• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4 
5 � Copyright  1995 - 2012 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6   All rights reserved.
7 
8  1.    INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17 
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24 
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28 
29 2.    COPYRIGHT LICENSE
30 
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33 
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36 
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41 
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44 
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47 
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52 
53 3.    NO PATENT LICENSE
54 
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58 
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61 
62 4.    DISCLAIMER
63 
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72 
73 5.    CONTACT INFORMATION
74 
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79 
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83 
84 #include "ton_corr.h"
85 
86 #include "sbr_ram.h"
87 #include "sbr_misc.h"
88 #include "genericStds.h"
89 #include "autocorr2nd.h"
90 
91 
92 
93 /***************************************************************************
94 
95   Send autoCorrSecondOrder to mlfile
96 
97 ****************************************************************************/
98 
99 /**************************************************************************/
100 /*!
101   \brief Calculates the tonal to noise ration for different frequency bands
102    and time segments.
103 
104    The ratio between the predicted energy (tonal energy A) and the total
105    energy (A + B) is calculated. This is converted to the ratio between
106    the predicted energy (tonal energy A) and the non-predictable energy
107    (noise energy B). Hence the quota-matrix contains A/B = q/(1-q).
108 
109    The samples in nrgVector are scaled by 1.0/16.0
110 		The samples in pNrgVectorFreq	are scaled by 1.0/2.0
111    The samples in quotaMatrix are scaled by RELAXATION
112 
113   \return none.
114 
115 */
116 /**************************************************************************/
117 
118 void
FDKsbrEnc_CalculateTonalityQuotas(HANDLE_SBR_TON_CORR_EST hTonCorr,FIXP_DBL ** RESTRICT sourceBufferReal,FIXP_DBL ** RESTRICT sourceBufferImag,INT usb,INT qmfScale)119 FDKsbrEnc_CalculateTonalityQuotas( HANDLE_SBR_TON_CORR_EST hTonCorr,      /*!< Handle to SBR_TON_CORR struct. */
120                                    FIXP_DBL **RESTRICT sourceBufferReal,  /*!< The real part of the QMF-matrix.  */
121                                    FIXP_DBL **RESTRICT sourceBufferImag,  /*!< The imaginary part of the QMF-matrix. */
122                                    INT usb,                               /*!< upper side band, highest + 1 QMF band in the SBR range. */
123                                    INT qmfScale                       /*!< sclefactor of QMF subsamples */
124                                  )
125 {
126   INT     i, k, r, r2, timeIndex, autoCorrScaling;
127 
128   INT     startIndexMatrix  = hTonCorr->startIndexMatrix;
129   INT     totNoEst          = hTonCorr->numberOfEstimates;
130   INT     noEstPerFrame     = hTonCorr->numberOfEstimatesPerFrame;
131   INT     move              = hTonCorr->move;
132   INT     noQmfChannels     = hTonCorr->noQmfChannels;     /* Numer of Bands */
133   INT     buffLen           = hTonCorr->bufferLength;      /* Numer of Slots */
134   INT     stepSize          = hTonCorr->stepSize;
135   INT    *pBlockLength      = hTonCorr->lpcLength;
136   INT**   RESTRICT signMatrix        = hTonCorr->signMatrix;
137   FIXP_DBL* RESTRICT  nrgVector      = hTonCorr->nrgVector;
138   FIXP_DBL** RESTRICT quotaMatrix    = hTonCorr->quotaMatrix;
139   FIXP_DBL*  RESTRICT pNrgVectorFreq = hTonCorr->nrgVectorFreq;
140 
141 #define BAND_V_SIZE QMF_MAX_TIME_SLOTS
142 #define NUM_V_COMBINE 8 /* Must be a divisor of 64 and fulfill the ASSERTs below */
143 
144   FIXP_DBL *realBuf;
145   FIXP_DBL *imagBuf;
146 
147   FIXP_DBL  alphar[2],alphai[2],fac;
148 
149   C_ALLOC_SCRATCH_START(ac, ACORR_COEFS, 1);
150   C_ALLOC_SCRATCH_START(realBufRef, FIXP_DBL, 2*BAND_V_SIZE*NUM_V_COMBINE);
151 
152   realBuf = realBufRef;
153   imagBuf = realBuf + BAND_V_SIZE*NUM_V_COMBINE;
154 
155 
156   FDK_ASSERT(buffLen <= BAND_V_SIZE);
157   FDK_ASSERT(sizeof(FIXP_DBL)*NUM_V_COMBINE*BAND_V_SIZE*2 < (1024*sizeof(FIXP_DBL)-sizeof(ACORR_COEFS)) );
158 
159   /*
160    * Buffering of the quotaMatrix and the quotaMatrixTransp.
