• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #if defined(V8_TARGET_ARCH_IA32)
31 
32 #include "codegen.h"
33 #include "deoptimizer.h"
34 #include "full-codegen.h"
35 #include "safepoint-table.h"
36 
37 namespace v8 {
38 namespace internal {
39 
40 const int Deoptimizer::table_entry_size_ = 10;
41 
42 
patch_size()43 int Deoptimizer::patch_size() {
44   return Assembler::kCallInstructionLength;
45 }
46 
47 
EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code)48 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
49   Isolate* isolate = code->GetIsolate();
50   HandleScope scope(isolate);
51 
52   // Compute the size of relocation information needed for the code
53   // patching in Deoptimizer::DeoptimizeFunction.
54   int min_reloc_size = 0;
55   int prev_pc_offset = 0;
56   DeoptimizationInputData* deopt_data =
57       DeoptimizationInputData::cast(code->deoptimization_data());
58   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
59     int pc_offset = deopt_data->Pc(i)->value();
60     if (pc_offset == -1) continue;
61     ASSERT_GE(pc_offset, prev_pc_offset);
62     int pc_delta = pc_offset - prev_pc_offset;
63     // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
64     // if encodable with small pc delta encoding and up to 6 bytes
65     // otherwise.
66     if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
67       min_reloc_size += 2;
68     } else {
69       min_reloc_size += 6;
70     }
71     prev_pc_offset = pc_offset;
72   }
73 
74   // If the relocation information is not big enough we create a new
75   // relocation info object that is padded with comments to make it
76   // big enough for lazy doptimization.
77   int reloc_length = code->relocation_info()->length();
78   if (min_reloc_size > reloc_length) {
79     int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
80     // Padding needed.
81     int min_padding = min_reloc_size - reloc_length;
82     // Number of comments needed to take up at least that much space.
83     int additional_comments =
84         (min_padding + comment_reloc_size - 1) / comment_reloc_size;
85     // Actual padding size.
86     int padding = additional_comments * comment_reloc_size;
87     // Allocate new relocation info and copy old relocation to the end
88     // of the new relocation info array because relocation info is
89     // written and read backwards.
90     Factory* factory = isolate->factory();
91     Handle<ByteArray> new_reloc =
92         factory->NewByteArray(reloc_length + padding, TENURED);
93     memcpy(new_reloc->GetDataStartAddress() + padding,
94            code->relocation_info()->GetDataStartAddress(),
95            reloc_length);
96     // Create a relocation writer to write the comments in the padding
97     // space. Use position 0 for everything to ensure short encoding.
98     RelocInfoWriter reloc_info_writer(
99         new_reloc->GetDataStartAddress() + padding, 0);
100     intptr_t comment_string
101         = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
102     RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL);
103     for (int i = 0; i < additional_comments; ++i) {
104 #ifdef DEBUG
105       byte* pos_before = reloc_info_writer.pos();
106 #endif
107       reloc_info_writer.Write(&rinfo);
108       ASSERT(RelocInfo::kMinRelocCommentSize ==
109              pos_before - reloc_info_writer.pos());
110     }
111     // Replace relocation information on the code object.
112     code->set_relocation_info(*new_reloc);
113   }
114 }
115 
116 
DeoptimizeFunction(JSFunction * function)117 void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
118   if (!function->IsOptimized()) return;
119 
120   Isolate* isolate = function->GetIsolate();
121   HandleScope scope(isolate);
122   AssertNoAllocation no_allocation;
123 
124   // Get the optimized code.
125   Code* code = function->code();
126   Address code_start_address = code->instruction_start();
127 
128   // We will overwrite the code's relocation info in-place. Relocation info
129   // is written backward. The relocation info is the payload of a byte
130   // array.  Later on we will slide this to the start of the byte array and
131   // create a filler object in the remaining space.
132   ByteArray* reloc_info = code->relocation_info();
133   Address reloc_end_address = reloc_info->address() + reloc_info->Size();
134   RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
135 
136   // For each LLazyBailout instruction insert a call to the corresponding
137   // deoptimization entry.
138 
139   // Since the call is a relative encoding, write new
140   // reloc info.  We do not need any of the existing reloc info because the
141   // existing code will not be used again (we zap it in debug builds).
142   //
143   // Emit call to lazy deoptimization at all lazy deopt points.
144   DeoptimizationInputData* deopt_data =
145       DeoptimizationInputData::cast(code->deoptimization_data());
146 #ifdef DEBUG
147   Address prev_call_address = NULL;
148 #endif
149   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
150     if (deopt_data->Pc(i)->value() == -1) continue;
151     // Patch lazy deoptimization entry.
152     Address call_address = code_start_address + deopt_data->Pc(i)->value();
153     CodePatcher patcher(call_address, patch_size());
154     Address deopt_entry = GetDeoptimizationEntry(i, LAZY);
155     patcher.masm()->call(deopt_entry, RelocInfo::NONE);
156     // We use RUNTIME_ENTRY for deoptimization bailouts.
