• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_CONVERSIONS_INL_H_
29 #define V8_CONVERSIONS_INL_H_
30 
31 #include <limits.h>        // Required for INT_MAX etc.
32 #include <math.h>
33 #include <float.h>         // Required for DBL_MAX and on Win32 for finite()
34 #include <stdarg.h>
35 #include "globals.h"       // Required for V8_INFINITY
36 
37 // ----------------------------------------------------------------------------
38 // Extra POSIX/ANSI functions for Win32/MSVC.
39 
40 #include "conversions.h"
41 #include "double.h"
42 #include "platform.h"
43 #include "scanner.h"
44 #include "strtod.h"
45 
46 namespace v8 {
47 namespace internal {
48 
JunkStringValue()49 inline double JunkStringValue() {
50   return BitCast<double, uint64_t>(kQuietNaNMask);
51 }
52 
53 
54 // The fast double-to-unsigned-int conversion routine does not guarantee
55 // rounding towards zero, or any reasonable value if the argument is larger
56 // than what fits in an unsigned 32-bit integer.
FastD2UI(double x)57 inline unsigned int FastD2UI(double x) {
58   // There is no unsigned version of lrint, so there is no fast path
59   // in this function as there is in FastD2I. Using lrint doesn't work
60   // for values of 2^31 and above.
61 
62   // Convert "small enough" doubles to uint32_t by fixing the 32
63   // least significant non-fractional bits in the low 32 bits of the
64   // double, and reading them from there.
65   const double k2Pow52 = 4503599627370496.0;
66   bool negative = x < 0;
67   if (negative) {
68     x = -x;
69   }
70   if (x < k2Pow52) {
71     x += k2Pow52;
72     uint32_t result;
73     Address mantissa_ptr = reinterpret_cast<Address>(&x);
74     // Copy least significant 32 bits of mantissa.
75     memcpy(&result, mantissa_ptr, sizeof(result));
76     return negative ? ~result + 1 : result;
77   }
78   // Large number (outside uint32 range), Infinity or NaN.
79   return 0x80000000u;  // Return integer indefinite.
80 }
81 
82 
DoubleToInteger(double x)83 inline double DoubleToInteger(double x) {
84   if (isnan(x)) return 0;
85   if (!isfinite(x) || x == 0) return x;
86   return (x >= 0) ? floor(x) : ceil(x);
87 }
88 
89 
DoubleToInt32(double x)90 int32_t DoubleToInt32(double x) {
91   int32_t i = FastD2I(x);
92   if (FastI2D(i) == x) return i;
93   Double d(x);
94   int exponent = d.Exponent();
95   if (exponent < 0) {
96     if (exponent <= -Double::kSignificandSize) return 0;
97     return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
98   } else {
99     if (exponent > 31) return 0;
100     return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
101   }
102 }
103 
104 
105 template <class Iterator, class EndMark>
SubStringEquals(Iterator * current,EndMark end,const char * substring)106 bool SubStringEquals(Iterator* current,
107                      EndMark end,
108                      const char* substring) {
109   ASSERT(**current == *substring);
110   for (substring++; *substring != '\0'; substring++) {
111     ++*current;
112     if (*current == end || **current != *substring) return false;
113   }
114   ++*current;
115   return true;
116 }
117 
118 
119 // Returns true if a nonspace character has been found and false if the
120 // end was been reached before finding a nonspace character.
121 template <class Iterator, class EndMark>
AdvanceToNonspace(UnicodeCache * unicode_cache,Iterator * current,EndMark end)122 inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
123                               Iterator* current,
124                               EndMark end) {
125   while (*current != end) {
126     if (!unicode_cache->IsWhiteSpace(**current)) return true;
127     ++*current;
128   }
129   return false;
130 }
131 
132 
133 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
134 template <int radix_log_2, class Iterator, class EndMark>
InternalStringToIntDouble(UnicodeCache * unicode_cache,Iterator current,EndMark end,bool negative,bool allow_trailing_junk)135 double InternalStringToIntDouble(UnicodeCache* unicode_cache,
136                                  Iterator current,
137                                  EndMark end,
138                                  bool negative,
139                                  bool allow_trailing_junk) {
140   ASSERT(current != end);
141 
142   // Skip leading 0s.