161    *********************************************************/
162   for(i =  0 ; i < move; i++){
163     FDKmemcpy(quotaMatrix[i],quotaMatrix[i + noEstPerFrame],noQmfChannels * sizeof(FIXP_DBL));
164     FDKmemcpy(signMatrix[i],signMatrix[i + noEstPerFrame],noQmfChannels * sizeof(INT));
165   }
166 
167   FDKmemmove(nrgVector,nrgVector+noEstPerFrame,move*sizeof(FIXP_DBL));
168   FDKmemclear(nrgVector+startIndexMatrix,(totNoEst-startIndexMatrix)*sizeof(FIXP_DBL));
169   FDKmemclear(pNrgVectorFreq,noQmfChannels * sizeof(FIXP_DBL));
170 
171   /*
172    * Calculate the quotas for the current time steps.
173    **************************************************/
174 
175   for (r = 0; r < usb; r++)
176   {
177     int blockLength;
178 
179     k = hTonCorr->nextSample; /* startSample */
180     timeIndex = startIndexMatrix;
181     /* Copy as many as possible Band accross all Slots at once */
182     if (realBuf != realBufRef) {
183       realBuf -= BAND_V_SIZE;
184       imagBuf -= BAND_V_SIZE;
185     } else {
186       realBuf += BAND_V_SIZE*(NUM_V_COMBINE-1);
187       imagBuf += BAND_V_SIZE*(NUM_V_COMBINE-1);
188       for (i = 0; i < buffLen; i++) {
189         int v;
190         FIXP_DBL *ptr;
191         ptr = realBuf+i;
192         for (v=0; v<NUM_V_COMBINE; v++)
193         {
194           ptr[0] = sourceBufferReal[i][r+v];
195           ptr[0+BAND_V_SIZE*NUM_V_COMBINE] = sourceBufferImag[i][r+v];
196           ptr -= BAND_V_SIZE;
197         }
198       }
199     }
200 
201     blockLength = pBlockLength[0];
202 
203     while(k <= buffLen - blockLength)
204     {
205       autoCorrScaling = fixMin(getScalefactor(&realBuf[k-LPC_ORDER], LPC_ORDER+blockLength), getScalefactor(&imagBuf[k-LPC_ORDER], LPC_ORDER+blockLength));
206       autoCorrScaling = fixMax(0, autoCorrScaling-1);
207 
208       scaleValues(&realBuf[k-LPC_ORDER], LPC_ORDER+blockLength, autoCorrScaling);
209       scaleValues(&imagBuf[k-LPC_ORDER], LPC_ORDER+blockLength, autoCorrScaling);
210 
211       autoCorrScaling <<= 1; /* consider qmf buffer scaling twice */
212       autoCorrScaling += autoCorr2nd_cplx ( ac, realBuf+k, imagBuf+k, blockLength );
213 
214 
215       if(ac->det == FL2FXCONST_DBL(0.0f)){
216         alphar[1] = alphai[1] = FL2FXCONST_DBL(0.0f);
217 
218         alphar[0] = (ac->r01r)>>2;
219         alphai[0] = (ac->r01i)>>2;
220 
221         fac = fMultDiv2(ac->r00r, ac->r11r)>>1;
222       }
223       else{
224         alphar[1] = (fMultDiv2(ac->r01r, ac->r12r)>>1) - (fMultDiv2(ac->r01i, ac->r12i)>>1) - (fMultDiv2(ac->r02r, ac->r11r)>>1);
225         alphai[1] = (fMultDiv2(ac->r01i, ac->r12r)>>1) + (fMultDiv2(ac->r01r, ac->r12i)>>1) - (fMultDiv2(ac->r02i, ac->r11r)>>1);
226 
227         alphar[0] = (fMultDiv2(ac->r01r, ac->det)>>(ac->det_scale+1)) + fMult(alphar[1], ac->r12r) + fMult(alphai[1], ac->r12i);
228         alphai[0] = (fMultDiv2(ac->r01i, ac->det)>>(ac->det_scale+1)) + fMult(alphai[1], ac->r12r) - fMult(alphar[1], ac->r12i);
229 
230         fac = fMultDiv2(ac->r00r, fMult(ac->det, ac->r11r))>>(ac->det_scale+1);
231       }
232 
233       if(fac == FL2FXCONST_DBL(0.0f)){
234         quotaMatrix[timeIndex][r] = FL2FXCONST_DBL(0.0f);
235         signMatrix[timeIndex][r] = 0;
236       }
237       else {
238         /* quotaMatrix is scaled with the factor RELAXATION
239            parse RELAXATION in fractional part and shift factor: 1/(1/0.524288 * 2^RELAXATION_SHIFT) */
