1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41
42 #define DEBUG_TYPE "isel"
43 #include "llvm/Function.h"
44 #include "llvm/GlobalVariable.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/Operator.h"
48 #include "llvm/CodeGen/Analysis.h"
49 #include "llvm/CodeGen/FastISel.h"
50 #include "llvm/CodeGen/FunctionLoweringInfo.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/Analysis/DebugInfo.h"
55 #include "llvm/Analysis/Loads.h"
56 #include "llvm/Target/TargetData.h"
57 #include "llvm/Target/TargetInstrInfo.h"
58 #include "llvm/Target/TargetLowering.h"
59 #include "llvm/Target/TargetMachine.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/ADT/Statistic.h"
63 using namespace llvm;
64
65 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
66 "target-independent selector");
67 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
68 "target-specific selector");
69 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
70
71 /// startNewBlock - Set the current block to which generated machine
72 /// instructions will be appended, and clear the local CSE map.
73 ///
startNewBlock()74 void FastISel::startNewBlock() {
75 LocalValueMap.clear();
76
77 EmitStartPt = 0;
78
79 // Advance the emit start point past any EH_LABEL instructions.
80 MachineBasicBlock::iterator
81 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
82 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
83 EmitStartPt = I;
84 ++I;
85 }
86 LastLocalValue = EmitStartPt;
87 }
88
flushLocalValueMap()89 void FastISel::flushLocalValueMap() {
90 LocalValueMap.clear();
91 LastLocalValue = EmitStartPt;
92 recomputeInsertPt();
93 }
94
hasTrivialKill(const Value * V) const95 bool FastISel::hasTrivialKill(const Value *V) const {
96 // Don't consider constants or arguments to have trivial kills.
97 const Instruction *I = dyn_cast<Instruction>(V);
98 if (!I)
99 return false;
100
101 // No-op casts are trivially coalesced by fast-isel.
102 if (const CastInst *Cast = dyn_cast<CastInst>(I))
103 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
104 !hasTrivialKill(Cast->getOperand(0)))
105 return false;
106
107 // GEPs with all zero indices are trivially coalesced by fast-isel.
108 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
109 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
110 return false;
111
112 // Only instructions with a single use in the same basic block are considered
113 // to have trivial kills.
114 return I->hasOneUse() &&
115 !(I->getOpcode() == Instruction::BitCast ||
116 I->getOpcode() == Instruction::PtrToInt ||
117 I->getOpcode() == Instruction::IntToPtr) &&
118 cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
119 }
120
getRegForValue(const Value * V)121 unsigned FastISel::getRegForValue(const Value *V) {
122 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
123 // Don't handle non-simple values in FastISel.
124 if (!RealVT.isSimple())
125 return 0;
126
127 // Ignore illegal types. We must do this before looking up the value
128 // in ValueMap because Arguments are given virtual registers regardless
129 // of whether FastISel can handle them.
130 MVT VT = RealVT.getSimpleVT();
131 if (!TLI.isTypeLegal(VT)) {
132 // Handle integer promotions, though, because they're common and easy.
133 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
134 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
135 else
136 return 0;
137 }
138
139 // Look up the value to see if we already have a register for it.
140 unsigned Reg = lookUpRegForValue(V);
141 if (Reg != 0)
142 return Reg;
143
144 // In bottom-up mode, just create the virtual register which will be used
145 // to hold the value. It will be materialized later.
146 if (isa<Instruction>(V) &&
147 (!isa<AllocaInst>(V) ||
148 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
149 return FuncInfo.InitializeRegForValue(V);
150
151 SavePoint SaveInsertPt = enterLocalValueArea();
152
153 // Materialize the value in a register. Emit any instructions in the
154 // local value area.
155 Reg = materializeRegForValue(V, VT);
156
157 leaveLocalValueArea(SaveInsertPt);
158
159 return Reg;
160 }
161
162 /// materializeRegForValue - Helper for getRegForValue. This function is
163 /// called when the value isn't already available in a register and must
164 /// be materialized with new instructions.
materializeRegForValue(const Value * V,MVT VT)165 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
166 unsigned Reg = 0;
167
168 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
169 if (CI->getValue().getActiveBits() <= 64)
170 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
171 } else if (isa<AllocaInst>(V)) {
172 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
173 } else if (isa<ConstantPointerNull>(V)) {
174 // Translate this as an integer zero so that it can be
175 // local-CSE'd with actual integer zeros.
176 Reg =
177 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
178 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
179 if (CF->isNullValue()) {
180 Reg = TargetMaterializeFloatZero(CF);
181 } else {
182 // Try to emit the constant directly.
183 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
184 }
185
186 if (!Reg) {
187 // Try to emit the constant by using an integer constant with a cast.
188 const APFloat &Flt = CF->getValueAPF();
189 EVT IntVT = TLI.getPointerTy();
190
191 uint64_t x[2];
192 uint32_t IntBitWidth = IntVT.getSizeInBits();
193 bool isExact;
194 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
195 APFloat::rmTowardZero, &isExact);
196 if (isExact) {
197 APInt IntVal(IntBitWidth, x);
198
199 unsigned IntegerReg =
200 getRegForValue(ConstantInt::get(V->getContext(), IntVal));
201 if (IntegerReg != 0)
202 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
203 IntegerReg, /*Kill=*/false);
204 }
205 }
206 } else if (const Operator *Op = dyn_cast<Operator>(V)) {
207 if (!SelectOperator(Op, Op->getOpcode()))
208 if (!isa<Instruction>(Op) ||
209 !TargetSelectInstruction(cast<Instruction>(Op)))
210 return 0;
211 Reg = lookUpRegForValue(Op);
212 } else if (isa<UndefValue>(V)) {
213 Reg = createResultReg(TLI.getRegClassFor(VT));
214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
215 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
216 }
217
218 // If target-independent code couldn't handle the value, give target-specific
219 // code a try.