143   while (*current == '0') {
144     ++current;
145     if (current == end) return SignedZero(negative);
146   }
147 
148   int64_t number = 0;
149   int exponent = 0;
150   const int radix = (1 << radix_log_2);
151 
152   do {
153     int digit;
154     if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
155       digit = static_cast<char>(*current) - '0';
156     } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
157       digit = static_cast<char>(*current) - 'a' + 10;
158     } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
159       digit = static_cast<char>(*current) - 'A' + 10;
160     } else {
161       if (allow_trailing_junk ||
162           !AdvanceToNonspace(unicode_cache, &current, end)) {
163         break;
164       } else {
165         return JunkStringValue();
166       }
167     }
168 
169     number = number * radix + digit;
170     int overflow = static_cast<int>(number >> 53);
171     if (overflow != 0) {
172       // Overflow occurred. Need to determine which direction to round the
173       // result.
174       int overflow_bits_count = 1;
175       while (overflow > 1) {
176         overflow_bits_count++;
177         overflow >>= 1;
178       }
179 
180       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
181       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
182       number >>= overflow_bits_count;
183       exponent = overflow_bits_count;
184 
185       bool zero_tail = true;
186       while (true) {
187         ++current;
188         if (current == end || !isDigit(*current, radix)) break;
189         zero_tail = zero_tail && *current == '0';
190         exponent += radix_log_2;
191       }
192 
193       if (!allow_trailing_junk &&
194           AdvanceToNonspace(unicode_cache, &current, end)) {
195         return JunkStringValue();
196       }
197 
198       int middle_value = (1 << (overflow_bits_count - 1));
199       if (dropped_bits > middle_value) {
200         number++;  // Rounding up.
201       } else if (dropped_bits == middle_value) {
202         // Rounding to even to consistency with decimals: half-way case rounds
203         // up if significant part is odd and down otherwise.
204         if ((number & 1) != 0 || !zero_tail) {
205           number++;  // Rounding up.
206         }
207       }
208 
209       // Rounding up may cause overflow.
210       if ((number & ((int64_t)1 << 53)) != 0) {
211         exponent++;
212         number >>= 1;
213       }
214       break;
215     }
216     ++current;
217   } while (current != end);
218 
219   ASSERT(number < ((int64_t)1 << 53));
220   ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
221 
222   if (exponent == 0) {
223     if (negative) {
224       if (number == 0) return -0.0;
225       number = -number;
226     }
227     return static_cast<double>(number);
228   }
229 
230   ASSERT(number != 0);
231   // The double could be constructed faster from number (mantissa), exponent
232   // and sign. Assuming it's a rare case more simple code is used.
233   return static_cast<double>(negative ? -number : number) * pow(2.0, exponent);
234 }
235 
236 
237 template <class Iterator, class EndMark>
InternalStringToInt(UnicodeCache * unicode_cache,Iterator current,EndMark end,int radix)238 double InternalStringToInt(UnicodeCache* unicode_cache,
239                            Iterator current,
240                            EndMark end,
241                            int radix) {
242   const bool allow_trailing_junk = true;
243   const double empty_string_val = JunkStringValue();
244 
245   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
246     return empty_string_val;
247   }
248 
249   bool negative = false;
250   bool leading_zero = false;
251 
252   if (*current == '+') {
253     // Ignore leading sign; skip following spaces.
254     ++current;
255     if (current == end) {
256       return JunkStringValue();
257     }
258   } else if (*current == '-') {
259     ++current;
260     if (current == end) {
261       return JunkStringValue();
262     }
263     negative = true;
264   }
265 
266   if (radix == 0) {
267     // Radix detection.
268     if (*current == '0') {
269       ++current;
270       if (current == end) return SignedZero(negative);
271       if (*current == 'x' || *current == 'X') {
272         radix = 16;
273         ++current;
274         if (current == end) return JunkStringValue();
275       } else {
276         radix = 8;
277         leading_zero = true;
278       }
279     } else {
280       radix = 10;
281     }
282   } else if (radix == 16) {
283     if (*current == '0') {
284       // Allow "0x" prefix.