157     RelocInfo rinfo(call_address + 1,  // 1 after the call opcode.
158                     RelocInfo::RUNTIME_ENTRY,
159                     reinterpret_cast<intptr_t>(deopt_entry),
160                     NULL);
161     reloc_info_writer.Write(&rinfo);
162     ASSERT_GE(reloc_info_writer.pos(),
163               reloc_info->address() + ByteArray::kHeaderSize);
164     ASSERT(prev_call_address == NULL ||
165            call_address >= prev_call_address + patch_size());
166     ASSERT(call_address + patch_size() <= code->instruction_end());
167 #ifdef DEBUG
168     prev_call_address = call_address;
169 #endif
170   }
171 
172   // Move the relocation info to the beginning of the byte array.
173   int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
174   memmove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
175 
176   // The relocation info is in place, update the size.
177   reloc_info->set_length(new_reloc_size);
178 
179   // Handle the junk part after the new relocation info. We will create
180   // a non-live object in the extra space at the end of the former reloc info.
181   Address junk_address = reloc_info->address() + reloc_info->Size();
182   ASSERT(junk_address <= reloc_end_address);
183   isolate->heap()->CreateFillerObjectAt(junk_address,
184                                         reloc_end_address - junk_address);
185 
186   // Add the deoptimizing code to the list.
187   DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code);
188   DeoptimizerData* data = isolate->deoptimizer_data();
189   node->set_next(data->deoptimizing_code_list_);
190   data->deoptimizing_code_list_ = node;
191 
192   // We might be in the middle of incremental marking with compaction.
193   // Tell collector to treat this code object in a special way and
194   // ignore all slots that might have been recorded on it.
195   isolate->heap()->mark_compact_collector()->InvalidateCode(code);
196 
197   // Set the code for the function to non-optimized version.
198   function->ReplaceCode(function->shared()->code());
199 
200   if (FLAG_trace_deopt) {
201     PrintF("[forced deoptimization: ");
202     function->PrintName();
203     PrintF(" / %x]\n", reinterpret_cast<uint32_t>(function));
204   }
205 }
206 
207 
208 static const byte kJnsInstruction = 0x79;
209 static const byte kJnsOffset = 0x13;
210 static const byte kJaeInstruction = 0x73;
211 static const byte kJaeOffset = 0x07;
212 static const byte kCallInstruction = 0xe8;
213 static const byte kNopByteOne = 0x66;
214 static const byte kNopByteTwo = 0x90;
215 
216 
PatchStackCheckCodeAt(Code * unoptimized_code,Address pc_after,Code * check_code,Code * replacement_code)217 void Deoptimizer::PatchStackCheckCodeAt(Code* unoptimized_code,
218                                         Address pc_after,
219                                         Code* check_code,
220                                         Code* replacement_code) {
221   Address call_target_address = pc_after - kIntSize;
222   ASSERT_EQ(check_code->entry(),
223             Assembler::target_address_at(call_target_address));
224   // The stack check code matches the pattern:
225   //
226   //     cmp esp, <limit>
227   //     jae ok
228   //     call <stack guard>
229   //     test eax, <loop nesting depth>
230   // ok: ...
231   //
232   // We will patch away the branch so the code is:
233   //
234   //     cmp esp, <limit>  ;; Not changed
235   //     nop
236   //     nop
237   //     call <on-stack replacment>
238   //     test eax, <loop nesting depth>
239   // ok:
240 
241   if (FLAG_count_based_interrupts) {
242     ASSERT_EQ(*(call_target_address - 3), kJnsInstruction);
243     ASSERT_EQ(*(call_target_address - 2), kJnsOffset);
244   } else {
245     ASSERT_EQ(*(call_target_address - 3), kJaeInstruction);
246     ASSERT_EQ(*(call_target_address - 2), kJaeOffset);
247   }
248   ASSERT_EQ(*(call_target_address - 1), kCallInstruction);
249   *(call_target_address - 3) = kNopByteOne;
250   *(call_target_address - 2) = kNopByteTwo;
251   Assembler::set_target_address_at(call_target_address,
252                                    replacement_code->entry());
253 
254   unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
255       unoptimized_code, call_target_address, replacement_code);
256 }
257 
258 
RevertStackCheckCodeAt(Code * unoptimized_code,Address pc_after,Code * check_code,Code * replacement_code)259 void Deoptimizer::RevertStackCheckCodeAt(Code* unoptimized_code,
260                                          Address pc_after,
261                                          Code* check_code,
262                                          Code* replacement_code) {
263   Address call_target_address = pc_after - kIntSize;
264   ASSERT_EQ(replacement_code->entry(),
265             Assembler::target_address_at(call_target_address));
266 
267   // Replace the nops from patching (Deoptimizer::PatchStackCheckCode) to
268   // restore the conditional branch.
