypes.insert(Ty))
6154 return false;
6155
6156 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6157 assert(PointerTy && "type was not a member pointer type!");
6158
6159 QualType PointeeTy = PointerTy->getPointeeType();
6160 // Don't add qualified variants of arrays. For one, they're not allowed
6161 // (the qualifier would sink to the element type), and for another, the
6162 // only overload situation where it matters is subscript or pointer +- int,
6163 // and those shouldn't have qualifier variants anyway.
6164 if (PointeeTy->isArrayType())
6165 return true;
6166 const Type *ClassTy = PointerTy->getClass();
6167
6168 // Iterate through all strict supersets of the pointee type's CVR
6169 // qualifiers.
6170 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6171 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6172 if ((CVR | BaseCVR) != CVR) continue;
6173
6174 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6175 MemberPointerTypes.insert(
6176 Context.getMemberPointerType(QPointeeTy, ClassTy));
6177 }
6178
6179 return true;
6180 }
6181
6182 /// AddTypesConvertedFrom - Add each of the types to which the type @p
6183 /// Ty can be implicit converted to the given set of @p Types. We're
6184 /// primarily interested in pointer types and enumeration types. We also
6185 /// take member pointer types, for the conditional operator.
6186 /// AllowUserConversions is true if we should look at the conversion
6187 /// functions of a class type, and AllowExplicitConversions if we
6188 /// should also include the explicit conversion functions of a class
6189 /// type.
6190 void
AddTypesConvertedFrom(QualType Ty,SourceLocation Loc,bool AllowUserConversions,bool AllowExplicitConversions,const Qualifiers & VisibleQuals)6191 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6192 SourceLocation Loc,
6193 bool AllowUserConversions,
6194 bool AllowExplicitConversions,
6195 const Qualifiers &VisibleQuals) {
6196 // Only deal with canonical types.
6197 Ty = Context.getCanonicalType(Ty);
6198
6199 // Look through reference types; they aren't part of the type of an
6200 // expression for the purposes of conversions.
6201 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6202 Ty = RefTy->getPointeeType();
6203
6204 // If we're dealing with an array type, decay to the pointer.
6205 if (Ty->isArrayType())
6206 Ty = SemaRef.Context.getArrayDecayedType(Ty);
6207
6208 // Otherwise, we don't care about qualifiers on the type.
6209 Ty = Ty.getLocalUnqualifiedType();
6210
6211 // Flag if we ever add a non-record type.
6212 const RecordType *TyRec = Ty->getAs<RecordType>();
6213 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6214
6215 // Flag if we encounter an arithmetic type.
6216 HasArithmeticOrEnumeralTypes =
6217 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6218
6219 if (Ty->isObjCIdType() || Ty->isObjCClassType())
6220 PointerTypes.insert(Ty);
6221 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6222 // Insert our type, and its more-qualified variants, into the set
6223 // of types.
6224 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6225 return;
6226 } else if (Ty->isMemberPointerType()) {
6227 // Member pointers are far easier, since the pointee can't be converted.
6228 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6229 return;
6230 } else if (Ty->isEnumeralType()) {
6231 HasArithmeticOrEnumeralTypes = true;
6232 EnumerationTypes.insert(Ty);
6233 } else if (Ty->isVectorType()) {
6234 // We treat vector types as arithmetic types in many contexts as an
6235 // extension.
6236 HasArithmeticOrEnumeralTypes = true;
6237 VectorTypes.insert(Ty);
6238 } else if (Ty->isNullPtrType()) {
6239 HasNullPtrType = true;
6240 } else if (AllowUserConversions && TyRec) {
6241 // No conversion functions in incomplete types.
6242 if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6243 return;
6244
6245 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6246 const UnresolvedSetImpl *Conversions
6247 = ClassDecl->getVisibleConversionFunctions();
6248 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6249 E = Conversions->end(); I != E; ++I) {
6250 NamedDecl *D = I.getDecl();
6251 if (isa<UsingShadowDecl>(D))
6252 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6253
6254 // Skip conversion function templates; they don't tell us anything
6255 // about which builtin types we can convert to.
6256 if (isa<FunctionTemplateDecl>(D))
6257 continue;
6258
6259 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6260 if (AllowExplicitConversions || !Conv->isExplicit()) {
6261 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6262 VisibleQuals);
6263 }
6264 }
6265 }
6266 }
6267
6268 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6269 /// the volatile- and non-volatile-qualified assignment operators for the
6270 /// given type to the candidate set.
AddBuiltinAssignmentOperatorCandidates(Sema & S,QualType T,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet)6271 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6272 QualType T,
6273 Expr **Args,
6274 unsigned NumArgs,
6275 OverloadCandidateSet &CandidateSet) {
6276 QualType ParamTypes[2];
6277
6278 // T& operator=(T&, T)
6279 ParamTypes[0] = S.Context.getLValueReferenceType(T);
6280 ParamTypes[1] = T;
6281 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6282 /*IsAssignmentOperator=*/true);
6283
6284 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6285 // volatile T& operator=(volatile T&, T)
6286 ParamTypes[0]
6287 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6288 ParamTypes[1] = T;
6289 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6290 /*IsAssignmentOperator=*/true);
6291 }
6292 }
6293
6294 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6295 /// if any, found in visible type conversion functions found in ArgExpr's type.
CollectVRQualifiers(ASTContext & Context,Expr * ArgExpr)6296 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6297 Qualifiers VRQuals;
6298 const RecordType *TyRec;
6299 if (const MemberPointerType *RHSMPType =
6300 ArgExpr->getType()->getAs<MemberPointerType>())
6301 TyRec = RHSMPType->getClass()->getAs<RecordType>();
6302 else
6303 TyRec = ArgExpr->getType()->getAs<RecordType>();
6304 if (!TyRec) {
6305 // Just to be safe, assume the worst case.
6306 VRQuals.addVolatile();
6307 VRQuals.addRestrict();
6308 return VRQuals;
6309 }
6310
6311 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6312 if (!ClassDecl->hasDefinition())
6313 return VRQuals;
6314
6315 const UnresolvedSetImpl *Conversions =
6316 ClassDecl->getVisibleConversionFunctions();
6317
6318 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6319 E = Conversions->end(); I != E; ++I) {
6320 NamedDecl *D = I.getDecl();
6321 if (isa<UsingShadowDecl>(D))
6322 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6323 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6324 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6325 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6326 CanTy = ResTypeRef->getPointeeType();
6327 // Need to go down the pointer/mempointer chain and add qualifiers
6328 // as see them.
6329 bool done = false;
6330 while (!done) {
6331 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6332 CanTy = ResTypePtr->getPointeeType();
6333 else if (const MemberPointerType *ResTypeMPtr =
6334 CanTy->getAs<MemberPointerType>())
6335 CanTy = ResTypeMPtr->getPointeeType();
6336 else
6337 done = true;
6338 if (CanTy.isVolatileQualified())
6339 VRQuals.addVolatile();
6340 if (CanTy.isRestrictQualified())
6341 VRQuals.addRestrict();
6342 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6343 return VRQuals;
6344 }
6345 }
6346 }
6347 return VRQuals;
6348 }
6349
6350 namespace {
6351
6352 /// \brief Helper class to manage the addition of builtin operator overload
6353 /// candidates. It provides shared state and utility methods used throughout
6354 /// the process, as well as a helper method to add each group of builtin
6355 /// operator overloads from the standard to a candidate set.
6356 class BuiltinOperatorOverloadBuilder {
6357 // Common instance state available to all overload candidate addition methods.
6358 Sema &S;
6359 Expr **Args;
6360 unsigned NumArgs;
6361 Qualifiers VisibleTypeConversionsQuals;
6362 bool HasArithmeticOrEnumeralCandidateType;
6363 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6364 OverloadCandidateSet &CandidateSet;
6365
6366 // Define some constants used to index and iterate over the arithemetic types
6367 // provided via the getArithmeticType() method below.
6368 // The "promoted arithmetic types" are the arithmetic
6369 // types are that preserved by promotion (C++ [over.built]p2).
6370 static const unsigned FirstIntegralType = 3;
6371 static const unsigned LastIntegralType = 18;
6372 static const unsigned FirstPromotedIntegralType = 3,
6373 LastPromotedIntegralType = 9;
6374 static const unsigned FirstPromotedArithmeticType = 0,
6375 LastPromotedArithmeticType = 9;
6376 static const unsigned NumArithmeticTypes = 18;
6377
6378 /// \brief Get the canonical type for a given arithmetic type index.
getArithmeticType(unsigned index)6379 CanQualType getArithmeticType(unsigned index) {
6380 assert(index < NumArithmeticTypes);
6381 static CanQualType ASTContext::* const
6382 ArithmeticTypes[NumArithmeticTypes] = {
6383 // Start of promoted types.
6384 &ASTContext::FloatTy,
6385 &ASTContext::DoubleTy,
6386 &ASTContext::LongDoubleTy,
6387
6388 // Start of integral types.
6389 &ASTContext::IntTy,
6390 &ASTContext::LongTy,
6391 &ASTContext::LongLongTy,
6392 &ASTContext::UnsignedIntTy,
6393 &ASTContext::UnsignedLongTy,
6394 &ASTContext::UnsignedLongLongTy,
6395 // End of promoted types.
6396
6397 &ASTContext::BoolTy,
6398 &ASTContext::CharTy,
6399 &ASTContext::WCharTy,
6400 &ASTContext::Char16Ty,
6401 &ASTContext::Char32Ty,
6402 &ASTContext::SignedCharTy,
6403 &ASTContext::ShortTy,
6404 &ASTContext::UnsignedCharTy,
6405 &ASTContext::UnsignedShortTy,
6406 // End of integral types.
6407 // FIXME: What about complex?
6408 };
6409 return S.Context.*ArithmeticTypes[index];
6410 }
6411
6412 /// \brief Gets the canonical type resulting from the usual arithemetic
6413 /// converions for the given arithmetic types.
getUsualArithmeticConversions(unsigned L,unsigned R)6414 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6415 // Accelerator table for performing the usual arithmetic conversions.
6416 // The rules are basically:
6417 // - if either is floating-point, use the wider floating-point
6418 // - if same signedness, use the higher rank
6419 // - if same size, use unsigned of the higher rank
6420 // - use the larger type
6421 // These rules, together with the axiom that higher ranks are
6422 // never smaller, are sufficient to precompute all of these results
6423 // *except* when dealing with signed types of higher rank.
6424 // (we could precompute SLL x UI for all known platforms, but it's
6425 // better not to make any assumptions).
6426 enum PromotedType {
6427 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1
6428 };
6429 static PromotedType ConversionsTable[LastPromotedArithmeticType]
6430 [LastPromotedArithmeticType] = {
6431 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt },
6432 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl },
6433 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6434 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL },
6435 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL },
6436 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL },
6437 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL },
6438 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL },
6439 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL },
6440 };
6441
6442 assert(L < LastPromotedArithmeticType);
6443 assert(R < LastPromotedArithmeticType);
6444 int Idx = ConversionsTable[L][R];
6445
6446 // Fast path: the table gives us a concrete answer.
6447 if (Idx != Dep) return getArithmeticType(Idx);
6448
6449 // Slow path: we need to compare widths.
6450 // An invariant is that the signed type has higher rank.
6451 CanQualType LT = getArithmeticType(L),
6452 RT = getArithmeticType(R);
6453 unsigned LW = S.Context.getIntWidth(LT),
6454 RW = S.Context.getIntWidth(RT);
6455
6456 // If they're different widths, use the signed type.
6457 if (LW > RW) return LT;
6458 else if (LW < RW) return RT;
6459
6460 // Otherwise, use the unsigned type of the signed type's rank.
6461 if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6462 assert(L == SLL || R == SLL);
6463 return S.Context.UnsignedLongLongTy;
6464 }
6465
6466 /// \brief Helper method to factor out the common pattern of adding overloads
6467 /// for '++' and '--' builtin operators.
addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,bool HasVolatile)6468 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6469 bool HasVolatile) {
6470 QualType ParamTypes[2] = {
6471 S.Context.getLValueReferenceType(CandidateTy),
6472 S.Context.IntTy
6473 };
6474
6475 // Non-volatile version.
6476 if (NumArgs == 1)
6477 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6478 else
6479 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6480
6481 // Use a heuristic to reduce number of builtin candidates in the set:
6482 // add volatile version only if there are conversions to a volatile type.
6483 if (HasVolatile) {
6484 ParamTypes[0] =
6485 S.Context.getLValueReferenceType(
6486 S.Context.getVolatileType(CandidateTy));
6487 if (NumArgs == 1)
6488 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6489 else
6490 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6491 }
6492 }
6493
6494 public:
BuiltinOperatorOverloadBuilder(Sema & S,Expr ** Args,unsigned NumArgs,Qualifiers VisibleTypeConversionsQuals,bool HasArithmeticOrEnumeralCandidateType,SmallVectorImpl<BuiltinCandidateTypeSet> & CandidateTypes,OverloadCandidateSet & CandidateSet)6495 BuiltinOperatorOverloadBuilder(
6496 Sema &S, Expr **Args, unsigned NumArgs,
6497 Qualifiers VisibleTypeConversionsQuals,
6498 bool HasArithmeticOrEnumeralCandidateType,
6499 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6500 OverloadCandidateSet &CandidateSet)
6501 : S(S), Args(Args), NumArgs(NumArgs),
6502 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6503 HasArithmeticOrEnumeralCandidateType(
6504 HasArithmeticOrEnumeralCandidateType),
6505 CandidateTypes(CandidateTypes),
6506 CandidateSet(CandidateSet) {
6507 // Validate some of our static helper constants in debug builds.
6508 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6509 "Invalid first promoted integral type");
6510 assert(getArithmeticType(LastPromotedIntegralType - 1)
6511 == S.Context.UnsignedLongLongTy &&
6512 "Invalid last promoted integral type");
6513 assert(getArithmeticType(FirstPromotedArithmeticType)
6514 == S.Context.FloatTy &&
6515 "Invalid first promoted arithmetic type");
6516 assert(getArithmeticType(LastPromotedArithmeticType - 1)
6517 == S.Context.UnsignedLongLongTy &&
6518 "Invalid last promoted arithmetic type");
6519 }
6520
6521 // C++ [over.built]p3:
6522 //
6523 // For every pair (T, VQ), where T is an arithmetic type, and VQ
6524 // is either volatile or empty, there exist candidate operator
6525 // functions of the form
6526 //
6527 // VQ T& operator++(VQ T&);
6528 // T operator++(VQ T&, int);
6529 //
6530 // C++ [over.built]p4:
6531 //
6532 // For every pair (T, VQ), where T is an arithmetic type other
6533 // than bool, and VQ is either volatile or empty, there exist
6534 // candidate operator functions of the form
6535 //
6536 // VQ T& operator--(VQ T&);
6537 // T operator--(VQ T&, int);
addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op)6538 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6539 if (!HasArithmeticOrEnumeralCandidateType)
6540 return;
6541
6542 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6543 Arith < NumArithmeticTypes; ++Arith) {
6544 addPlusPlusMinusMinusStyleOverloads(
6545 getArithmeticType(Arith),
6546 VisibleTypeConversionsQuals.hasVolatile());
6547 }
6548 }
6549
6550 // C++ [over.built]p5:
6551 //
6552 // For every pair (T, VQ), where T is a cv-qualified or
6553 // cv-unqualified object type, and VQ is either volatile or
6554 // empty, there exist candidate operator functions of the form
6555 //
6556 // T*VQ& operator++(T*VQ&);
6557 // T*VQ& operator--(T*VQ&);
6558 // T* operator++(T*VQ&, int);
6559 // T* operator--(T*VQ&, int);
addPlusPlusMinusMinusPointerOverloads()6560 void addPlusPlusMinusMinusPointerOverloads() {
6561 for (BuiltinCandidateTypeSet::iterator
6562 Ptr = CandidateTypes[0].pointer_begin(),
6563 PtrEnd = CandidateTypes[0].pointer_end();
6564 Ptr != PtrEnd; ++Ptr) {
6565 // Skip pointer types that aren't pointers to object types.
6566 if (!(*Ptr)->getPointeeType()->isObjectType())
6567 continue;
6568
6569 addPlusPlusMinusMinusStyleOverloads(*Ptr,
6570 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6571 VisibleTypeConversionsQuals.hasVolatile()));
6572 }
6573 }
6574
6575 // C++ [over.built]p6:
6576 // For every cv-qualified or cv-unqualified object type T, there
6577 // exist candidate operator functions of the form
6578 //
6579 // T& operator*(T*);
6580 //
6581 // C++ [over.built]p7:
6582 // For every function type T that does not have cv-qualifiers or a
6583 // ref-qualifier, there exist candidate operator functions of the form
6584 // T& operator*(T*);
addUnaryStarPointerOverloads()6585 void addUnaryStarPointerOverloads() {
6586 for (BuiltinCandidateTypeSet::iterator
6587 Ptr = CandidateTypes[0].pointer_begin(),
6588 PtrEnd = CandidateTypes[0].pointer_end();
6589 Ptr != PtrEnd; ++Ptr) {
6590 QualType ParamTy = *Ptr;
6591 QualType PointeeTy = ParamTy->getPointeeType();
6592 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6593 continue;
6594
6595 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6596 if (Proto->getTypeQuals() || Proto->getRefQualifier())
6597 continue;
6598
6599 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6600 &ParamTy, Args, 1, CandidateSet);
6601 }
6602 }
6603
6604 // C++ [over.built]p9:
6605 // For every promoted arithmetic type T, there exist candidate
6606 // operator functions of the form
6607 //
6608 // T operator+(T);
6609 // T operator-(T);
addUnaryPlusOrMinusArithmeticOverloads()6610 void addUnaryPlusOrMinusArithmeticOverloads() {
6611 if (!HasArithmeticOrEnumeralCandidateType)
6612 return;
6613
6614 for (unsigned Arith = FirstPromotedArithmeticType;
6615 Arith < LastPromotedArithmeticType; ++Arith) {
6616 QualType ArithTy = getArithmeticType(Arith);
6617 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
6618 }
6619
6620 // Extension: We also add these operators for vector types.
6621 for (BuiltinCandidateTypeSet::iterator
6622 Vec = CandidateTypes[0].vector_begin(),
6623 VecEnd = CandidateTypes[0].vector_end();
6624 Vec != VecEnd; ++Vec) {
6625 QualType VecTy = *Vec;
6626 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6627 }
6628 }
6629
6630 // C++ [over.built]p8:
6631 // For every type T, there exist candidate operator functions of
6632 // the form
6633 //
6634 // T* operator+(T*);
addUnaryPlusPointerOverloads()6635 void addUnaryPlusPointerOverloads() {
6636 for (BuiltinCandidateTypeSet::iterator
6637 Ptr = CandidateTypes[0].pointer_begin(),
6638 PtrEnd = CandidateTypes[0].pointer_end();
6639 Ptr != PtrEnd; ++Ptr) {
6640 QualType ParamTy = *Ptr;
6641 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
6642 }
6643 }
6644
6645 // C++ [over.built]p10:
6646 // For every promoted integral type T, there exist candidate
6647 // operator functions of the form
6648 //
6649 // T operator~(T);
addUnaryTildePromotedIntegralOverloads()6650 void addUnaryTildePromotedIntegralOverloads() {
6651 if (!HasArithmeticOrEnumeralCandidateType)
6652 return;
6653
6654 for (unsigned Int = FirstPromotedIntegralType;
6655 Int < LastPromotedIntegralType; ++Int) {
6656 QualType IntTy = getArithmeticType(Int);
6657 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
6658 }
6659
6660 // Extension: We also add this operator for vector types.
6661 for (BuiltinCandidateTypeSet::iterator
6662 Vec = CandidateTypes[0].vector_begin(),
6663 VecEnd = CandidateTypes[0].vector_end();
6664 Vec != VecEnd; ++Vec) {
6665 QualType VecTy = *Vec;
6666 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6667 }
6668 }
6669
6670 // C++ [over.match.oper]p16:
6671 // For every pointer to member type T, there exist candidate operator
6672 // functions of the form
6673 //
6674 // bool operator==(T,T);
6675 // bool operator!=(T,T);
addEqualEqualOrNotEqualMemberPointerOverloads()6676 void addEqualEqualOrNotEqualMemberPointerOverloads() {
6677 /// Set of (canonical) types that we've already handled.
6678 llvm::SmallPtrSet<QualType, 8> AddedTypes;
6679
6680 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6681 for (BuiltinCandidateTypeSet::iterator
6682 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6683 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6684 MemPtr != MemPtrEnd;
6685 ++MemPtr) {
6686 // Don't add the same builtin candidate twice.
6687 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6688 continue;
6689
6690 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6691 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6692 CandidateSet);
6693 }
6694 }
6695 }
6696
6697 // C++ [over.built]p15:
6698 //
6699 // For every T, where T is an enumeration type, a pointer type, or
6700 // std::nullptr_t, there exist candidate operator functions of the form
6701 //
6702 // bool operator<(T, T);
6703 // bool operator>(T, T);
6704 // bool operator<=(T, T);
6705 // bool operator>=(T, T);
6706 // bool operator==(T, T);
6707 // bool operator!=(T, T);
addRelationalPointerOrEnumeralOverloads()6708 void addRelationalPointerOrEnumeralOverloads() {
6709 // C++ [over.built]p1:
6710 // If there is a user-written candidate with the same name and parameter
6711 // types as a built-in candidate operator function, the built-in operator
6712 // function is hidden and is not included in the set of candidate
6713 // functions.
6714 //
6715 // The text is actually in a note, but if we don't implement it then we end
6716 // up with ambiguities when the user provides an overloaded operator for
6717 // an enumeration type. Note that only enumeration types have this problem,
6718 // so we track which enumeration types we've seen operators for. Also, the
6719 // only other overloaded operator with enumeration argumenst, operator=,
6720 // cannot be overloaded for enumeration types, so this is the only place
6721 // where we must suppress candidates like this.