285       ++current;
286       if (current == end) return SignedZero(negative);
287       if (*current == 'x' || *current == 'X') {
288         ++current;
289         if (current == end) return JunkStringValue();
290       } else {
291         leading_zero = true;
292       }
293     }
294   }
295 
296   if (radix < 2 || radix > 36) return JunkStringValue();
297 
298   // Skip leading zeros.
299   while (*current == '0') {
300     leading_zero = true;
301     ++current;
302     if (current == end) return SignedZero(negative);
303   }
304 
305   if (!leading_zero && !isDigit(*current, radix)) {
306     return JunkStringValue();
307   }
308 
309   if (IsPowerOf2(radix)) {
310     switch (radix) {
311       case 2:
312         return InternalStringToIntDouble<1>(
313             unicode_cache, current, end, negative, allow_trailing_junk);
314       case 4:
315         return InternalStringToIntDouble<2>(
316             unicode_cache, current, end, negative, allow_trailing_junk);
317       case 8:
318         return InternalStringToIntDouble<3>(
319             unicode_cache, current, end, negative, allow_trailing_junk);
320 
321       case 16:
322         return InternalStringToIntDouble<4>(
323             unicode_cache, current, end, negative, allow_trailing_junk);
324 
325       case 32:
326         return InternalStringToIntDouble<5>(
327             unicode_cache, current, end, negative, allow_trailing_junk);
328       default:
329         UNREACHABLE();
330     }
331   }
332 
333   if (radix == 10) {
334     // Parsing with strtod.
335     const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
336     // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
337     // end.
338     const int kBufferSize = kMaxSignificantDigits + 2;
339     char buffer[kBufferSize];
340     int buffer_pos = 0;
341     while (*current >= '0' && *current <= '9') {
342       if (buffer_pos <= kMaxSignificantDigits) {
343         // If the number has more than kMaxSignificantDigits it will be parsed
344         // as infinity.
345         ASSERT(buffer_pos < kBufferSize);
346         buffer[buffer_pos++] = static_cast<char>(*current);
347       }
348       ++current;
349       if (current == end) break;
350     }
351 
352     if (!allow_trailing_junk &&
353         AdvanceToNonspace(unicode_cache, &current, end)) {
354       return JunkStringValue();
355     }
356 
357     ASSERT(buffer_pos < kBufferSize);
358     buffer[buffer_pos] = '\0';
359     Vector<const char> buffer_vector(buffer, buffer_pos);
360     return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
361   }
362 
363   // The following code causes accumulating rounding error for numbers greater
364   // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
365   // 16, or 32, then mathInt may be an implementation-dependent approximation to
366   // the mathematical integer value" (15.1.2.2).
367 
368   int lim_0 = '0' + (radix < 10 ? radix : 10);
369   int lim_a = 'a' + (radix - 10);
370   int lim_A = 'A' + (radix - 10);
371 
372   // NOTE: The code for computing the value may seem a bit complex at
373   // first glance. It is structured to use 32-bit multiply-and-add
374   // loops as long as possible to avoid loosing precision.
375 
376   double v = 0.0;
377   bool done = false;
378   do {
379     // Parse the longest part of the string starting at index j
380     // possible while keeping the multiplier, and thus the part
381     // itself, within 32 bits.
382     unsigned int part = 0, multiplier = 1;
383     while (true) {
384       int d;
385       if (*current >= '0' && *current < lim_0) {
386         d = *current - '0';
387       } else if (*current >= 'a' && *current < lim_a) {
388         d = *current - 'a' + 10;
389       } else if (*current >= 'A' && *current < lim_A) {
390         d = *current - 'A' + 10;
391       } else {
392         done = true;
393         break;
394       }
395 
396       // Update the value of the part as long as the multiplier fits
397       // in 32 bits. When we can't guarantee that the next iteration
398       // will not overflow the multiplier, we stop parsing the part
399       // by leaving the loop.