240         FIXP_DBL tmp,num,denom;
241         INT numShift,denomShift,commonShift;
242         INT sign;
243 
244         num = fMultDiv2(alphar[0], ac->r01r) + fMultDiv2(alphai[0], ac->r01i) - fMultDiv2(alphar[1], fMult(ac->r02r, ac->r11r)) - fMultDiv2(alphai[1], fMult(ac->r02i, ac->r11r));
245         num = fixp_abs(num);
246 
247         denom = (fac>>1) + (fMultDiv2(fac,RELAXATION_FRACT)>>RELAXATION_SHIFT) - num;
248         denom = fixp_abs(denom);
249 
250         num = fMult(num,RELAXATION_FRACT);
251 
252         numShift = CountLeadingBits(num) - 2;
253         num = scaleValue(num, numShift);
254 
255         denomShift = CountLeadingBits(denom);
256         denom = (FIXP_DBL)denom << denomShift;
257 
258         if ((num > FL2FXCONST_DBL(0.0f)) && (denom != FL2FXCONST_DBL(0.0f))) {
259           commonShift = fixMin(numShift - denomShift + RELAXATION_SHIFT, DFRACT_BITS-1);
260           if (commonShift < 0) {
261             commonShift = -commonShift;
262             tmp = schur_div(num,denom,16);
263             commonShift = fixMin(commonShift,CountLeadingBits(tmp));
264             quotaMatrix[timeIndex][r] = tmp << commonShift;
265           }
266           else {
267             quotaMatrix[timeIndex][r] = schur_div(num,denom,16) >> commonShift;
268           }
269         }
270         else {
271           quotaMatrix[timeIndex][r] = FL2FXCONST_DBL(0.0f);
272         }
273 
274         if (ac->r11r != FL2FXCONST_DBL(0.0f)) {
275           if (  ( (ac->r01r >= FL2FXCONST_DBL(0.0f) ) && ( ac->r11r >= FL2FXCONST_DBL(0.0f) ) )
276               ||( (ac->r01r <  FL2FXCONST_DBL(0.0f) ) && ( ac->r11r <  FL2FXCONST_DBL(0.0f) ) )  ) {
277             sign = 1;
278           }
279           else {
280             sign = -1;
281           }
282         }
283         else {
284           sign = 1;
285         }
286 
287         if(sign < 0) {
288           r2 = r;       /* (INT) pow(-1, band); */
289         }
290         else {
291           r2 = r + 1;   /* (INT) pow(-1, band+1); */
292         }
293         signMatrix[timeIndex][r] = 1 - 2*(r2 & 0x1);
294       }
295 
296       nrgVector[timeIndex] += ((ac->r00r) >> fixMin(DFRACT_BITS-1,(2*qmfScale+autoCorrScaling + SCALE_NRGVEC)));
297       /* pNrgVectorFreq[r] finally has to be divided by noEstPerFrame, replaced division by shifting with one */
298       pNrgVectorFreq[r] = pNrgVectorFreq[r] + ((ac->r00r) >> fixMin(DFRACT_BITS-1,(2*qmfScale+autoCorrScaling + SCALE_NRGVEC)));
299 
300       blockLength = pBlockLength[1];
301       k += stepSize;
302       timeIndex++;
303     }
304   }
305 
306   FDK_ASSERT(noEstPerFrame == 2);
307 
308 
309   C_ALLOC_SCRATCH_END(realBuf, FIXP_DBL, 2*BAND_V_SIZE*NUM_V_COMBINE);
310   C_ALLOC_SCRATCH_END(ac, ACORR_COEFS, 1);
311 }
312 
313 /**************************************************************************/
314 /*!
315   \brief Extracts the parameters required in the decoder to obtain the
316   correct tonal to noise ratio after SBR.
317 
318   Estimates the tonal to noise ratio of the original signal (using LPC).
319   Predicts the tonal to noise ration of the SBR signal (in the decoder) by
320   patching the tonal to noise ratio values similar to the patching of the
321   lowband in the decoder. Given the tonal to noise ratio of the original
322   and the SBR signal, it estimates the required amount of inverse filtering,
323   additional noise as well as any additional sines.
324 
325   \return none.