220 if (!Reg && isa<Constant>(V))
221 Reg = TargetMaterializeConstant(cast<Constant>(V));
222
223 // Don't cache constant materializations in the general ValueMap.
224 // To do so would require tracking what uses they dominate.
225 if (Reg != 0) {
226 LocalValueMap[V] = Reg;
227 LastLocalValue = MRI.getVRegDef(Reg);
228 }
229 return Reg;
230 }
231
lookUpRegForValue(const Value * V)232 unsigned FastISel::lookUpRegForValue(const Value *V) {
233 // Look up the value to see if we already have a register for it. We
234 // cache values defined by Instructions across blocks, and other values
235 // only locally. This is because Instructions already have the SSA
236 // def-dominates-use requirement enforced.
237 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
238 if (I != FuncInfo.ValueMap.end())
239 return I->second;
240 return LocalValueMap[V];
241 }
242
243 /// UpdateValueMap - Update the value map to include the new mapping for this
244 /// instruction, or insert an extra copy to get the result in a previous
245 /// determined register.
246 /// NOTE: This is only necessary because we might select a block that uses
247 /// a value before we select the block that defines the value. It might be
248 /// possible to fix this by selecting blocks in reverse postorder.
UpdateValueMap(const Value * I,unsigned Reg,unsigned NumRegs)249 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
250 if (!isa<Instruction>(I)) {
251 LocalValueMap[I] = Reg;
252 return;
253 }
254
255 unsigned &AssignedReg = FuncInfo.ValueMap[I];
256 if (AssignedReg == 0)
257 // Use the new register.
258 AssignedReg = Reg;
259 else if (Reg != AssignedReg) {
260 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
261 for (unsigned i = 0; i < NumRegs; i++)
262 FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
263
264 AssignedReg = Reg;
265 }
266 }
267
getRegForGEPIndex(const Value * Idx)268 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
269 unsigned IdxN = getRegForValue(Idx);
270 if (IdxN == 0)
271 // Unhandled operand. Halt "fast" selection and bail.
272 return std::pair<unsigned, bool>(0, false);
273
274 bool IdxNIsKill = hasTrivialKill(Idx);
275
276 // If the index is smaller or larger than intptr_t, truncate or extend it.
277 MVT PtrVT = TLI.getPointerTy();
278 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
279 if (IdxVT.bitsLT(PtrVT)) {
280 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
281 IdxN, IdxNIsKill);
282 IdxNIsKill = true;
283 }
284 else if (IdxVT.bitsGT(PtrVT)) {
285 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
286 IdxN, IdxNIsKill);
287 IdxNIsKill = true;
288 }
289 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
290 }
291
recomputeInsertPt()292 void FastISel::recomputeInsertPt() {
293 if (getLastLocalValue()) {
294 FuncInfo.InsertPt = getLastLocalValue();
295 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
296 ++FuncInfo.InsertPt;
297 } else
298 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
299
300 // Now skip past any EH_LABELs, which must remain at the beginning.
301 while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
302 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
303 ++FuncInfo.InsertPt;
304 }
305
removeDeadCode(MachineBasicBlock::iterator I,MachineBasicBlock::iterator E)306 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
307 MachineBasicBlock::iterator E) {
308 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
309 while (I != E) {
310 MachineInstr *Dead = &*I;
311 ++I;
312 Dead->eraseFromParent();
313 ++NumFastIselDead;
314 }
315 recomputeInsertPt();
316 }
317
enterLocalValueArea()318 FastISel::SavePoint FastISel::enterLocalValueArea() {
319 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
320 DebugLoc OldDL = DL;
321 recomputeInsertPt();
322 DL = DebugLoc();
323 SavePoint SP = { OldInsertPt, OldDL };
324 return SP;
325 }
326
leaveLocalValueArea(SavePoint OldInsertPt)327 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
328 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
329 LastLocalValue = llvm::prior(FuncInfo.InsertPt);
330
331 // Restore the previous insert position.
332 FuncInfo.InsertPt = OldInsertPt.InsertPt;
333 DL = OldInsertPt.DL;
334 }
335
336 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
337 /// which has an opcode which directly corresponds to the given ISD opcode.
338 ///
SelectBinaryOp(const User * I,unsigned ISDOpcode)339 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
340 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
341 if (VT == MVT::Other || !VT.isSimple())
342 // Unhandled type. Halt "fast" selection and bail.
343 return false;
344
345 // We only handle legal types. For example, on x86-32 the instruction
346 // selector contains all of the 64-bit instructions from x86-64,
347 // under the assumption that i64 won't be used if the target doesn't
348 // support it.
349 if (!TLI.isTypeLegal(VT)) {
350 // MVT::i1 is special. Allow AND, OR, or XOR because they
351 // don't require additional zeroing, which makes them easy.
352 if (VT == MVT::i1 &&
353 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
354 ISDOpcode == ISD::XOR))
355 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
356 else
357 return false;
358 }
359
360 // Check if the first operand is a constant, and handle it as "ri". At -O0,
361 // we don't have anything that canonicalizes operand order.
362 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
363 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
364 unsigned Op1 = getRegForValue(I->getOperand(1));
365 if (Op1 == 0) return false;
366
367 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
368
369 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
370 Op1IsKill, CI->getZExtValue(),
371 VT.getSimpleVT());
372 if (ResultReg == 0) return false;
373
374 // We successfully emitted code for the given LLVM Instruction.
375 UpdateValueMap(I, ResultReg);
376 return true;
377 }
378
379
380 unsigned Op0 = getRegForValue(I->getOperand(0));
381 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail.
382 return false;
383
384 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
385
386 // Check if the second operand is a constant and handle it appropriately.
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
388 uint64_t Imm = CI->getZExtValue();
389
390 // Transform "sdiv exact X, 8" -> "sra X, 3".
391 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
392 cast<BinaryOperator>(I)->isExact() &&
393 isPowerOf2_64(Imm)) {
394 Imm = Log2_64(Imm);
395 ISDOpcode = ISD::SRA;
396 }
397
398 // Transform "urem x, pow2" -> "and x, pow2-1".