400       const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
401       uint32_t m = multiplier * radix;
402       if (m > kMaximumMultiplier) break;
403       part = part * radix + d;
404       multiplier = m;
405       ASSERT(multiplier > part);
406 
407       ++current;
408       if (current == end) {
409         done = true;
410         break;
411       }
412     }
413 
414     // Update the value and skip the part in the string.
415     v = v * multiplier + part;
416   } while (!done);
417 
418   if (!allow_trailing_junk &&
419       AdvanceToNonspace(unicode_cache, &current, end)) {
420     return JunkStringValue();
421   }
422 
423   return negative ? -v : v;
424 }
425 
426 
427 // Converts a string to a double value. Assumes the Iterator supports
428 // the following operations:
429 // 1. current == end (other ops are not allowed), current != end.
430 // 2. *current - gets the current character in the sequence.
431 // 3. ++current (advances the position).
432 template <class Iterator, class EndMark>
InternalStringToDouble(UnicodeCache * unicode_cache,Iterator current,EndMark end,int flags,double empty_string_val)433 double InternalStringToDouble(UnicodeCache* unicode_cache,
434                               Iterator current,
435                               EndMark end,
436                               int flags,
437                               double empty_string_val) {
438   // To make sure that iterator dereferencing is valid the following
439   // convention is used:
440   // 1. Each '++current' statement is followed by check for equality to 'end'.
441   // 2. If AdvanceToNonspace returned false then current == end.
442   // 3. If 'current' becomes be equal to 'end' the function returns or goes to
443   // 'parsing_done'.
444   // 4. 'current' is not dereferenced after the 'parsing_done' label.
445   // 5. Code before 'parsing_done' may rely on 'current != end'.
446   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
447     return empty_string_val;
448   }
449 
450   const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
451 
452   // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
453   const int kBufferSize = kMaxSignificantDigits + 10;
454   char buffer[kBufferSize];  // NOLINT: size is known at compile time.
455   int buffer_pos = 0;
456 
457   // Exponent will be adjusted if insignificant digits of the integer part
458   // or insignificant leading zeros of the fractional part are dropped.
459   int exponent = 0;
460   int significant_digits = 0;
461   int insignificant_digits = 0;
462   bool nonzero_digit_dropped = false;
463 
464   bool negative = false;
465 
466   if (*current == '+') {
467     // Ignore leading sign.
468     ++current;
469     if (current == end) return JunkStringValue();
470   } else if (*current == '-') {
471     ++current;
472     if (current == end) return JunkStringValue();
473     negative = true;
474   }
475 
476   static const char kInfinitySymbol[] = "Infinity";
477   if (*current == kInfinitySymbol[0]) {
478     if (!SubStringEquals(&current, end, kInfinitySymbol)) {
479       return JunkStringValue();
480     }
481 
482     if (!allow_trailing_junk &&
483         AdvanceToNonspace(unicode_cache, &current, end)) {
484       return JunkStringValue();
485     }
486 
487     ASSERT(buffer_pos == 0);
488     return negative ? -V8_INFINITY : V8_INFINITY;
489   }
490 
491   bool leading_zero = false;
492   if (*current == '0') {
493     ++current;
494     if (current == end) return SignedZero(negative);
495 
496     leading_zero = true;
497 
498     // It could be hexadecimal value.
499     if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
500       ++current;
501       if (current == end || !isDigit(*current, 16)) {
502         return JunkStringValue();  // "0x".
503       }
504 
505       return InternalStringToIntDouble<4>(unicode_cache,
506                                           current,
507                                           end,
508                                           negative,
509                                           allow_trailing_junk);
510     }
511 
512     // Ignore leading zeros in the integer part.
513     while (*current == '0') {
514       ++current;
515       if (current == end) return SignedZero(negative);
516     }
517   }
518 
519   bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0;
520 
521   // Copy significant digits of the integer part (if any) to the buffer.
522   while (*current >= '0' && *current <= '9') {
523     if (significant_digits < kMaxSignificantDigits) {
524       ASSERT(buffer_pos < kBufferSize);
525       buffer[buffer_pos++] = static_cast<char>(*current);
526       significant_digits++;
527       // Will later check if it's an octal in the buffer.