269   ASSERT_EQ(*(call_target_address - 3), kNopByteOne);
270   ASSERT_EQ(*(call_target_address - 2), kNopByteTwo);
271   ASSERT_EQ(*(call_target_address - 1), kCallInstruction);
272   if (FLAG_count_based_interrupts) {
273     *(call_target_address - 3) = kJnsInstruction;
274     *(call_target_address - 2) = kJnsOffset;
275   } else {
276     *(call_target_address - 3) = kJaeInstruction;
277     *(call_target_address - 2) = kJaeOffset;
278   }
279   Assembler::set_target_address_at(call_target_address,
280                                    check_code->entry());
281 
282   check_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
283       unoptimized_code, call_target_address, check_code);
284 }
285 
286 
LookupBailoutId(DeoptimizationInputData * data,unsigned ast_id)287 static int LookupBailoutId(DeoptimizationInputData* data, unsigned ast_id) {
288   ByteArray* translations = data->TranslationByteArray();
289   int length = data->DeoptCount();
290   for (int i = 0; i < length; i++) {
291     if (static_cast<unsigned>(data->AstId(i)->value()) == ast_id) {
292       TranslationIterator it(translations,  data->TranslationIndex(i)->value());
293       int value = it.Next();
294       ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
295       // Read the number of frames.
296       value = it.Next();
297       if (value == 1) return i;
298     }
299   }
300   UNREACHABLE();
301   return -1;
302 }
303 
304 
DoComputeOsrOutputFrame()305 void Deoptimizer::DoComputeOsrOutputFrame() {
306   DeoptimizationInputData* data = DeoptimizationInputData::cast(
307       optimized_code_->deoptimization_data());
308   unsigned ast_id = data->OsrAstId()->value();
309   // TODO(kasperl): This should not be the bailout_id_. It should be
310   // the ast id. Confusing.
311   ASSERT(bailout_id_ == ast_id);
312 
313   int bailout_id = LookupBailoutId(data, ast_id);
314   unsigned translation_index = data->TranslationIndex(bailout_id)->value();
315   ByteArray* translations = data->TranslationByteArray();
316 
317   TranslationIterator iterator(translations, translation_index);
318   Translation::Opcode opcode =
319       static_cast<Translation::Opcode>(iterator.Next());
320   ASSERT(Translation::BEGIN == opcode);
321   USE(opcode);
322   int count = iterator.Next();
323   iterator.Next();  // Drop JS frames count.
324   ASSERT(count == 1);
325   USE(count);
326 
327   opcode = static_cast<Translation::Opcode>(iterator.Next());
328   USE(opcode);
329   ASSERT(Translation::JS_FRAME == opcode);
330   unsigned node_id = iterator.Next();
331   USE(node_id);
332   ASSERT(node_id == ast_id);
333   JSFunction* function = JSFunction::cast(ComputeLiteral(iterator.Next()));
334   USE(function);
335   ASSERT(function == function_);
336   unsigned height = iterator.Next();
337   unsigned height_in_bytes = height * kPointerSize;
338   USE(height_in_bytes);
339 
340   unsigned fixed_size = ComputeFixedSize(function_);
341   unsigned input_frame_size = input_->GetFrameSize();
342   ASSERT(fixed_size + height_in_bytes == input_frame_size);
343 
344   unsigned stack_slot_size = optimized_code_->stack_slots() * kPointerSize;
345   unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
346   unsigned outgoing_size = outgoing_height * kPointerSize;
347   unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
348   ASSERT(outgoing_size == 0);  // OSR does not happen in the middle of a call.
349 
350   if (FLAG_trace_osr) {
351     PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
352            reinterpret_cast<intptr_t>(function_));
353     function_->PrintName();
354     PrintF(" => node=%u, frame=%d->%d]\n",
355            ast_id,
356            input_frame_size,
357            output_frame_size);
358   }
359 
360   // There's only one output frame in the OSR case.
361   output_count_ = 1;
362   output_ = new FrameDescription*[1];
363   output_[0] = new(output_frame_size) FrameDescription(
364       output_frame_size, function_);
365   output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT);
366 
367   // Clear the incoming parameters in the optimized frame to avoid
368   // confusing the garbage collector.
369   unsigned output_offset = output_frame_size - kPointerSize;
370   int parameter_count = function_->shared()->formal_parameter_count() + 1;
371   for (int i = 0; i < parameter_count; ++i) {
372     output_[0]->SetFrameSlot(output_offset, 0);
373     output_offset -= kPointerSize;
374   }
375 
376   // Translate the incoming parameters. This may overwrite some of the
377   // incoming argument slots we've just cleared.