6722 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6723 UserDefinedBinaryOperators;
6724
6725 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6726 if (CandidateTypes[ArgIdx].enumeration_begin() !=
6727 CandidateTypes[ArgIdx].enumeration_end()) {
6728 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
6729 CEnd = CandidateSet.end();
6730 C != CEnd; ++C) {
6731 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
6732 continue;
6733
6734 QualType FirstParamType =
6735 C->Function->getParamDecl(0)->getType().getUnqualifiedType();
6736 QualType SecondParamType =
6737 C->Function->getParamDecl(1)->getType().getUnqualifiedType();
6738
6739 // Skip if either parameter isn't of enumeral type.
6740 if (!FirstParamType->isEnumeralType() ||
6741 !SecondParamType->isEnumeralType())
6742 continue;
6743
6744 // Add this operator to the set of known user-defined operators.
6745 UserDefinedBinaryOperators.insert(
6746 std::make_pair(S.Context.getCanonicalType(FirstParamType),
6747 S.Context.getCanonicalType(SecondParamType)));
6748 }
6749 }
6750 }
6751
6752 /// Set of (canonical) types that we've already handled.
6753 llvm::SmallPtrSet<QualType, 8> AddedTypes;
6754
6755 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6756 for (BuiltinCandidateTypeSet::iterator
6757 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6758 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6759 Ptr != PtrEnd; ++Ptr) {
6760 // Don't add the same builtin candidate twice.
6761 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6762 continue;
6763
6764 QualType ParamTypes[2] = { *Ptr, *Ptr };
6765 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6766 CandidateSet);
6767 }
6768 for (BuiltinCandidateTypeSet::iterator
6769 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6770 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6771 Enum != EnumEnd; ++Enum) {
6772 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
6773
6774 // Don't add the same builtin candidate twice, or if a user defined
6775 // candidate exists.
6776 if (!AddedTypes.insert(CanonType) ||
6777 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
6778 CanonType)))
6779 continue;
6780
6781 QualType ParamTypes[2] = { *Enum, *Enum };
6782 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6783 CandidateSet);
6784 }
6785
6786 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
6787 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
6788 if (AddedTypes.insert(NullPtrTy) &&
6789 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
6790 NullPtrTy))) {
6791 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
6792 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6793 CandidateSet);
6794 }
6795 }
6796 }
6797 }
6798
6799 // C++ [over.built]p13:
6800 //
6801 // For every cv-qualified or cv-unqualified object type T
6802 // there exist candidate operator functions of the form
6803 //
6804 // T* operator+(T*, ptrdiff_t);
6805 // T& operator[](T*, ptrdiff_t); [BELOW]
6806 // T* operator-(T*, ptrdiff_t);
6807 // T* operator+(ptrdiff_t, T*);
6808 // T& operator[](ptrdiff_t, T*); [BELOW]
6809 //
6810 // C++ [over.built]p14:
6811 //
6812 // For every T, where T is a pointer to object type, there
6813 // exist candidate operator functions of the form
6814 //
6815 // ptrdiff_t operator-(T, T);
addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op)6816 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6817 /// Set of (canonical) types that we've already handled.
6818 llvm::SmallPtrSet<QualType, 8> AddedTypes;
6819
6820 for (int Arg = 0; Arg < 2; ++Arg) {
6821 QualType AsymetricParamTypes[2] = {
6822 S.Context.getPointerDiffType(),
6823 S.Context.getPointerDiffType(),
6824 };
6825 for (BuiltinCandidateTypeSet::iterator
6826 Ptr = CandidateTypes[Arg].pointer_begin(),
6827 PtrEnd = CandidateTypes[Arg].pointer_end();
6828 Ptr != PtrEnd; ++Ptr) {
6829 QualType PointeeTy = (*Ptr)->getPointeeType();
6830 if (!PointeeTy->isObjectType())
6831 continue;
6832
6833 AsymetricParamTypes[Arg] = *Ptr;
6834 if (Arg == 0 || Op == OO_Plus) {
6835 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6836 // T* operator+(ptrdiff_t, T*);
6837 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6838 CandidateSet);
6839 }
6840 if (Op == OO_Minus) {
6841 // ptrdiff_t operator-(T, T);
6842 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6843 continue;
6844
6845 QualType ParamTypes[2] = { *Ptr, *Ptr };
6846 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6847 Args, 2, CandidateSet);
6848 }
6849 }
6850 }
6851 }
6852
6853 // C++ [over.built]p12:
6854 //
6855 // For every pair of promoted arithmetic types L and R, there
6856 // exist candidate operator functions of the form
6857 //
6858 // LR operator*(L, R);
6859 // LR operator/(L, R);
6860 // LR operator+(L, R);
6861 // LR operator-(L, R);
6862 // bool operator<(L, R);
6863 // bool operator>(L, R);
6864 // bool operator<=(L, R);
6865 // bool operator>=(L, R);
6866 // bool operator==(L, R);
6867 // bool operator!=(L, R);
6868 //
6869 // where LR is the result of the usual arithmetic conversions
6870 // between types L and R.
6871 //
6872 // C++ [over.built]p24:
6873 //
6874 // For every pair of promoted arithmetic types L and R, there exist
6875 // candidate operator functions of the form
6876 //
6877 // LR operator?(bool, L, R);
6878 //
6879 // where LR is the result of the usual arithmetic conversions
6880 // between types L and R.
6881 // Our candidates ignore the first parameter.
addGenericBinaryArithmeticOverloads(bool isComparison)6882 void addGenericBinaryArithmeticOverloads(bool isComparison) {
6883 if (!HasArithmeticOrEnumeralCandidateType)
6884 return;
6885
6886 for (unsigned Left = FirstPromotedArithmeticType;
6887 Left < LastPromotedArithmeticType; ++Left) {
6888 for (unsigned Right = FirstPromotedArithmeticType;
6889 Right < LastPromotedArithmeticType; ++Right) {
6890 QualType LandR[2] = { getArithmeticType(Left),
6891 getArithmeticType(Right) };
6892 QualType Result =
6893 isComparison ? S.Context.BoolTy
6894 : getUsualArithmeticConversions(Left, Right);
6895 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6896 }
6897 }
6898
6899 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6900 // conditional operator for vector types.
6901 for (BuiltinCandidateTypeSet::iterator
6902 Vec1 = CandidateTypes[0].vector_begin(),
6903 Vec1End = CandidateTypes[0].vector_end();
6904 Vec1 != Vec1End; ++Vec1) {
6905 for (BuiltinCandidateTypeSet::iterator
6906 Vec2 = CandidateTypes[1].vector_begin(),
6907 Vec2End = CandidateTypes[1].vector_end();
6908 Vec2 != Vec2End; ++Vec2) {
6909 QualType LandR[2] = { *Vec1, *Vec2 };
6910 QualType Result = S.Context.BoolTy;
6911 if (!isComparison) {
6912 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
6913 Result = *Vec1;
6914 else
6915 Result = *Vec2;
6916 }
6917
6918 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6919 }
6920 }
6921 }
6922
6923 // C++ [over.built]p17:
6924 //
6925 // For every pair of promoted integral types L and R, there
6926 // exist candidate operator functions of the form
6927 //
6928 // LR operator%(L, R);
6929 // LR operator&(L, R);
6930 // LR operator^(L, R);
6931 // LR operator|(L, R);
6932 // L operator<<(L, R);
6933 // L operator>>(L, R);
6934 //
6935 // where LR is the result of the usual arithmetic conversions
6936 // between types L and R.
addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op)6937 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
6938 if (!HasArithmeticOrEnumeralCandidateType)
6939 return;
6940
6941 for (unsigned Left = FirstPromotedIntegralType;
6942 Left < LastPromotedIntegralType; ++Left) {
6943 for (unsigned Right = FirstPromotedIntegralType;
6944 Right < LastPromotedIntegralType; ++Right) {
6945 QualType LandR[2] = { getArithmeticType(Left),
6946 getArithmeticType(Right) };
6947 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
6948 ? LandR[0]
6949 : getUsualArithmeticConversions(Left, Right);
6950 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6951 }
6952 }
6953 }
6954
6955 // C++ [over.built]p20:
6956 //
6957 // For every pair (T, VQ), where T is an enumeration or
6958 // pointer to member type and VQ is either volatile or
6959 // empty, there exist candidate operator functions of the form
6960 //
6961 // VQ T& operator=(VQ T&, T);
addAssignmentMemberPointerOrEnumeralOverloads()6962 void addAssignmentMemberPointerOrEnumeralOverloads() {
6963 /// Set of (canonical) types that we've already handled.
6964 llvm::SmallPtrSet<QualType, 8> AddedTypes;
6965
6966 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6967 for (BuiltinCandidateTypeSet::iterator
6968 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6969 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6970 Enum != EnumEnd; ++Enum) {
6971 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6972 continue;
6973
6974 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
6975 CandidateSet);
6976 }
6977
6978 for (BuiltinCandidateTypeSet::iterator
6979 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6980 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6981 MemPtr != MemPtrEnd; ++MemPtr) {
6982 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6983 continue;
6984
6985 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
6986 CandidateSet);
6987 }
6988 }
6989 }
6990
6991 // C++ [over.built]p19:
6992 //
6993 // For every pair (T, VQ), where T is any type and VQ is either
6994 // volatile or empty, there exist candidate operator functions
6995 // of the form
6996 //
6997 // T*VQ& operator=(T*VQ&, T*);
6998 //
6999 // C++ [over.built]p21:
7000 //
7001 // For every pair (T, VQ), where T is a cv-qualified or
7002 // cv-unqualified object type and VQ is either volatile or
7003 // empty, there exist candidate operator functions of the form
7004 //
7005 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
7006 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
addAssignmentPointerOverloads(bool isEqualOp)7007 void addAssignmentPointerOverloads(bool isEqualOp) {
7008 /// Set of (canonical) types that we've already handled.
7009 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7010
7011 for (BuiltinCandidateTypeSet::iterator
7012 Ptr = CandidateTypes[0].pointer_begin(),
7013 PtrEnd = CandidateTypes[0].pointer_end();
7014 Ptr != PtrEnd; ++Ptr) {
7015 // If this is operator=, keep track of the builtin candidates we added.
7016 if (isEqualOp)
7017 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7018 else if (!(*Ptr)->getPointeeType()->isObjectType())
7019 continue;
7020
7021 // non-volatile version
7022 QualType ParamTypes[2] = {
7023 S.Context.getLValueReferenceType(*Ptr),
7024 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7025 };
7026 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7027 /*IsAssigmentOperator=*/ isEqualOp);
7028
7029 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
7030 VisibleTypeConversionsQuals.hasVolatile()) {
7031 // volatile version
7032 ParamTypes[0] =
7033 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7034 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7035 /*IsAssigmentOperator=*/isEqualOp);
7036 }
7037 }
7038
7039 if (isEqualOp) {
7040 for (BuiltinCandidateTypeSet::iterator
7041 Ptr = CandidateTypes[1].pointer_begin(),
7042 PtrEnd = CandidateTypes[1].pointer_end();
7043 Ptr != PtrEnd; ++Ptr) {
7044 // Make sure we don't add the same candidate twice.
7045 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7046 continue;
7047
7048 QualType ParamTypes[2] = {
7049 S.Context.getLValueReferenceType(*Ptr),
7050 *Ptr,
7051 };
7052
7053 // non-volatile version
7054 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7055 /*IsAssigmentOperator=*/true);
7056
7057 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
7058 VisibleTypeConversionsQuals.hasVolatile()) {
7059 // volatile version
7060 ParamTypes[0] =
7061 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7062 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7063 CandidateSet, /*IsAssigmentOperator=*/true);
7064 }
7065 }
7066 }
7067 }
7068
7069 // C++ [over.built]p18:
7070 //
7071 // For every triple (L, VQ, R), where L is an arithmetic type,
7072 // VQ is either volatile or empty, and R is a promoted
7073 // arithmetic type, there exist candidate operator functions of
7074 // the form
7075 //
7076 // VQ L& operator=(VQ L&, R);
7077 // VQ L& operator*=(VQ L&, R);
7078 // VQ L& operator/=(VQ L&, R);
7079 // VQ L& operator+=(VQ L&, R);
7080 // VQ L& operator-=(VQ L&, R);
addAssignmentArithmeticOverloads(bool isEqualOp)7081 void addAssignmentArithmeticOverloads(bool isEqualOp) {
7082 if (!HasArithmeticOrEnumeralCandidateType)
7083 return;
7084
7085 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7086 for (unsigned Right = FirstPromotedArithmeticType;
7087 Right < LastPromotedArithmeticType; ++Right) {
7088 QualType ParamTypes[2];
7089 ParamTypes[1] = getArithmeticType(Right);
7090
7091 // Add this built-in operator as a candidate (VQ is empty).
7092 ParamTypes[0] =
7093 S.Context.getLValueReferenceType(getArithmeticType(Left));
7094 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7095 /*IsAssigmentOperator=*/isEqualOp);
7096
7097 // Add this built-in operator as a candidate (VQ is 'volatile').
7098 if (VisibleTypeConversionsQuals.hasVolatile()) {
7099 ParamTypes[0] =
7100 S.Context.getVolatileType(getArithmeticType(Left));
7101 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7102 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7103 CandidateSet,
7104 /*IsAssigmentOperator=*/isEqualOp);
7105 }
7106 }
7107 }
7108
7109 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7110 for (BuiltinCandidateTypeSet::iterator
7111 Vec1 = CandidateTypes[0].vector_begin(),
7112 Vec1End = CandidateTypes[0].vector_end();
7113 Vec1 != Vec1End; ++Vec1) {
7114 for (BuiltinCandidateTypeSet::iterator
7115 Vec2 = CandidateTypes[1].vector_begin(),
7116 Vec2End = CandidateTypes[1].vector_end();
7117 Vec2 != Vec2End; ++Vec2) {
7118 QualType ParamTypes[2];
7119 ParamTypes[1] = *Vec2;
7120 // Add this built-in operator as a candidate (VQ is empty).
7121 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7122 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7123 /*IsAssigmentOperator=*/isEqualOp);
7124
7125 // Add this built-in operator as a candidate (VQ is 'volatile').
7126 if (VisibleTypeConversionsQuals.hasVolatile()) {
7127 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7128 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7129 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7130 CandidateSet,
7131 /*IsAssigmentOperator=*/isEqualOp);
7132 }
7133 }
7134 }
7135 }
7136
7137 // C++ [over.built]p22:
7138 //
7139 // For every triple (L, VQ, R), where L is an integral type, VQ
7140 // is either volatile or empty, and R is a promoted integral
7141 // type, there exist candidate operator functions of the form
7142 //
7143 // VQ L& operator%=(VQ L&, R);
7144 // VQ L& operator<<=(VQ L&, R);
7145 // VQ L& operator>>=(VQ L&, R);
7146 // VQ L& operator&=(VQ L&, R);
7147 // VQ L& operator^=(VQ L&, R);
7148 // VQ L& operator|=(VQ L&, R);
addAssignmentIntegralOverloads()7149 void addAssignmentIntegralOverloads() {
7150 if (!HasArithmeticOrEnumeralCandidateType)
7151 return;
7152
7153 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7154 for (unsigned Right = FirstPromotedIntegralType;
7155 Right < LastPromotedIntegralType; ++Right) {
7156 QualType ParamTypes[2];
7157 ParamTypes[1] = getArithmeticType(Right);
7158
7159 // Add this built-in operator as a candidate (VQ is empty).
7160 ParamTypes[0] =
7161 S.Context.getLValueReferenceType(getArithmeticType(Left));
7162 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
7163 if (VisibleTypeConversionsQuals.hasVolatile()) {
7164 // Add this built-in operator as a candidate (VQ is 'volatile').
7165 ParamTypes[0] = getArithmeticType(Left);
7166 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7167 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7168 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7169 CandidateSet);
7170 }
7171 }
7172 }
7173 }
7174
7175 // C++ [over.operator]p23:
7176 //
7177 // There also exist candidate operator functions of the form
7178 //
7179 // bool operator!(bool);
7180 // bool operator&&(bool, bool);
7181 // bool operator||(bool, bool);
addExclaimOverload()7182 void addExclaimOverload() {
7183 QualType ParamTy = S.Context.BoolTy;
7184 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
7185 /*IsAssignmentOperator=*/false,
7186 /*NumContextualBoolArguments=*/1);
7187 }
addAmpAmpOrPipePipeOverload()7188 void addAmpAmpOrPipePipeOverload() {
7189 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7190 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
7191 /*IsAssignmentOperator=*/false,
7192 /*NumContextualBoolArguments=*/2);
7193 }
7194
7195 // C++ [over.built]p13:
7196 //
7197 // For every cv-qualified or cv-unqualified object type T there
7198 // exist candidate operator functions of the form
7199 //
7200 // T* operator+(T*, ptrdiff_t); [ABOVE]
7201 // T& operator[](T*, ptrdiff_t);
7202 // T* operator-(T*, ptrdiff_t); [ABOVE]
7203 // T* operator+(ptrdiff_t, T*); [ABOVE]
7204 // T& operator[](ptrdiff_t, T*);
addSubscriptOverloads()7205 void addSubscriptOverloads() {
7206 for (BuiltinCandidateTypeSet::iterator
7207 Ptr = CandidateTypes[0].pointer_begin(),
7208 PtrEnd = CandidateTypes[0].pointer_end();
7209 Ptr != PtrEnd; ++Ptr) {
7210 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7211 QualType PointeeType = (*Ptr)->getPointeeType();
7212 if (!PointeeType->isObjectType())
7213 continue;
7214
7215 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7216
7217 // T& operator[](T*, ptrdiff_t)
7218 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7219 }
7220
7221 for (BuiltinCandidateTypeSet::iterator
7222 Ptr = CandidateTypes[1].pointer_begin(),
7223 PtrEnd = CandidateTypes[1].pointer_end();
7224 Ptr != PtrEnd; ++Ptr) {
7225 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7226 QualType PointeeType = (*Ptr)->getPointeeType();
7227 if (!PointeeType->isObjectType())
7228 continue;
7229
7230 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7231
7232 // T& operator[](ptrdiff_t, T*)
7233 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7234 }
7235 }
7236
7237 // C++ [over.built]p11:
7238 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7239 // C1 is the same type as C2 or is a derived class of C2, T is an object
7240 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7241 // there exist candidate operator functions of the form
7242 //
7243 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7244 //
7245 // where CV12 is the union of CV1 and CV2.
addArrowStarOverloads()7246 void addArrowStarOverloads() {
7247 for (BuiltinCandidateTypeSet::iterator
7248 Ptr = CandidateTypes[0].pointer_begin(),
7249 PtrEnd = CandidateTypes[0].pointer_end();
7250 Ptr != PtrEnd; ++Ptr) {
7251 QualType C1Ty = (*Ptr);
7252 QualType C1;
7253 QualifierCollector Q1;
7254 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7255 if (!isa<RecordType>(C1))
7256 continue;
7257 // heuristic to reduce number of builtin candidates in the set.
7258 // Add volatile/restrict version only if there are conversions to a
7259 // volatile/restrict type.
7260 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7261 continue;
7262 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7263 continue;
7264 for (BuiltinCandidateTypeSet::iterator
7265 MemPtr = CandidateTypes[1].member_pointer_begin(),
7266 MemPtrEnd = CandidateTypes[1].member_pointer_end();
7267 MemPtr != MemPtrEnd; ++MemPtr) {
7268 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7269 QualType C2 = QualType(mptr->getClass(), 0);
7270 C2 = C2.getUnqualifiedType();
7271 if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7272 break;
7273 QualType ParamTypes[2] = { *Ptr, *MemPtr };
7274 // build CV12 T&
7275 QualType T = mptr->getPointeeType();
7276 if (!VisibleTypeConversionsQuals.hasVolatile() &&
7277 T.isVolatileQualified())
7278 continue;
7279 if (!VisibleTypeConversionsQuals.hasRestrict() &&
7280 T.isRestrictQualified())
7281 continue;
7282 T = Q1.apply(S.Context, T);
7283 QualType ResultTy = S.Context.getLValueReferenceType(T);
7284 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7285 }
7286 }
7287 }
7288
7289 // Note that we don't consider the first argument, since it has been
7290 // contextually converted to bool long ago. The candidates below are
7291 // therefore added as binary.
7292 //
7293 // C++ [over.built]p25:
7294 // For every type T, where T is a pointer, pointer-to-member, or scoped
7295 // enumeration type, there exist candidate operator functions of the form
7296 //
7297 // T operator?(bool, T, T);
7298 //
addConditionalOperatorOverloads()7299 void addConditionalOperatorOverloads() {
7300 /// Set of (canonical) types that we've already handled.
7301 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7302
7303 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7304 for (BuiltinCandidateTypeSet::iterator
7305 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7306 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7307 Ptr != PtrEnd; ++Ptr) {
7308 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7309 continue;
7310
7311 QualType ParamTypes[2] = { *Ptr, *Ptr };
7312 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
7313 }
7314
7315 for (BuiltinCandidateTypeSet::iterator
7316 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7317 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7318 MemPtr != MemPtrEnd; ++MemPtr) {
7319 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7320 continue;
7321
7322 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7323 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
7324 }
7325
7326 if (S.getLangOpts().CPlusPlus0x) {
7327 for (BuiltinCandidateTypeSet::iterator
7328 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7329 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7330 Enum != EnumEnd; ++Enum) {
7331 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7332 continue;
7333
7334 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7335 continue;
7336
7337 QualType ParamTypes[2] = { *Enum, *Enum };
7338 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
7339 }
7340 }
7341 }
7342 }
7343 };
7344
7345 } // end anonymous namespace
7346
7347 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
7348 /// operator overloads to the candidate set (C++ [over.built]), based
7349 /// on the operator @p Op and the arguments given. For example, if the
7350 /// operator is a binary '+', this routine might add "int
7351 /// operator+(int, int)" to cover integer addition.
7352 void
AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet)7353 Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7354 SourceLocation OpLoc,
7355 Expr **Args, unsigned NumArgs,
7356 OverloadCandidateSet& CandidateSet) {
7357 // Find all of the types that the arguments can convert to, but only
7358 // if the operator we're looking at has built-in operator candidates
7359 // that make use of these types. Also record whether we encounter non-record
7360 // candidate types or either arithmetic or enumeral candidate types.