399 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
400 isPowerOf2_64(Imm)) {
401 --Imm;
402 ISDOpcode = ISD::AND;
403 }
404
405 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
406 Op0IsKill, Imm, VT.getSimpleVT());
407 if (ResultReg == 0) return false;
408
409 // We successfully emitted code for the given LLVM Instruction.
410 UpdateValueMap(I, ResultReg);
411 return true;
412 }
413
414 // Check if the second operand is a constant float.
415 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
416 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
417 ISDOpcode, Op0, Op0IsKill, CF);
418 if (ResultReg != 0) {
419 // We successfully emitted code for the given LLVM Instruction.
420 UpdateValueMap(I, ResultReg);
421 return true;
422 }
423 }
424
425 unsigned Op1 = getRegForValue(I->getOperand(1));
426 if (Op1 == 0)
427 // Unhandled operand. Halt "fast" selection and bail.
428 return false;
429
430 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
431
432 // Now we have both operands in registers. Emit the instruction.
433 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
434 ISDOpcode,
435 Op0, Op0IsKill,
436 Op1, Op1IsKill);
437 if (ResultReg == 0)
438 // Target-specific code wasn't able to find a machine opcode for
439 // the given ISD opcode and type. Halt "fast" selection and bail.
440 return false;
441
442 // We successfully emitted code for the given LLVM Instruction.
443 UpdateValueMap(I, ResultReg);
444 return true;
445 }
446
SelectGetElementPtr(const User * I)447 bool FastISel::SelectGetElementPtr(const User *I) {
448 unsigned N = getRegForValue(I->getOperand(0));
449 if (N == 0)
450 // Unhandled operand. Halt "fast" selection and bail.
451 return false;
452
453 bool NIsKill = hasTrivialKill(I->getOperand(0));
454
455 // Keep a running tab of the total offset to coalesce multiple N = N + Offset
456 // into a single N = N + TotalOffset.
457 uint64_t TotalOffs = 0;
458 // FIXME: What's a good SWAG number for MaxOffs?
459 uint64_t MaxOffs = 2048;
460 Type *Ty = I->getOperand(0)->getType();
461 MVT VT = TLI.getPointerTy();
462 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
463 E = I->op_end(); OI != E; ++OI) {
464 const Value *Idx = *OI;
465 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
466 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
467 if (Field) {
468 // N = N + Offset
469 TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
470 if (TotalOffs >= MaxOffs) {
471 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
472 if (N == 0)
473 // Unhandled operand. Halt "fast" selection and bail.
474 return false;
475 NIsKill = true;
476 TotalOffs = 0;
477 }
478 }
479 Ty = StTy->getElementType(Field);
480 } else {
481 Ty = cast<SequentialType>(Ty)->getElementType();
482
483 // If this is a constant subscript, handle it quickly.
484 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
485 if (CI->isZero()) continue;
486 // N = N + Offset
487 TotalOffs +=
488 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
489 if (TotalOffs >= MaxOffs) {
490 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
491 if (N == 0)
492 // Unhandled operand. Halt "fast" selection and bail.
493 return false;
494 NIsKill = true;
495 TotalOffs = 0;
496 }
497 continue;
498 }
499 if (TotalOffs) {
500 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
501 if (N == 0)
502 // Unhandled operand. Halt "fast" selection and bail.
503 return false;
504 NIsKill = true;
505 TotalOffs = 0;
506 }
507
508 // N = N + Idx * ElementSize;
509 uint64_t ElementSize = TD.getTypeAllocSize(Ty);
510 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
511 unsigned IdxN = Pair.first;
512 bool IdxNIsKill = Pair.second;
513 if (IdxN == 0)
514 // Unhandled operand. Halt "fast" selection and bail.
515 return false;
516
517 if (ElementSize != 1) {
518 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
519 if (IdxN == 0)
520 // Unhandled operand. Halt "fast" selection and bail.
521 return false;
522 IdxNIsKill = true;
523 }
524 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
525 if (N == 0)
526 // Unhandled operand. Halt "fast" selection and bail.
527 return false;
528 }
529 }
530 if (TotalOffs) {
531 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
532 if (N == 0)
533 // Unhandled operand. Halt "fast" selection and bail.
534 return false;
535 }
536
537 // We successfully emitted code for the given LLVM Instruction.
538 UpdateValueMap(I, N);
539 return true;
540 }
541
SelectCall(const User * I)542 bool FastISel::SelectCall(const User *I) {
543 const CallInst *Call = cast<CallInst>(I);
544
545 // Handle simple inline asms.
546 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
547 // Don't attempt to handle constraints.
548 if (!IA->getConstraintString().empty())
549 return false;
550
551 unsigned ExtraInfo = 0;
552 if (IA->hasSideEffects())
553 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
554 if (IA->isAlignStack())
555 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
556
557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
558 TII.get(TargetOpcode::INLINEASM))
559 .addExternalSymbol(IA->getAsmString().c_str())
560 .addImm(ExtraInfo);
561 return true;
562 }
563
564 MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
565 ComputeUsesVAFloatArgument(*Call, &MMI);
566
567 const Function *F = Call->getCalledFunction();
568 if (!F) return false;
569
570 // Handle selected intrinsic function calls.
571 switch (F->getIntrinsicID()) {
572 default: break;
573 // At -O0 we don't care about the lifetime intrinsics.
574 case Intrinsic::lifetime_start:
575 case Intrinsic::lifetime_end:
576 return true;
577 case Intrinsic::dbg_declare: {
578 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
579 if (!DIVariable(DI->getVariable()).Verify() ||
580 !FuncInfo.MF->getMMI().hasDebugInfo()) {
581 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
582 return true;
583 }
584
585 const Value *Address = DI->getAddress();
586 if (!Address || isa<UndefValue>(Address)) {
587 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
588 return true;
589 }
590
591 unsigned Reg = 0;
592 unsigned Offset = 0;
593 if (const Argument *Arg = dyn_cast<Argument>(Address)) {
594 // Some arguments' frame index is recorded during argument lowering.