378   int input_offset = input_frame_size - kPointerSize;
379   bool ok = true;
380   int limit = input_offset - (parameter_count * kPointerSize);
381   while (ok && input_offset > limit) {
382     ok = DoOsrTranslateCommand(&iterator, &input_offset);
383   }
384 
385   // There are no translation commands for the caller's pc and fp, the
386   // context, and the function.  Set them up explicitly.
387   for (int i =  StandardFrameConstants::kCallerPCOffset;
388        ok && i >=  StandardFrameConstants::kMarkerOffset;
389        i -= kPointerSize) {
390     uint32_t input_value = input_->GetFrameSlot(input_offset);
391     if (FLAG_trace_osr) {
392       const char* name = "UNKNOWN";
393       switch (i) {
394         case StandardFrameConstants::kCallerPCOffset:
395           name = "caller's pc";
396           break;
397         case StandardFrameConstants::kCallerFPOffset:
398           name = "fp";
399           break;
400         case StandardFrameConstants::kContextOffset:
401           name = "context";
402           break;
403         case StandardFrameConstants::kMarkerOffset:
404           name = "function";
405           break;
406       }
407       PrintF("    [esp + %d] <- 0x%08x ; [esp + %d] (fixed part - %s)\n",
408              output_offset,
409              input_value,
410              input_offset,
411              name);
412     }
413     output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
414     input_offset -= kPointerSize;
415     output_offset -= kPointerSize;
416   }
417 
418   // Translate the rest of the frame.
419   while (ok && input_offset >= 0) {
420     ok = DoOsrTranslateCommand(&iterator, &input_offset);
421   }
422 
423   // If translation of any command failed, continue using the input frame.
424   if (!ok) {
425     delete output_[0];
426     output_[0] = input_;
427     output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
428   } else {
429     // Set up the frame pointer and the context pointer.
430     output_[0]->SetRegister(ebp.code(), input_->GetRegister(ebp.code()));
431     output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code()));
432 
433     unsigned pc_offset = data->OsrPcOffset()->value();
434     uint32_t pc = reinterpret_cast<uint32_t>(
435         optimized_code_->entry() + pc_offset);
436     output_[0]->SetPc(pc);
437   }
438   Code* continuation =
439       function->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR);
440   output_[0]->SetContinuation(
441       reinterpret_cast<uint32_t>(continuation->entry()));
442 
443   if (FLAG_trace_osr) {
444     PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
445            ok ? "finished" : "aborted",
446            reinterpret_cast<intptr_t>(function));
447     function->PrintName();
448     PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
449   }
450 }
451 
452 
DoComputeArgumentsAdaptorFrame(TranslationIterator * iterator,int frame_index)453 void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator,
454                                                  int frame_index) {
455   JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
456   unsigned height = iterator->Next();
457   unsigned height_in_bytes = height * kPointerSize;
458   if (FLAG_trace_deopt) {
459     PrintF("  translating arguments adaptor => height=%d\n", height_in_bytes);
460   }
461 
462   unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
463   unsigned output_frame_size = height_in_bytes + fixed_frame_size;
464 
465   // Allocate and store the output frame description.
466   FrameDescription* output_frame =
467       new(output_frame_size) FrameDescription(output_frame_size, function);
468   output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
469 
470   // Arguments adaptor can not be topmost or bottommost.
471   ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
472   ASSERT(output_[frame_index] == NULL);
473   output_[frame_index] = output_frame;
474 
475   // The top address of the frame is computed from the previous
476   // frame's top and this frame's size.
477   uint32_t top_address;
478   top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
479   output_frame->SetTop(top_address);
480 
481   // Compute the incoming parameter translation.
482   int parameter_count = height;
483   unsigned output_offset = output_frame_size;
484   for (int i = 0; i < parameter_count; ++i) {
485     output_offset -= kPointerSize;
486     DoTranslateCommand(iterator, frame_index, output_offset);
487   }
488 
489   // Read caller's PC from the previous frame.
490   output_offset -= kPointerSize;
491   intptr_t callers_pc = output_[frame_index - 1]->GetPc();
492   output_frame->SetFrameSlot(output_offset, callers_pc);
493   if (FLAG_trace_deopt) {
494     PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's pc\n",
495            top_address + output_offset, output_offset, callers_pc);
496   }
497 
498   // Read caller's FP from the previous frame, and set this frame's FP.
499   output_offset -= kPointerSize;
500   intptr_t value = output_[frame_index - 1]->GetFp();
501   output_frame->SetFrameSlot(output_offset, value);
502   intptr_t fp_value = top_address + output_offset;
503   output_frame->SetFp(fp_value);
504   if (FLAG_trace_deopt) {
505     PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's fp\n",
506            fp_value, output_offset, value);
507   }
508 
509   // A marker value is used in place of the context.