7361 Qualifiers VisibleTypeConversionsQuals;
7362 VisibleTypeConversionsQuals.addConst();
7363 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7364 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7365
7366 bool HasNonRecordCandidateType = false;
7367 bool HasArithmeticOrEnumeralCandidateType = false;
7368 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7369 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
7370 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7371 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7372 OpLoc,
7373 true,
7374 (Op == OO_Exclaim ||
7375 Op == OO_AmpAmp ||
7376 Op == OO_PipePipe),
7377 VisibleTypeConversionsQuals);
7378 HasNonRecordCandidateType = HasNonRecordCandidateType ||
7379 CandidateTypes[ArgIdx].hasNonRecordTypes();
7380 HasArithmeticOrEnumeralCandidateType =
7381 HasArithmeticOrEnumeralCandidateType ||
7382 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7383 }
7384
7385 // Exit early when no non-record types have been added to the candidate set
7386 // for any of the arguments to the operator.
7387 //
7388 // We can't exit early for !, ||, or &&, since there we have always have
7389 // 'bool' overloads.
7390 if (!HasNonRecordCandidateType &&
7391 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7392 return;
7393
7394 // Setup an object to manage the common state for building overloads.
7395 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
7396 VisibleTypeConversionsQuals,
7397 HasArithmeticOrEnumeralCandidateType,
7398 CandidateTypes, CandidateSet);
7399
7400 // Dispatch over the operation to add in only those overloads which apply.
7401 switch (Op) {
7402 case OO_None:
7403 case NUM_OVERLOADED_OPERATORS:
7404 llvm_unreachable("Expected an overloaded operator");
7405
7406 case OO_New:
7407 case OO_Delete:
7408 case OO_Array_New:
7409 case OO_Array_Delete:
7410 case OO_Call:
7411 llvm_unreachable(
7412 "Special operators don't use AddBuiltinOperatorCandidates");
7413
7414 case OO_Comma:
7415 case OO_Arrow:
7416 // C++ [over.match.oper]p3:
7417 // -- For the operator ',', the unary operator '&', or the
7418 // operator '->', the built-in candidates set is empty.
7419 break;
7420
7421 case OO_Plus: // '+' is either unary or binary
7422 if (NumArgs == 1)
7423 OpBuilder.addUnaryPlusPointerOverloads();
7424 // Fall through.
7425
7426 case OO_Minus: // '-' is either unary or binary
7427 if (NumArgs == 1) {
7428 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7429 } else {
7430 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7431 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7432 }
7433 break;
7434
7435 case OO_Star: // '*' is either unary or binary
7436 if (NumArgs == 1)
7437 OpBuilder.addUnaryStarPointerOverloads();
7438 else
7439 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7440 break;
7441
7442 case OO_Slash:
7443 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7444 break;
7445
7446 case OO_PlusPlus:
7447 case OO_MinusMinus:
7448 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7449 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7450 break;
7451
7452 case OO_EqualEqual:
7453 case OO_ExclaimEqual:
7454 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7455 // Fall through.
7456
7457 case OO_Less:
7458 case OO_Greater:
7459 case OO_LessEqual:
7460 case OO_GreaterEqual:
7461 OpBuilder.addRelationalPointerOrEnumeralOverloads();
7462 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7463 break;
7464
7465 case OO_Percent:
7466 case OO_Caret:
7467 case OO_Pipe:
7468 case OO_LessLess:
7469 case OO_GreaterGreater:
7470 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7471 break;
7472
7473 case OO_Amp: // '&' is either unary or binary
7474 if (NumArgs == 1)
7475 // C++ [over.match.oper]p3:
7476 // -- For the operator ',', the unary operator '&', or the
7477 // operator '->', the built-in candidates set is empty.
7478 break;
7479
7480 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7481 break;
7482
7483 case OO_Tilde:
7484 OpBuilder.addUnaryTildePromotedIntegralOverloads();
7485 break;
7486
7487 case OO_Equal:
7488 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7489 // Fall through.
7490
7491 case OO_PlusEqual:
7492 case OO_MinusEqual:
7493 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7494 // Fall through.
7495
7496 case OO_StarEqual:
7497 case OO_SlashEqual:
7498 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7499 break;
7500
7501 case OO_PercentEqual:
7502 case OO_LessLessEqual:
7503 case OO_GreaterGreaterEqual:
7504 case OO_AmpEqual:
7505 case OO_CaretEqual:
7506 case OO_PipeEqual:
7507 OpBuilder.addAssignmentIntegralOverloads();
7508 break;
7509
7510 case OO_Exclaim:
7511 OpBuilder.addExclaimOverload();
7512 break;
7513
7514 case OO_AmpAmp:
7515 case OO_PipePipe:
7516 OpBuilder.addAmpAmpOrPipePipeOverload();
7517 break;
7518
7519 case OO_Subscript:
7520 OpBuilder.addSubscriptOverloads();
7521 break;
7522
7523 case OO_ArrowStar:
7524 OpBuilder.addArrowStarOverloads();
7525 break;
7526
7527 case OO_Conditional:
7528 OpBuilder.addConditionalOperatorOverloads();
7529 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7530 break;
7531 }
7532 }
7533
7534 /// \brief Add function candidates found via argument-dependent lookup
7535 /// to the set of overloading candidates.
7536 ///
7537 /// This routine performs argument-dependent name lookup based on the
7538 /// given function name (which may also be an operator name) and adds
7539 /// all of the overload candidates found by ADL to the overload
7540 /// candidate set (C++ [basic.lookup.argdep]).
7541 void
AddArgumentDependentLookupCandidates(DeclarationName Name,bool Operator,SourceLocation Loc,llvm::ArrayRef<Expr * > Args,TemplateArgumentListInfo * ExplicitTemplateArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool StdNamespaceIsAssociated)7542 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7543 bool Operator, SourceLocation Loc,
7544 llvm::ArrayRef<Expr *> Args,
7545 TemplateArgumentListInfo *ExplicitTemplateArgs,
7546 OverloadCandidateSet& CandidateSet,
7547 bool PartialOverloading,
7548 bool StdNamespaceIsAssociated) {
7549 ADLResult Fns;
7550
7551 // FIXME: This approach for uniquing ADL results (and removing
7552 // redundant candidates from the set) relies on pointer-equality,
7553 // which means we need to key off the canonical decl. However,
7554 // always going back to the canonical decl might not get us the
7555 // right set of default arguments. What default arguments are
7556 // we supposed to consider on ADL candidates, anyway?
7557
7558 // FIXME: Pass in the explicit template arguments?
7559 ArgumentDependentLookup(Name, Operator, Loc, Args, Fns,
7560 StdNamespaceIsAssociated);
7561
7562 // Erase all of the candidates we already knew about.
7563 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7564 CandEnd = CandidateSet.end();
7565 Cand != CandEnd; ++Cand)
7566 if (Cand->Function) {
7567 Fns.erase(Cand->Function);
7568 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7569 Fns.erase(FunTmpl);
7570 }
7571
7572 // For each of the ADL candidates we found, add it to the overload
7573 // set.
7574 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7575 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7576 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7577 if (ExplicitTemplateArgs)
7578 continue;
7579
7580 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7581 PartialOverloading);
7582 } else
7583 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7584 FoundDecl, ExplicitTemplateArgs,
7585 Args, CandidateSet);
7586 }
7587 }
7588
7589 /// isBetterOverloadCandidate - Determines whether the first overload
7590 /// candidate is a better candidate than the second (C++ 13.3.3p1).
7591 bool
isBetterOverloadCandidate(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2,SourceLocation Loc,bool UserDefinedConversion)7592 isBetterOverloadCandidate(Sema &S,
7593 const OverloadCandidate &Cand1,
7594 const OverloadCandidate &Cand2,
7595 SourceLocation Loc,
7596 bool UserDefinedConversion) {
7597 // Define viable functions to be better candidates than non-viable
7598 // functions.
7599 if (!Cand2.Viable)
7600 return Cand1.Viable;
7601 else if (!Cand1.Viable)
7602 return false;
7603
7604 // C++ [over.match.best]p1:
7605 //
7606 // -- if F is a static member function, ICS1(F) is defined such
7607 // that ICS1(F) is neither better nor worse than ICS1(G) for
7608 // any function G, and, symmetrically, ICS1(G) is neither
7609 // better nor worse than ICS1(F).
7610 unsigned StartArg = 0;
7611 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7612 StartArg = 1;
7613
7614 // C++ [over.match.best]p1:
7615 // A viable function F1 is defined to be a better function than another
7616 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
7617 // conversion sequence than ICSi(F2), and then...
7618 unsigned NumArgs = Cand1.NumConversions;
7619 assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7620 bool HasBetterConversion = false;
7621 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7622 switch (CompareImplicitConversionSequences(S,
7623 Cand1.Conversions[ArgIdx],
7624 Cand2.Conversions[ArgIdx])) {
7625 case ImplicitConversionSequence::Better:
7626 // Cand1 has a better conversion sequence.
7627 HasBetterConversion = true;
7628 break;
7629
7630 case ImplicitConversionSequence::Worse:
7631 // Cand1 can't be better than Cand2.
7632 return false;
7633
7634 case ImplicitConversionSequence::Indistinguishable:
7635 // Do nothing.
7636 break;
7637 }
7638 }
7639
7640 // -- for some argument j, ICSj(F1) is a better conversion sequence than
7641 // ICSj(F2), or, if not that,
7642 if (HasBetterConversion)
7643 return true;
7644
7645 // - F1 is a non-template function and F2 is a function template
7646 // specialization, or, if not that,
7647 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7648 Cand2.Function && Cand2.Function->getPrimaryTemplate())
7649 return true;
7650
7651 // -- F1 and F2 are function template specializations, and the function
7652 // template for F1 is more specialized than the template for F2
7653 // according to the partial ordering rules described in 14.5.5.2, or,
7654 // if not that,
7655 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7656 Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7657 if (FunctionTemplateDecl *BetterTemplate
7658 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7659 Cand2.Function->getPrimaryTemplate(),
7660 Loc,
7661 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7662 : TPOC_Call,
7663 Cand1.ExplicitCallArguments))
7664 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7665 }
7666
7667 // -- the context is an initialization by user-defined conversion
7668 // (see 8.5, 13.3.1.5) and the standard conversion sequence
7669 // from the return type of F1 to the destination type (i.e.,
7670 // the type of the entity being initialized) is a better
7671 // conversion sequence than the standard conversion sequence
7672 // from the return type of F2 to the destination type.
7673 if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7674 isa<CXXConversionDecl>(Cand1.Function) &&
7675 isa<CXXConversionDecl>(Cand2.Function)) {
7676 // First check whether we prefer one of the conversion functions over the
7677 // other. This only distinguishes the results in non-standard, extension
7678 // cases such as the conversion from a lambda closure type to a function
7679 // pointer or block.
7680 ImplicitConversionSequence::CompareKind FuncResult
7681 = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
7682 if (FuncResult != ImplicitConversionSequence::Indistinguishable)
7683 return FuncResult;
7684
7685 switch (CompareStandardConversionSequences(S,
7686 Cand1.FinalConversion,
7687 Cand2.FinalConversion)) {
7688 case ImplicitConversionSequence::Better:
7689 // Cand1 has a better conversion sequence.
7690 return true;
7691
7692 case ImplicitConversionSequence::Worse:
7693 // Cand1 can't be better than Cand2.
7694 return false;
7695
7696 case ImplicitConversionSequence::Indistinguishable:
7697 // Do nothing
7698 break;
7699 }
7700 }
7701
7702 return false;
7703 }
7704
7705 /// \brief Computes the best viable function (C++ 13.3.3)
7706 /// within an overload candidate set.
7707 ///
7708 /// \param CandidateSet the set of candidate functions.
7709 ///
7710 /// \param Loc the location of the function name (or operator symbol) for
7711 /// which overload resolution occurs.
7712 ///
7713 /// \param Best f overload resolution was successful or found a deleted
7714 /// function, Best points to the candidate function found.
7715 ///
7716 /// \returns The result of overload resolution.
7717 OverloadingResult
BestViableFunction(Sema & S,SourceLocation Loc,iterator & Best,bool UserDefinedConversion)7718 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
7719 iterator &Best,
7720 bool UserDefinedConversion) {
7721 // Find the best viable function.
7722 Best = end();
7723 for (iterator Cand = begin(); Cand != end(); ++Cand) {
7724 if (Cand->Viable)
7725 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
7726 UserDefinedConversion))
7727 Best = Cand;
7728 }
7729
7730 // If we didn't find any viable functions, abort.
7731 if (Best == end())
7732 return OR_No_Viable_Function;
7733
7734 // Make sure that this function is better than every other viable
7735 // function. If not, we have an ambiguity.
7736 for (iterator Cand = begin(); Cand != end(); ++Cand) {
7737 if (Cand->Viable &&
7738 Cand != Best &&
7739 !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
7740 UserDefinedConversion)) {
7741 Best = end();
7742 return OR_Ambiguous;
7743 }
7744 }
7745
7746 // Best is the best viable function.
7747 if (Best->Function &&
7748 (Best->Function->isDeleted() ||
7749 S.isFunctionConsideredUnavailable(Best->Function)))
7750 return OR_Deleted;
7751
7752 return OR_Success;
7753 }
7754
7755 namespace {
7756
7757 enum OverloadCandidateKind {
7758 oc_function,
7759 oc_method,
7760 oc_constructor,
7761 oc_function_template,
7762 oc_method_template,
7763 oc_constructor_template,
7764 oc_implicit_default_constructor,
7765 oc_implicit_copy_constructor,
7766 oc_implicit_move_constructor,
7767 oc_implicit_copy_assignment,
7768 oc_implicit_move_assignment,
7769 oc_implicit_inherited_constructor
7770 };
7771
ClassifyOverloadCandidate(Sema & S,FunctionDecl * Fn,std::string & Description)7772 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
7773 FunctionDecl *Fn,
7774 std::string &Description) {
7775 bool isTemplate = false;
7776
7777 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
7778 isTemplate = true;
7779 Description = S.getTemplateArgumentBindingsText(
7780 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
7781 }
7782
7783 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
7784 if (!Ctor->isImplicit())
7785 return isTemplate ? oc_constructor_template : oc_constructor;
7786
7787 if (Ctor->getInheritedConstructor())
7788 return oc_implicit_inherited_constructor;
7789
7790 if (Ctor->isDefaultConstructor())
7791 return oc_implicit_default_constructor;
7792
7793 if (Ctor->isMoveConstructor())
7794 return oc_implicit_move_constructor;
7795
7796 assert(Ctor->isCopyConstructor() &&
7797 "unexpected sort of implicit constructor");
7798 return oc_implicit_copy_constructor;
7799 }
7800
7801 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
7802 // This actually gets spelled 'candidate function' for now, but
7803 // it doesn't hurt to split it out.
7804 if (!Meth->isImplicit())
7805 return isTemplate ? oc_method_template : oc_method;
7806
7807 if (Meth->isMoveAssignmentOperator())
7808 return oc_implicit_move_assignment;
7809
7810 if (Meth->isCopyAssignmentOperator())
7811 return oc_implicit_copy_assignment;
7812
7813 assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
7814 return oc_method;
7815 }
7816
7817 return isTemplate ? oc_function_template : oc_function;
7818 }
7819
MaybeEmitInheritedConstructorNote(Sema & S,FunctionDecl * Fn)7820 void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7821 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7822 if (!Ctor) return;
7823
7824 Ctor = Ctor->getInheritedConstructor();
7825 if (!Ctor) return;
7826
7827 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7828 }
7829
7830 } // end anonymous namespace
7831
7832 // Notes the location of an overload candidate.
NoteOverloadCandidate(FunctionDecl * Fn,QualType DestType)7833 void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
7834 std::string FnDesc;
7835 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7836 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
7837 << (unsigned) K << FnDesc;
7838 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
7839 Diag(Fn->getLocation(), PD);
7840 MaybeEmitInheritedConstructorNote(*this, Fn);
7841 }
7842
7843 //Notes the location of all overload candidates designated through
7844 // OverloadedExpr
NoteAllOverloadCandidates(Expr * OverloadedExpr,QualType DestType)7845 void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
7846 assert(OverloadedExpr->getType() == Context.OverloadTy);
7847
7848 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7849 OverloadExpr *OvlExpr = Ovl.Expression;
7850
7851 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7852 IEnd = OvlExpr->decls_end();
7853 I != IEnd; ++I) {
7854 if (FunctionTemplateDecl *FunTmpl =
7855 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7856 NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
7857 } else if (FunctionDecl *Fun
7858 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7859 NoteOverloadCandidate(Fun, DestType);
7860 }
7861 }
7862 }
7863
7864 /// Diagnoses an ambiguous conversion. The partial diagnostic is the
7865 /// "lead" diagnostic; it will be given two arguments, the source and
7866 /// target types of the conversion.
DiagnoseAmbiguousConversion(Sema & S,SourceLocation CaretLoc,const PartialDiagnostic & PDiag) const7867 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7868 Sema &S,
7869 SourceLocation CaretLoc,
7870 const PartialDiagnostic &PDiag) const {
7871 S.Diag(CaretLoc, PDiag)
7872 << Ambiguous.getFromType() << Ambiguous.getToType();
7873 for (AmbiguousConversionSequence::const_iterator
7874 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
7875 S.NoteOverloadCandidate(*I);
7876 }
7877 }
7878
7879 namespace {
7880
DiagnoseBadConversion(Sema & S,OverloadCandidate * Cand,unsigned I)7881 void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
7882 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
7883 assert(Conv.isBad());
7884 assert(Cand->Function && "for now, candidate must be a function");
7885 FunctionDecl *Fn = Cand->Function;
7886
7887 // There's a conversion slot for the object argument if this is a
7888 // non-constructor method. Note that 'I' corresponds the
7889 // conversion-slot index.
7890 bool isObjectArgument = false;
7891 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
7892 if (I == 0)
7893 isObjectArgument = true;
7894 else
7895 I--;
7896 }
7897
7898 std::string FnDesc;
7899 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7900
7901 Expr *FromExpr = Conv.Bad.FromExpr;
7902 QualType FromTy = Conv.Bad.getFromType();
7903 QualType ToTy = Conv.Bad.getToType();
7904
7905 if (FromTy == S.Context.OverloadTy) {
7906 assert(FromExpr && "overload set argument came from implicit argument?");
7907 Expr *E = FromExpr->IgnoreParens();
7908 if (isa<UnaryOperator>(E))
7909 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
7910 DeclarationName Name = cast<OverloadExpr>(E)->getName();
7911
7912 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
7913 << (unsigned) FnKind << FnDesc
7914 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7915 << ToTy << Name << I+1;
7916 MaybeEmitInheritedConstructorNote(S, Fn);
7917 return;
7918 }
7919
7920 // Do some hand-waving analysis to see if the non-viability is due
7921 // to a qualifier mismatch.
7922 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
7923 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
7924 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
7925 CToTy = RT->getPointeeType();
7926 else {
7927 // TODO: detect and diagnose the full richness of const mismatches.
7928 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
7929 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
7930 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
7931 }
7932
7933 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
7934 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
7935 Qualifiers FromQs = CFromTy.getQualifiers();
7936 Qualifiers ToQs = CToTy.getQualifiers();
7937
7938 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
7939 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
7940 << (unsigned) FnKind << FnDesc
7941 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7942 << FromTy
7943 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
7944 << (unsigned) isObjectArgument << I+1;
7945 MaybeEmitInheritedConstructorNote(S, Fn);
7946 return;
7947 }
7948
7949 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7950 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
7951 << (unsigned) FnKind << FnDesc
7952 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7953 << FromTy
7954 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
7955 << (unsigned) isObjectArgument << I+1;
7956 MaybeEmitInheritedConstructorNote(S, Fn);
7957 return;
7958 }
7959
7960 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
7961 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
7962 << (unsigned) FnKind << FnDesc
7963 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7964 << FromTy
7965 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
7966 << (unsigned) isObjectArgument << I+1;
7967 MaybeEmitInheritedConstructorNote(S, Fn);
7968 return;
7969 }
7970
7971 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
7972 assert(CVR && "unexpected qualifiers mismatch");
7973
7974 if (isObjectArgument) {
7975 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
7976 << (unsigned) FnKind << FnDesc
7977 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7978 << FromTy << (CVR - 1);
7979 } else {
7980 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
7981 << (unsigned) FnKind << FnDesc
7982 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7983 << FromTy << (CVR - 1) << I+1;
7984 }
7985 MaybeEmitInheritedConstructorNote(S, Fn);
7986 return;
7987 }
7988
7989 // Special diagnostic for failure to convert an initializer list, since
7990 // telling the user that it has type void is not useful.
7991 if (FromExpr && isa<InitListExpr>(FromExpr)) {
7992 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
7993 << (unsigned) FnKind << FnDesc
7994 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7995 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7996 MaybeEmitInheritedConstructorNote(S, Fn);
7997 return;
7998 }
7999
8000 // Diagnose references or pointers to incomplete types differently,
8001 // since it's far from impossible that the incompleteness triggered
8002 // the failure.
8003 QualType TempFromTy = FromTy.getNonReferenceType();
8004 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8005 TempFromTy = PTy->getPointeeType();
8006 if (TempFromTy->isIncompleteType()) {
8007 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8008 << (unsigned) FnKind << FnDesc
8009 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8010 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8011 MaybeEmitInheritedConstructorNote(S, Fn);
8012 return;
8013 }
8014
8015 // Diagnose base -> derived pointer conversions.