595 Offset = FuncInfo.getArgumentFrameIndex(Arg);
596 if (Offset)
597 Reg = TRI.getFrameRegister(*FuncInfo.MF);
598 }
599 if (!Reg)
600 Reg = lookUpRegForValue(Address);
601
602 // If we have a VLA that has a "use" in a metadata node that's then used
603 // here but it has no other uses, then we have a problem. E.g.,
604 //
605 // int foo (const int *x) {
606 // char a[*x];
607 // return 0;
608 // }
609 //
610 // If we assign 'a' a vreg and fast isel later on has to use the selection
611 // DAG isel, it will want to copy the value to the vreg. However, there are
612 // no uses, which goes counter to what selection DAG isel expects.
613 if (!Reg && !Address->use_empty() && isa<Instruction>(Address) &&
614 (!isa<AllocaInst>(Address) ||
615 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
616 Reg = FuncInfo.InitializeRegForValue(Address);
617
618 if (Reg)
619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
620 TII.get(TargetOpcode::DBG_VALUE))
621 .addReg(Reg, RegState::Debug).addImm(Offset)
622 .addMetadata(DI->getVariable());
623 else
624 // We can't yet handle anything else here because it would require
625 // generating code, thus altering codegen because of debug info.
626 DEBUG(dbgs() << "Dropping debug info for " << DI);
627 return true;
628 }
629 case Intrinsic::dbg_value: {
630 // This form of DBG_VALUE is target-independent.
631 const DbgValueInst *DI = cast<DbgValueInst>(Call);
632 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
633 const Value *V = DI->getValue();
634 if (!V) {
635 // Currently the optimizer can produce this; insert an undef to
636 // help debugging. Probably the optimizer should not do this.
637 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
638 .addReg(0U).addImm(DI->getOffset())
639 .addMetadata(DI->getVariable());
640 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
641 if (CI->getBitWidth() > 64)
642 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
643 .addCImm(CI).addImm(DI->getOffset())
644 .addMetadata(DI->getVariable());
645 else
646 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
647 .addImm(CI->getZExtValue()).addImm(DI->getOffset())
648 .addMetadata(DI->getVariable());
649 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
650 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
651 .addFPImm(CF).addImm(DI->getOffset())
652 .addMetadata(DI->getVariable());
653 } else if (unsigned Reg = lookUpRegForValue(V)) {
654 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
655 .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
656 .addMetadata(DI->getVariable());
657 } else {
658 // We can't yet handle anything else here because it would require
659 // generating code, thus altering codegen because of debug info.
660 DEBUG(dbgs() << "Dropping debug info for " << DI);
661 }
662 return true;
663 }
664 case Intrinsic::objectsize: {
665 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
666 unsigned long long Res = CI->isZero() ? -1ULL : 0;
667 Constant *ResCI = ConstantInt::get(Call->getType(), Res);
668 unsigned ResultReg = getRegForValue(ResCI);
669 if (ResultReg == 0)
670 return false;
671 UpdateValueMap(Call, ResultReg);
672 return true;
673 }
674 }
675
676 // Usually, it does not make sense to initialize a value,
677 // make an unrelated function call and use the value, because
678 // it tends to be spilled on the stack. So, we move the pointer
679 // to the last local value to the beginning of the block, so that
680 // all the values which have already been materialized,
681 // appear after the call. It also makes sense to skip intrinsics
682 // since they tend to be inlined.
683 if (!isa<IntrinsicInst>(F))
684 flushLocalValueMap();
685
686 // An arbitrary call. Bail.
687 return false;
688 }
689
SelectCast(const User * I,unsigned Opcode)690 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
691 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
692 EVT DstVT = TLI.getValueType(I->getType());
693
694 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
695 DstVT == MVT::Other || !DstVT.isSimple())
696 // Unhandled type. Halt "fast" selection and bail.
697 return false;
698
699 // Check if the destination type is legal.
700 if (!TLI.isTypeLegal(DstVT))
701 return false;
702
703 // Check if the source operand is legal.
704 if (!TLI.isTypeLegal(SrcVT))
705 return false;
706
707 unsigned InputReg = getRegForValue(I->getOperand(0));
708 if (!InputReg)
709 // Unhandled operand. Halt "fast" selection and bail.
710 return false;
711
712 bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
713
714 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
715 DstVT.getSimpleVT(),
716 Opcode,
717 InputReg, InputRegIsKill);
718 if (!ResultReg)
719 return false;
720
721 UpdateValueMap(I, ResultReg);
722 return true;
723 }
724
SelectBitCast(const User * I)725 bool FastISel::SelectBitCast(const User *I) {
726 // If the bitcast doesn't change the type, just use the operand value.
727 if (I->getType() == I->getOperand(0)->getType()) {
728 unsigned Reg = getRegForValue(I->getOperand(0));
729 if (Reg == 0)
730 return false;
731 UpdateValueMap(I, Reg);
732 return true;
733 }
734
735 // Bitcasts of other values become reg-reg copies or BITCAST operators.
736 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
737 EVT DstVT = TLI.getValueType(I->getType());
738
739 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
740 DstVT == MVT::Other || !DstVT.isSimple() ||
741 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
742 // Unhandled type. Halt "fast" selection and bail.
743 return false;
744
745 unsigned Op0 = getRegForValue(I->getOperand(0));
746 if (Op0 == 0)
747 // Unhandled operand. Halt "fast" selection and bail.
748 return false;
749
750 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
751
752 // First, try to perform the bitcast by inserting a reg-reg copy.
753 unsigned ResultReg = 0;
754 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
755 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
756 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
757 // Don't attempt a cross-class copy. It will likely fail.