510   output_offset -= kPointerSize;
511   intptr_t context = reinterpret_cast<intptr_t>(
512       Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
513   output_frame->SetFrameSlot(output_offset, context);
514   if (FLAG_trace_deopt) {
515     PrintF("    0x%08x: [top + %d] <- 0x%08x ; context (adaptor sentinel)\n",
516            top_address + output_offset, output_offset, context);
517   }
518 
519   // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
520   output_offset -= kPointerSize;
521   value = reinterpret_cast<intptr_t>(function);
522   output_frame->SetFrameSlot(output_offset, value);
523   if (FLAG_trace_deopt) {
524     PrintF("    0x%08x: [top + %d] <- 0x%08x ; function\n",
525            top_address + output_offset, output_offset, value);
526   }
527 
528   // Number of incoming arguments.
529   output_offset -= kPointerSize;
530   value = reinterpret_cast<uint32_t>(Smi::FromInt(height - 1));
531   output_frame->SetFrameSlot(output_offset, value);
532   if (FLAG_trace_deopt) {
533     PrintF("    0x%08x: [top + %d] <- 0x%08x ; argc (%d)\n",
534            top_address + output_offset, output_offset, value, height - 1);
535   }
536 
537   ASSERT(0 == output_offset);
538 
539   Builtins* builtins = isolate_->builtins();
540   Code* adaptor_trampoline =
541       builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
542   uint32_t pc = reinterpret_cast<uint32_t>(
543       adaptor_trampoline->instruction_start() +
544       isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
545   output_frame->SetPc(pc);
546 }
547 
548 
DoComputeConstructStubFrame(TranslationIterator * iterator,int frame_index)549 void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator,
550                                               int frame_index) {
551   Builtins* builtins = isolate_->builtins();
552   Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
553   JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
554   unsigned height = iterator->Next();
555   unsigned height_in_bytes = height * kPointerSize;
556   if (FLAG_trace_deopt) {
557     PrintF("  translating construct stub => height=%d\n", height_in_bytes);
558   }
559 
560   unsigned fixed_frame_size = 7 * kPointerSize;
561   unsigned output_frame_size = height_in_bytes + fixed_frame_size;
562 
563   // Allocate and store the output frame description.
564   FrameDescription* output_frame =
565       new(output_frame_size) FrameDescription(output_frame_size, function);
566   output_frame->SetFrameType(StackFrame::CONSTRUCT);
567 
568   // Construct stub can not be topmost or bottommost.
569   ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
570   ASSERT(output_[frame_index] == NULL);
571   output_[frame_index] = output_frame;
572 
573   // The top address of the frame is computed from the previous
574   // frame's top and this frame's size.
575   uint32_t top_address;
576   top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
577   output_frame->SetTop(top_address);
578 
579   // Compute the incoming parameter translation.
580   int parameter_count = height;
581   unsigned output_offset = output_frame_size;
582   for (int i = 0; i < parameter_count; ++i) {
583     output_offset -= kPointerSize;
584     DoTranslateCommand(iterator, frame_index, output_offset);
585   }
586 
587   // Read caller's PC from the previous frame.
588   output_offset -= kPointerSize;
589   intptr_t callers_pc = output_[frame_index - 1]->GetPc();
590   output_frame->SetFrameSlot(output_offset, callers_pc);
591   if (FLAG_trace_deopt) {
592     PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's pc\n",
593            top_address + output_offset, output_offset, callers_pc);
594   }
595 
596   // Read caller's FP from the previous frame, and set this frame's FP.
597   output_offset -= kPointerSize;
598   intptr_t value = output_[frame_index - 1]->GetFp();
599   output_frame->SetFrameSlot(output_offset, value);
600   intptr_t fp_value = top_address + output_offset;
601   output_frame->SetFp(fp_value);
602   if (FLAG_trace_deopt) {
603     PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's fp\n",
604            fp_value, output_offset, value);
605   }
606 
607   // The context can be gotten from the previous frame.
608   output_offset -= kPointerSize;
609   value = output_[frame_index - 1]->GetContext();
610   output_frame->SetFrameSlot(output_offset, value);
611   if (FLAG_trace_deopt) {
612     PrintF("    0x%08x: [top + %d] <- 0x%08x ; context\n",
613            top_address + output_offset, output_offset, value);
614   }
615 
616   // A marker value is used in place of the function.
617   output_offset -= kPointerSize;
618   value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
619   output_frame->SetFrameSlot(output_offset, value);
620   if (FLAG_trace_deopt) {
621     PrintF("    0x%08x: [top + %d] <- 0x%08x ; function (construct sentinel)\n",
622            top_address + output_offset, output_offset, value);
623   }
624 
625   // The output frame reflects a JSConstructStubGeneric frame.
626   output_offset -= kPointerSize;
627   value = reinterpret_cast<intptr_t>(construct_stub);
628   output_frame->SetFrameSlot(output_offset, value);
629   if (FLAG_trace_deopt) {
630     PrintF("    0x%08x: [top + %d] <- 0x%08x ; code object\n",
631            top_address + output_offset, output_offset, value);
632   }
633 
634   // Number of incoming arguments.