8016 unsigned BaseToDerivedConversion = 0;
8017 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8018 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8019 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8020 FromPtrTy->getPointeeType()) &&
8021 !FromPtrTy->getPointeeType()->isIncompleteType() &&
8022 !ToPtrTy->getPointeeType()->isIncompleteType() &&
8023 S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8024 FromPtrTy->getPointeeType()))
8025 BaseToDerivedConversion = 1;
8026 }
8027 } else if (const ObjCObjectPointerType *FromPtrTy
8028 = FromTy->getAs<ObjCObjectPointerType>()) {
8029 if (const ObjCObjectPointerType *ToPtrTy
8030 = ToTy->getAs<ObjCObjectPointerType>())
8031 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8032 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8033 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8034 FromPtrTy->getPointeeType()) &&
8035 FromIface->isSuperClassOf(ToIface))
8036 BaseToDerivedConversion = 2;
8037 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8038 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8039 !FromTy->isIncompleteType() &&
8040 !ToRefTy->getPointeeType()->isIncompleteType() &&
8041 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
8042 BaseToDerivedConversion = 3;
8043 }
8044
8045 if (BaseToDerivedConversion) {
8046 S.Diag(Fn->getLocation(),
8047 diag::note_ovl_candidate_bad_base_to_derived_conv)
8048 << (unsigned) FnKind << FnDesc
8049 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8050 << (BaseToDerivedConversion - 1)
8051 << FromTy << ToTy << I+1;
8052 MaybeEmitInheritedConstructorNote(S, Fn);
8053 return;
8054 }
8055
8056 if (isa<ObjCObjectPointerType>(CFromTy) &&
8057 isa<PointerType>(CToTy)) {
8058 Qualifiers FromQs = CFromTy.getQualifiers();
8059 Qualifiers ToQs = CToTy.getQualifiers();
8060 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8061 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8062 << (unsigned) FnKind << FnDesc
8063 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8064 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8065 MaybeEmitInheritedConstructorNote(S, Fn);
8066 return;
8067 }
8068 }
8069
8070 // Emit the generic diagnostic and, optionally, add the hints to it.
8071 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8072 FDiag << (unsigned) FnKind << FnDesc
8073 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8074 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8075 << (unsigned) (Cand->Fix.Kind);
8076
8077 // If we can fix the conversion, suggest the FixIts.
8078 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8079 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8080 FDiag << *HI;
8081 S.Diag(Fn->getLocation(), FDiag);
8082
8083 MaybeEmitInheritedConstructorNote(S, Fn);
8084 }
8085
DiagnoseArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumFormalArgs)8086 void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8087 unsigned NumFormalArgs) {
8088 // TODO: treat calls to a missing default constructor as a special case
8089
8090 FunctionDecl *Fn = Cand->Function;
8091 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8092
8093 unsigned MinParams = Fn->getMinRequiredArguments();
8094
8095 // With invalid overloaded operators, it's possible that we think we
8096 // have an arity mismatch when it fact it looks like we have the
8097 // right number of arguments, because only overloaded operators have
8098 // the weird behavior of overloading member and non-member functions.
8099 // Just don't report anything.
8100 if (Fn->isInvalidDecl() &&
8101 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8102 return;
8103
8104 // at least / at most / exactly
8105 unsigned mode, modeCount;
8106 if (NumFormalArgs < MinParams) {
8107 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8108 (Cand->FailureKind == ovl_fail_bad_deduction &&
8109 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8110 if (MinParams != FnTy->getNumArgs() ||
8111 FnTy->isVariadic() || FnTy->isTemplateVariadic())
8112 mode = 0; // "at least"
8113 else
8114 mode = 2; // "exactly"
8115 modeCount = MinParams;
8116 } else {
8117 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8118 (Cand->FailureKind == ovl_fail_bad_deduction &&
8119 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8120 if (MinParams != FnTy->getNumArgs())
8121 mode = 1; // "at most"
8122 else
8123 mode = 2; // "exactly"
8124 modeCount = FnTy->getNumArgs();
8125 }
8126
8127 std::string Description;
8128 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8129
8130 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8131 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8132 << modeCount << NumFormalArgs;
8133 MaybeEmitInheritedConstructorNote(S, Fn);
8134 }
8135
8136 /// Diagnose a failed template-argument deduction.
DiagnoseBadDeduction(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)8137 void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
8138 unsigned NumArgs) {
8139 FunctionDecl *Fn = Cand->Function; // pattern
8140
8141 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
8142 NamedDecl *ParamD;
8143 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8144 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8145 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8146 switch (Cand->DeductionFailure.Result) {
8147 case Sema::TDK_Success:
8148 llvm_unreachable("TDK_success while diagnosing bad deduction");
8149
8150 case Sema::TDK_Incomplete: {
8151 assert(ParamD && "no parameter found for incomplete deduction result");
8152 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
8153 << ParamD->getDeclName();
8154 MaybeEmitInheritedConstructorNote(S, Fn);
8155 return;
8156 }
8157
8158 case Sema::TDK_Underqualified: {
8159 assert(ParamD && "no parameter found for bad qualifiers deduction result");
8160 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8161
8162 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
8163
8164 // Param will have been canonicalized, but it should just be a
8165 // qualified version of ParamD, so move the qualifiers to that.
8166 QualifierCollector Qs;
8167 Qs.strip(Param);
8168 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8169 assert(S.Context.hasSameType(Param, NonCanonParam));
8170
8171 // Arg has also been canonicalized, but there's nothing we can do
8172 // about that. It also doesn't matter as much, because it won't
8173 // have any template parameters in it (because deduction isn't
8174 // done on dependent types).
8175 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
8176
8177 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
8178 << ParamD->getDeclName() << Arg << NonCanonParam;
8179 MaybeEmitInheritedConstructorNote(S, Fn);
8180 return;
8181 }
8182
8183 case Sema::TDK_Inconsistent: {
8184 assert(ParamD && "no parameter found for inconsistent deduction result");
8185 int which = 0;
8186 if (isa<TemplateTypeParmDecl>(ParamD))
8187 which = 0;
8188 else if (isa<NonTypeTemplateParmDecl>(ParamD))
8189 which = 1;
8190 else {
8191 which = 2;
8192 }
8193
8194 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
8195 << which << ParamD->getDeclName()
8196 << *Cand->DeductionFailure.getFirstArg()
8197 << *Cand->DeductionFailure.getSecondArg();
8198 MaybeEmitInheritedConstructorNote(S, Fn);
8199 return;
8200 }
8201
8202 case Sema::TDK_InvalidExplicitArguments:
8203 assert(ParamD && "no parameter found for invalid explicit arguments");
8204 if (ParamD->getDeclName())
8205 S.Diag(Fn->getLocation(),
8206 diag::note_ovl_candidate_explicit_arg_mismatch_named)
8207 << ParamD->getDeclName();
8208 else {
8209 int index = 0;
8210 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8211 index = TTP->getIndex();
8212 else if (NonTypeTemplateParmDecl *NTTP
8213 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8214 index = NTTP->getIndex();
8215 else
8216 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8217 S.Diag(Fn->getLocation(),
8218 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8219 << (index + 1);
8220 }
8221 MaybeEmitInheritedConstructorNote(S, Fn);
8222 return;
8223
8224 case Sema::TDK_TooManyArguments:
8225 case Sema::TDK_TooFewArguments:
8226 DiagnoseArityMismatch(S, Cand, NumArgs);
8227 return;
8228
8229 case Sema::TDK_InstantiationDepth:
8230 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
8231 MaybeEmitInheritedConstructorNote(S, Fn);
8232 return;
8233
8234 case Sema::TDK_SubstitutionFailure: {
8235 std::string ArgString;
8236 if (TemplateArgumentList *Args
8237 = Cand->DeductionFailure.getTemplateArgumentList())
8238 ArgString = S.getTemplateArgumentBindingsText(
8239 Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
8240 *Args);
8241 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
8242 << ArgString;
8243 MaybeEmitInheritedConstructorNote(S, Fn);
8244 return;
8245 }
8246
8247 // TODO: diagnose these individually, then kill off
8248 // note_ovl_candidate_bad_deduction, which is uselessly vague.
8249 case Sema::TDK_NonDeducedMismatch:
8250 case Sema::TDK_FailedOverloadResolution:
8251 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8252 MaybeEmitInheritedConstructorNote(S, Fn);
8253 return;
8254 }
8255 }
8256
8257 /// CUDA: diagnose an invalid call across targets.
DiagnoseBadTarget(Sema & S,OverloadCandidate * Cand)8258 void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8259 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8260 FunctionDecl *Callee = Cand->Function;
8261
8262 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8263 CalleeTarget = S.IdentifyCUDATarget(Callee);
8264
8265 std::string FnDesc;
8266 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8267
8268 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8269 << (unsigned) FnKind << CalleeTarget << CallerTarget;
8270 }
8271
8272 /// Generates a 'note' diagnostic for an overload candidate. We've
8273 /// already generated a primary error at the call site.
8274 ///
8275 /// It really does need to be a single diagnostic with its caret
8276 /// pointed at the candidate declaration. Yes, this creates some
8277 /// major challenges of technical writing. Yes, this makes pointing
8278 /// out problems with specific arguments quite awkward. It's still
8279 /// better than generating twenty screens of text for every failed
8280 /// overload.
8281 ///
8282 /// It would be great to be able to express per-candidate problems
8283 /// more richly for those diagnostic clients that cared, but we'd
8284 /// still have to be just as careful with the default diagnostics.
NoteFunctionCandidate(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)8285 void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8286 unsigned NumArgs) {
8287 FunctionDecl *Fn = Cand->Function;
8288
8289 // Note deleted candidates, but only if they're viable.
8290 if (Cand->Viable && (Fn->isDeleted() ||
8291 S.isFunctionConsideredUnavailable(Fn))) {
8292 std::string FnDesc;
8293 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8294
8295 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8296 << FnKind << FnDesc
8297 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8298 MaybeEmitInheritedConstructorNote(S, Fn);
8299 return;
8300 }
8301
8302 // We don't really have anything else to say about viable candidates.
8303 if (Cand->Viable) {
8304 S.NoteOverloadCandidate(Fn);
8305 return;
8306 }
8307
8308 switch (Cand->FailureKind) {
8309 case ovl_fail_too_many_arguments:
8310 case ovl_fail_too_few_arguments:
8311 return DiagnoseArityMismatch(S, Cand, NumArgs);
8312
8313 case ovl_fail_bad_deduction:
8314 return DiagnoseBadDeduction(S, Cand, NumArgs);
8315
8316 case ovl_fail_trivial_conversion:
8317 case ovl_fail_bad_final_conversion:
8318 case ovl_fail_final_conversion_not_exact:
8319 return S.NoteOverloadCandidate(Fn);
8320
8321 case ovl_fail_bad_conversion: {
8322 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8323 for (unsigned N = Cand->NumConversions; I != N; ++I)
8324 if (Cand->Conversions[I].isBad())
8325 return DiagnoseBadConversion(S, Cand, I);
8326
8327 // FIXME: this currently happens when we're called from SemaInit
8328 // when user-conversion overload fails. Figure out how to handle
8329 // those conditions and diagnose them well.
8330 return S.NoteOverloadCandidate(Fn);
8331 }
8332
8333 case ovl_fail_bad_target:
8334 return DiagnoseBadTarget(S, Cand);
8335 }
8336 }
8337
NoteSurrogateCandidate(Sema & S,OverloadCandidate * Cand)8338 void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8339 // Desugar the type of the surrogate down to a function type,
8340 // retaining as many typedefs as possible while still showing
8341 // the function type (and, therefore, its parameter types).
8342 QualType FnType = Cand->Surrogate->getConversionType();
8343 bool isLValueReference = false;
8344 bool isRValueReference = false;
8345 bool isPointer = false;
8346 if (const LValueReferenceType *FnTypeRef =
8347 FnType->getAs<LValueReferenceType>()) {
8348 FnType = FnTypeRef->getPointeeType();
8349 isLValueReference = true;
8350 } else if (const RValueReferenceType *FnTypeRef =
8351 FnType->getAs<RValueReferenceType>()) {
8352 FnType = FnTypeRef->getPointeeType();
8353 isRValueReference = true;
8354 }
8355 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8356 FnType = FnTypePtr->getPointeeType();
8357 isPointer = true;
8358 }
8359 // Desugar down to a function type.
8360 FnType = QualType(FnType->getAs<FunctionType>(), 0);
8361 // Reconstruct the pointer/reference as appropriate.
8362 if (isPointer) FnType = S.Context.getPointerType(FnType);
8363 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8364 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8365
8366 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8367 << FnType;
8368 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8369 }
8370
NoteBuiltinOperatorCandidate(Sema & S,const char * Opc,SourceLocation OpLoc,OverloadCandidate * Cand)8371 void NoteBuiltinOperatorCandidate(Sema &S,
8372 const char *Opc,
8373 SourceLocation OpLoc,
8374 OverloadCandidate *Cand) {
8375 assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8376 std::string TypeStr("operator");
8377 TypeStr += Opc;
8378 TypeStr += "(";
8379 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8380 if (Cand->NumConversions == 1) {
8381 TypeStr += ")";
8382 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8383 } else {
8384 TypeStr += ", ";
8385 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8386 TypeStr += ")";
8387 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8388 }
8389 }
8390
NoteAmbiguousUserConversions(Sema & S,SourceLocation OpLoc,OverloadCandidate * Cand)8391 void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8392 OverloadCandidate *Cand) {
8393 unsigned NoOperands = Cand->NumConversions;
8394 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8395 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8396 if (ICS.isBad()) break; // all meaningless after first invalid
8397 if (!ICS.isAmbiguous()) continue;
8398
8399 ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8400 S.PDiag(diag::note_ambiguous_type_conversion));
8401 }
8402 }
8403
GetLocationForCandidate(const OverloadCandidate * Cand)8404 SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8405 if (Cand->Function)
8406 return Cand->Function->getLocation();
8407 if (Cand->IsSurrogate)
8408 return Cand->Surrogate->getLocation();
8409 return SourceLocation();
8410 }
8411
8412 static unsigned
RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo & DFI)8413 RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8414 switch ((Sema::TemplateDeductionResult)DFI.Result) {
8415 case Sema::TDK_Success:
8416 llvm_unreachable("TDK_success while diagnosing bad deduction");
8417
8418 case Sema::TDK_Incomplete:
8419 return 1;
8420
8421 case Sema::TDK_Underqualified:
8422 case Sema::TDK_Inconsistent:
8423 return 2;
8424
8425 case Sema::TDK_SubstitutionFailure:
8426 case Sema::TDK_NonDeducedMismatch:
8427 return 3;
8428
8429 case Sema::TDK_InstantiationDepth:
8430 case Sema::TDK_FailedOverloadResolution:
8431 return 4;
8432
8433 case Sema::TDK_InvalidExplicitArguments:
8434 return 5;
8435
8436 case Sema::TDK_TooManyArguments:
8437 case Sema::TDK_TooFewArguments:
8438 return 6;
8439 }
8440 llvm_unreachable("Unhandled deduction result");
8441 }
8442
8443 struct CompareOverloadCandidatesForDisplay {
8444 Sema &S;
CompareOverloadCandidatesForDisplayclang::__anond0ceed770611::CompareOverloadCandidatesForDisplay8445 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8446
operator ()clang::__anond0ceed770611::CompareOverloadCandidatesForDisplay8447 bool operator()(const OverloadCandidate *L,
8448 const OverloadCandidate *R) {
8449 // Fast-path this check.
8450 if (L == R) return false;
8451
8452 // Order first by viability.
8453 if (L->Viable) {
8454 if (!R->Viable) return true;
8455
8456 // TODO: introduce a tri-valued comparison for overload
8457 // candidates. Would be more worthwhile if we had a sort
8458 // that could exploit it.
8459 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8460 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8461 } else if (R->Viable)
8462 return false;
8463
8464 assert(L->Viable == R->Viable);
8465
8466 // Criteria by which we can sort non-viable candidates:
8467 if (!L->Viable) {
8468 // 1. Arity mismatches come after other candidates.
8469 if (L->FailureKind == ovl_fail_too_many_arguments ||
8470 L->FailureKind == ovl_fail_too_few_arguments)
8471 return false;
8472 if (R->FailureKind == ovl_fail_too_many_arguments ||
8473 R->FailureKind == ovl_fail_too_few_arguments)
8474 return true;
8475
8476 // 2. Bad conversions come first and are ordered by the number
8477 // of bad conversions and quality of good conversions.
8478 if (L->FailureKind == ovl_fail_bad_conversion) {
8479 if (R->FailureKind != ovl_fail_bad_conversion)
8480 return true;
8481
8482 // The conversion that can be fixed with a smaller number of changes,
8483 // comes first.
8484 unsigned numLFixes = L->Fix.NumConversionsFixed;
8485 unsigned numRFixes = R->Fix.NumConversionsFixed;
8486 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8487 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8488 if (numLFixes != numRFixes) {
8489 if (numLFixes < numRFixes)
8490 return true;
8491 else
8492 return false;
8493 }
8494
8495 // If there's any ordering between the defined conversions...
8496 // FIXME: this might not be transitive.
8497 assert(L->NumConversions == R->NumConversions);
8498
8499 int leftBetter = 0;
8500 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8501 for (unsigned E = L->NumConversions; I != E; ++I) {
8502 switch (CompareImplicitConversionSequences(S,
8503 L->Conversions[I],
8504 R->Conversions[I])) {
8505 case ImplicitConversionSequence::Better:
8506 leftBetter++;
8507 break;
8508
8509 case ImplicitConversionSequence::Worse:
8510 leftBetter--;
8511 break;
8512
8513 case ImplicitConversionSequence::Indistinguishable:
8514 break;
8515 }
8516 }
8517 if (leftBetter > 0) return true;
8518 if (leftBetter < 0) return false;
8519
8520 } else if (R->FailureKind == ovl_fail_bad_conversion)
8521 return false;
8522
8523 if (L->FailureKind == ovl_fail_bad_deduction) {
8524 if (R->FailureKind != ovl_fail_bad_deduction)
8525 return true;
8526
8527 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8528 return RankDeductionFailure(L->DeductionFailure)
8529 < RankDeductionFailure(R->DeductionFailure);
8530 } else if (R->FailureKind == ovl_fail_bad_deduction)
8531 return false;
8532
8533 // TODO: others?
8534 }
8535
8536 // Sort everything else by location.
8537 SourceLocation LLoc = GetLocationForCandidate(L);
8538 SourceLocation RLoc = GetLocationForCandidate(R);
8539
8540 // Put candidates without locations (e.g. builtins) at the end.
8541 if (LLoc.isInvalid()) return false;
8542 if (RLoc.isInvalid()) return true;
8543
8544 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8545 }
8546 };
8547
8548 /// CompleteNonViableCandidate - Normally, overload resolution only
8549 /// computes up to the first. Produces the FixIt set if possible.
CompleteNonViableCandidate(Sema & S,OverloadCandidate * Cand,llvm::ArrayRef<Expr * > Args)8550 void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8551 llvm::ArrayRef<Expr *> Args) {
8552 assert(!Cand->Viable);
8553
8554 // Don't do anything on failures other than bad conversion.
8555 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8556
8557 // We only want the FixIts if all the arguments can be corrected.
8558 bool Unfixable = false;
8559 // Use a implicit copy initialization to check conversion fixes.
8560 Cand->Fix.setConversionChecker(TryCopyInitialization);
8561
8562 // Skip forward to the first bad conversion.
8563 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8564 unsigned ConvCount = Cand->NumConversions;
8565 while (true) {
8566 assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8567 ConvIdx++;
8568 if (Cand->Conversions[ConvIdx - 1].isBad()) {
8569 Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8570 break;
8571 }
8572 }
8573
8574 if (ConvIdx == ConvCount)
8575 return;
8576
8577 assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8578 "remaining conversion is initialized?");
8579
8580 // FIXME: this should probably be preserved from the overload
8581 // operation somehow.
8582 bool SuppressUserConversions = false;
8583
8584 const FunctionProtoType* Proto;
8585 unsigned ArgIdx = ConvIdx;
8586
8587 if (Cand->IsSurrogate) {
8588 QualType ConvType
8589 = Cand->Surrogate->getConversionType().getNonReferenceType();
8590 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8591 ConvType = ConvPtrType->getPointeeType();
8592 Proto = ConvType->getAs<FunctionProtoType>();
8593 ArgIdx--;
8594 } else if (Cand->Function) {
8595 Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8596 if (isa<CXXMethodDecl>(Cand->Function) &&
8597 !isa<CXXConstructorDecl>(Cand->Function))
8598 ArgIdx--;
8599 } else {
8600 // Builtin binary operator with a bad first conversion.
8601 assert(ConvCount <= 3);
8602 for (; ConvIdx != ConvCount; ++ConvIdx)
8603 Cand->Conversions[ConvIdx]
8604 = TryCopyInitialization(S, Args[ConvIdx],
8605 Cand->BuiltinTypes.ParamTypes[ConvIdx],
8606 SuppressUserConversions,
8607 /*InOverloadResolution*/ true,
8608 /*AllowObjCWritebackConversion=*/
8609 S.getLangOpts().ObjCAutoRefCount);
8610 return;
8611 }
8612
8613 // Fill in the rest of the conversions.
8614 unsigned NumArgsInProto = Proto->getNumArgs();
8615 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
8616 if (ArgIdx < NumArgsInProto) {
8617 Cand->Conversions[ConvIdx]
8618 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
8619 SuppressUserConversions,
8620 /*InOverloadResolution=*/true,
8621 /*AllowObjCWritebackConversion=*/
8622 S.getLangOpts().ObjCAutoRefCount);
8623 // Store the FixIt in the candidate if it exists.
8624 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
8625 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
8626 }
8627 else
8628 Cand->Conversions[ConvIdx].setEllipsis();
8629 }
8630 }
8631
8632 } // end anonymous namespace
8633
8634 /// PrintOverloadCandidates - When overload resolution fails, prints
8635 /// diagnostic messages containing the candidates in the candidate
8636 /// set.
NoteCandidates(Sema & S,OverloadCandidateDisplayKind OCD,llvm::ArrayRef<Expr * > Args,const char * Opc,SourceLocation OpLoc)8637 void OverloadCandidateSet::NoteCandidates(Sema &S,
8638 OverloadCandidateDisplayKind OCD,
8639 llvm::ArrayRef<Expr *> Args,
8640 const char *Opc,
8641 SourceLocation OpLoc) {
8642 // Sort the candidates by viability and position. Sorting directly would
8643 // be prohibitive, so we make a set of pointers and sort those.