758 if (SrcClass == DstClass) {
759 ResultReg = createResultReg(DstClass);
760 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
761 ResultReg).addReg(Op0);
762 }
763 }
764
765 // If the reg-reg copy failed, select a BITCAST opcode.
766 if (!ResultReg)
767 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
768 ISD::BITCAST, Op0, Op0IsKill);
769
770 if (!ResultReg)
771 return false;
772
773 UpdateValueMap(I, ResultReg);
774 return true;
775 }
776
777 bool
SelectInstruction(const Instruction * I)778 FastISel::SelectInstruction(const Instruction *I) {
779 // Just before the terminator instruction, insert instructions to
780 // feed PHI nodes in successor blocks.
781 if (isa<TerminatorInst>(I))
782 if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
783 return false;
784
785 DL = I->getDebugLoc();
786
787 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
788
789 // First, try doing target-independent selection.
790 if (SelectOperator(I, I->getOpcode())) {
791 ++NumFastIselSuccessIndependent;
792 DL = DebugLoc();
793 return true;
794 }
795 // Remove dead code. However, ignore call instructions since we've flushed
796 // the local value map and recomputed the insert point.
797 if (!isa<CallInst>(I)) {
798 recomputeInsertPt();
799 if (SavedInsertPt != FuncInfo.InsertPt)
800 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
801 }
802
803 // Next, try calling the target to attempt to handle the instruction.
804 SavedInsertPt = FuncInfo.InsertPt;
805 if (TargetSelectInstruction(I)) {
806 ++NumFastIselSuccessTarget;
807 DL = DebugLoc();
808 return true;
809 }
810 // Check for dead code and remove as necessary.
811 recomputeInsertPt();
812 if (SavedInsertPt != FuncInfo.InsertPt)
813 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
814
815 DL = DebugLoc();
816 return false;
817 }
818
819 /// FastEmitBranch - Emit an unconditional branch to the given block,
820 /// unless it is the immediate (fall-through) successor, and update
821 /// the CFG.
822 void
FastEmitBranch(MachineBasicBlock * MSucc,DebugLoc DL)823 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
824
825 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
826 // For more accurate line information if this is the only instruction
827 // in the block then emit it, otherwise we have the unconditional
828 // fall-through case, which needs no instructions.
829 } else {
830 // The unconditional branch case.
831 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
832 SmallVector<MachineOperand, 0>(), DL);
833 }
834 FuncInfo.MBB->addSuccessor(MSucc);
835 }
836
837 /// SelectFNeg - Emit an FNeg operation.
838 ///
839 bool
SelectFNeg(const User * I)840 FastISel::SelectFNeg(const User *I) {
841 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
842 if (OpReg == 0) return false;
843
844 bool OpRegIsKill = hasTrivialKill(I);
845
846 // If the target has ISD::FNEG, use it.
847 EVT VT = TLI.getValueType(I->getType());
848 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
849 ISD::FNEG, OpReg, OpRegIsKill);
850 if (ResultReg != 0) {
851 UpdateValueMap(I, ResultReg);
852 return true;
853 }
854
855 // Bitcast the value to integer, twiddle the sign bit with xor,
856 // and then bitcast it back to floating-point.
857 if (VT.getSizeInBits() > 64) return false;
858 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
859 if (!TLI.isTypeLegal(IntVT))
860 return false;
861
862 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
863 ISD::BITCAST, OpReg, OpRegIsKill);
864 if (IntReg == 0)
865 return false;
866
867 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
868 IntReg, /*Kill=*/true,
869 UINT64_C(1) << (VT.getSizeInBits()-1),
870 IntVT.getSimpleVT());
871 if (IntResultReg == 0)
872 return false;
873
874 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
875 ISD::BITCAST, IntResultReg, /*Kill=*/true);
876 if (ResultReg == 0)
877 return false;
878
879 UpdateValueMap(I, ResultReg);
880 return true;
881 }
882
883 bool
SelectExtractValue(const User * U)884 FastISel::SelectExtractValue(const User *U) {
885 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
886 if (!EVI)
887 return false;
888
889 // Make sure we only try to handle extracts with a legal result. But also
890 // allow i1 because it's easy.
891 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
892 if (!RealVT.isSimple())
893 return false;
894 MVT VT = RealVT.getSimpleVT();
895 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
896 return false;
897
898 const Value *Op0 = EVI->getOperand(0);
899 Type *AggTy = Op0->getType();
900
901 // Get the base result register.
902 unsigned ResultReg;
903 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
904 if (I != FuncInfo.ValueMap.end())
905 ResultReg = I->second;
906 else if (isa<Instruction>(Op0))
907 ResultReg = FuncInfo.InitializeRegForValue(Op0);
908 else
909 return false; // fast-isel can't handle aggregate constants at the moment
910
911 // Get the actual result register, which is an offset from the base register.
912 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
913
914 SmallVector<EVT, 4> AggValueVTs;
915 ComputeValueVTs(TLI, AggTy, AggValueVTs);
916
917 for (unsigned i = 0; i < VTIndex; i++)
918 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
919
920 UpdateValueMap(EVI, ResultReg);
921 return true;
922 }
923
924 bool
SelectOperator(const User * I,unsigned Opcode)925 FastISel::SelectOperator(const User *I, unsigned Opcode) {
926 switch (Opcode) {
927 case Instruction::Add:
928 return SelectBinaryOp(I, ISD::ADD);
929 case Instruction::FAdd:
930 return SelectBinaryOp(I, ISD::FADD);
931 case Instruction::Sub:
932 return SelectBinaryOp(I, ISD::SUB);
933 case Instruction::FSub:
934 // FNeg is currently represented in LLVM IR as a special case of FSub.