326 
327 */
328 /**************************************************************************/
329 void
FDKsbrEnc_TonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,INVF_MODE * infVec,FIXP_DBL * noiseLevels,INT * missingHarmonicFlag,UCHAR * missingHarmonicsIndex,UCHAR * envelopeCompensation,const SBR_FRAME_INFO * frameInfo,UCHAR * transientInfo,UCHAR * freqBandTable,INT nSfb,XPOS_MODE xposType,UINT sbrSyntaxFlags)330 FDKsbrEnc_TonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,/*!< Handle to SBR_TON_CORR struct. */
331                            INVF_MODE* infVec,               /*!< Vector where the inverse filtering levels will be stored. */
332                            FIXP_DBL * noiseLevels,          /*!< Vector where the noise levels will be stored. */
333                            INT* missingHarmonicFlag,        /*!< Flag set to one or zero, dependent on if any strong sines are missing.*/
334                            UCHAR * missingHarmonicsIndex,   /*!< Vector indicating where sines are missing. */
335                            UCHAR * envelopeCompensation,    /*!< Vector to store compensation values for the energies in. */
336                            const SBR_FRAME_INFO *frameInfo, /*!< Frame info struct, contains the time and frequency grid of the current frame.*/
337                            UCHAR* transientInfo,            /*!< Transient info.*/
338                            UCHAR* freqBandTable,            /*!< Frequency band tables for high-res.*/
339                            INT nSfb,                        /*!< Number of scalefactor bands for high-res. */
340                            XPOS_MODE xposType,              /*!< Type of transposer used in the decoder.*/
341                            UINT sbrSyntaxFlags
342                            )
343 {
344   INT band;
345   INT transientFlag = transientInfo[1] ;    /*!< Flag indicating if a transient is present in the current frame. */
346   INT transientPos  = transientInfo[0];     /*!< Position of the transient.*/
347   INT transientFrame, transientFrameInvfEst;
348   INVF_MODE* infVecPtr;
349 
350 
351   /* Determine if this is a frame where a transient starts...
352 
353   The detection of noise-floor, missing harmonics and invf_est, is not in sync for the
354   non-buf-opt decoder such as AAC. Hence we need to keep track on the transient in the
355   present frame as well as in the next.
356   */
357   transientFrame = 0;
358   if(hTonCorr->transientNextFrame){       /* The transient was detected in the previous frame, but is actually */
359     transientFrame = 1;
360     hTonCorr->transientNextFrame = 0;
361 
362     if(transientFlag){
363       if(transientPos + hTonCorr->transientPosOffset >= frameInfo->borders[frameInfo->nEnvelopes]){
364         hTonCorr->transientNextFrame = 1;
365       }
366     }
367   }
368   else{
369     if(transientFlag){
370       if(transientPos + hTonCorr->transientPosOffset < frameInfo->borders[frameInfo->nEnvelopes]){
371         transientFrame = 1;
372         hTonCorr->transientNextFrame = 0;
373       }
374       else{
375         hTonCorr->transientNextFrame = 1;
376       }
377     }
378   }
379   transientFrameInvfEst = transientFrame;
380 
381 
382   /*
383     Estimate the required invese filtereing level.
384   */
385   if (hTonCorr->switchInverseFilt)
386     FDKsbrEnc_qmfInverseFilteringDetector(&hTonCorr->sbrInvFilt,
387                                           hTonCorr->quotaMatrix,
388                                           hTonCorr->nrgVector,
389                                           hTonCorr->indexVector,
390                                           hTonCorr->frameStartIndexInvfEst,
391                                           hTonCorr->numberOfEstimatesPerFrame + hTonCorr->frameStartIndexInvfEst,
392                                           transientFrameInvfEst,
393                                           infVec);
394 
395   /*
396       Detect what tones will be missing.
397    */
398   if (xposType == XPOS_LC ){
399     FDKsbrEnc_SbrMissingHarmonicsDetectorQmf(&hTonCorr->sbrMissingHarmonicsDetector,
400                                              hTonCorr->quotaMatrix,
401                                              hTonCorr->signMatrix,
402                                              hTonCorr->indexVector,
403                                              frameInfo,
404                                              transientInfo,
405                                              missingHarmonicFlag,
406                                              missingHarmonicsIndex,
407                                              freqBandTable,
408                                              nSfb,
409                                              envelopeCompensation,
410                                              hTonCorr->nrgVectorFreq);
411   }
412   else{
413     *missingHarmonicFlag = 0;
414     FDKmemclear(missingHarmonicsIndex,nSfb*sizeof(UCHAR));
415   }
416 
417 
418 
419   /*
420     Noise floor estimation
421   */
422 
423   infVecPtr = hTonCorr->sbrInvFilt.prevInvfMode;
424 
425   FDKsbrEnc_sbrNoiseFloorEstimateQmf(&hTonCorr->sbrNoiseFloorEstimate,
426                                      frameInfo,
427                                      noiseLevels,
428                                      hTonCorr->quotaMatrix,
429                                      hTonCorr->indexVector,
430                                      *missingHarmonicFlag,
431                                      hTonCorr->frameStartIndex,
432                                      hTonCorr->numberOfEstimatesPerFrame,
433                                      transientFrame,
434                                      infVecPtr,
435                                      sbrSyntaxFlags);
436 
437 
438   /* Store the invfVec data for the next frame...*/
439   for(band = 0 ; band < hTonCorr->sbrInvFilt.noDetectorBands; band++){
440     hTonCorr->sbrInvFilt.prevInvfMode[band] = infVec[band];
441   }
442 }
443 
444 /**************************************************************************/
445 /*!