8644 SmallVector<OverloadCandidate*, 32> Cands;
8645 if (OCD == OCD_AllCandidates) Cands.reserve(size());
8646 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
8647 if (Cand->Viable)
8648 Cands.push_back(Cand);
8649 else if (OCD == OCD_AllCandidates) {
8650 CompleteNonViableCandidate(S, Cand, Args);
8651 if (Cand->Function || Cand->IsSurrogate)
8652 Cands.push_back(Cand);
8653 // Otherwise, this a non-viable builtin candidate. We do not, in general,
8654 // want to list every possible builtin candidate.
8655 }
8656 }
8657
8658 std::sort(Cands.begin(), Cands.end(),
8659 CompareOverloadCandidatesForDisplay(S));
8660
8661 bool ReportedAmbiguousConversions = false;
8662
8663 SmallVectorImpl<OverloadCandidate*>::iterator I, E;
8664 const DiagnosticsEngine::OverloadsShown ShowOverloads =
8665 S.Diags.getShowOverloads();
8666 unsigned CandsShown = 0;
8667 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
8668 OverloadCandidate *Cand = *I;
8669
8670 // Set an arbitrary limit on the number of candidate functions we'll spam
8671 // the user with. FIXME: This limit should depend on details of the
8672 // candidate list.
8673 if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
8674 break;
8675 }
8676 ++CandsShown;
8677
8678 if (Cand->Function)
8679 NoteFunctionCandidate(S, Cand, Args.size());
8680 else if (Cand->IsSurrogate)
8681 NoteSurrogateCandidate(S, Cand);
8682 else {
8683 assert(Cand->Viable &&
8684 "Non-viable built-in candidates are not added to Cands.");
8685 // Generally we only see ambiguities including viable builtin
8686 // operators if overload resolution got screwed up by an
8687 // ambiguous user-defined conversion.
8688 //
8689 // FIXME: It's quite possible for different conversions to see
8690 // different ambiguities, though.
8691 if (!ReportedAmbiguousConversions) {
8692 NoteAmbiguousUserConversions(S, OpLoc, Cand);
8693 ReportedAmbiguousConversions = true;
8694 }
8695
8696 // If this is a viable builtin, print it.
8697 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
8698 }
8699 }
8700
8701 if (I != E)
8702 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
8703 }
8704
8705 // [PossiblyAFunctionType] --> [Return]
8706 // NonFunctionType --> NonFunctionType
8707 // R (A) --> R(A)
8708 // R (*)(A) --> R (A)
8709 // R (&)(A) --> R (A)
8710 // R (S::*)(A) --> R (A)
ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType)8711 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
8712 QualType Ret = PossiblyAFunctionType;
8713 if (const PointerType *ToTypePtr =
8714 PossiblyAFunctionType->getAs<PointerType>())
8715 Ret = ToTypePtr->getPointeeType();
8716 else if (const ReferenceType *ToTypeRef =
8717 PossiblyAFunctionType->getAs<ReferenceType>())
8718 Ret = ToTypeRef->getPointeeType();
8719 else if (const MemberPointerType *MemTypePtr =
8720 PossiblyAFunctionType->getAs<MemberPointerType>())
8721 Ret = MemTypePtr->getPointeeType();
8722 Ret =
8723 Context.getCanonicalType(Ret).getUnqualifiedType();
8724 return Ret;
8725 }
8726
8727 // A helper class to help with address of function resolution
8728 // - allows us to avoid passing around all those ugly parameters
8729 class AddressOfFunctionResolver
8730 {
8731 Sema& S;
8732 Expr* SourceExpr;
8733 const QualType& TargetType;
8734 QualType TargetFunctionType; // Extracted function type from target type
8735
8736 bool Complain;
8737 //DeclAccessPair& ResultFunctionAccessPair;
8738 ASTContext& Context;
8739
8740 bool TargetTypeIsNonStaticMemberFunction;
8741 bool FoundNonTemplateFunction;
8742
8743 OverloadExpr::FindResult OvlExprInfo;
8744 OverloadExpr *OvlExpr;
8745 TemplateArgumentListInfo OvlExplicitTemplateArgs;
8746 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
8747
8748 public:
AddressOfFunctionResolver(Sema & S,Expr * SourceExpr,const QualType & TargetType,bool Complain)8749 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
8750 const QualType& TargetType, bool Complain)
8751 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
8752 Complain(Complain), Context(S.getASTContext()),
8753 TargetTypeIsNonStaticMemberFunction(
8754 !!TargetType->getAs<MemberPointerType>()),
8755 FoundNonTemplateFunction(false),
8756 OvlExprInfo(OverloadExpr::find(SourceExpr)),
8757 OvlExpr(OvlExprInfo.Expression)
8758 {
8759 ExtractUnqualifiedFunctionTypeFromTargetType();
8760
8761 if (!TargetFunctionType->isFunctionType()) {
8762 if (OvlExpr->hasExplicitTemplateArgs()) {
8763 DeclAccessPair dap;
8764 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
8765 OvlExpr, false, &dap) ) {
8766
8767 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8768 if (!Method->isStatic()) {
8769 // If the target type is a non-function type and the function
8770 // found is a non-static member function, pretend as if that was
8771 // the target, it's the only possible type to end up with.
8772 TargetTypeIsNonStaticMemberFunction = true;
8773
8774 // And skip adding the function if its not in the proper form.
8775 // We'll diagnose this due to an empty set of functions.
8776 if (!OvlExprInfo.HasFormOfMemberPointer)
8777 return;
8778 }
8779 }
8780
8781 Matches.push_back(std::make_pair(dap,Fn));
8782 }
8783 }
8784 return;
8785 }
8786
8787 if (OvlExpr->hasExplicitTemplateArgs())
8788 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
8789
8790 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
8791 // C++ [over.over]p4:
8792 // If more than one function is selected, [...]
8793 if (Matches.size() > 1) {
8794 if (FoundNonTemplateFunction)
8795 EliminateAllTemplateMatches();
8796 else
8797 EliminateAllExceptMostSpecializedTemplate();
8798 }
8799 }
8800 }
8801
8802 private:
isTargetTypeAFunction() const8803 bool isTargetTypeAFunction() const {
8804 return TargetFunctionType->isFunctionType();
8805 }
8806
8807 // [ToType] [Return]
8808
8809 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
8810 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
8811 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
ExtractUnqualifiedFunctionTypeFromTargetType()8812 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
8813 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
8814 }
8815
8816 // return true if any matching specializations were found
AddMatchingTemplateFunction(FunctionTemplateDecl * FunctionTemplate,const DeclAccessPair & CurAccessFunPair)8817 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8818 const DeclAccessPair& CurAccessFunPair) {
8819 if (CXXMethodDecl *Method
8820 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8821 // Skip non-static function templates when converting to pointer, and
8822 // static when converting to member pointer.
8823 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8824 return false;
8825 }
8826 else if (TargetTypeIsNonStaticMemberFunction)
8827 return false;
8828
8829 // C++ [over.over]p2:
8830 // If the name is a function template, template argument deduction is
8831 // done (14.8.2.2), and if the argument deduction succeeds, the
8832 // resulting template argument list is used to generate a single
8833 // function template specialization, which is added to the set of
8834 // overloaded functions considered.
8835 FunctionDecl *Specialization = 0;
8836 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
8837 if (Sema::TemplateDeductionResult Result
8838 = S.DeduceTemplateArguments(FunctionTemplate,
8839 &OvlExplicitTemplateArgs,
8840 TargetFunctionType, Specialization,
8841 Info)) {
8842 // FIXME: make a note of the failed deduction for diagnostics.
8843 (void)Result;
8844 return false;
8845 }
8846
8847 // Template argument deduction ensures that we have an exact match.
8848 // This function template specicalization works.
8849 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
8850 assert(TargetFunctionType
8851 == Context.getCanonicalType(Specialization->getType()));
8852 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
8853 return true;
8854 }
8855
AddMatchingNonTemplateFunction(NamedDecl * Fn,const DeclAccessPair & CurAccessFunPair)8856 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
8857 const DeclAccessPair& CurAccessFunPair) {
8858 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8859 // Skip non-static functions when converting to pointer, and static
8860 // when converting to member pointer.
8861 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8862 return false;
8863 }
8864 else if (TargetTypeIsNonStaticMemberFunction)
8865 return false;
8866
8867 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
8868 if (S.getLangOpts().CUDA)
8869 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
8870 if (S.CheckCUDATarget(Caller, FunDecl))
8871 return false;
8872
8873 QualType ResultTy;
8874 if (Context.hasSameUnqualifiedType(TargetFunctionType,
8875 FunDecl->getType()) ||
8876 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
8877 ResultTy)) {
8878 Matches.push_back(std::make_pair(CurAccessFunPair,
8879 cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
8880 FoundNonTemplateFunction = true;
8881 return true;
8882 }
8883 }
8884
8885 return false;
8886 }
8887
FindAllFunctionsThatMatchTargetTypeExactly()8888 bool FindAllFunctionsThatMatchTargetTypeExactly() {
8889 bool Ret = false;
8890
8891 // If the overload expression doesn't have the form of a pointer to
8892 // member, don't try to convert it to a pointer-to-member type.
8893 if (IsInvalidFormOfPointerToMemberFunction())
8894 return false;
8895
8896 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8897 E = OvlExpr->decls_end();
8898 I != E; ++I) {
8899 // Look through any using declarations to find the underlying function.
8900 NamedDecl *Fn = (*I)->getUnderlyingDecl();
8901
8902 // C++ [over.over]p3:
8903 // Non-member functions and static member functions match
8904 // targets of type "pointer-to-function" or "reference-to-function."
8905 // Nonstatic member functions match targets of
8906 // type "pointer-to-member-function."
8907 // Note that according to DR 247, the containing class does not matter.
8908 if (FunctionTemplateDecl *FunctionTemplate
8909 = dyn_cast<FunctionTemplateDecl>(Fn)) {
8910 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
8911 Ret = true;
8912 }
8913 // If we have explicit template arguments supplied, skip non-templates.
8914 else if (!OvlExpr->hasExplicitTemplateArgs() &&
8915 AddMatchingNonTemplateFunction(Fn, I.getPair()))
8916 Ret = true;
8917 }
8918 assert(Ret || Matches.empty());
8919 return Ret;
8920 }
8921
EliminateAllExceptMostSpecializedTemplate()8922 void EliminateAllExceptMostSpecializedTemplate() {
8923 // [...] and any given function template specialization F1 is
8924 // eliminated if the set contains a second function template
8925 // specialization whose function template is more specialized
8926 // than the function template of F1 according to the partial
8927 // ordering rules of 14.5.5.2.
8928
8929 // The algorithm specified above is quadratic. We instead use a
8930 // two-pass algorithm (similar to the one used to identify the
8931 // best viable function in an overload set) that identifies the
8932 // best function template (if it exists).
8933
8934 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
8935 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
8936 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
8937
8938 UnresolvedSetIterator Result =
8939 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
8940 TPOC_Other, 0, SourceExpr->getLocStart(),
8941 S.PDiag(),
8942 S.PDiag(diag::err_addr_ovl_ambiguous)
8943 << Matches[0].second->getDeclName(),
8944 S.PDiag(diag::note_ovl_candidate)
8945 << (unsigned) oc_function_template,
8946 Complain, TargetFunctionType);
8947
8948 if (Result != MatchesCopy.end()) {
8949 // Make it the first and only element
8950 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
8951 Matches[0].second = cast<FunctionDecl>(*Result);
8952 Matches.resize(1);
8953 }
8954 }
8955
EliminateAllTemplateMatches()8956 void EliminateAllTemplateMatches() {
8957 // [...] any function template specializations in the set are
8958 // eliminated if the set also contains a non-template function, [...]
8959 for (unsigned I = 0, N = Matches.size(); I != N; ) {
8960 if (Matches[I].second->getPrimaryTemplate() == 0)
8961 ++I;
8962 else {
8963 Matches[I] = Matches[--N];
8964 Matches.set_size(N);
8965 }
8966 }
8967 }
8968
8969 public:
ComplainNoMatchesFound() const8970 void ComplainNoMatchesFound() const {
8971 assert(Matches.empty());
8972 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
8973 << OvlExpr->getName() << TargetFunctionType
8974 << OvlExpr->getSourceRange();
8975 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
8976 }
8977
IsInvalidFormOfPointerToMemberFunction() const8978 bool IsInvalidFormOfPointerToMemberFunction() const {
8979 return TargetTypeIsNonStaticMemberFunction &&
8980 !OvlExprInfo.HasFormOfMemberPointer;
8981 }
8982
ComplainIsInvalidFormOfPointerToMemberFunction() const8983 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
8984 // TODO: Should we condition this on whether any functions might
8985 // have matched, or is it more appropriate to do that in callers?
8986 // TODO: a fixit wouldn't hurt.
8987 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
8988 << TargetType << OvlExpr->getSourceRange();
8989 }
8990
ComplainOfInvalidConversion() const8991 void ComplainOfInvalidConversion() const {
8992 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
8993 << OvlExpr->getName() << TargetType;
8994 }
8995
ComplainMultipleMatchesFound() const8996 void ComplainMultipleMatchesFound() const {
8997 assert(Matches.size() > 1);
8998 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
8999 << OvlExpr->getName()
9000 << OvlExpr->getSourceRange();
9001 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9002 }
9003
hadMultipleCandidates() const9004 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9005
getNumMatches() const9006 int getNumMatches() const { return Matches.size(); }
9007
getMatchingFunctionDecl() const9008 FunctionDecl* getMatchingFunctionDecl() const {
9009 if (Matches.size() != 1) return 0;
9010 return Matches[0].second;
9011 }
9012
getMatchingFunctionAccessPair() const9013 const DeclAccessPair* getMatchingFunctionAccessPair() const {
9014 if (Matches.size() != 1) return 0;
9015 return &Matches[0].first;
9016 }
9017 };
9018
9019 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9020 /// an overloaded function (C++ [over.over]), where @p From is an
9021 /// expression with overloaded function type and @p ToType is the type
9022 /// we're trying to resolve to. For example:
9023 ///
9024 /// @code
9025 /// int f(double);
9026 /// int f(int);
9027 ///
9028 /// int (*pfd)(double) = f; // selects f(double)
9029 /// @endcode
9030 ///
9031 /// This routine returns the resulting FunctionDecl if it could be
9032 /// resolved, and NULL otherwise. When @p Complain is true, this
9033 /// routine will emit diagnostics if there is an error.
9034 FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr * AddressOfExpr,QualType TargetType,bool Complain,DeclAccessPair & FoundResult,bool * pHadMultipleCandidates)9035 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9036 QualType TargetType,
9037 bool Complain,
9038 DeclAccessPair &FoundResult,
9039 bool *pHadMultipleCandidates) {
9040 assert(AddressOfExpr->getType() == Context.OverloadTy);
9041
9042 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9043 Complain);
9044 int NumMatches = Resolver.getNumMatches();
9045 FunctionDecl* Fn = 0;
9046 if (NumMatches == 0 && Complain) {
9047 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9048 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9049 else
9050 Resolver.ComplainNoMatchesFound();
9051 }
9052 else if (NumMatches > 1 && Complain)
9053 Resolver.ComplainMultipleMatchesFound();
9054 else if (NumMatches == 1) {
9055 Fn = Resolver.getMatchingFunctionDecl();
9056 assert(Fn);
9057 FoundResult = *Resolver.getMatchingFunctionAccessPair();
9058 MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
9059 if (Complain)
9060 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9061 }
9062
9063 if (pHadMultipleCandidates)
9064 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9065 return Fn;
9066 }
9067
9068 /// \brief Given an expression that refers to an overloaded function, try to
9069 /// resolve that overloaded function expression down to a single function.
9070 ///
9071 /// This routine can only resolve template-ids that refer to a single function
9072 /// template, where that template-id refers to a single template whose template
9073 /// arguments are either provided by the template-id or have defaults,
9074 /// as described in C++0x [temp.arg.explicit]p3.
9075 FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr * ovl,bool Complain,DeclAccessPair * FoundResult)9076 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9077 bool Complain,
9078 DeclAccessPair *FoundResult) {
9079 // C++ [over.over]p1:
9080 // [...] [Note: any redundant set of parentheses surrounding the
9081 // overloaded function name is ignored (5.1). ]
9082 // C++ [over.over]p1:
9083 // [...] The overloaded function name can be preceded by the &
9084 // operator.
9085
9086 // If we didn't actually find any template-ids, we're done.
9087 if (!ovl->hasExplicitTemplateArgs())
9088 return 0;
9089
9090 TemplateArgumentListInfo ExplicitTemplateArgs;
9091 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9092
9093 // Look through all of the overloaded functions, searching for one
9094 // whose type matches exactly.
9095 FunctionDecl *Matched = 0;
9096 for (UnresolvedSetIterator I = ovl->decls_begin(),
9097 E = ovl->decls_end(); I != E; ++I) {
9098 // C++0x [temp.arg.explicit]p3:
9099 // [...] In contexts where deduction is done and fails, or in contexts
9100 // where deduction is not done, if a template argument list is
9101 // specified and it, along with any default template arguments,
9102 // identifies a single function template specialization, then the
9103 // template-id is an lvalue for the function template specialization.
9104 FunctionTemplateDecl *FunctionTemplate
9105 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9106
9107 // C++ [over.over]p2:
9108 // If the name is a function template, template argument deduction is
9109 // done (14.8.2.2), and if the argument deduction succeeds, the
9110 // resulting template argument list is used to generate a single
9111 // function template specialization, which is added to the set of
9112 // overloaded functions considered.
9113 FunctionDecl *Specialization = 0;
9114 TemplateDeductionInfo Info(Context, ovl->getNameLoc());
9115 if (TemplateDeductionResult Result
9116 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9117 Specialization, Info)) {
9118 // FIXME: make a note of the failed deduction for diagnostics.
9119 (void)Result;
9120 continue;
9121 }
9122
9123 assert(Specialization && "no specialization and no error?");
9124
9125 // Multiple matches; we can't resolve to a single declaration.
9126 if (Matched) {
9127 if (Complain) {
9128 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9129 << ovl->getName();
9130 NoteAllOverloadCandidates(ovl);
9131 }
9132 return 0;
9133 }
9134
9135 Matched = Specialization;
9136 if (FoundResult) *FoundResult = I.getPair();
9137 }
9138
9139 return Matched;
9140 }
9141
9142
9143
9144
9145 // Resolve and fix an overloaded expression that can be resolved
9146 // because it identifies a single function template specialization.
9147 //
9148 // Last three arguments should only be supplied if Complain = true
9149 //
9150 // Return true if it was logically possible to so resolve the
9151 // expression, regardless of whether or not it succeeded. Always
9152 // returns true if 'complain' is set.
ResolveAndFixSingleFunctionTemplateSpecialization(ExprResult & SrcExpr,bool doFunctionPointerConverion,bool complain,const SourceRange & OpRangeForComplaining,QualType DestTypeForComplaining,unsigned DiagIDForComplaining)9153 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9154 ExprResult &SrcExpr, bool doFunctionPointerConverion,
9155 bool complain, const SourceRange& OpRangeForComplaining,
9156 QualType DestTypeForComplaining,
9157 unsigned DiagIDForComplaining) {
9158 assert(SrcExpr.get()->getType() == Context.OverloadTy);
9159
9160 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9161
9162 DeclAccessPair found;
9163 ExprResult SingleFunctionExpression;
9164 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9165 ovl.Expression, /*complain*/ false, &found)) {
9166 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9167 SrcExpr = ExprError();
9168 return true;
9169 }
9170
9171 // It is only correct to resolve to an instance method if we're
9172 // resolving a form that's permitted to be a pointer to member.
9173 // Otherwise we'll end up making a bound member expression, which
9174 // is illegal in all the contexts we resolve like this.
9175 if (!ovl.HasFormOfMemberPointer &&
9176 isa<CXXMethodDecl>(fn) &&
9177 cast<CXXMethodDecl>(fn)->isInstance()) {
9178 if (!complain) return false;
9179
9180 Diag(ovl.Expression->getExprLoc(),
9181 diag::err_bound_member_function)
9182 << 0 << ovl.Expression->getSourceRange();
9183
9184 // TODO: I believe we only end up here if there's a mix of
9185 // static and non-static candidates (otherwise the expression
9186 // would have 'bound member' type, not 'overload' type).
9187 // Ideally we would note which candidate was chosen and why
9188 // the static candidates were rejected.
9189 SrcExpr = ExprError();
9190 return true;
9191 }
9192
9193 // Fix the expresion to refer to 'fn'.
9194 SingleFunctionExpression =
9195 Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9196
9197 // If desired, do function-to-pointer decay.
9198 if (doFunctionPointerConverion) {
9199 SingleFunctionExpression =
9200 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9201 if (SingleFunctionExpression.isInvalid()) {
9202 SrcExpr = ExprError();
9203 return true;
9204 }
9205 }
9206 }
9207
9208 if (!SingleFunctionExpression.isUsable()) {
9209 if (complain) {
9210 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9211 << ovl.Expression->getName()
9212 << DestTypeForComplaining
9213 << OpRangeForComplaining
9214 << ovl.Expression->getQualifierLoc().getSourceRange();
9215 NoteAllOverloadCandidates(SrcExpr.get());
9216
9217 SrcExpr = ExprError();
9218 return true;
9219 }
9220
9221 return false;
9222 }
9223
9224 SrcExpr = SingleFunctionExpression;
9225 return true;
9226 }
9227
9228 /// \brief Add a single candidate to the overload set.