528     } else {
529       insignificant_digits++;  // Move the digit into the exponential part.
530       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
531     }
532     octal = octal && *current < '8';
533     ++current;
534     if (current == end) goto parsing_done;
535   }
536 
537   if (significant_digits == 0) {
538     octal = false;
539   }
540 
541   if (*current == '.') {
542     if (octal && !allow_trailing_junk) return JunkStringValue();
543     if (octal) goto parsing_done;
544 
545     ++current;
546     if (current == end) {
547       if (significant_digits == 0 && !leading_zero) {
548         return JunkStringValue();
549       } else {
550         goto parsing_done;
551       }
552     }
553 
554     if (significant_digits == 0) {
555       // octal = false;
556       // Integer part consists of 0 or is absent. Significant digits start after
557       // leading zeros (if any).
558       while (*current == '0') {
559         ++current;
560         if (current == end) return SignedZero(negative);
561         exponent--;  // Move this 0 into the exponent.
562       }
563     }
564 
565     // There is a fractional part.  We don't emit a '.', but adjust the exponent
566     // instead.
567     while (*current >= '0' && *current <= '9') {
568       if (significant_digits < kMaxSignificantDigits) {
569         ASSERT(buffer_pos < kBufferSize);
570         buffer[buffer_pos++] = static_cast<char>(*current);
571         significant_digits++;
572         exponent--;
573       } else {
574         // Ignore insignificant digits in the fractional part.
575         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
576       }
577       ++current;
578       if (current == end) goto parsing_done;
579     }
580   }
581 
582   if (!leading_zero && exponent == 0 && significant_digits == 0) {
583     // If leading_zeros is true then the string contains zeros.
584     // If exponent < 0 then string was [+-]\.0*...
585     // If significant_digits != 0 the string is not equal to 0.
586     // Otherwise there are no digits in the string.
587     return JunkStringValue();
588   }
589 
590   // Parse exponential part.
591   if (*current == 'e' || *current == 'E') {
592     if (octal) return JunkStringValue();
593     ++current;
594     if (current == end) {
595       if (allow_trailing_junk) {
596         goto parsing_done;
597       } else {
598         return JunkStringValue();
599       }
600     }
601     char sign = '+';
602     if (*current == '+' || *current == '-') {
603       sign = static_cast<char>(*current);
604       ++current;
605       if (current == end) {
606         if (allow_trailing_junk) {
607           goto parsing_done;
608         } else {
609           return JunkStringValue();
610         }
611       }
612     }
613 
614     if (current == end || *current < '0' || *current > '9') {
615       if (allow_trailing_junk) {
616         goto parsing_done;
617       } else {
618         return JunkStringValue();
619       }
620     }
621 
622     const int max_exponent = INT_MAX / 2;
623     ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
624     int num = 0;
625     do {
626       // Check overflow.
627       int digit = *current - '0';
628       if (num >= max_exponent / 10
629           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
630         num = max_exponent;
631       } else {
632         num = num * 10 + digit;
633       }
634       ++current;
635     } while (current != end && *current >= '0' && *current <= '9');
636 
637     exponent += (sign == '-' ? -num : num);
638   }
639 
640   if (!allow_trailing_junk &&
641       AdvanceToNonspace(unicode_cache, &current, end)) {
642     return JunkStringValue();
643   }
644 
645   parsing_done:
646   exponent += insignificant_digits;
647 
648   if (octal) {
649     return InternalStringToIntDouble<3>(unicode_cache,
650                                         buffer,
651                                         buffer + buffer_pos,
652                                         negative,
653                                         allow_trailing_junk);
654   }
655 
656   if (nonzero_digit_dropped) {
657     buffer[buffer_pos++] = '1';
658     exponent--;
659   }
660 
661   ASSERT(buffer_pos < kBufferSize);
662   buffer[buffer_pos] = '\0';
663 
664   double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
665   return negative ? -converted : converted;
666 }
667 
668 } }  // namespace v8::internal
669 
670 #endif  // V8_CONVERSIONS_INL_H_
671