935 if (BinaryOperator::isFNeg(I))
936 return SelectFNeg(I);
937 return SelectBinaryOp(I, ISD::FSUB);
938 case Instruction::Mul:
939 return SelectBinaryOp(I, ISD::MUL);
940 case Instruction::FMul:
941 return SelectBinaryOp(I, ISD::FMUL);
942 case Instruction::SDiv:
943 return SelectBinaryOp(I, ISD::SDIV);
944 case Instruction::UDiv:
945 return SelectBinaryOp(I, ISD::UDIV);
946 case Instruction::FDiv:
947 return SelectBinaryOp(I, ISD::FDIV);
948 case Instruction::SRem:
949 return SelectBinaryOp(I, ISD::SREM);
950 case Instruction::URem:
951 return SelectBinaryOp(I, ISD::UREM);
952 case Instruction::FRem:
953 return SelectBinaryOp(I, ISD::FREM);
954 case Instruction::Shl:
955 return SelectBinaryOp(I, ISD::SHL);
956 case Instruction::LShr:
957 return SelectBinaryOp(I, ISD::SRL);
958 case Instruction::AShr:
959 return SelectBinaryOp(I, ISD::SRA);
960 case Instruction::And:
961 return SelectBinaryOp(I, ISD::AND);
962 case Instruction::Or:
963 return SelectBinaryOp(I, ISD::OR);
964 case Instruction::Xor:
965 return SelectBinaryOp(I, ISD::XOR);
966
967 case Instruction::GetElementPtr:
968 return SelectGetElementPtr(I);
969
970 case Instruction::Br: {
971 const BranchInst *BI = cast<BranchInst>(I);
972
973 if (BI->isUnconditional()) {
974 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
975 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
976 FastEmitBranch(MSucc, BI->getDebugLoc());
977 return true;
978 }
979
980 // Conditional branches are not handed yet.
981 // Halt "fast" selection and bail.
982 return false;
983 }
984
985 case Instruction::Unreachable:
986 // Nothing to emit.
987 return true;
988
989 case Instruction::Alloca:
990 // FunctionLowering has the static-sized case covered.
991 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
992 return true;
993
994 // Dynamic-sized alloca is not handled yet.
995 return false;
996
997 case Instruction::Call:
998 return SelectCall(I);
999
1000 case Instruction::BitCast:
1001 return SelectBitCast(I);
1002
1003 case Instruction::FPToSI:
1004 return SelectCast(I, ISD::FP_TO_SINT);
1005 case Instruction::ZExt:
1006 return SelectCast(I, ISD::ZERO_EXTEND);
1007 case Instruction::SExt:
1008 return SelectCast(I, ISD::SIGN_EXTEND);
1009 case Instruction::Trunc:
1010 return SelectCast(I, ISD::TRUNCATE);
1011 case Instruction::SIToFP:
1012 return SelectCast(I, ISD::SINT_TO_FP);
1013
1014 case Instruction::IntToPtr: // Deliberate fall-through.
1015 case Instruction::PtrToInt: {
1016 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1017 EVT DstVT = TLI.getValueType(I->getType());
1018 if (DstVT.bitsGT(SrcVT))
1019 return SelectCast(I, ISD::ZERO_EXTEND);
1020 if (DstVT.bitsLT(SrcVT))
1021 return SelectCast(I, ISD::TRUNCATE);
1022 unsigned Reg = getRegForValue(I->getOperand(0));
1023 if (Reg == 0) return false;
1024 UpdateValueMap(I, Reg);
1025 return true;
1026 }
1027
1028 case Instruction::ExtractValue:
1029 return SelectExtractValue(I);
1030
1031 case Instruction::PHI:
1032 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1033
1034 default:
1035 // Unhandled instruction. Halt "fast" selection and bail.
1036 return false;
1037 }
1038 }
1039
FastISel(FunctionLoweringInfo & funcInfo)1040 FastISel::FastISel(FunctionLoweringInfo &funcInfo)
1041 : FuncInfo(funcInfo),
1042 MRI(FuncInfo.MF->getRegInfo()),
1043 MFI(*FuncInfo.MF->getFrameInfo()),
1044 MCP(*FuncInfo.MF->getConstantPool()),
1045 TM(FuncInfo.MF->getTarget()),
1046 TD(*TM.getTargetData()),
1047 TII(*TM.getInstrInfo()),
1048 TLI(*TM.getTargetLowering()),
1049 TRI(*TM.getRegisterInfo()) {
1050 }
1051
~FastISel()1052 FastISel::~FastISel() {}
1053
FastEmit_(MVT,MVT,unsigned)1054 unsigned FastISel::FastEmit_(MVT, MVT,
1055 unsigned) {
1056 return 0;
1057 }
1058
FastEmit_r(MVT,MVT,unsigned,unsigned,bool)1059 unsigned FastISel::FastEmit_r(MVT, MVT,
1060 unsigned,
1061 unsigned /*Op0*/, bool /*Op0IsKill*/) {
1062 return 0;
1063 }
1064
FastEmit_rr(MVT,MVT,unsigned,unsigned,bool,unsigned,bool)1065 unsigned FastISel::FastEmit_rr(MVT, MVT,
1066 unsigned,
1067 unsigned /*Op0*/, bool /*Op0IsKill*/,
1068 unsigned /*Op1*/, bool /*Op1IsKill*/) {
1069 return 0;
1070 }
1071
FastEmit_i(MVT,MVT,unsigned,uint64_t)1072 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1073 return 0;
1074 }
1075
FastEmit_f(MVT,MVT,unsigned,const ConstantFP *)1076 unsigned FastISel::FastEmit_f(MVT, MVT,
1077 unsigned, const ConstantFP * /*FPImm*/) {
1078 return 0;
1079 }
1080
FastEmit_ri(MVT,MVT,unsigned,unsigned,bool,uint64_t)1081 unsigned FastISel::FastEmit_ri(MVT, MVT,
1082 unsigned,
1083 unsigned /*Op0*/, bool /*Op0IsKill*/,
1084 uint64_t /*Imm*/) {
1085 return 0;
1086 }
1087
FastEmit_rf(MVT,MVT,unsigned,unsigned,bool,const ConstantFP *)1088 unsigned FastISel::FastEmit_rf(MVT, MVT,
1089 unsigned,
1090 unsigned /*Op0*/, bool /*Op0IsKill*/,
1091 const ConstantFP * /*FPImm*/) {
1092 return 0;
1093 }
1094
FastEmit_rri(MVT,MVT,unsigned,unsigned,bool,unsigned,bool,uint64_t)1095 unsigned FastISel::FastEmit_rri(MVT, MVT,
1096 unsigned,
1097 unsigned /*Op0*/, bool /*Op0IsKill*/,
1098 unsigned /*Op1*/, bool /*Op1IsKill*/,
1099 uint64_t /*Imm*/) {
1100 return 0;
1101 }
1102
1103 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1104 /// to emit an instruction with an immediate operand using FastEmit_ri.