635   output_offset -= kPointerSize;
636   value = reinterpret_cast<uint32_t>(Smi::FromInt(height - 1));
637   output_frame->SetFrameSlot(output_offset, value);
638   if (FLAG_trace_deopt) {
639     PrintF("    0x%08x: [top + %d] <- 0x%08x ; argc (%d)\n",
640            top_address + output_offset, output_offset, value, height - 1);
641   }
642 
643   // The newly allocated object was passed as receiver in the artificial
644   // constructor stub environment created by HEnvironment::CopyForInlining().
645   output_offset -= kPointerSize;
646   value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
647   output_frame->SetFrameSlot(output_offset, value);
648   if (FLAG_trace_deopt) {
649     PrintF("    0x%08x: [top + %d] <- 0x%08x ; allocated receiver\n",
650            top_address + output_offset, output_offset, value);
651   }
652 
653   ASSERT(0 == output_offset);
654 
655   uint32_t pc = reinterpret_cast<uint32_t>(
656       construct_stub->instruction_start() +
657       isolate_->heap()->construct_stub_deopt_pc_offset()->value());
658   output_frame->SetPc(pc);
659 }
660 
661 
DoComputeJSFrame(TranslationIterator * iterator,int frame_index)662 void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator,
663                                    int frame_index) {
664   int node_id = iterator->Next();
665   JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
666   unsigned height = iterator->Next();
667   unsigned height_in_bytes = height * kPointerSize;
668   if (FLAG_trace_deopt) {
669     PrintF("  translating ");
670     function->PrintName();
671     PrintF(" => node=%d, height=%d\n", node_id, height_in_bytes);
672   }
673 
674   // The 'fixed' part of the frame consists of the incoming parameters and
675   // the part described by JavaScriptFrameConstants.
676   unsigned fixed_frame_size = ComputeFixedSize(function);
677   unsigned input_frame_size = input_->GetFrameSize();
678   unsigned output_frame_size = height_in_bytes + fixed_frame_size;
679 
680   // Allocate and store the output frame description.
681   FrameDescription* output_frame =
682       new(output_frame_size) FrameDescription(output_frame_size, function);
683   output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
684 
685   bool is_bottommost = (0 == frame_index);
686   bool is_topmost = (output_count_ - 1 == frame_index);
687   ASSERT(frame_index >= 0 && frame_index < output_count_);
688   ASSERT(output_[frame_index] == NULL);
689   output_[frame_index] = output_frame;
690 
691   // The top address for the bottommost output frame can be computed from
692   // the input frame pointer and the output frame's height.  For all
693   // subsequent output frames, it can be computed from the previous one's
694   // top address and the current frame's size.
695   uint32_t top_address;
696   if (is_bottommost) {
697     // 2 = context and function in the frame.
698     top_address =
699         input_->GetRegister(ebp.code()) - (2 * kPointerSize) - height_in_bytes;
700   } else {
701     top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
702   }
703   output_frame->SetTop(top_address);
704 
705   // Compute the incoming parameter translation.
706   int parameter_count = function->shared()->formal_parameter_count() + 1;
707   unsigned output_offset = output_frame_size;
708   unsigned input_offset = input_frame_size;
709   for (int i = 0; i < parameter_count; ++i) {
710     output_offset -= kPointerSize;
711     DoTranslateCommand(iterator, frame_index, output_offset);
712   }
713   input_offset -= (parameter_count * kPointerSize);
714 
715   // There are no translation commands for the caller's pc and fp, the
716   // context, and the function.  Synthesize their values and set them up
717   // explicitly.
718   //
719   // The caller's pc for the bottommost output frame is the same as in the
720   // input frame.  For all subsequent output frames, it can be read from the
721   // previous one.  This frame's pc can be computed from the non-optimized
722   // function code and AST id of the bailout.
723   output_offset -= kPointerSize;
724   input_offset -= kPointerSize;
725   intptr_t value;
726   if (is_bottommost) {
727     value = input_->GetFrameSlot(input_offset);
728   } else {
729     value = output_[frame_index - 1]->GetPc();
730   }
731   output_frame->SetFrameSlot(output_offset, value);
732   if (FLAG_trace_deopt) {
733     PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's pc\n",
734            top_address + output_offset, output_offset, value);
735   }
736 
737   // The caller's frame pointer for the bottommost output frame is the same
738   // as in the input frame.  For all subsequent output frames, it can be
739   // read from the previous one.  Also compute and set this frame's frame
740   // pointer.