446   \brief     Searches for the closest match in the frequency master table.
447 
448 
449 
450   \return   closest entry.
451 
452 */
453 /**************************************************************************/
454 static INT
findClosestEntry(INT goalSb,UCHAR * v_k_master,INT numMaster,INT direction)455 findClosestEntry(INT goalSb,
456                  UCHAR *v_k_master,
457                  INT numMaster,
458                  INT direction)
459 {
460   INT index;
461 
462   if( goalSb <= v_k_master[0] )
463     return v_k_master[0];
464 
465   if( goalSb >= v_k_master[numMaster] )
466     return v_k_master[numMaster];
467 
468   if(direction) {
469     index = 0;
470     while( v_k_master[index] < goalSb ) {
471       index++;
472     }
473   } else {
474     index = numMaster;
475     while( v_k_master[index] > goalSb ) {
476       index--;
477     }
478   }
479 
480   return v_k_master[index];
481 }
482 
483 
484 /**************************************************************************/
485 /*!
486   \brief     resets the patch
487 
488 
489 
490   \return   errorCode, noError if successful.
491 
492 */
493 /**************************************************************************/
494 static INT
resetPatch(HANDLE_SBR_TON_CORR_EST hTonCorr,INT xposctrl,INT highBandStartSb,UCHAR * v_k_master,INT numMaster,INT fs,INT noChannels)495 resetPatch(HANDLE_SBR_TON_CORR_EST hTonCorr,  /*!< Handle to SBR_TON_CORR struct. */
496            INT xposctrl,                      /*!< Different patch modes. */
497            INT highBandStartSb,               /*!< Start band of the SBR range. */
498            UCHAR *v_k_master,                   /*!< Master frequency table from which all other table are derived.*/
499            INT numMaster,                     /*!< Number of elements in the master table. */
500            INT fs,                            /*!< Sampling frequency. */
501            INT noChannels)                    /*!< Number of QMF-channels. */
502 {
503   INT patch,k,i;
504   INT targetStopBand;
505 
506   PATCH_PARAM  *patchParam = hTonCorr->patchParam;
507 
508   INT sbGuard = hTonCorr->guard;
509   INT sourceStartBand;
510   INT patchDistance;
511   INT numBandsInPatch;
512 
513   INT lsb = v_k_master[0];                           /* Lowest subband related to the synthesis filterbank */
514   INT usb = v_k_master[numMaster];                   /* Stop subband related to the synthesis filterbank */
515   INT xoverOffset = highBandStartSb - v_k_master[0]; /* Calculate distance in subbands between k0 and kx */
516 
517   INT goalSb;
518 
519 
520   /*
521    * Initialize the patching parameter
522    */
523 
524   if (xposctrl == 1) {
525     lsb += xoverOffset;
526     xoverOffset = 0;
527   }
528 
529   goalSb = (INT)( (2 * noChannels * 16000 + (fs>>1)) / fs ); /* 16 kHz band */
530   goalSb = findClosestEntry(goalSb, v_k_master, numMaster, 1); /* Adapt region to master-table */
531 
532   /* First patch */
533   sourceStartBand = hTonCorr->shiftStartSb + xoverOffset;
534   targetStopBand = lsb + xoverOffset;
535 
536   /* even (odd) numbered channel must be patched to even (odd) numbered channel */
537   patch = 0;
538   while(targetStopBand < usb) {
539 
540     /* To many patches */
541     if (patch >= MAX_NUM_PATCHES)
542       return(1); /*Number of patches to high */
543 
544     patchParam[patch].guardStartBand = targetStopBand;
545     targetStopBand += sbGuard;
546     patchParam[patch].targetStartBand = targetStopBand;
547 
548     numBandsInPatch = goalSb - targetStopBand;                   /* get the desired range of the patch */
549 
550     if ( numBandsInPatch >= lsb - sourceStartBand ) {
551       /* desired number bands are not available -> patch whole source range */
552       patchDistance   = targetStopBand - sourceStartBand;        /* get the targetOffset */
553       patchDistance   = patchDistance & ~1;                      /* rounding off odd numbers and make all even */
554       numBandsInPatch = lsb - (targetStopBand - patchDistance);
555       numBandsInPatch = findClosestEntry(targetStopBand + numBandsInPatch, v_k_master, numMaster, 0) -
556                         targetStopBand;  /* Adapt region to master-table */
557     }
558 
559     /* desired number bands are available -> get the minimal even patching distance */
560     patchDistance   = numBandsInPatch + targetStopBand - lsb;  /* get minimal distance */
561     patchDistance   = (patchDistance + 1) & ~1;                /* rounding up odd numbers and make all even */
562 
563     if (numBandsInPatch <= 0) {
564       patch--;
565     } else {
566       patchParam[patch].sourceStartBand = targetStopBand - patchDistance;
567       patchParam[patch].targetBandOffs  = patchDistance;
568       patchParam[patch].numBandsInPatch = numBandsInPatch;
569       patchParam[patch].sourceStopBand  = patchParam[patch].sourceStartBand + numBandsInPatch;
570 
571       targetStopBand += patchParam[patch].numBandsInPatch;
572     }
573 
574     /* All patches but first */
575     sourceStartBand = hTonCorr->shiftStartSb;
576 
577     /* Check if we are close to goalSb */
578     if( fixp_abs(targetStopBand - goalSb) < 3) {
579       goalSb = usb;
580     }
581 
582     patch++;
583 
584   }
585 
586   patch--;
587 
588   /* if highest patch contains less than three subband: skip it */
589   if ( patchParam[patch].numBandsInPatch < 3 && patch > 0 ) {
590     patch--;
591     targetStopBand = patchParam[patch].targetStartBand + patchParam[patch].numBandsInPatch;
592   }
593 
594   hTonCorr->noOfPatches = patch + 1;
595 
596 
597   /* Assign the index-vector, so we know where to look for the high-band.