AddOverloadedCallCandidate(Sema & S,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool KnownValid)9229 static void AddOverloadedCallCandidate(Sema &S,
9230 DeclAccessPair FoundDecl,
9231 TemplateArgumentListInfo *ExplicitTemplateArgs,
9232 llvm::ArrayRef<Expr *> Args,
9233 OverloadCandidateSet &CandidateSet,
9234 bool PartialOverloading,
9235 bool KnownValid) {
9236 NamedDecl *Callee = FoundDecl.getDecl();
9237 if (isa<UsingShadowDecl>(Callee))
9238 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9239
9240 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9241 if (ExplicitTemplateArgs) {
9242 assert(!KnownValid && "Explicit template arguments?");
9243 return;
9244 }
9245 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9246 PartialOverloading);
9247 return;
9248 }
9249
9250 if (FunctionTemplateDecl *FuncTemplate
9251 = dyn_cast<FunctionTemplateDecl>(Callee)) {
9252 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9253 ExplicitTemplateArgs, Args, CandidateSet);
9254 return;
9255 }
9256
9257 assert(!KnownValid && "unhandled case in overloaded call candidate");
9258 }
9259
9260 /// \brief Add the overload candidates named by callee and/or found by argument
9261 /// dependent lookup to the given overload set.
AddOverloadedCallCandidates(UnresolvedLookupExpr * ULE,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading)9262 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9263 llvm::ArrayRef<Expr *> Args,
9264 OverloadCandidateSet &CandidateSet,
9265 bool PartialOverloading) {
9266
9267 #ifndef NDEBUG
9268 // Verify that ArgumentDependentLookup is consistent with the rules
9269 // in C++0x [basic.lookup.argdep]p3:
9270 //
9271 // Let X be the lookup set produced by unqualified lookup (3.4.1)
9272 // and let Y be the lookup set produced by argument dependent
9273 // lookup (defined as follows). If X contains
9274 //
9275 // -- a declaration of a class member, or
9276 //
9277 // -- a block-scope function declaration that is not a
9278 // using-declaration, or
9279 //
9280 // -- a declaration that is neither a function or a function
9281 // template
9282 //
9283 // then Y is empty.
9284
9285 if (ULE->requiresADL()) {
9286 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9287 E = ULE->decls_end(); I != E; ++I) {
9288 assert(!(*I)->getDeclContext()->isRecord());
9289 assert(isa<UsingShadowDecl>(*I) ||
9290 !(*I)->getDeclContext()->isFunctionOrMethod());
9291 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9292 }
9293 }
9294 #endif
9295
9296 // It would be nice to avoid this copy.
9297 TemplateArgumentListInfo TABuffer;
9298 TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9299 if (ULE->hasExplicitTemplateArgs()) {
9300 ULE->copyTemplateArgumentsInto(TABuffer);
9301 ExplicitTemplateArgs = &TABuffer;
9302 }
9303
9304 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9305 E = ULE->decls_end(); I != E; ++I)
9306 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9307 CandidateSet, PartialOverloading,
9308 /*KnownValid*/ true);
9309
9310 if (ULE->requiresADL())
9311 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9312 ULE->getExprLoc(),
9313 Args, ExplicitTemplateArgs,
9314 CandidateSet, PartialOverloading,
9315 ULE->isStdAssociatedNamespace());
9316 }
9317
9318 /// Attempt to recover from an ill-formed use of a non-dependent name in a
9319 /// template, where the non-dependent name was declared after the template
9320 /// was defined. This is common in code written for a compilers which do not
9321 /// correctly implement two-stage name lookup.
9322 ///
9323 /// Returns true if a viable candidate was found and a diagnostic was issued.
9324 static bool
DiagnoseTwoPhaseLookup(Sema & SemaRef,SourceLocation FnLoc,const CXXScopeSpec & SS,LookupResult & R,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)9325 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9326 const CXXScopeSpec &SS, LookupResult &R,
9327 TemplateArgumentListInfo *ExplicitTemplateArgs,
9328 llvm::ArrayRef<Expr *> Args) {
9329 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9330 return false;
9331
9332 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9333 if (DC->isTransparentContext())
9334 continue;
9335
9336 SemaRef.LookupQualifiedName(R, DC);
9337
9338 if (!R.empty()) {
9339 R.suppressDiagnostics();
9340
9341 if (isa<CXXRecordDecl>(DC)) {
9342 // Don't diagnose names we find in classes; we get much better
9343 // diagnostics for these from DiagnoseEmptyLookup.
9344 R.clear();
9345 return false;
9346 }
9347
9348 OverloadCandidateSet Candidates(FnLoc);
9349 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9350 AddOverloadedCallCandidate(SemaRef, I.getPair(),
9351 ExplicitTemplateArgs, Args,
9352 Candidates, false, /*KnownValid*/ false);
9353
9354 OverloadCandidateSet::iterator Best;
9355 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9356 // No viable functions. Don't bother the user with notes for functions
9357 // which don't work and shouldn't be found anyway.
9358 R.clear();
9359 return false;
9360 }
9361
9362 // Find the namespaces where ADL would have looked, and suggest
9363 // declaring the function there instead.
9364 Sema::AssociatedNamespaceSet AssociatedNamespaces;
9365 Sema::AssociatedClassSet AssociatedClasses;
9366 SemaRef.FindAssociatedClassesAndNamespaces(Args,
9367 AssociatedNamespaces,
9368 AssociatedClasses);
9369 // Never suggest declaring a function within namespace 'std'.
9370 Sema::AssociatedNamespaceSet SuggestedNamespaces;
9371 if (DeclContext *Std = SemaRef.getStdNamespace()) {
9372 for (Sema::AssociatedNamespaceSet::iterator
9373 it = AssociatedNamespaces.begin(),
9374 end = AssociatedNamespaces.end(); it != end; ++it) {
9375 if (!Std->Encloses(*it))
9376 SuggestedNamespaces.insert(*it);
9377 }
9378 } else {
9379 // Lacking the 'std::' namespace, use all of the associated namespaces.
9380 SuggestedNamespaces = AssociatedNamespaces;
9381 }
9382
9383 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9384 << R.getLookupName();
9385 if (SuggestedNamespaces.empty()) {
9386 SemaRef.Diag(Best->Function->getLocation(),
9387 diag::note_not_found_by_two_phase_lookup)
9388 << R.getLookupName() << 0;
9389 } else if (SuggestedNamespaces.size() == 1) {
9390 SemaRef.Diag(Best->Function->getLocation(),
9391 diag::note_not_found_by_two_phase_lookup)
9392 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9393 } else {
9394 // FIXME: It would be useful to list the associated namespaces here,
9395 // but the diagnostics infrastructure doesn't provide a way to produce
9396 // a localized representation of a list of items.
9397 SemaRef.Diag(Best->Function->getLocation(),
9398 diag::note_not_found_by_two_phase_lookup)
9399 << R.getLookupName() << 2;
9400 }
9401
9402 // Try to recover by calling this function.
9403 return true;
9404 }
9405
9406 R.clear();
9407 }
9408
9409 return false;
9410 }
9411
9412 /// Attempt to recover from ill-formed use of a non-dependent operator in a
9413 /// template, where the non-dependent operator was declared after the template
9414 /// was defined.
9415 ///
9416 /// Returns true if a viable candidate was found and a diagnostic was issued.
9417 static bool
DiagnoseTwoPhaseOperatorLookup(Sema & SemaRef,OverloadedOperatorKind Op,SourceLocation OpLoc,llvm::ArrayRef<Expr * > Args)9418 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9419 SourceLocation OpLoc,
9420 llvm::ArrayRef<Expr *> Args) {
9421 DeclarationName OpName =
9422 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9423 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9424 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9425 /*ExplicitTemplateArgs=*/0, Args);
9426 }
9427
9428 namespace {
9429 // Callback to limit the allowed keywords and to only accept typo corrections
9430 // that are keywords or whose decls refer to functions (or template functions)
9431 // that accept the given number of arguments.
9432 class RecoveryCallCCC : public CorrectionCandidateCallback {
9433 public:
RecoveryCallCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs)9434 RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
9435 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
9436 WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
9437 WantRemainingKeywords = false;
9438 }
9439
ValidateCandidate(const TypoCorrection & candidate)9440 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9441 if (!candidate.getCorrectionDecl())
9442 return candidate.isKeyword();
9443
9444 for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
9445 DIEnd = candidate.end(); DI != DIEnd; ++DI) {
9446 FunctionDecl *FD = 0;
9447 NamedDecl *ND = (*DI)->getUnderlyingDecl();
9448 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9449 FD = FTD->getTemplatedDecl();
9450 if (!HasExplicitTemplateArgs && !FD) {
9451 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
9452 // If the Decl is neither a function nor a template function,
9453 // determine if it is a pointer or reference to a function. If so,
9454 // check against the number of arguments expected for the pointee.
9455 QualType ValType = cast<ValueDecl>(ND)->getType();
9456 if (ValType->isAnyPointerType() || ValType->isReferenceType())
9457 ValType = ValType->getPointeeType();
9458 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
9459 if (FPT->getNumArgs() == NumArgs)
9460 return true;
9461 }
9462 }
9463 if (FD && FD->getNumParams() >= NumArgs &&
9464 FD->getMinRequiredArguments() <= NumArgs)
9465 return true;
9466 }
9467 return false;
9468 }
9469
9470 private:
9471 unsigned NumArgs;
9472 bool HasExplicitTemplateArgs;
9473 };
9474
9475 // Callback that effectively disabled typo correction
9476 class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
9477 public:
NoTypoCorrectionCCC()9478 NoTypoCorrectionCCC() {
9479 WantTypeSpecifiers = false;
9480 WantExpressionKeywords = false;
9481 WantCXXNamedCasts = false;
9482 WantRemainingKeywords = false;
9483 }
9484
ValidateCandidate(const TypoCorrection & candidate)9485 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9486 return false;
9487 }
9488 };
9489 }
9490
9491 /// Attempts to recover from a call where no functions were found.
9492 ///
9493 /// Returns true if new candidates were found.
9494 static ExprResult
BuildRecoveryCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,llvm::MutableArrayRef<Expr * > Args,SourceLocation RParenLoc,bool EmptyLookup,bool AllowTypoCorrection)9495 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9496 UnresolvedLookupExpr *ULE,
9497 SourceLocation LParenLoc,
9498 llvm::MutableArrayRef<Expr *> Args,
9499 SourceLocation RParenLoc,
9500 bool EmptyLookup, bool AllowTypoCorrection) {
9501
9502 CXXScopeSpec SS;
9503 SS.Adopt(ULE->getQualifierLoc());
9504 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
9505
9506 TemplateArgumentListInfo TABuffer;
9507 TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9508 if (ULE->hasExplicitTemplateArgs()) {
9509 ULE->copyTemplateArgumentsInto(TABuffer);
9510 ExplicitTemplateArgs = &TABuffer;
9511 }
9512
9513 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9514 Sema::LookupOrdinaryName);
9515 RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
9516 NoTypoCorrectionCCC RejectAll;
9517 CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9518 (CorrectionCandidateCallback*)&Validator :
9519 (CorrectionCandidateCallback*)&RejectAll;
9520 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9521 ExplicitTemplateArgs, Args) &&
9522 (!EmptyLookup ||
9523 SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9524 ExplicitTemplateArgs, Args)))
9525 return ExprError();
9526
9527 assert(!R.empty() && "lookup results empty despite recovery");
9528
9529 // Build an implicit member call if appropriate. Just drop the
9530 // casts and such from the call, we don't really care.
9531 ExprResult NewFn = ExprError();
9532 if ((*R.begin())->isCXXClassMember())
9533 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
9534 R, ExplicitTemplateArgs);
9535 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
9536 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
9537 ExplicitTemplateArgs);
9538 else
9539 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9540
9541 if (NewFn.isInvalid())
9542 return ExprError();
9543
9544 // This shouldn't cause an infinite loop because we're giving it
9545 // an expression with viable lookup results, which should never
9546 // end up here.
9547 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9548 MultiExprArg(Args.data(), Args.size()),
9549 RParenLoc);
9550 }
9551
9552 /// ResolveOverloadedCallFn - Given the call expression that calls Fn
9553 /// (which eventually refers to the declaration Func) and the call
9554 /// arguments Args/NumArgs, attempt to resolve the function call down
9555 /// to a specific function. If overload resolution succeeds, returns
9556 /// the function declaration produced by overload
9557 /// resolution. Otherwise, emits diagnostics, deletes all of the
9558 /// arguments and Fn, and returns NULL.
9559 ExprResult
BuildOverloadedCallExpr(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * ExecConfig,bool AllowTypoCorrection)9560 Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
9561 SourceLocation LParenLoc,
9562 Expr **Args, unsigned NumArgs,
9563 SourceLocation RParenLoc,
9564 Expr *ExecConfig,
9565 bool AllowTypoCorrection) {
9566 #ifndef NDEBUG
9567 if (ULE->requiresADL()) {
9568 // To do ADL, we must have found an unqualified name.
9569 assert(!ULE->getQualifier() && "qualified name with ADL");
9570
9571 // We don't perform ADL for implicit declarations of builtins.
9572 // Verify that this was correctly set up.
9573 FunctionDecl *F;
9574 if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9575 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9576 F->getBuiltinID() && F->isImplicit())
9577 llvm_unreachable("performing ADL for builtin");
9578
9579 // We don't perform ADL in C.
9580 assert(getLangOpts().CPlusPlus && "ADL enabled in C");
9581 } else
9582 assert(!ULE->isStdAssociatedNamespace() &&
9583 "std is associated namespace but not doing ADL");
9584 #endif
9585
9586 UnbridgedCastsSet UnbridgedCasts;
9587 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
9588 return ExprError();
9589
9590 OverloadCandidateSet CandidateSet(Fn->getExprLoc());
9591
9592 // Add the functions denoted by the callee to the set of candidate
9593 // functions, including those from argument-dependent lookup.
9594 AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
9595 CandidateSet);
9596
9597 // If we found nothing, try to recover.
9598 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9599 // out if it fails.
9600 if (CandidateSet.empty()) {
9601 // In Microsoft mode, if we are inside a template class member function then
9602 // create a type dependent CallExpr. The goal is to postpone name lookup
9603 // to instantiation time to be able to search into type dependent base
9604 // classes.
9605 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
9606 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9607 CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
9608 Context.DependentTy, VK_RValue,
9609 RParenLoc);
9610 CE->setTypeDependent(true);
9611 return Owned(CE);
9612 }
9613 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
9614 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9615 RParenLoc, /*EmptyLookup=*/true,
9616 AllowTypoCorrection);
9617 }
9618
9619 UnbridgedCasts.restore();
9620
9621 OverloadCandidateSet::iterator Best;
9622 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
9623 case OR_Success: {
9624 FunctionDecl *FDecl = Best->Function;
9625 MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
9626 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
9627 DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
9628 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9629 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
9630 ExecConfig);
9631 }
9632
9633 case OR_No_Viable_Function: {
9634 // Try to recover by looking for viable functions which the user might
9635 // have meant to call.
9636 ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
9637 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9638 RParenLoc,
9639 /*EmptyLookup=*/false,
9640 AllowTypoCorrection);
9641 if (!Recovery.isInvalid())
9642 return Recovery;
9643
9644 Diag(Fn->getLocStart(),
9645 diag::err_ovl_no_viable_function_in_call)
9646 << ULE->getName() << Fn->getSourceRange();
9647 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
9648 llvm::makeArrayRef(Args, NumArgs));
9649 break;
9650 }
9651
9652 case OR_Ambiguous:
9653 Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
9654 << ULE->getName() << Fn->getSourceRange();
9655 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
9656 llvm::makeArrayRef(Args, NumArgs));
9657 break;
9658
9659 case OR_Deleted:
9660 {
9661 Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
9662 << Best->Function->isDeleted()
9663 << ULE->getName()
9664 << getDeletedOrUnavailableSuffix(Best->Function)
9665 << Fn->getSourceRange();
9666 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
9667 llvm::makeArrayRef(Args, NumArgs));
9668
9669 // We emitted an error for the unvailable/deleted function call but keep
9670 // the call in the AST.
9671 FunctionDecl *FDecl = Best->Function;
9672 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9673 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9674 RParenLoc, ExecConfig);
9675 }
9676 }
9677
9678 // Overload resolution failed.
9679 return ExprError();
9680 }
9681
IsOverloaded(const UnresolvedSetImpl & Functions)9682 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
9683 return Functions.size() > 1 ||
9684 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
9685 }
9686
9687 /// \brief Create a unary operation that may resolve to an overloaded
9688 /// operator.
9689 ///
9690 /// \param OpLoc The location of the operator itself (e.g., '*').
9691 ///
9692 /// \param OpcIn The UnaryOperator::Opcode that describes this
9693 /// operator.
9694 ///
9695 /// \param Functions The set of non-member functions that will be
9696 /// considered by overload resolution. The caller needs to build this
9697 /// set based on the context using, e.g.,
9698 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9699 /// set should not contain any member functions; those will be added
9700 /// by CreateOverloadedUnaryOp().
9701 ///
9702 /// \param input The input argument.
9703 ExprResult
CreateOverloadedUnaryOp(SourceLocation OpLoc,unsigned OpcIn,const UnresolvedSetImpl & Fns,Expr * Input)9704 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
9705 const UnresolvedSetImpl &Fns,
9706 Expr *Input) {
9707 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
9708
9709 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
9710 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
9711 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9712 // TODO: provide better source location info.
9713 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9714
9715 if (checkPlaceholderForOverload(*this, Input))
9716 return ExprError();
9717
9718 Expr *Args[2] = { Input, 0 };
9719 unsigned NumArgs = 1;
9720
9721 // For post-increment and post-decrement, add the implicit '0' as
9722 // the second argument, so that we know this is a post-increment or
9723 // post-decrement.
9724 if (Opc == UO_PostInc || Opc == UO_PostDec) {
9725 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
9726 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
9727 SourceLocation());
9728 NumArgs = 2;
9729 }
9730
9731 if (Input->isTypeDependent()) {
9732 if (Fns.empty())
9733 return Owned(new (Context) UnaryOperator(Input,
9734 Opc,
9735 Context.DependentTy,
9736 VK_RValue, OK_Ordinary,
9737 OpLoc));
9738
9739 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9740 UnresolvedLookupExpr *Fn
9741 = UnresolvedLookupExpr::Create(Context, NamingClass,
9742 NestedNameSpecifierLoc(), OpNameInfo,
9743 /*ADL*/ true, IsOverloaded(Fns),
9744 Fns.begin(), Fns.end());
9745 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9746 &Args[0], NumArgs,
9747 Context.DependentTy,
9748 VK_RValue,
9749 OpLoc));
9750 }
9751
9752 // Build an empty overload set.
9753 OverloadCandidateSet CandidateSet(OpLoc);
9754
9755 // Add the candidates from the given function set.
9756 AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
9757 false);
9758
9759 // Add operator candidates that are member functions.
9760 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9761
9762 // Add candidates from ADL.
9763 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9764 OpLoc, llvm::makeArrayRef(Args, NumArgs),
9765 /*ExplicitTemplateArgs*/ 0,
9766 CandidateSet);
9767
9768 // Add builtin operator candidates.
9769 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9770
9771 bool HadMultipleCandidates = (CandidateSet.size() > 1);
9772
9773 // Perform overload resolution.
9774 OverloadCandidateSet::iterator Best;
9775 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9776 case OR_Success: {
9777 // We found a built-in operator or an overloaded operator.
9778 FunctionDecl *FnDecl = Best->Function;
9779
9780 if (FnDecl) {
9781 // We matched an overloaded operator. Build a call to that
9782 // operator.
9783
9784 MarkFunctionReferenced(OpLoc, FnDecl);
9785
9786 // Convert the arguments.
9787 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9788 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
9789
9790 ExprResult InputRes =
9791 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
9792 Best->FoundDecl, Method);
9793 if (InputRes.isInvalid())
9794 return ExprError();
9795 Input = InputRes.take();
9796 } else {
9797 // Convert the arguments.
9798 ExprResult InputInit
9799 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9800 Context,
9801 FnDecl->getParamDecl(0)),
9802 SourceLocation(),
9803 Input);
9804 if (InputInit.isInvalid())
9805 return ExprError();
9806 Input = InputInit.take();
9807 }
9808
9809 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9810
9811 // Determine the result type.
9812 QualType ResultTy = FnDecl->getResultType();
9813 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9814 ResultTy = ResultTy.getNonLValueExprType(Context);
9815
9816 // Build the actual expression node.
9817 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9818 HadMultipleCandidates, OpLoc);
9819 if (FnExpr.isInvalid())
9820 return ExprError();
9821
9822 Args[0] = Input;
9823 CallExpr *TheCall =
9824 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
9825 Args, NumArgs, ResultTy, VK, OpLoc);
9826
9827 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
9828 FnDecl))
9829 return ExprError();
9830
9831 return MaybeBindToTemporary(TheCall);
9832 } else {
9833 // We matched a built-in operator. Convert the arguments, then
9834 // break out so that we will build the appropriate built-in
9835 // operator node.
9836 ExprResult InputRes =
9837 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
9838 Best->Conversions[0], AA_Passing);
9839 if (InputRes.isInvalid())
9840 return ExprError();
9841 Input = InputRes.take();
9842 break;
9843 }
9844 }
9845
9846 case OR_No_Viable_Function:
9847 // This is an erroneous use of an operator which can be overloaded by
9848 // a non-member function. Check for non-member operators which were
9849 // defined too late to be candidates.
9850 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
9851 llvm::makeArrayRef(Args, NumArgs)))
9852 // FIXME: Recover by calling the found function.
9853 return ExprError();
9854
9855 // No viable function; fall through to handling this as a
9856 // built-in operator, which will produce an error message for us.
9857 break;
9858
9859 case OR_Ambiguous:
9860 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
9861 << UnaryOperator::getOpcodeStr(Opc)
9862 << Input->getType()
9863 << Input->getSourceRange();
9864 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
9865 llvm::makeArrayRef(Args, NumArgs),
9866 UnaryOperator::getOpcodeStr(Opc), OpLoc);
9867 return ExprError();
9868
9869 case OR_Deleted:
9870 Diag(OpLoc, diag::err_ovl_deleted_oper)
9871 << Best->Function->isDeleted()
9872 << UnaryOperator::getOpcodeStr(Opc)
9873 << getDeletedOrUnavailableSuffix(Best->Function)
9874 << Input->getSourceRange();
9875 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
9876 llvm::makeArrayRef(Args, NumArgs),
9877 UnaryOperator::getOpcodeStr(Opc), OpLoc);
9878 return ExprError();
9879 }
9880
9881 // Either we found no viable overloaded operator or we matched a
9882 // built-in operator. In either case, fall through to trying to
9883 // build a built-in operation.