741   output_offset -= kPointerSize;
742   input_offset -= kPointerSize;
743   if (is_bottommost) {
744     value = input_->GetFrameSlot(input_offset);
745   } else {
746     value = output_[frame_index - 1]->GetFp();
747   }
748   output_frame->SetFrameSlot(output_offset, value);
749   intptr_t fp_value = top_address + output_offset;
750   ASSERT(!is_bottommost || input_->GetRegister(ebp.code()) == fp_value);
751   output_frame->SetFp(fp_value);
752   if (is_topmost) output_frame->SetRegister(ebp.code(), fp_value);
753   if (FLAG_trace_deopt) {
754     PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's fp\n",
755            fp_value, output_offset, value);
756   }
757 
758   // For the bottommost output frame the context can be gotten from the input
759   // frame. For all subsequent output frames it can be gotten from the function
760   // so long as we don't inline functions that need local contexts.
761   output_offset -= kPointerSize;
762   input_offset -= kPointerSize;
763   if (is_bottommost) {
764     value = input_->GetFrameSlot(input_offset);
765   } else {
766     value = reinterpret_cast<uint32_t>(function->context());
767   }
768   output_frame->SetFrameSlot(output_offset, value);
769   output_frame->SetContext(value);
770   if (is_topmost) output_frame->SetRegister(esi.code(), value);
771   if (FLAG_trace_deopt) {
772     PrintF("    0x%08x: [top + %d] <- 0x%08x ; context\n",
773            top_address + output_offset, output_offset, value);
774   }
775 
776   // The function was mentioned explicitly in the BEGIN_FRAME.
777   output_offset -= kPointerSize;
778   input_offset -= kPointerSize;
779   value = reinterpret_cast<uint32_t>(function);
780   // The function for the bottommost output frame should also agree with the
781   // input frame.
782   ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
783   output_frame->SetFrameSlot(output_offset, value);
784   if (FLAG_trace_deopt) {
785     PrintF("    0x%08x: [top + %d] <- 0x%08x ; function\n",
786            top_address + output_offset, output_offset, value);
787   }
788 
789   // Translate the rest of the frame.
790   for (unsigned i = 0; i < height; ++i) {
791     output_offset -= kPointerSize;
792     DoTranslateCommand(iterator, frame_index, output_offset);
793   }
794   ASSERT(0 == output_offset);
795 
796   // Compute this frame's PC, state, and continuation.
797   Code* non_optimized_code = function->shared()->code();
798   FixedArray* raw_data = non_optimized_code->deoptimization_data();
799   DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
800   Address start = non_optimized_code->instruction_start();
801   unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
802   unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
803   uint32_t pc_value = reinterpret_cast<uint32_t>(start + pc_offset);
804   output_frame->SetPc(pc_value);
805 
806   FullCodeGenerator::State state =
807       FullCodeGenerator::StateField::decode(pc_and_state);
808   output_frame->SetState(Smi::FromInt(state));
809 
810   // Set the continuation for the topmost frame.
811   if (is_topmost && bailout_type_ != DEBUGGER) {
812     Builtins* builtins = isolate_->builtins();
813     Code* continuation = (bailout_type_ == EAGER)
814         ? builtins->builtin(Builtins::kNotifyDeoptimized)
815         : builtins->builtin(Builtins::kNotifyLazyDeoptimized);
816     output_frame->SetContinuation(
817         reinterpret_cast<uint32_t>(continuation->entry()));
818   }
819 }
820 
821 
FillInputFrame(Address tos,JavaScriptFrame * frame)822 void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
823   // Set the register values. The values are not important as there are no
824   // callee saved registers in JavaScript frames, so all registers are
825   // spilled. Registers ebp and esp are set to the correct values though.
826 
827   for (int i = 0; i < Register::kNumRegisters; i++) {
828     input_->SetRegister(i, i * 4);
829   }
830   input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
831   input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
832   for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
833     input_->SetDoubleRegister(i, 0.0);
834   }
835 
836   // Fill the frame content from the actual data on the frame.
837   for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
838     input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
839   }
840 }
841 
842 
843 #define __ masm()->
844 
Generate()845 void Deoptimizer::EntryGenerator::Generate() {
846   GeneratePrologue();
847   CpuFeatures::Scope scope(SSE2);
848 
849   Isolate* isolate = masm()->isolate();
850 
851   // Save all general purpose registers before messing with them.
852   const int kNumberOfRegisters = Register::kNumRegisters;
853 
854   const int kDoubleRegsSize = kDoubleSize *
855                               XMMRegister::kNumAllocatableRegisters;
856   __ sub(esp, Immediate(kDoubleRegsSize));
857   for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
858     XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
859     int offset = i * kDoubleSize;
860     __ movdbl(Operand(esp, offset), xmm_reg);
861   }
862 
863   __ pushad();
864 
865   const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
866                                       kDoubleRegsSize;
867 
868   // Get the bailout id from the stack.
869   __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
870 
871   // Get the address of the location in the code object if possible
872   // and compute the fp-to-sp delta in register edx.