598      -1 represents a guard-band. */
599   for(k = 0; k < hTonCorr->patchParam[0].guardStartBand; k++)
600     hTonCorr->indexVector[k] = k;
601 
602   for(i = 0; i < hTonCorr->noOfPatches; i++)
603   {
604     INT sourceStart    = hTonCorr->patchParam[i].sourceStartBand;
605     INT targetStart    = hTonCorr->patchParam[i].targetStartBand;
606     INT numberOfBands  = hTonCorr->patchParam[i].numBandsInPatch;
607     INT startGuardBand = hTonCorr->patchParam[i].guardStartBand;
608 
609     for(k = 0; k < (targetStart- startGuardBand); k++)
610       hTonCorr->indexVector[startGuardBand+k] = -1;
611 
612     for(k = 0; k < numberOfBands; k++)
613       hTonCorr->indexVector[targetStart+k] = sourceStart+k;
614   }
615 
616   return (0);
617 }
618 
619 /**************************************************************************/
620 /*!
621   \brief     Creates an instance of the tonality correction parameter module.
622 
623   The module includes modules for inverse filtering level estimation,
624   missing harmonics detection and noise floor level estimation.
625 
626   \return   errorCode, noError if successful.
627 */
628 /**************************************************************************/
629 INT
FDKsbrEnc_CreateTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,INT chan)630 FDKsbrEnc_CreateTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Pointer to handle to SBR_TON_CORR struct. */
631                                  INT                     chan)     /*!< Channel index, needed for mem allocation */
632 {
633   INT i;
634   FIXP_DBL* quotaMatrix = GetRam_Sbr_quotaMatrix(chan);
635   INT*      signMatrix  = GetRam_Sbr_signMatrix(chan);
636 
637   FDKmemclear(hTonCorr, sizeof(SBR_TON_CORR_EST));
638 
639   for (i=0; i<MAX_NO_OF_ESTIMATES; i++) {
640     hTonCorr->quotaMatrix[i] = quotaMatrix + (i*QMF_CHANNELS);
641     hTonCorr->signMatrix[i]  = signMatrix  + (i*QMF_CHANNELS);
642   }
643 
644   FDKsbrEnc_CreateSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector, chan);
645 
646   return 0;
647 }
648 
649 
650 
651 /**************************************************************************/
652 /*!
653   \brief     Initialize an instance of the tonality correction parameter module.
654 
655   The module includes modules for inverse filtering level estimation,
656   missing harmonics detection and noise floor level estimation.
657 
658   \return   errorCode, noError if successful.
659 */
660 /**************************************************************************/
661 INT
FDKsbrEnc_InitTonCorrParamExtr(INT frameSize,HANDLE_SBR_TON_CORR_EST hTonCorr,HANDLE_SBR_CONFIG_DATA sbrCfg,INT timeSlots,INT xposCtrl,INT ana_max_level,INT noiseBands,INT noiseFloorOffset,UINT useSpeechConfig)662 FDKsbrEnc_InitTonCorrParamExtr (INT frameSize,                     /*!< Current SBR frame size. */