9884 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9885 }
9886
9887 /// \brief Create a binary operation that may resolve to an overloaded
9888 /// operator.
9889 ///
9890 /// \param OpLoc The location of the operator itself (e.g., '+').
9891 ///
9892 /// \param OpcIn The BinaryOperator::Opcode that describes this
9893 /// operator.
9894 ///
9895 /// \param Functions The set of non-member functions that will be
9896 /// considered by overload resolution. The caller needs to build this
9897 /// set based on the context using, e.g.,
9898 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9899 /// set should not contain any member functions; those will be added
9900 /// by CreateOverloadedBinOp().
9901 ///
9902 /// \param LHS Left-hand argument.
9903 /// \param RHS Right-hand argument.
9904 ExprResult
CreateOverloadedBinOp(SourceLocation OpLoc,unsigned OpcIn,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS)9905 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
9906 unsigned OpcIn,
9907 const UnresolvedSetImpl &Fns,
9908 Expr *LHS, Expr *RHS) {
9909 Expr *Args[2] = { LHS, RHS };
9910 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
9911
9912 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
9913 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
9914 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9915
9916 // If either side is type-dependent, create an appropriate dependent
9917 // expression.
9918 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9919 if (Fns.empty()) {
9920 // If there are no functions to store, just build a dependent
9921 // BinaryOperator or CompoundAssignment.
9922 if (Opc <= BO_Assign || Opc > BO_OrAssign)
9923 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
9924 Context.DependentTy,
9925 VK_RValue, OK_Ordinary,
9926 OpLoc));
9927
9928 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
9929 Context.DependentTy,
9930 VK_LValue,
9931 OK_Ordinary,
9932 Context.DependentTy,
9933 Context.DependentTy,
9934 OpLoc));
9935 }
9936
9937 // FIXME: save results of ADL from here?
9938 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9939 // TODO: provide better source location info in DNLoc component.
9940 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9941 UnresolvedLookupExpr *Fn
9942 = UnresolvedLookupExpr::Create(Context, NamingClass,
9943 NestedNameSpecifierLoc(), OpNameInfo,
9944 /*ADL*/ true, IsOverloaded(Fns),
9945 Fns.begin(), Fns.end());
9946 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9947 Args, 2,
9948 Context.DependentTy,
9949 VK_RValue,
9950 OpLoc));
9951 }
9952
9953 // Always do placeholder-like conversions on the RHS.
9954 if (checkPlaceholderForOverload(*this, Args[1]))
9955 return ExprError();
9956
9957 // Do placeholder-like conversion on the LHS; note that we should
9958 // not get here with a PseudoObject LHS.
9959 assert(Args[0]->getObjectKind() != OK_ObjCProperty);
9960 if (checkPlaceholderForOverload(*this, Args[0]))
9961 return ExprError();
9962
9963 // If this is the assignment operator, we only perform overload resolution
9964 // if the left-hand side is a class or enumeration type. This is actually
9965 // a hack. The standard requires that we do overload resolution between the
9966 // various built-in candidates, but as DR507 points out, this can lead to
9967 // problems. So we do it this way, which pretty much follows what GCC does.
9968 // Note that we go the traditional code path for compound assignment forms.
9969 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
9970 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9971
9972 // If this is the .* operator, which is not overloadable, just
9973 // create a built-in binary operator.
9974 if (Opc == BO_PtrMemD)
9975 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9976
9977 // Build an empty overload set.
9978 OverloadCandidateSet CandidateSet(OpLoc);
9979
9980 // Add the candidates from the given function set.
9981 AddFunctionCandidates(Fns, Args, CandidateSet, false);
9982
9983 // Add operator candidates that are member functions.
9984 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9985
9986 // Add candidates from ADL.
9987 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9988 OpLoc, Args,
9989 /*ExplicitTemplateArgs*/ 0,
9990 CandidateSet);
9991
9992 // Add builtin operator candidates.
9993 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9994
9995 bool HadMultipleCandidates = (CandidateSet.size() > 1);
9996
9997 // Perform overload resolution.
9998 OverloadCandidateSet::iterator Best;
9999 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10000 case OR_Success: {
10001 // We found a built-in operator or an overloaded operator.
10002 FunctionDecl *FnDecl = Best->Function;
10003
10004 if (FnDecl) {
10005 // We matched an overloaded operator. Build a call to that
10006 // operator.
10007
10008 MarkFunctionReferenced(OpLoc, FnDecl);
10009
10010 // Convert the arguments.
10011 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10012 // Best->Access is only meaningful for class members.
10013 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10014
10015 ExprResult Arg1 =
10016 PerformCopyInitialization(
10017 InitializedEntity::InitializeParameter(Context,
10018 FnDecl->getParamDecl(0)),
10019 SourceLocation(), Owned(Args[1]));
10020 if (Arg1.isInvalid())
10021 return ExprError();
10022
10023 ExprResult Arg0 =
10024 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10025 Best->FoundDecl, Method);
10026 if (Arg0.isInvalid())
10027 return ExprError();
10028 Args[0] = Arg0.takeAs<Expr>();
10029 Args[1] = RHS = Arg1.takeAs<Expr>();
10030 } else {
10031 // Convert the arguments.
10032 ExprResult Arg0 = PerformCopyInitialization(
10033 InitializedEntity::InitializeParameter(Context,
10034 FnDecl->getParamDecl(0)),
10035 SourceLocation(), Owned(Args[0]));
10036 if (Arg0.isInvalid())
10037 return ExprError();
10038
10039 ExprResult Arg1 =
10040 PerformCopyInitialization(
10041 InitializedEntity::InitializeParameter(Context,
10042 FnDecl->getParamDecl(1)),
10043 SourceLocation(), Owned(Args[1]));
10044 if (Arg1.isInvalid())
10045 return ExprError();
10046 Args[0] = LHS = Arg0.takeAs<Expr>();
10047 Args[1] = RHS = Arg1.takeAs<Expr>();
10048 }
10049
10050 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10051
10052 // Determine the result type.
10053 QualType ResultTy = FnDecl->getResultType();
10054 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10055 ResultTy = ResultTy.getNonLValueExprType(Context);
10056
10057 // Build the actual expression node.
10058 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10059 HadMultipleCandidates, OpLoc);
10060 if (FnExpr.isInvalid())
10061 return ExprError();
10062
10063 CXXOperatorCallExpr *TheCall =
10064 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10065 Args, 2, ResultTy, VK, OpLoc);
10066
10067 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10068 FnDecl))
10069 return ExprError();
10070
10071 return MaybeBindToTemporary(TheCall);
10072 } else {
10073 // We matched a built-in operator. Convert the arguments, then
10074 // break out so that we will build the appropriate built-in
10075 // operator node.
10076 ExprResult ArgsRes0 =
10077 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10078 Best->Conversions[0], AA_Passing);
10079 if (ArgsRes0.isInvalid())
10080 return ExprError();
10081 Args[0] = ArgsRes0.take();
10082
10083 ExprResult ArgsRes1 =
10084 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10085 Best->Conversions[1], AA_Passing);
10086 if (ArgsRes1.isInvalid())
10087 return ExprError();
10088 Args[1] = ArgsRes1.take();
10089 break;
10090 }
10091 }
10092
10093 case OR_No_Viable_Function: {
10094 // C++ [over.match.oper]p9:
10095 // If the operator is the operator , [...] and there are no
10096 // viable functions, then the operator is assumed to be the
10097 // built-in operator and interpreted according to clause 5.
10098 if (Opc == BO_Comma)
10099 break;
10100
10101 // For class as left operand for assignment or compound assigment
10102 // operator do not fall through to handling in built-in, but report that
10103 // no overloaded assignment operator found
10104 ExprResult Result = ExprError();
10105 if (Args[0]->getType()->isRecordType() &&
10106 Opc >= BO_Assign && Opc <= BO_OrAssign) {
10107 Diag(OpLoc, diag::err_ovl_no_viable_oper)
10108 << BinaryOperator::getOpcodeStr(Opc)
10109 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10110 } else {
10111 // This is an erroneous use of an operator which can be overloaded by
10112 // a non-member function. Check for non-member operators which were
10113 // defined too late to be candidates.
10114 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10115 // FIXME: Recover by calling the found function.
10116 return ExprError();
10117
10118 // No viable function; try to create a built-in operation, which will
10119 // produce an error. Then, show the non-viable candidates.
10120 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10121 }
10122 assert(Result.isInvalid() &&
10123 "C++ binary operator overloading is missing candidates!");
10124 if (Result.isInvalid())
10125 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10126 BinaryOperator::getOpcodeStr(Opc), OpLoc);
10127 return move(Result);
10128 }
10129
10130 case OR_Ambiguous:
10131 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
10132 << BinaryOperator::getOpcodeStr(Opc)
10133 << Args[0]->getType() << Args[1]->getType()
10134 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10135 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10136 BinaryOperator::getOpcodeStr(Opc), OpLoc);
10137 return ExprError();
10138
10139 case OR_Deleted:
10140 if (isImplicitlyDeleted(Best->Function)) {
10141 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10142 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10143 << getSpecialMember(Method)
10144 << BinaryOperator::getOpcodeStr(Opc)
10145 << getDeletedOrUnavailableSuffix(Best->Function);
10146
10147 if (getSpecialMember(Method) != CXXInvalid) {
10148 // The user probably meant to call this special member. Just
10149 // explain why it's deleted.
10150 NoteDeletedFunction(Method);
10151 return ExprError();
10152 }
10153 } else {
10154 Diag(OpLoc, diag::err_ovl_deleted_oper)
10155 << Best->Function->isDeleted()
10156 << BinaryOperator::getOpcodeStr(Opc)
10157 << getDeletedOrUnavailableSuffix(Best->Function)
10158 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10159 }
10160 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10161 BinaryOperator::getOpcodeStr(Opc), OpLoc);
10162 return ExprError();
10163 }
10164
10165 // We matched a built-in operator; build it.
10166 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10167 }
10168
10169 ExprResult
CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,SourceLocation RLoc,Expr * Base,Expr * Idx)10170 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10171 SourceLocation RLoc,
10172 Expr *Base, Expr *Idx) {
10173 Expr *Args[2] = { Base, Idx };
10174 DeclarationName OpName =
10175 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10176
10177 // If either side is type-dependent, create an appropriate dependent
10178 // expression.
10179 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10180
10181 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10182 // CHECKME: no 'operator' keyword?
10183 DeclarationNameInfo OpNameInfo(OpName, LLoc);
10184 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10185 UnresolvedLookupExpr *Fn
10186 = UnresolvedLookupExpr::Create(Context, NamingClass,
10187 NestedNameSpecifierLoc(), OpNameInfo,
10188 /*ADL*/ true, /*Overloaded*/ false,
10189 UnresolvedSetIterator(),
10190 UnresolvedSetIterator());
10191 // Can't add any actual overloads yet
10192
10193 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10194 Args, 2,
10195 Context.DependentTy,
10196 VK_RValue,
10197 RLoc));
10198 }
10199
10200 // Handle placeholders on both operands.
10201 if (checkPlaceholderForOverload(*this, Args[0]))
10202 return ExprError();
10203 if (checkPlaceholderForOverload(*this, Args[1]))
10204 return ExprError();
10205
10206 // Build an empty overload set.
10207 OverloadCandidateSet CandidateSet(LLoc);
10208
10209 // Subscript can only be overloaded as a member function.
10210
10211 // Add operator candidates that are member functions.
10212 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10213
10214 // Add builtin operator candidates.
10215 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10216
10217 bool HadMultipleCandidates = (CandidateSet.size() > 1);
10218
10219 // Perform overload resolution.
10220 OverloadCandidateSet::iterator Best;
10221 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10222 case OR_Success: {
10223 // We found a built-in operator or an overloaded operator.
10224 FunctionDecl *FnDecl = Best->Function;
10225
10226 if (FnDecl) {
10227 // We matched an overloaded operator. Build a call to that
10228 // operator.
10229
10230 MarkFunctionReferenced(LLoc, FnDecl);
10231
10232 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10233 DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
10234
10235 // Convert the arguments.
10236 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10237 ExprResult Arg0 =
10238 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10239 Best->FoundDecl, Method);
10240 if (Arg0.isInvalid())
10241 return ExprError();
10242 Args[0] = Arg0.take();
10243
10244 // Convert the arguments.
10245 ExprResult InputInit
10246 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10247 Context,
10248 FnDecl->getParamDecl(0)),
10249 SourceLocation(),
10250 Owned(Args[1]));
10251 if (InputInit.isInvalid())
10252 return ExprError();
10253
10254 Args[1] = InputInit.takeAs<Expr>();
10255
10256 // Determine the result type
10257 QualType ResultTy = FnDecl->getResultType();
10258 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10259 ResultTy = ResultTy.getNonLValueExprType(Context);
10260
10261 // Build the actual expression node.
10262 DeclarationNameInfo OpLocInfo(OpName, LLoc);
10263 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10264 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10265 HadMultipleCandidates,
10266 OpLocInfo.getLoc(),
10267 OpLocInfo.getInfo());
10268 if (FnExpr.isInvalid())
10269 return ExprError();
10270
10271 CXXOperatorCallExpr *TheCall =
10272 new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10273 FnExpr.take(), Args, 2,
10274 ResultTy, VK, RLoc);
10275
10276 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10277 FnDecl))
10278 return ExprError();
10279
10280 return MaybeBindToTemporary(TheCall);
10281 } else {
10282 // We matched a built-in operator. Convert the arguments, then
10283 // break out so that we will build the appropriate built-in
10284 // operator node.
10285 ExprResult ArgsRes0 =
10286 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10287 Best->Conversions[0], AA_Passing);
10288 if (ArgsRes0.isInvalid())
10289 return ExprError();
10290 Args[0] = ArgsRes0.take();
10291
10292 ExprResult ArgsRes1 =
10293 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10294 Best->Conversions[1], AA_Passing);
10295 if (ArgsRes1.isInvalid())
10296 return ExprError();
10297 Args[1] = ArgsRes1.take();
10298
10299 break;
10300 }
10301 }
10302
10303 case OR_No_Viable_Function: {
10304 if (CandidateSet.empty())
10305 Diag(LLoc, diag::err_ovl_no_oper)
10306 << Args[0]->getType() << /*subscript*/ 0
10307 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10308 else
10309 Diag(LLoc, diag::err_ovl_no_viable_subscript)
10310 << Args[0]->getType()
10311 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10312 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10313 "[]", LLoc);
10314 return ExprError();
10315 }
10316
10317 case OR_Ambiguous:
10318 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
10319 << "[]"
10320 << Args[0]->getType() << Args[1]->getType()
10321 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10322 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10323 "[]", LLoc);
10324 return ExprError();
10325
10326 case OR_Deleted:
10327 Diag(LLoc, diag::err_ovl_deleted_oper)
10328 << Best->Function->isDeleted() << "[]"
10329 << getDeletedOrUnavailableSuffix(Best->Function)
10330 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10331 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10332 "[]", LLoc);
10333 return ExprError();
10334 }
10335
10336 // We matched a built-in operator; build it.
10337 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10338 }
10339
10340 /// BuildCallToMemberFunction - Build a call to a member
10341 /// function. MemExpr is the expression that refers to the member
10342 /// function (and includes the object parameter), Args/NumArgs are the
10343 /// arguments to the function call (not including the object
10344 /// parameter). The caller needs to validate that the member
10345 /// expression refers to a non-static member function or an overloaded
10346 /// member function.
10347 ExprResult
BuildCallToMemberFunction(Scope * S,Expr * MemExprE,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc)10348 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10349 SourceLocation LParenLoc, Expr **Args,
10350 unsigned NumArgs, SourceLocation RParenLoc) {
10351 assert(MemExprE->getType() == Context.BoundMemberTy ||
10352 MemExprE->getType() == Context.OverloadTy);
10353
10354 // Dig out the member expression. This holds both the object
10355 // argument and the member function we're referring to.
10356 Expr *NakedMemExpr = MemExprE->IgnoreParens();
10357
10358 // Determine whether this is a call to a pointer-to-member function.
10359 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10360 assert(op->getType() == Context.BoundMemberTy);
10361 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10362
10363 QualType fnType =
10364 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10365
10366 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10367 QualType resultType = proto->getCallResultType(Context);
10368 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10369
10370 // Check that the object type isn't more qualified than the
10371 // member function we're calling.
10372 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10373
10374 QualType objectType = op->getLHS()->getType();
10375 if (op->getOpcode() == BO_PtrMemI)
10376 objectType = objectType->castAs<PointerType>()->getPointeeType();
10377 Qualifiers objectQuals = objectType.getQualifiers();
10378
10379 Qualifiers difference = objectQuals - funcQuals;
10380 difference.removeObjCGCAttr();
10381 difference.removeAddressSpace();
10382 if (difference) {
10383 std::string qualsString = difference.getAsString();
10384 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10385 << fnType.getUnqualifiedType()
10386 << qualsString
10387 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10388 }
10389
10390 CXXMemberCallExpr *call
10391 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10392 resultType, valueKind, RParenLoc);
10393
10394 if (CheckCallReturnType(proto->getResultType(),
10395 op->getRHS()->getLocStart(),
10396 call, 0))
10397 return ExprError();
10398
10399 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
10400 return ExprError();
10401
10402 return MaybeBindToTemporary(call);
10403 }
10404
10405 UnbridgedCastsSet UnbridgedCasts;
10406 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10407 return ExprError();
10408
10409 MemberExpr *MemExpr;
10410 CXXMethodDecl *Method = 0;
10411 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10412 NestedNameSpecifier *Qualifier = 0;
10413 if (isa<MemberExpr>(NakedMemExpr)) {
10414 MemExpr = cast<MemberExpr>(NakedMemExpr);
10415 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10416 FoundDecl = MemExpr->getFoundDecl();
10417 Qualifier = MemExpr->getQualifier();
10418 UnbridgedCasts.restore();
10419 } else {
10420 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10421 Qualifier = UnresExpr->getQualifier();
10422
10423 QualType ObjectType = UnresExpr->getBaseType();
10424 Expr::Classification ObjectClassification
10425 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10426 : UnresExpr->getBase()->Classify(Context);
10427
10428 // Add overload candidates
10429 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10430
10431 // FIXME: avoid copy.
10432 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10433 if (UnresExpr->hasExplicitTemplateArgs()) {
10434 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10435 TemplateArgs = &TemplateArgsBuffer;
10436 }
10437
10438 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10439 E = UnresExpr->decls_end(); I != E; ++I) {
10440
10441 NamedDecl *Func = *I;
10442 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10443 if (isa<UsingShadowDecl>(Func))
10444 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10445
10446
10447 // Microsoft supports direct constructor calls.
10448 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10449 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
10450 llvm::makeArrayRef(Args, NumArgs), CandidateSet);
10451 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10452 // If explicit template arguments were provided, we can't call a
10453 // non-template member function.
10454 if (TemplateArgs)
10455 continue;
10456
10457 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10458 ObjectClassification,
10459 llvm::makeArrayRef(Args, NumArgs), CandidateSet,
10460 /*SuppressUserConversions=*/false);
10461 } else {
10462 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10463 I.getPair(), ActingDC, TemplateArgs,
10464 ObjectType, ObjectClassification,
10465 llvm::makeArrayRef(Args, NumArgs),
10466 CandidateSet,
10467 /*SuppressUsedConversions=*/false);
10468 }
10469 }
10470
10471 DeclarationName DeclName = UnresExpr->getMemberName();
10472
10473 UnbridgedCasts.restore();
10474
10475 OverloadCandidateSet::iterator Best;
10476 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10477 Best)) {
10478 case OR_Success:
10479 Method = cast<CXXMethodDecl>(Best->Function);
10480 MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
10481 FoundDecl = Best->FoundDecl;
10482 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10483 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
10484 break;
10485
10486 case OR_No_Viable_Function:
10487 Diag(UnresExpr->getMemberLoc(),
10488 diag::err_ovl_no_viable_member_function_in_call)
10489 << DeclName << MemExprE->getSourceRange();
10490 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10491 llvm::makeArrayRef(Args, NumArgs));
10492 // FIXME: Leaking incoming expressions!
10493 return ExprError();
10494
10495 case OR_Ambiguous:
10496 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10497 << DeclName << MemExprE->getSourceRange();
10498 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10499 llvm::makeArrayRef(Args, NumArgs));
10500 // FIXME: Leaking incoming expressions!
10501 return ExprError();
10502
10503 case OR_Deleted:
10504 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10505 << Best->Function->isDeleted()
10506 << DeclName
10507 << getDeletedOrUnavailableSuffix(Best->Function)
10508 << MemExprE->getSourceRange();
10509 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10510 llvm::makeArrayRef(Args, NumArgs));
10511 // FIXME: Leaking incoming expressions!
10512 return ExprError();
10513 }
10514
10515 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10516
10517 // If overload resolution picked a static member, build a
10518 // non-member call based on that function.
10519 if (Method->isStatic()) {
10520 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
10521 Args, NumArgs, RParenLoc);
10522 }
10523
10524 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10525 }
10526
10527 QualType ResultType = Method->getResultType();
10528 ExprValueKind VK = Expr::getValueKindForType(ResultType);
10529 ResultType = ResultType.getNonLValueExprType(Context);
10530
10531 assert(Method && "Member call to something that isn't a method?");
10532 CXXMemberCallExpr *TheCall =
10533 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10534 ResultType, VK, RParenLoc);
10535
10536 // Check for a valid return type.
10537 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10538 TheCall, Method))
10539 return ExprError();
10540
10541 // Convert the object argument (for a non-static member function call).
10542 // We only need to do this if there was actually an overload; otherwise
10543 // it was done at lookup.