1105 /// If that fails, it materializes the immediate into a register and try
1106 /// FastEmit_rr instead.
FastEmit_ri_(MVT VT,unsigned Opcode,unsigned Op0,bool Op0IsKill,uint64_t Imm,MVT ImmType)1107 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1108 unsigned Op0, bool Op0IsKill,
1109 uint64_t Imm, MVT ImmType) {
1110 // If this is a multiply by a power of two, emit this as a shift left.
1111 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1112 Opcode = ISD::SHL;
1113 Imm = Log2_64(Imm);
1114 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1115 // div x, 8 -> srl x, 3
1116 Opcode = ISD::SRL;
1117 Imm = Log2_64(Imm);
1118 }
1119
1120 // Horrible hack (to be removed), check to make sure shift amounts are
1121 // in-range.
1122 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1123 Imm >= VT.getSizeInBits())
1124 return 0;
1125
1126 // First check if immediate type is legal. If not, we can't use the ri form.
1127 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1128 if (ResultReg != 0)
1129 return ResultReg;
1130 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1131 if (MaterialReg == 0) {
1132 // This is a bit ugly/slow, but failing here means falling out of
1133 // fast-isel, which would be very slow.
1134 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1135 VT.getSizeInBits());
1136 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1137 }
1138 return FastEmit_rr(VT, VT, Opcode,
1139 Op0, Op0IsKill,
1140 MaterialReg, /*Kill=*/true);
1141 }
1142
createResultReg(const TargetRegisterClass * RC)1143 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1144 return MRI.createVirtualRegister(RC);
1145 }
1146
FastEmitInst_(unsigned MachineInstOpcode,const TargetRegisterClass * RC)1147 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1148 const TargetRegisterClass* RC) {
1149 unsigned ResultReg = createResultReg(RC);
1150 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1151
1152 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1153 return ResultReg;
1154 }
1155
FastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)1156 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1157 const TargetRegisterClass *RC,
1158 unsigned Op0, bool Op0IsKill) {
1159 unsigned ResultReg = createResultReg(RC);
1160 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1161
1162 if (II.getNumDefs() >= 1)
1163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1164 .addReg(Op0, Op0IsKill * RegState::Kill);
1165 else {
1166 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1167 .addReg(Op0, Op0IsKill * RegState::Kill);
1168 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1169 ResultReg).addReg(II.ImplicitDefs[0]);
1170 }
1171
1172 return ResultReg;
1173 }
1174
FastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)1175 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1176 const TargetRegisterClass *RC,
1177 unsigned Op0, bool Op0IsKill,
1178 unsigned Op1, bool Op1IsKill) {
1179 unsigned ResultReg = createResultReg(RC);
1180 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1181
1182 if (II.getNumDefs() >= 1)
1183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1184 .addReg(Op0, Op0IsKill * RegState::Kill)
1185 .addReg(Op1, Op1IsKill * RegState::Kill);
1186 else {
1187 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1188 .addReg(Op0, Op0IsKill * RegState::Kill)
1189 .addReg(Op1, Op1IsKill * RegState::Kill);
1190 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1191 ResultReg).addReg(II.ImplicitDefs[0]);
1192 }
1193 return ResultReg;
1194 }
1195
FastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill)1196 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1197 const TargetRegisterClass *RC,
1198 unsigned Op0, bool Op0IsKill,
1199 unsigned Op1, bool Op1IsKill,
1200 unsigned Op2, bool Op2IsKill) {
1201 unsigned ResultReg = createResultReg(RC);
1202 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1203
1204 if (II.getNumDefs() >= 1)
1205 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1206 .addReg(Op0, Op0IsKill * RegState::Kill)
1207 .addReg(Op1, Op1IsKill * RegState::Kill)
1208 .addReg(Op2, Op2IsKill * RegState::Kill);
1209 else {
1210 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1211 .addReg(Op0, Op0IsKill * RegState::Kill)
1212 .addReg(Op1, Op1IsKill * RegState::Kill)
1213 .addReg(Op2, Op2IsKill * RegState::Kill);
1214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1215 ResultReg).addReg(II.ImplicitDefs[0]);
1216 }
1217 return ResultReg;
1218 }
1219
FastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)1220 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1221 const TargetRegisterClass *RC,
1222 unsigned Op0, bool Op0IsKill,
1223 uint64_t Imm) {
1224 unsigned ResultReg = createResultReg(RC);
1225 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1226
1227 if (II.getNumDefs() >= 1)
1228 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1229 .addReg(Op0, Op0IsKill * RegState::Kill)
1230 .addImm(Imm);
1231 else {
1232 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1233 .addReg(Op0, Op0IsKill * RegState::Kill)
1234 .addImm(Imm);
1235 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1236 ResultReg).addReg(II.ImplicitDefs[0]);
1237 }
1238 return ResultReg;
1239 }
1240
FastEmitInst_rii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm1,uint64_t Imm2)1241 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1242 const TargetRegisterClass *RC,
1243 unsigned Op0, bool Op0IsKill,
1244 uint64_t Imm1, uint64_t Imm2) {
1245 unsigned ResultReg = createResultReg(RC);
1246 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1247
1248 if (II.getNumDefs() >= 1)
1249 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1250 .addReg(Op0, Op0IsKill * RegState::Kill)
1251 .addImm(Imm1)
1252 .addImm(Imm2);
1253 else {
1254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1255 .addReg(Op0, Op0IsKill * RegState::Kill)
1256 .addImm(Imm1)
1257 .addImm(Imm2);
1258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1259 ResultReg).addReg(II.ImplicitDefs[0]);
1260 }
1261 return ResultReg;
1262 }
1263
FastEmitInst_rf(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,const ConstantFP * FPImm)1264 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1265 const TargetRegisterClass *RC,
1266 unsigned Op0, bool Op0IsKill,
1267 const ConstantFP *FPImm) {
1268 unsigned ResultReg = createResultReg(RC);
1269 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1270
1271 if (II.getNumDefs() >= 1)