663                                 HANDLE_SBR_TON_CORR_EST hTonCorr,  /*!< Pointer to handle to SBR_TON_CORR struct. */
664                                 HANDLE_SBR_CONFIG_DATA sbrCfg,     /*!< Pointer to SBR configuration parameters. */
665                                 INT timeSlots,                     /*!< Number of time-slots per frame */
666                                 INT xposCtrl,                      /*!< Different patch modes. */
667                                 INT ana_max_level,                 /*!< Maximum level of the adaptive noise. */
668                                 INT noiseBands,                    /*!< Number of noise bands per octave. */
669                                 INT noiseFloorOffset,              /*!< Noise floor offset. */
670                                 UINT useSpeechConfig)              /*!< Speech or music tuning. */
671 {
672   INT nCols = sbrCfg->noQmfSlots;
673   INT fs    = sbrCfg->sampleFreq;
674   INT noQmfChannels = sbrCfg->noQmfBands;
675 
676   INT highBandStartSb = sbrCfg->freqBandTable[LOW_RES][0];
677   UCHAR *v_k_master   = sbrCfg->v_k_master;
678   INT numMaster       = sbrCfg->num_Master;
679 
680   UCHAR **freqBandTable   = sbrCfg->freqBandTable;
681   INT    *nSfb            = sbrCfg->nSfb;
682 
683   INT i;
684 
685   /*
686   Reset the patching and allocate memory for the quota matrix.
687   Assing parameters for the LPC analysis.
688   */
689   if (sbrCfg->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
690     switch (timeSlots) {
691     case NUMBER_TIME_SLOTS_1920:
692       hTonCorr->lpcLength[0]              = 8 - LPC_ORDER;
693       hTonCorr->lpcLength[1]              = 7 - LPC_ORDER;
694       hTonCorr->numberOfEstimates         = NO_OF_ESTIMATES_LD;
695       hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 7;
696       hTonCorr->frameStartIndexInvfEst    = 0;
697       hTonCorr->transientPosOffset        = FRAME_MIDDLE_SLOT_512LD;
698       break;
699     case NUMBER_TIME_SLOTS_2048:
700       hTonCorr->lpcLength[0]              = 8 - LPC_ORDER;
701       hTonCorr->lpcLength[1]              = 8 - LPC_ORDER;
702       hTonCorr->numberOfEstimates         = NO_OF_ESTIMATES_LD;
703       hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 8;
704       hTonCorr->frameStartIndexInvfEst    = 0;
705       hTonCorr->transientPosOffset        = FRAME_MIDDLE_SLOT_512LD;
706       break;
707     }
708   } else
709   switch (timeSlots) {
710   case NUMBER_TIME_SLOTS_2048:
711     hTonCorr->lpcLength[0]              = 16 - LPC_ORDER; /* blockLength[0] */
712     hTonCorr->lpcLength[1]              = 16 - LPC_ORDER; /* blockLength[0] */
713     hTonCorr->numberOfEstimates         = NO_OF_ESTIMATES_LC;
714     hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 16;
715     hTonCorr->frameStartIndexInvfEst    = 0;
716     hTonCorr->transientPosOffset        = FRAME_MIDDLE_SLOT_2048;
717     break;
718   case NUMBER_TIME_SLOTS_1920:
719     hTonCorr->lpcLength[0]              = 15 - LPC_ORDER; /* blockLength[0] */
720     hTonCorr->lpcLength[1]              = 15 - LPC_ORDER; /* blockLength[0] */
721     hTonCorr->numberOfEstimates         = NO_OF_ESTIMATES_LC;
722     hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 15;
723     hTonCorr->frameStartIndexInvfEst    = 0;
724     hTonCorr->transientPosOffset        = FRAME_MIDDLE_SLOT_1920;
725     break;
726   default:
727     return -1;
728   }
729 
730   hTonCorr->bufferLength              = nCols;
731   hTonCorr->stepSize                  = hTonCorr->lpcLength[0] + LPC_ORDER; /* stepSize[0] implicitly 0. */
732 
733   hTonCorr->nextSample                = LPC_ORDER; /* firstSample */
734   hTonCorr->move                      = hTonCorr->numberOfEstimates - hTonCorr->numberOfEstimatesPerFrame;    /* Number of estimates to move when buffering.*/
735   hTonCorr->startIndexMatrix          = hTonCorr->numberOfEstimates - hTonCorr->numberOfEstimatesPerFrame;    /* Where to store the latest estimations in the tonality Matrix.*/
736   hTonCorr->frameStartIndex           = 0;                      /* Where in the tonality matrix the current frame (to be sent to the decoder) starts. */
737   hTonCorr->prevTransientFlag = 0;
738   hTonCorr->transientNextFrame = 0;
739 
740   hTonCorr->noQmfChannels = noQmfChannels;
741 
742   for (i=0; i<hTonCorr->numberOfEstimates; i++) {
743     FDKmemclear (hTonCorr->quotaMatrix[i] , sizeof(FIXP_DBL)*noQmfChannels);
744     FDKmemclear (hTonCorr->signMatrix[i] , sizeof(INT)*noQmfChannels);
745   }
746 
747    /* Reset the patch.*/
748   hTonCorr->guard = 0;
749   hTonCorr->shiftStartSb = 1;
750 
751   if(resetPatch(hTonCorr,
752                 xposCtrl,
753                 highBandStartSb,
754                 v_k_master,
755                 numMaster,
756                 fs,
757                 noQmfChannels))