10544 if (!Method->isStatic()) {
10545 ExprResult ObjectArg =
10546 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10547 FoundDecl, Method);
10548 if (ObjectArg.isInvalid())
10549 return ExprError();
10550 MemExpr->setBase(ObjectArg.take());
10551 }
10552
10553 // Convert the rest of the arguments
10554 const FunctionProtoType *Proto =
10555 Method->getType()->getAs<FunctionProtoType>();
10556 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
10557 RParenLoc))
10558 return ExprError();
10559
10560 DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
10561
10562 if (CheckFunctionCall(Method, TheCall))
10563 return ExprError();
10564
10565 if ((isa<CXXConstructorDecl>(CurContext) ||
10566 isa<CXXDestructorDecl>(CurContext)) &&
10567 TheCall->getMethodDecl()->isPure()) {
10568 const CXXMethodDecl *MD = TheCall->getMethodDecl();
10569
10570 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
10571 Diag(MemExpr->getLocStart(),
10572 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
10573 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
10574 << MD->getParent()->getDeclName();
10575
10576 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
10577 }
10578 }
10579 return MaybeBindToTemporary(TheCall);
10580 }
10581
10582 /// BuildCallToObjectOfClassType - Build a call to an object of class
10583 /// type (C++ [over.call.object]), which can end up invoking an
10584 /// overloaded function call operator (@c operator()) or performing a
10585 /// user-defined conversion on the object argument.
10586 ExprResult
BuildCallToObjectOfClassType(Scope * S,Expr * Obj,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc)10587 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
10588 SourceLocation LParenLoc,
10589 Expr **Args, unsigned NumArgs,
10590 SourceLocation RParenLoc) {
10591 if (checkPlaceholderForOverload(*this, Obj))
10592 return ExprError();
10593 ExprResult Object = Owned(Obj);
10594
10595 UnbridgedCastsSet UnbridgedCasts;
10596 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10597 return ExprError();
10598
10599 assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
10600 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
10601
10602 // C++ [over.call.object]p1:
10603 // If the primary-expression E in the function call syntax
10604 // evaluates to a class object of type "cv T", then the set of
10605 // candidate functions includes at least the function call
10606 // operators of T. The function call operators of T are obtained by
10607 // ordinary lookup of the name operator() in the context of
10608 // (E).operator().
10609 OverloadCandidateSet CandidateSet(LParenLoc);
10610 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
10611
10612 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
10613 PDiag(diag::err_incomplete_object_call)
10614 << Object.get()->getSourceRange()))
10615 return true;
10616
10617 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
10618 LookupQualifiedName(R, Record->getDecl());
10619 R.suppressDiagnostics();
10620
10621 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10622 Oper != OperEnd; ++Oper) {
10623 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
10624 Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
10625 /*SuppressUserConversions=*/ false);
10626 }
10627
10628 // C++ [over.call.object]p2:
10629 // In addition, for each (non-explicit in C++0x) conversion function
10630 // declared in T of the form
10631 //
10632 // operator conversion-type-id () cv-qualifier;
10633 //
10634 // where cv-qualifier is the same cv-qualification as, or a
10635 // greater cv-qualification than, cv, and where conversion-type-id
10636 // denotes the type "pointer to function of (P1,...,Pn) returning
10637 // R", or the type "reference to pointer to function of
10638 // (P1,...,Pn) returning R", or the type "reference to function
10639 // of (P1,...,Pn) returning R", a surrogate call function [...]
10640 // is also considered as a candidate function. Similarly,
10641 // surrogate call functions are added to the set of candidate
10642 // functions for each conversion function declared in an
10643 // accessible base class provided the function is not hidden
10644 // within T by another intervening declaration.
10645 const UnresolvedSetImpl *Conversions
10646 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
10647 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
10648 E = Conversions->end(); I != E; ++I) {
10649 NamedDecl *D = *I;
10650 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
10651 if (isa<UsingShadowDecl>(D))
10652 D = cast<UsingShadowDecl>(D)->getTargetDecl();
10653
10654 // Skip over templated conversion functions; they aren't
10655 // surrogates.
10656 if (isa<FunctionTemplateDecl>(D))
10657 continue;
10658
10659 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
10660 if (!Conv->isExplicit()) {
10661 // Strip the reference type (if any) and then the pointer type (if
10662 // any) to get down to what might be a function type.
10663 QualType ConvType = Conv->getConversionType().getNonReferenceType();
10664 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10665 ConvType = ConvPtrType->getPointeeType();
10666
10667 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
10668 {
10669 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
10670 Object.get(), llvm::makeArrayRef(Args, NumArgs),
10671 CandidateSet);
10672 }
10673 }
10674 }
10675
10676 bool HadMultipleCandidates = (CandidateSet.size() > 1);
10677
10678 // Perform overload resolution.
10679 OverloadCandidateSet::iterator Best;
10680 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
10681 Best)) {
10682 case OR_Success:
10683 // Overload resolution succeeded; we'll build the appropriate call
10684 // below.
10685 break;
10686
10687 case OR_No_Viable_Function:
10688 if (CandidateSet.empty())
10689 Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
10690 << Object.get()->getType() << /*call*/ 1
10691 << Object.get()->getSourceRange();
10692 else
10693 Diag(Object.get()->getLocStart(),
10694 diag::err_ovl_no_viable_object_call)
10695 << Object.get()->getType() << Object.get()->getSourceRange();
10696 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10697 llvm::makeArrayRef(Args, NumArgs));
10698 break;
10699
10700 case OR_Ambiguous:
10701 Diag(Object.get()->getLocStart(),
10702 diag::err_ovl_ambiguous_object_call)
10703 << Object.get()->getType() << Object.get()->getSourceRange();
10704 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10705 llvm::makeArrayRef(Args, NumArgs));
10706 break;
10707
10708 case OR_Deleted:
10709 Diag(Object.get()->getLocStart(),
10710 diag::err_ovl_deleted_object_call)
10711 << Best->Function->isDeleted()
10712 << Object.get()->getType()
10713 << getDeletedOrUnavailableSuffix(Best->Function)
10714 << Object.get()->getSourceRange();
10715 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10716 llvm::makeArrayRef(Args, NumArgs));
10717 break;
10718 }
10719
10720 if (Best == CandidateSet.end())
10721 return true;
10722
10723 UnbridgedCasts.restore();
10724
10725 if (Best->Function == 0) {
10726 // Since there is no function declaration, this is one of the
10727 // surrogate candidates. Dig out the conversion function.
10728 CXXConversionDecl *Conv
10729 = cast<CXXConversionDecl>(
10730 Best->Conversions[0].UserDefined.ConversionFunction);
10731
10732 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10733 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10734
10735 // We selected one of the surrogate functions that converts the
10736 // object parameter to a function pointer. Perform the conversion
10737 // on the object argument, then let ActOnCallExpr finish the job.
10738
10739 // Create an implicit member expr to refer to the conversion operator.
10740 // and then call it.
10741 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
10742 Conv, HadMultipleCandidates);
10743 if (Call.isInvalid())
10744 return ExprError();
10745 // Record usage of conversion in an implicit cast.
10746 Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
10747 CK_UserDefinedConversion,
10748 Call.get(), 0, VK_RValue));
10749
10750 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
10751 RParenLoc);
10752 }
10753
10754 MarkFunctionReferenced(LParenLoc, Best->Function);
10755 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10756 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10757
10758 // We found an overloaded operator(). Build a CXXOperatorCallExpr
10759 // that calls this method, using Object for the implicit object
10760 // parameter and passing along the remaining arguments.
10761 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10762 const FunctionProtoType *Proto =
10763 Method->getType()->getAs<FunctionProtoType>();
10764
10765 unsigned NumArgsInProto = Proto->getNumArgs();
10766 unsigned NumArgsToCheck = NumArgs;
10767
10768 // Build the full argument list for the method call (the
10769 // implicit object parameter is placed at the beginning of the
10770 // list).
10771 Expr **MethodArgs;
10772 if (NumArgs < NumArgsInProto) {
10773 NumArgsToCheck = NumArgsInProto;
10774 MethodArgs = new Expr*[NumArgsInProto + 1];
10775 } else {
10776 MethodArgs = new Expr*[NumArgs + 1];
10777 }
10778 MethodArgs[0] = Object.get();
10779 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
10780 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
10781
10782 DeclarationNameInfo OpLocInfo(
10783 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
10784 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
10785 ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
10786 HadMultipleCandidates,
10787 OpLocInfo.getLoc(),
10788 OpLocInfo.getInfo());
10789 if (NewFn.isInvalid())
10790 return true;
10791
10792 // Once we've built TheCall, all of the expressions are properly
10793 // owned.
10794 QualType ResultTy = Method->getResultType();
10795 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10796 ResultTy = ResultTy.getNonLValueExprType(Context);
10797
10798 CXXOperatorCallExpr *TheCall =
10799 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
10800 MethodArgs, NumArgs + 1,
10801 ResultTy, VK, RParenLoc);
10802 delete [] MethodArgs;
10803
10804 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
10805 Method))
10806 return true;
10807
10808 // We may have default arguments. If so, we need to allocate more
10809 // slots in the call for them.
10810 if (NumArgs < NumArgsInProto)
10811 TheCall->setNumArgs(Context, NumArgsInProto + 1);
10812 else if (NumArgs > NumArgsInProto)
10813 NumArgsToCheck = NumArgsInProto;
10814
10815 bool IsError = false;
10816
10817 // Initialize the implicit object parameter.
10818 ExprResult ObjRes =
10819 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
10820 Best->FoundDecl, Method);
10821 if (ObjRes.isInvalid())
10822 IsError = true;
10823 else
10824 Object = move(ObjRes);
10825 TheCall->setArg(0, Object.take());
10826
10827 // Check the argument types.
10828 for (unsigned i = 0; i != NumArgsToCheck; i++) {
10829 Expr *Arg;
10830 if (i < NumArgs) {
10831 Arg = Args[i];
10832
10833 // Pass the argument.
10834
10835 ExprResult InputInit
10836 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10837 Context,
10838 Method->getParamDecl(i)),
10839 SourceLocation(), Arg);
10840
10841 IsError |= InputInit.isInvalid();
10842 Arg = InputInit.takeAs<Expr>();
10843 } else {
10844 ExprResult DefArg
10845 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
10846 if (DefArg.isInvalid()) {
10847 IsError = true;
10848 break;
10849 }
10850
10851 Arg = DefArg.takeAs<Expr>();
10852 }
10853
10854 TheCall->setArg(i + 1, Arg);
10855 }
10856
10857 // If this is a variadic call, handle args passed through "...".
10858 if (Proto->isVariadic()) {
10859 // Promote the arguments (C99 6.5.2.2p7).
10860 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
10861 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
10862 IsError |= Arg.isInvalid();
10863 TheCall->setArg(i + 1, Arg.take());
10864 }
10865 }
10866
10867 if (IsError) return true;
10868
10869 DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
10870
10871 if (CheckFunctionCall(Method, TheCall))
10872 return true;
10873
10874 return MaybeBindToTemporary(TheCall);
10875 }
10876
10877 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
10878 /// (if one exists), where @c Base is an expression of class type and
10879 /// @c Member is the name of the member we're trying to find.
10880 ExprResult
BuildOverloadedArrowExpr(Scope * S,Expr * Base,SourceLocation OpLoc)10881 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
10882 assert(Base->getType()->isRecordType() &&
10883 "left-hand side must have class type");
10884
10885 if (checkPlaceholderForOverload(*this, Base))
10886 return ExprError();
10887
10888 SourceLocation Loc = Base->getExprLoc();
10889
10890 // C++ [over.ref]p1:
10891 //
10892 // [...] An expression x->m is interpreted as (x.operator->())->m
10893 // for a class object x of type T if T::operator->() exists and if
10894 // the operator is selected as the best match function by the
10895 // overload resolution mechanism (13.3).
10896 DeclarationName OpName =
10897 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
10898 OverloadCandidateSet CandidateSet(Loc);
10899 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
10900
10901 if (RequireCompleteType(Loc, Base->getType(),
10902 PDiag(diag::err_typecheck_incomplete_tag)
10903 << Base->getSourceRange()))
10904 return ExprError();
10905
10906 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
10907 LookupQualifiedName(R, BaseRecord->getDecl());
10908 R.suppressDiagnostics();
10909
10910 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10911 Oper != OperEnd; ++Oper) {
10912 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
10913 0, 0, CandidateSet, /*SuppressUserConversions=*/false);
10914 }
10915
10916 bool HadMultipleCandidates = (CandidateSet.size() > 1);
10917
10918 // Perform overload resolution.
10919 OverloadCandidateSet::iterator Best;
10920 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10921 case OR_Success:
10922 // Overload resolution succeeded; we'll build the call below.
10923 break;
10924
10925 case OR_No_Viable_Function:
10926 if (CandidateSet.empty())
10927 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
10928 << Base->getType() << Base->getSourceRange();
10929 else
10930 Diag(OpLoc, diag::err_ovl_no_viable_oper)
10931 << "operator->" << Base->getSourceRange();
10932 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
10933 return ExprError();
10934
10935 case OR_Ambiguous:
10936 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
10937 << "->" << Base->getType() << Base->getSourceRange();
10938 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
10939 return ExprError();
10940
10941 case OR_Deleted:
10942 Diag(OpLoc, diag::err_ovl_deleted_oper)
10943 << Best->Function->isDeleted()
10944 << "->"
10945 << getDeletedOrUnavailableSuffix(Best->Function)
10946 << Base->getSourceRange();
10947 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
10948 return ExprError();
10949 }
10950
10951 MarkFunctionReferenced(OpLoc, Best->Function);
10952 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
10953 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10954
10955 // Convert the object parameter.
10956 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10957 ExprResult BaseResult =
10958 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
10959 Best->FoundDecl, Method);
10960 if (BaseResult.isInvalid())
10961 return ExprError();
10962 Base = BaseResult.take();
10963
10964 // Build the operator call.
10965 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
10966 HadMultipleCandidates, OpLoc);
10967 if (FnExpr.isInvalid())
10968 return ExprError();
10969
10970 QualType ResultTy = Method->getResultType();
10971 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10972 ResultTy = ResultTy.getNonLValueExprType(Context);
10973 CXXOperatorCallExpr *TheCall =
10974 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
10975 &Base, 1, ResultTy, VK, OpLoc);
10976
10977 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
10978 Method))
10979 return ExprError();
10980
10981 return MaybeBindToTemporary(TheCall);
10982 }
10983
10984 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
10985 /// a literal operator described by the provided lookup results.
BuildLiteralOperatorCall(LookupResult & R,DeclarationNameInfo & SuffixInfo,ArrayRef<Expr * > Args,SourceLocation LitEndLoc,TemplateArgumentListInfo * TemplateArgs)10986 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
10987 DeclarationNameInfo &SuffixInfo,
10988 ArrayRef<Expr*> Args,
10989 SourceLocation LitEndLoc,
10990 TemplateArgumentListInfo *TemplateArgs) {
10991 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
10992
10993 OverloadCandidateSet CandidateSet(UDSuffixLoc);
10994 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
10995 TemplateArgs);
10996
10997 bool HadMultipleCandidates = (CandidateSet.size() > 1);
10998
10999 // Perform overload resolution. This will usually be trivial, but might need
11000 // to perform substitutions for a literal operator template.
11001 OverloadCandidateSet::iterator Best;
11002 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11003 case OR_Success:
11004 case OR_Deleted:
11005 break;
11006
11007 case OR_No_Viable_Function:
11008 Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11009 << R.getLookupName();
11010 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11011 return ExprError();
11012
11013 case OR_Ambiguous:
11014 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11015 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11016 return ExprError();
11017 }
11018
11019 FunctionDecl *FD = Best->Function;
11020 MarkFunctionReferenced(UDSuffixLoc, FD);
11021 DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
11022
11023 ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
11024 SuffixInfo.getLoc(),
11025 SuffixInfo.getInfo());
11026 if (Fn.isInvalid())
11027 return true;
11028
11029 // Check the argument types. This should almost always be a no-op, except
11030 // that array-to-pointer decay is applied to string literals.
11031 Expr *ConvArgs[2];
11032 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
11033 ExprResult InputInit = PerformCopyInitialization(
11034 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11035 SourceLocation(), Args[ArgIdx]);
11036 if (InputInit.isInvalid())
11037 return true;
11038 ConvArgs[ArgIdx] = InputInit.take();
11039 }
11040
11041 QualType ResultTy = FD->getResultType();
11042 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11043 ResultTy = ResultTy.getNonLValueExprType(Context);
11044
11045 UserDefinedLiteral *UDL =
11046 new (Context) UserDefinedLiteral(Context, Fn.take(), ConvArgs, Args.size(),
11047 ResultTy, VK, LitEndLoc, UDSuffixLoc);
11048
11049 if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11050 return ExprError();
11051
11052 if (CheckFunctionCall(FD, UDL))
11053 return ExprError();
11054
11055 return MaybeBindToTemporary(UDL);
11056 }
11057
11058 /// FixOverloadedFunctionReference - E is an expression that refers to
11059 /// a C++ overloaded function (possibly with some parentheses and
11060 /// perhaps a '&' around it). We have resolved the overloaded function
11061 /// to the function declaration Fn, so patch up the expression E to
11062 /// refer (possibly indirectly) to Fn. Returns the new expr.
FixOverloadedFunctionReference(Expr * E,DeclAccessPair Found,FunctionDecl * Fn)11063 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11064 FunctionDecl *Fn) {
11065 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11066 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11067 Found, Fn);
11068 if (SubExpr == PE->getSubExpr())
11069 return PE;
11070
11071 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11072 }
11073
11074 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11075 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11076 Found, Fn);
11077 assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11078 SubExpr->getType()) &&
11079 "Implicit cast type cannot be determined from overload");
11080 assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11081 if (SubExpr == ICE->getSubExpr())
11082 return ICE;
11083
11084 return ImplicitCastExpr::Create(Context, ICE->getType(),
11085 ICE->getCastKind(),
11086 SubExpr, 0,
11087 ICE->getValueKind());
11088 }
11089
11090 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11091 assert(UnOp->getOpcode() == UO_AddrOf &&
11092 "Can only take the address of an overloaded function");
11093 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11094 if (Method->isStatic()) {
11095 // Do nothing: static member functions aren't any different
11096 // from non-member functions.
11097 } else {
11098 // Fix the sub expression, which really has to be an
11099 // UnresolvedLookupExpr holding an overloaded member function
11100 // or template.
11101 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11102 Found, Fn);
11103 if (SubExpr == UnOp->getSubExpr())
11104 return UnOp;
11105
11106 assert(isa<DeclRefExpr>(SubExpr)
11107 && "fixed to something other than a decl ref");
11108 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11109 && "fixed to a member ref with no nested name qualifier");
11110
11111 // We have taken the address of a pointer to member
11112 // function. Perform the computation here so that we get the
11113 // appropriate pointer to member type.
11114 QualType ClassType
11115 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11116 QualType MemPtrType
11117 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11118
11119 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11120 VK_RValue, OK_Ordinary,
11121 UnOp->getOperatorLoc());
11122 }
11123 }
11124 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11125 Found, Fn);
11126 if (SubExpr == UnOp->getSubExpr())
11127 return UnOp;
11128
11129 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11130 Context.getPointerType(SubExpr->getType()),
11131 VK_RValue, OK_Ordinary,
11132 UnOp->getOperatorLoc());
11133 }
11134
11135 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11136 // FIXME: avoid copy.
11137 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11138 if (ULE->hasExplicitTemplateArgs()) {
11139 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11140 TemplateArgs = &TemplateArgsBuffer;
11141 }
11142
11143 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11144 ULE->getQualifierLoc(),
11145 ULE->getTemplateKeywordLoc(),
11146 Fn,
11147 /*enclosing*/ false, // FIXME?
11148 ULE->getNameLoc(),
11149 Fn->getType(),
11150 VK_LValue,
11151 Found.getDecl(),
11152 TemplateArgs);
11153 MarkDeclRefReferenced(DRE);
11154 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11155 return DRE;
11156 }
11157
11158 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11159 // FIXME: avoid copy.
11160 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11161 if (MemExpr->hasExplicitTemplateArgs()) {
11162 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11163 TemplateArgs = &TemplateArgsBuffer;
11164 }
11165
11166 Expr *Base;
11167
11168 // If we're filling in a static method where we used to have an
11169 // implicit member access, rewrite to a simple decl ref.
11170 if (MemExpr->isImplicitAccess()) {
11171 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11172 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11173 MemExpr->getQualifierLoc(),
11174 MemExpr->getTemplateKeywordLoc(),
11175 Fn,
11176 /*enclosing*/ false,
11177 MemExpr->getMemberLoc(),
11178 Fn->getType(),
11179 VK_LValue,
11180 Found.getDecl(),
11181 TemplateArgs);
11182 MarkDeclRefReferenced(DRE);
11183 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11184 return DRE;
11185 } else {
11186 SourceLocation Loc = MemExpr->getMemberLoc();
11187 if (MemExpr->getQualifier())
11188 Loc = MemExpr->getQualifierLoc().getBeginLoc();
11189 CheckCXXThisCapture(Loc);
11190 Base = new (Context) CXXThisExpr(Loc,
11191 MemExpr->getBaseType(),
11192 /*isImplicit=*/true);
11193 }
11194 } else
11195 Base = MemExpr->getBase();
11196
11197 ExprValueKind valueKind;
11198 QualType type;
11199 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11200 valueKind = VK_LValue;
11201 type = Fn->getType();
11202 } else {
11203 valueKind = VK_RValue;
11204 type = Context.BoundMemberTy;
11205 }
11206
11207 MemberExpr *ME = MemberExpr::Create(Context, Base,
11208 MemExpr->isArrow(),
11209 MemExpr->getQualifierLoc(),
11210 MemExpr->getTemplateKeywordLoc(),
11211 Fn,
11212 Found,
11213 MemExpr->getMemberNameInfo(),
11214 TemplateArgs,
11215 type, valueKind, OK_Ordinary);
11216 ME->setHadMultipleCandidates(true);
11217 return ME;
11218 }
11219
11220 llvm_unreachable("Invalid reference to overloaded function");
11221 }
11222
FixOverloadedFunctionReference(ExprResult E,DeclAccessPair Found,FunctionDecl * Fn)11223 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11224 DeclAccessPair Found,
11225 FunctionDecl *Fn) {
11226 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11227 }
11228
11229 } // end namespace clang
11230