873   if (type() == EAGER) {
874     __ Set(ecx, Immediate(0));
875     __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
876   } else {
877     __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
878     __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
879   }
880   __ sub(edx, ebp);
881   __ neg(edx);
882 
883   // Allocate a new deoptimizer object.
884   __ PrepareCallCFunction(6, eax);
885   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
886   __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
887   __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
888   __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
889   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
890   __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
891   __ mov(Operand(esp, 5 * kPointerSize),
892          Immediate(ExternalReference::isolate_address()));
893   {
894     AllowExternalCallThatCantCauseGC scope(masm());
895     __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate), 6);
896   }
897 
898   // Preserve deoptimizer object in register eax and get the input
899   // frame descriptor pointer.
900   __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
901 
902   // Fill in the input registers.
903   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
904     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
905     __ pop(Operand(ebx, offset));
906   }
907 
908   // Fill in the double input registers.
909   int double_regs_offset = FrameDescription::double_registers_offset();
910   for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
911     int dst_offset = i * kDoubleSize + double_regs_offset;
912     int src_offset = i * kDoubleSize;
913     __ movdbl(xmm0, Operand(esp, src_offset));
914     __ movdbl(Operand(ebx, dst_offset), xmm0);
915   }
916 
917   // Remove the bailout id and the double registers from the stack.
918   if (type() == EAGER) {
919     __ add(esp, Immediate(kDoubleRegsSize + kPointerSize));
920   } else {
921     __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
922   }
923 
924   // Compute a pointer to the unwinding limit in register ecx; that is
925   // the first stack slot not part of the input frame.
926   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
927   __ add(ecx, esp);
928 
929   // Unwind the stack down to - but not including - the unwinding
930   // limit and copy the contents of the activation frame to the input
931   // frame description.
932   __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
933   Label pop_loop;
934   __ bind(&pop_loop);
935   __ pop(Operand(edx, 0));
936   __ add(edx, Immediate(sizeof(uint32_t)));
937   __ cmp(ecx, esp);
938   __ j(not_equal, &pop_loop);
939 
940   // Compute the output frame in the deoptimizer.
941   __ push(eax);
942   __ PrepareCallCFunction(1, ebx);
943   __ mov(Operand(esp, 0 * kPointerSize), eax);
944   {
945     AllowExternalCallThatCantCauseGC scope(masm());
946     __ CallCFunction(
947         ExternalReference::compute_output_frames_function(isolate), 1);
948   }
949   __ pop(eax);
950 
951   // Replace the current frame with the output frames.
952   Label outer_push_loop, inner_push_loop;
953   // Outer loop state: eax = current FrameDescription**, edx = one past the
954   // last FrameDescription**.
955   __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
956   __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
957   __ lea(edx, Operand(eax, edx, times_4, 0));
958   __ bind(&outer_push_loop);
959   // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
960   __ mov(ebx, Operand(eax, 0));
961   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
962   __ bind(&inner_push_loop);
963   __ sub(ecx, Immediate(sizeof(uint32_t)));
964   __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
965   __ test(ecx, ecx);
966   __ j(not_zero, &inner_push_loop);
967   __ add(eax, Immediate(kPointerSize));
968   __ cmp(eax, edx);
969   __ j(below, &outer_push_loop);
970 
971   // In case of OSR, we have to restore the XMM registers.
972   if (type() == OSR) {
973     for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
974       XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
975       int src_offset = i * kDoubleSize + double_regs_offset;
976       __ movdbl(xmm_reg, Operand(ebx, src_offset));
977     }
978   }
979 
980   // Push state, pc, and continuation from the last output frame.
981   if (type() != OSR) {
982     __ push(Operand(ebx, FrameDescription::state_offset()));
983   }
984   __ push(Operand(ebx, FrameDescription::pc_offset()));
985   __ push(Operand(ebx, FrameDescription::continuation_offset()));
986 
987 
988   // Push the registers from the last output frame.
989   for (int i = 0; i < kNumberOfRegisters; i++) {
990     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
991     __ push(Operand(ebx, offset));
992   }
993 
994   // Restore the registers from the stack.
995   __ popad();
996 
997   // Return to the continuation point.
998   __ ret(0);
999 }
1000 
1001 
GeneratePrologue()1002 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
1003   // Create a sequence of deoptimization entries.
1004   Label done;
1005   for (int i = 0; i < count(); i++) {
1006     int start = masm()->pc_offset();
1007     USE(start);
1008     __ push_imm32(i);
1009     __ jmp(&done);
1010     ASSERT(masm()->pc_offset() - start == table_entry_size_);
1011   }
1012   __ bind(&done);
1013 }
1014 
1015 #undef __
1016 
1017 
1018 } }  // namespace v8::internal
1019 
1020 #endif  // V8_TARGET_ARCH_IA32
1021