1272 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1273 .addReg(Op0, Op0IsKill * RegState::Kill)
1274 .addFPImm(FPImm);
1275 else {
1276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1277 .addReg(Op0, Op0IsKill * RegState::Kill)
1278 .addFPImm(FPImm);
1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1280 ResultReg).addReg(II.ImplicitDefs[0]);
1281 }
1282 return ResultReg;
1283 }
1284
FastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)1285 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1286 const TargetRegisterClass *RC,
1287 unsigned Op0, bool Op0IsKill,
1288 unsigned Op1, bool Op1IsKill,
1289 uint64_t Imm) {
1290 unsigned ResultReg = createResultReg(RC);
1291 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1292
1293 if (II.getNumDefs() >= 1)
1294 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1295 .addReg(Op0, Op0IsKill * RegState::Kill)
1296 .addReg(Op1, Op1IsKill * RegState::Kill)
1297 .addImm(Imm);
1298 else {
1299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1300 .addReg(Op0, Op0IsKill * RegState::Kill)
1301 .addReg(Op1, Op1IsKill * RegState::Kill)
1302 .addImm(Imm);
1303 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1304 ResultReg).addReg(II.ImplicitDefs[0]);
1305 }
1306 return ResultReg;
1307 }
1308
FastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)1309 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1310 const TargetRegisterClass *RC,
1311 uint64_t Imm) {
1312 unsigned ResultReg = createResultReg(RC);
1313 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1314
1315 if (II.getNumDefs() >= 1)
1316 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1317 else {
1318 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1319 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1320 ResultReg).addReg(II.ImplicitDefs[0]);
1321 }
1322 return ResultReg;
1323 }
1324
FastEmitInst_ii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm1,uint64_t Imm2)1325 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1326 const TargetRegisterClass *RC,
1327 uint64_t Imm1, uint64_t Imm2) {
1328 unsigned ResultReg = createResultReg(RC);
1329 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1330
1331 if (II.getNumDefs() >= 1)
1332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1333 .addImm(Imm1).addImm(Imm2);
1334 else {
1335 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1336 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1337 ResultReg).addReg(II.ImplicitDefs[0]);
1338 }
1339 return ResultReg;
1340 }
1341
FastEmitInst_extractsubreg(MVT RetVT,unsigned Op0,bool Op0IsKill,uint32_t Idx)1342 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1343 unsigned Op0, bool Op0IsKill,
1344 uint32_t Idx) {
1345 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1346 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1347 "Cannot yet extract from physregs");
1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1349 DL, TII.get(TargetOpcode::COPY), ResultReg)
1350 .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1351 return ResultReg;
1352 }
1353
1354 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1355 /// with all but the least significant bit set to zero.
FastEmitZExtFromI1(MVT VT,unsigned Op0,bool Op0IsKill)1356 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1357 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1358 }
1359
1360 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1361 /// Emit code to ensure constants are copied into registers when needed.
1362 /// Remember the virtual registers that need to be added to the Machine PHI
1363 /// nodes as input. We cannot just directly add them, because expansion
1364 /// might result in multiple MBB's for one BB. As such, the start of the
1365 /// BB might correspond to a different MBB than the end.
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)1366 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1367 const TerminatorInst *TI = LLVMBB->getTerminator();
1368
1369 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1370 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1371
1372 // Check successor nodes' PHI nodes that expect a constant to be available
1373 // from this block.
1374 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1375 const BasicBlock *SuccBB = TI->getSuccessor(succ);
1376 if (!isa<PHINode>(SuccBB->begin())) continue;
1377 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1378
1379 // If this terminator has multiple identical successors (common for
1380 // switches), only handle each succ once.
1381 if (!SuccsHandled.insert(SuccMBB)) continue;
1382
1383 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1384
1385 // At this point we know that there is a 1-1 correspondence between LLVM PHI
1386 // nodes and Machine PHI nodes, but the incoming operands have not been
1387 // emitted yet.
1388 for (BasicBlock::const_iterator I = SuccBB->begin();
1389 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1390
1391 // Ignore dead phi's.
1392 if (PN->use_empty()) continue;
1393
1394 // Only handle legal types. Two interesting things to note here. First,
1395 // by bailing out early, we may leave behind some dead instructions,
1396 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1397 // own moves. Second, this check is necessary because FastISel doesn't
1398 // use CreateRegs to create registers, so it always creates
1399 // exactly one register for each non-void instruction.
1400 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1401 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1402 // Handle integer promotions, though, because they're common and easy.
1403 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1404 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1405 else {
1406 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1407 return false;
1408 }
1409 }
1410
1411 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1412
1413 // Set the DebugLoc for the copy. Prefer the location of the operand
1414 // if there is one; use the location of the PHI otherwise.
1415 DL = PN->getDebugLoc();
1416 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1417 DL = Inst->getDebugLoc();
1418
1419 unsigned Reg = getRegForValue(PHIOp);
1420 if (Reg == 0) {
1421 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1422 return false;
1423 }
1424 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1425 DL = DebugLoc();
1426 }
1427 }
1428
1429 return true;
1430 }
1431