758     return(1);
759 
760   if(FDKsbrEnc_InitSbrNoiseFloorEstimate (&hTonCorr->sbrNoiseFloorEstimate,
761                                    ana_max_level,
762                                    freqBandTable[LO],
763                                    nSfb[LO],
764                                    noiseBands,
765                                    noiseFloorOffset,
766                                    timeSlots,
767                                    useSpeechConfig))
768     return(1);
769 
770 
771   if(FDKsbrEnc_initInvFiltDetector(&hTonCorr->sbrInvFilt,
772                             hTonCorr->sbrNoiseFloorEstimate.freqBandTableQmf,
773                             hTonCorr->sbrNoiseFloorEstimate.noNoiseBands,
774                             useSpeechConfig))
775     return(1);
776 
777 
778 
779   if(FDKsbrEnc_InitSbrMissingHarmonicsDetector(
780                                         &hTonCorr->sbrMissingHarmonicsDetector,
781                                         fs,
782                                         frameSize,
783                                         nSfb[HI],
784                                         noQmfChannels,
785                                         hTonCorr->numberOfEstimates,
786                                         hTonCorr->move,
787                                         hTonCorr->numberOfEstimatesPerFrame,
788                                         sbrCfg->sbrSyntaxFlags))
789     return(1);
790 
791 
792 
793   return (0);
794 }
795 
796 
797 
798 /**************************************************************************/
799 /*!
800   \brief     resets tonality correction parameter module.
801 
802 
803 
804   \return   errorCode, noError if successful.
805 
806 */
807 /**************************************************************************/
808 INT
FDKsbrEnc_ResetTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,INT xposctrl,INT highBandStartSb,UCHAR * v_k_master,INT numMaster,INT fs,UCHAR ** freqBandTable,INT * nSfb,INT noQmfChannels)809 FDKsbrEnc_ResetTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
810                       INT xposctrl,                     /*!< Different patch modes. */
811                       INT highBandStartSb,              /*!< Start band of the SBR range. */
812                       UCHAR *v_k_master,        /*!< Master frequency table from which all other table are derived.*/
813                       INT numMaster,                    /*!< Number of elements in the master table. */
814                       INT fs,                           /*!< Sampling frequency (of the SBR part). */
815                       UCHAR ** freqBandTable,   /*!< Frequency band table for low-res and high-res. */
816                       INT* nSfb,                        /*!< Number of frequency bands (hig-res and low-res). */
817                       INT noQmfChannels                 /*!< Number of QMF channels. */
818                       )
819 {
820 
821   /* Reset the patch.*/
822   hTonCorr->guard = 0;
823   hTonCorr->shiftStartSb = 1;
824 
825   if(resetPatch(hTonCorr,
826                 xposctrl,
827                 highBandStartSb,
828                 v_k_master,
829                 numMaster,
830                 fs,
831                 noQmfChannels))
832     return(1);
833 
834 
835 
836   /* Reset the noise floor estimate.*/
837   if(FDKsbrEnc_resetSbrNoiseFloorEstimate (&hTonCorr->sbrNoiseFloorEstimate,
838                                  freqBandTable[LO],
839                                  nSfb[LO]))
840     return(1);
841 
842   /*
843   Reset the inveerse filtereing detector.
844   */
845   if(FDKsbrEnc_resetInvFiltDetector(&hTonCorr->sbrInvFilt,
846                            hTonCorr->sbrNoiseFloorEstimate.freqBandTableQmf,
847                            hTonCorr->sbrNoiseFloorEstimate.noNoiseBands))
848     return(1);
849 /* Reset the missing harmonics detector. */
850   if(FDKsbrEnc_ResetSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector,
851                                        nSfb[HI]))
852     return(1);
853 
854   return (0);
855 }
856 
857 
858 
859 
860 
861 /**************************************************************************/
862 /*!
863   \brief  Deletes the tonality correction paramtere module.
864 
865 
866 
867   \return   none
868 
869 */
870 /**************************************************************************/
871 void
FDKsbrEnc_DeleteTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr)872 FDKsbrEnc_DeleteTonCorrParamExtr (HANDLE_SBR_TON_CORR_EST hTonCorr) /*!< Handle to SBR_TON_CORR struct. */
873 {
874 
875   if (hTonCorr) {
876 
877    FreeRam_Sbr_quotaMatrix(hTonCorr->quotaMatrix);
878 
879    FreeRam_Sbr_signMatrix(hTonCorr->signMatrix);
880 
881    FDKsbrEnc_DeleteSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector);
882   }
883 }
884